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A set of orthogonal states is the strongest nonlocal set if it is locally stable in every bipartition, which shows
the strong quantum nonlocality proposed by Halder et al. [Phys. Rev. Lett. 122, 040403 (2019)]. The existence
of the strongest nonlocal sets with the minimum size is an open question. In this work, we partially solve this
question by constructing the strongest nonlocal sets with the minimum size in 2 ⊗ 2 ⊗ 2 ⊗ 2 and 2 ⊗ d2 ⊗ d3,
where 2 � d2 � d3. Moreover, we also give the strongest nonlocal sets with size d2d3 + d1 − 1 in d1 ⊗ d2 ⊗ d3

and the strongest nonlocal sets with size d3 + d − 1 in d ⊗ d ⊗ d ⊗ d . All the sizes of the strongest nonlocal
sets are close to the minimum size and are smaller than all previously known constructions. As an application,
our strongest nonlocal sets can be used to construct partially genuinely entangled subspaces in d1 ⊗ d2 ⊗ d3

when 2 � d1 � d2 � d3 and d2 � 3.
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I. INTRODUCTION

Quantum state discrimination is a fundamental problem
in quantum information theory. If a set of orthogonal states
cannot be perfectly distinguished under local operation and
classical communication, then it is called locally indistin-
guishable. Locally indistinguishable sets have a wide range
of applications such as quantum information hiding [1–3]
and quantum secret sharing [4–6]. Locally indistinguishable
sets also exhibit quantum nonlocality, which is different from
Bell nonlocality [7]. This is because Bell nonlocality appears
on only entangled states, while the nonlocality based on lo-
cal indistinguishability can appear on product states. Bennett
et al. [8] first presented a locally indistinguishable orthogonal
product basis in 3 ⊗ 3. Since then, the construction of locally
indistinguishable orthogonal product sets and orthogonal en-
tangled sets has received much attention [9–38].

Halder et al. proposed the concepts of local irreducibil-
ity and strong quantum nonlocality [39]. Local irreducibility
is a stronger concept than local indistinguishability. A set
of orthogonal states is called locally irreducible if it is not
possible to eliminate one or more states from the set by
orthogonality-preserving local measurements, and a set of
orthogonal states is called strongly nonlocal if it is locally
irreducible in every bipartition. Halder et al. also showed two
strongly nonlocal orthogonal product bases in 3 ⊗ 3 ⊗ 3 and
4 ⊗ 4 ⊗ 4, respectively. Strongly nonlocal orthogonal product
sets and orthogonal entangled sets have also been widely
constructed [37,40–48]. See Table I for a summary.
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The primary method of demonstrating local irreducibility
of a set of orthogonal states is by proving that the only
orthogonality-preserving measurements on each subsystem
are trivial, and any set with this property is called locally
stable [37]. Moreover, a set of orthogonal states is called
“strongest nonlocal” if it is locally stable in every biparti-
tion [44]. A lower bound on the sizes of the strongest nonlocal
sets exists; that is, for any strongest nonlocal set C in d1 ⊗
d2 ⊗ · · · ⊗ dn with di � 2, we have |C| � (

∏n
i=1 di/dmin) + 1,

where dmin = min{d1, d2, . . . , dn} [37] (see Table I). However,
the existence of strongest nonlocal sets with the minimum size
is an open question.

In this paper, we partially solve this open question by
constructing the strongest nonlocal sets with the minimum
size in 2 ⊗ d2 ⊗ d3 and 2 ⊗ 2 ⊗ 2 ⊗ 2. We also present the
strongest nonlocal sets with size d2d3 + d1 − 1 in d1 ⊗ d2 ⊗
d3 for 2 � d1 � d2 � d3. For four-partite systems, we show
the strongest nonlocal sets with size d3 + d − 1 in d ⊗ d ⊗
d ⊗ d for d � 2. All of our constructions are close to the
lower bound in [37]. As an application, we can construct some
genuinely entangled mixed states from our strongest nonlocal
sets.

Constructing locally indistinguishable sets with minimal
sizes is a focal point in the exploration of local indistinguisha-
bility [25,28,29,32,34–38]. Since local indistinguishability
can be used for quantum information hiding [1–3] and quan-
tum secret sharing [4–6], locally indistinguishable sets with
small sizes are beneficial for experimental implementation.
For example, if one wants to realize quantum secret shar-
ing in a two-qubit system through a locally indistinguishable
set, then one needs to prepare only three orthogonal Bell
states [10]. Recently, quantum data hiding and quantum se-
cret sharing based on strong quantum nonlocality were also
proposed [44,47]. Thus, the strongest nonlocal sets with small
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TABLE I. Results for the cardinality of strongly nonlocal sets. Here we assume that d1 � d2 � · · · � dn.

Systems Lower bound Sizes of known constructions Ref.

d ⊗ d ⊗ d (d � 3) d2 + 1 6(d − 1)2 [41]
d ⊗ d ⊗ (d + 1) (d � 3) d2 + 1 6d2 − 8d + 4 [41]
d ⊗ d ⊗ d (d � 3) d2 + 1 d3 − d (d is odd), d3 − d − 6 (d is even) [40]
d ⊗ d ⊗ d (d � 3) d2 + 1 d3 − 4d + 4 (d is odd), d3 − 4d + 8 (d is even) [44]
d ⊗ d ⊗ d (d � 3) d2 + 1 d3 − (d − 2)3 (d is odd), d3 − (d − 2)3 + 2 (d is even) [42]
d1 ⊗ d2 ⊗ d3 (di � 3) d2d3 + 1 2((d1d2 + d2d3 + d1d3) − 3(d1 + d2 + d3) + 12) [46]
d1 ⊗ d2 ⊗ d3 (di � 3) d2d3 + 1 d1d2d3 − 8(n + 1), (0 � n � � d1−3

2 �) [43]
d1 ⊗ d2 ⊗ d3 ⊗ d4 d2d3d4 + 1 d1d2d3d4 − (d1 − 2)(d2 − 2)(d3 − 2)(d4 − 2) − 2 [46]
d⊗n (n � 3, d � 2) dn−1 + 1 dn − (d − 1)n + 1 [47]
d1 ⊗ d2 ⊗ · · · ⊗ dn (n � 3, n is odd, di � 3) d2d3 · · · dn + 1 d1d2 · · · dn − (d1 − 2)(d2 − 2) · · · (dn − 2) [45]
d1 ⊗ d2 ⊗ · · · ⊗ dn (n > 3, n is even, di � 3) d2d3 · · · dn + 1 d1d2 · · · dn − (d1 − 2)(d2 − 2) · · · (dn − 2) [48]
d1 ⊗ d2 ⊗ · · · ⊗ dn (n � 3, di � 2) d2d3 · · · dn + 1 d1d2 · · · dn − (d1 − 1)(d2 − 1) · · · (dn − 1) [37]
d ⊗ d ⊗ d (d � 2) d2 + 1 d2 + d − 1 This work
d1 ⊗ d2 ⊗ d3 (di � 2) d2d3 + 1 d2d3 + d1 − 1 This work
d ⊗ d ⊗ d ⊗ d (d � 2) d3 + 1 d3 + d − 1 This work

sizes are important for experiments with strong quantum
nonlocality.

The rest of this paper is organized as follows. In Sec. II,
we introduce some notations and preliminary knowledge.
In Sec. III, we construct the strongest nonlocal sets with
size d2d3 + d1 − 1 in d1 ⊗ d2 ⊗ d3 for 2 � d1 � d2 � d3. In
Sec. IV, we present the strongest nonlocal sets with size d3 +
d − 1 in d ⊗ d ⊗ d ⊗ d for d � 2. The proofs of Propositions
2 and 3 are given in the Supplemental Material [49]. In Sec. V,
we construct some partially genuinely entangled subspaces
from our strongest nonlocal sets. Finally, we summarize in
Sec. VI.

II. PRELIMINARIES

Throughout this paper, we do not normalize states for
simplicity. We denote Zd = {0, 1, . . . , d − 1}, and wn = e

2π i
n .

Let {|i〉}i∈Zd be the computational basis of the d-dimensional
Hilbert space H. For (i1, i2, . . . , iN ) ∈ Zd1 × Zd2 × · · · ×
ZdN , we denote wt (i1, i2, . . . , iN ) as the number of nonze-
ros ik for 1 � k � N . And we define S(d1, d2, . . . , dn) =
d2d3 · · · dn + d1 − 1(2 � d1 � d2 � · · · � dn), which will be
the sizes of our strongest nonlocal sets.

A set of positive-semidefinite operators {Em} on H is
a positive operator-valued measure (POVM) if it satisfies∑

Em = IH, where IH is the identity operator of H. Each Em

is called a POVM element. A measurement is trivial if each
POVM element is proportional to the identity operator; other-
wise, it is nontrivial. For a set of orthogonal states {|ψi〉}k

i=1
in HA1 ⊗ HA2 ⊗ · · · ⊗ HAn , a measurement {Em} performed
on Ai is called an orthogonality-preserving local measure-
ment (OPLM) if the postmeasurement states are mutually
orthogonal, i.e.,

〈ψi|IA1 ⊗ · · · IAi−1 ⊗ Em ⊗ IAi+1 ⊗ · · · ⊗ IAN |ψ j〉 = 0,

where 1 � i �= j � N .
Definition 1. A set of orthogonal states in HA1 ⊗ HA2 ⊗

· · · ⊗ HAn is locally irreducible if it is not possible to eliminate
one or more states from the set by OPLMs; a set of orthogonal

states in HA1 ⊗ HA2 ⊗ · · · ⊗ HAn is strongly nonlocal if it is
locally irreducible in every bipartition [39].

Definition 2. A set of orthogonal states in HA1 ⊗ HA2 ⊗
· · · ⊗ HAn is locally stable if for each party Ai the only OPLMs
on each party Ai are trivial; a set of orthogonal states in HA1 ⊗
HA2 ⊗ · · · ⊗ HAn is strongest nonlocal if it is locally stable in
every bipartition [37,44].

From Definitions 1 and 2, we know that a locally sta-
ble set must be a locally irreducible set. However, a locally
irreducible set is not necessarily a locally stable set. For
example, the Bell basis {|00〉 ± |11〉, |01〉 ± |10〉} in 2 ⊗ 2
is locally irreducible [39]. The Bell basis can be seen as a
set of orthogonal states in 2 ⊗ 3, and it is still locally irre-
ducible in 2 ⊗ 3. Since A2 can perform a nontrivial OPLM
{|0〉〈0| + |1〉〈1|, |2〉〈2|}, the Bell basis is not locally stable in
2 ⊗ 3. Similarly, a strongest nonlocal set must be a strongly
nonlocal set, but the converse is not necessarily true. Note
that all the previous locally irreducible sets (strongly nonlo-
cal sets) are also locally stable sets (strongest nonlocal sets)
[37,40–48]. If we do not embed the small space into a large
space, Definitions 1 and 2 could be equivalent.

A lower bound on the size of the strongest nonlocal set C in
HA1 ⊗ HA2 ⊗ · · · ⊗ HAn exists, where HAi has dimension di,

|C| �
(

n∏
i=1

di/dmin

)
+ 1, dmin = min{d1, d2, . . . , dn}.

(1)

The strongest nonlocal set has the minimum size if it reaches
the above lower bound. The existence of such sets is un-
known [37], and we will focus on this open question. In order
to show that C is strongest nonlocal, we need to show only that
any OPLM performed on Âi is trivial for 1 � i � N , where
Âi = {A1, A2, . . . , AN } \ {Ai} [43].

Next, we introduce two useful tools for showing that
an OPLM is trivial. Let {|αi〉}i∈Zs be a set of orthogonal
states; then a set of orthogonal states {|ψi〉}i∈Zs is spanned by
{|αi〉}i∈Zs if each state |ψi〉 is a linear combination of the states
from {|αi〉}i∈Zs .
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Lemma 1. Block-zero lemma [43]. Let E be a d × d matrix
and {|αi〉}i∈Zs and {|β j〉} j∈Zt be two sets of orthogonal states
in H with dim(H) = d . Assume that {|ψi〉}i∈Zs and {|φ j〉} j∈Zt

are two sets of orthogonal states spanned by {|αi〉}i∈Zs and
{|β j〉} j∈Zt , respectively. If 〈ψi|E |φ j〉 = 0 for any i ∈ Zs, j ∈
Zt , then 〈αi|E |β j〉 = 0 for any i ∈ Zs, j ∈ Zt .

Lemma 2. Block-trivial lemma [43]. Let E be a d × d
matrix and {|αi〉}i∈Zs be a set of orthogonal states in H with
dim(H) = d . Assume that {|ψi〉}i∈Zs is a set of orthogonal
states spanned by {|αi〉}i∈Zs and 〈ψi|E |ψ j〉 = 0 for any i �=
j ∈ Zs. If a state |αt 〉 exists such that 〈αt |E |αr〉 = 0 for any
r �= t ∈ Zs and 〈αt |ψ j〉 �= 0 for any j ∈ Zs, then 〈αi|E |α j〉 =
0 for any i �= j ∈ Zs, and 〈αi|E |αi〉 = 〈α j |E |α j〉 for any i �=
j ∈ Zs.

III. STRONGEST NONLOCAL SETS
IN TRIPARTITE SYSTEMS

In this section, we first give the strongest nonlocal set with
a minimum size of 5 in 2 ⊗ 2 ⊗ 2. Then we generalize it to
d ⊗ d ⊗ d and d1 ⊗ d2 ⊗ d3.

Example 1. In 2 ⊗ 2 ⊗ 2, the set of orthogonal states
{|ψi〉}i∈Z5 is strongest nonlocal, where

|ψ0〉 = |000〉,
|ψ1〉 = |100〉 + |010〉 + |001〉

+ 1√
3

(|011〉 + |110〉 + |101〉),

|ψ2〉 = |100〉 + w4|010〉 + w2
4|001〉

+ w3
4

1√
3

(|011〉 + |110〉 + |101〉),

|ψ3〉 = |100〉 + w2
4|010〉 + w4

4|001〉

+ w6
4

1√
3

(|011〉 + |110〉 + |101〉),

|ψ4〉 = |100〉 + w3
4|010〉 + w6

4|001〉

+ w9
4

1√
3

(|011〉 + |110〉 + |101〉). (2)

Proof. Note that {|ψi〉}i∈Z5 has a similar structure under
the cyclic permutation of the parties {A1, A2, A3}, so we need
to show only that any OPLM performed on A2A3 is trivial.
We assume that A2A3 performs an OPLM {E}; then we have
〈ψi|IA1 ⊗ E |ψ j〉 = 0 for i �= j ∈ Z5.

Let |α0〉= |000〉, |α1〉 = |100〉, |α2〉 = |010〉, |α3〉 = |001〉,
and |α4〉 = 1√

3
(|011〉 + |110〉 + |101〉). This means that

{|ψ0〉} is spanned by {|α0〉}, and {|ψi〉}4
i=1 is spanned by

{|αi〉}4
i=1. Since 〈ψ0|IA1 ⊗ E |ψi〉 = 0 for 1 � i � 4, we have

〈α0|IA1 ⊗ E |αi〉 = 0 for 1 � i � 4 from Lemma 1. This
implies 〈00|E |01〉 = 〈00|E |10〉 = 〈00|E |11〉 = 〈01|E |00〉 =
〈10|E |00〉 = 〈11|E |00〉 = 0. Then we have

〈α1|IA1 ⊗ E |αi〉 = 0, 2 � i � 4;

〈α1|ψi〉 �= 0, 1 � i � 4.

Applying Lemma 2 to {|ψi〉}4
i=1, we have 〈αi|I ⊗ E |α j〉 = 0

for 1 � i �= j � 4 and 〈αi|IA1 ⊗ E |αi〉 = 〈α j |IA1 ⊗ E |α j〉 for
1 � i �= j � 4.

Since 〈α2|I ⊗ E |α3〉 = 〈α3|I ⊗ E |α2〉 = 0, we have
〈10|E |01〉 = 〈01|E |10〉 = 0. As 〈α2|I ⊗ E |α4〉 = 〈α4|I ⊗
E |α2〉 = 0, we obtain 〈10|E |11〉 = 〈11|E |10〉 = 0. Moreover,
since 〈α3|I ⊗ E |α4〉 = 〈α4|I ⊗ E |α3〉 = 0, we have
〈01|E |11〉 = 〈11|E |01〉 = 0. This means that the off-diagonal
elements of E are all zeros. Next, we consider the diagonal
elements of E . Since 〈α1|IA1 ⊗ E |α1〉 = 〈α2|IA1 ⊗ E |α2〉 =
〈α3|IA1 ⊗ E |α3〉, we have 〈00|E |00〉 = 〈10|E |10〉 =
〈01|E |01〉. Furthermore, since 〈α4|I ⊗ E |α4〉 = 〈α1|I ⊗
E |α1〉, we have 1

3 (〈11|E |11〉 + 〈10|E |10〉 + 〈01|E |01〉) =
〈00|E |00〉, which implies 〈11|E |11〉 = 〈00|E |00〉. Thus,
E ∝ I. This completes the proof. �

Next, we give the general construction of strongest nonlo-
cal sets in d ⊗ d ⊗ d . Let

A0 := {|000〉},
A1 := {|i00〉, |0i0〉, |00i〉}d−1

i=1 ,

A2 :=
{

1√
3

(|0i j〉 + | j0i〉 + |i j0〉) : 1 � i, j � d − 1

}
,

(3)

where |A0| = 1, |A1| = 3(d − 1), |A2| = (d − 1)2, and
|A0| + |A1| + |A2| = d2 + d − 1 = S(d, d, d ). We denote
|α0〉 = |000〉 and {|αi〉}S(d,d,d )−1

i=1 = A1
⋃

A2. Then we can
construct a set of orthogonal states {|ψi〉}i∈ZS(d,d,d ) , where

|ψ0〉 = |α0〉,
|ψi+1〉 =

∑
j∈ZS(d,d,d )−1

w
i j
S(d,d,d )−1|α j+1〉, i ∈ ZS(d,d,d )−1. (4)

Proposition 1. In d ⊗ d ⊗ d , d � 2, the set of orthogonal
states {|ψi〉}i∈ZS(d,d,d ) given by Eq. (4) is strongest nonlocal.

Proof. Since {|ψi〉}i∈ZS(d,d,d ) has a similar structure under
the cyclic permutation of the parties {A1, A2, A3}, we need
to show only that any OPLM performed on A2A3 is trivial.
We assume that A2A3 performs an OPLM {E}; then we have
〈ψi|IA1 ⊗ E |ψ j〉 = 0 for i �= j ∈ ZS(d,d,d ).

Note that {|ψ0〉} is spanned by {|α0〉}, and {|ψi〉}S(d,d,d )−1
i=1

is spanned by {|αi〉}S(d,d,d )−1
i=1 . Since 〈ψ0|IA1 ⊗ E |ψi〉 = 0 for

1 � i � S(d, d, d ) − 1, we have 〈α0|IA1 ⊗ E |αi〉 = 0 for 1 �
i � S(d, d, d ) − 1 from Lemma 1. This implies that

〈00|E |i j〉 = 〈i j|E |00〉 = 0, (i, j) ∈ Zd × Zd \ {(0, 0)}.
(5)

Without loss of generality, we assume |α1〉 = |100〉. Then we
have

〈α1|IA1 ⊗ E |αi〉 = 0, 2 � i � S(d, d, d ) − 1;

〈α1|ψi〉 �= 0, 1 � i � S(d, d, d ) − 1.

Applying Lemma 2 to {|ψi〉}S(d,d,d )−1
i=1 , we obtain

〈αi|IA1 ⊗ E |α j〉 = 0, 1 � i �= j � S(d, d, d ) − 1;

〈αi|IA1 ⊗ E |αi〉 = 〈α j |IA1 ⊗ E |α j〉,
1 � i �= j � S(d, d, d ) − 1. (6)
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If |αi〉, |α j〉 ∈ A1, then we have

〈i1 j1|E |i2 j2〉 = 0,

wt (i1, j1) = wt (i2, j2) = 1, (i1, j1) �= (i2, j2) ∈ Zd × Zd .

(7)

If |αi〉 ∈ A1 and |α j〉 ∈ A2, then we have

0 = 〈00i1|IA1 ⊗ E
1√
3

(|0i2 j2〉 + | j20i2〉 + |i2 j20〉)

= 1√
3

(〈0i2 j2| + 〈 j20i2| + 〈i2 j20|)IA1 ⊗ E |00i1〉

= 〈0i1|E |i2 j2〉 = 〈i2 j2|E |0i1〉, i1, i2, j2 ∈ Zd \ {0},

0 = 〈0i10|IA1 ⊗ E
1√
3

(|0i2 j2〉 + | j20i2〉 + |i2 j20〉)

= 1√
3

(〈0i2 j2| + 〈 j20i2| + 〈i2 j20|)IA1 ⊗ E |0i10〉

= 〈i10|E |i2 j2〉 = 〈i2 j2|E |i10〉, i1, i2, j2 ∈ Zd \ {0}.
This means that

〈i1 j1|E |i2 j2〉 = 〈i2 j2|E |i1 j1〉 = 0,

wt (i1, j1) = 1,wt (i2, j2) = 2,

(i1, j1) �= (i2, j2) ∈ Zd × Zd . (8)

If |αi〉, |α j〉 ∈ A2, then we have

0 = 1√
3

(〈0i1 j1| + 〈 j10i1| + 〈i1 j10|)IA1 ⊗ E

× 1√
3

(|0i2 j2〉 + | j20i2〉 + |i2 j20〉)

= 1

3
(〈i1 j1|E |i2 j2〉 + 〈 j1| j2〉〈0i1|E |0i2〉

+ 〈 j1|i2〉〈0i1|E | j20〉 + 〈i1| j2〉〈 j10|E |0i2〉
+ 〈i1|i2〉〈 j10|E | j20〉)

= 1

3
(〈i1 j1|E |i2 j2〉 + 〈 j1| j2〉〈0i1|E |0i2〉

+ 〈i1|i2〉〈 j10|E | j20〉)

= 1

3
(〈i1 j1|E |i2 j2〉), i1, j1, i2, j2 ∈ Zd \ {0},

(i1, j1) �= (i2, j2).

That is,

〈i1 j1|E |i2 j2〉 = 0,

wt (i1, j1) = wt (i2, j2) = 2,

(i1, j1) �= (i2, j2) ∈ Zd × Zd . (9)

From Eqs. (5), (7), (8), and (9), we find that the off-diagonal
elements of E are all zeros.

Next, we consider the diagonal elements of E . If |αi〉 ∈ A1,
then we have

〈00|E |00〉 = 〈α1|IA1 ⊗ E |α1〉 = 〈αi|IA1 ⊗ E |αi〉
= 〈i1 j1|E |i1 j1〉,

wt (i1, j1) = 1, (i1, j1) ∈ Zd × Zd . (10)

If |αi〉 ∈ A2, then we have

〈00|E |00〉 = 〈α1|IA1 ⊗ E |α1〉 = 〈αi|IA1 ⊗ E |αi〉
= 1

3 (〈i1 j1|E |i1 j1〉 + 〈0i1|E |0i1〉 + 〈 j10|E | j10〉),

wt (i1, j1) = 2, (i1, j1) ∈ Zd × Zd .

That is,

〈00|E |00〉 = 〈i1 j1|E |i1 j1〉,
wt (i1, j1) = 2, (i1, j1) ∈ Zd × Zd . (11)

From Eqs. (10) and (11), we find that the diagonal elements
of E are all equal. Thus, E ∝ I. This completes the proof. �

We can also generalize the strongest nonlocal sets in d ⊗
d ⊗ d to the system d1 ⊗ d2 ⊗ d3, where 2 � d1 � d2 � d3.
Let

A0 := {|000〉},
A1 := {|i00〉 : 1 � i � d1 − 1}

⋃
{|0i0〉 : 1 � i � d2 − 1}⋃

{|00i〉 : 1 � i � d3 − 1},

A2 :=
{

1√
3

(|0i j〉 + | j0i〉 + |i j0〉) : 1 � i, j � d1 − 1

}
⋃ {

1√
2

(|0i j〉 + | j0i〉) :

d1 � i � d2 − 1, 1 � j � d1 − 1

}
⋃ {

1√
2

(|0i j〉 + |i j0〉) :

1 � i � d1 − 1, d1 � j � d2 − 1

}
⋃ {

|0i j〉 : d1 � i, j � d2 − 1

}
⋃ {

1√
2

(|0i j〉 + |i0 j〉) :

1 � i � d1 − 1, d2 � j � d3 − 1

}
⋃ {

|0i j〉 : d1 � i � d2 − 1, d2 � j � d3 − 1

}
, (12)

where |A0| = 1, |A1| = d1 + d2 + d3 − 3, |A2| = (d2 −
1)(d3 − 1), and |A0| + |A1| + |A2| = d2d3 + d1 − 1 =
S(d1, d2, d3). We denote |α0〉 = |000〉 and {|αi〉}S(d1,d2,d3 )−1

i=1 =
A1

⋃
A2. Then we can construct a set of orthogonal states

{|ψi〉}i∈ZS(d1 ,d2 ,d3 ) , where

|ψ0〉 = |α0〉,
|ψi+1〉 =

∑
j∈ZS(d1 ,d2 ,d3 )−1

w
i j
S(d1,d2,d3 )−1|α j+1〉, (13)

where i ∈ ZS(d1,d2,d3 )−1.
Proposition 2. In d1 ⊗ d2 ⊗ d3, 2 � d1 � d2 � d3, the set

of orthogonal states {|ψi〉}i∈ZS(d1 ,d2 ,d3 ) given by Eq. (13) is
strongest nonlocal.
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The proof of Proposition 2 is given in the Supplemen-
tal Material [49]. Our strongest nonlocal set in d1 ⊗ d2 ⊗ d3

(2 � d1 � d2 � d3) has size S(d1, d2, d3), and it is close to the
minimum size d2d3 + 1 given in Eq. (1), which is smaller than
all known constructions. When d1 = 2, our strongest nonlocal
set has the minimum size. Note that |ψ0〉 = |000〉 is a prod-
uct state, while other states {|ψi〉}S(d1,d2,d3 )−1

i=1 are genuinely
entangled states.

IV. STRONGEST NONLOCAL SETS
IN FOUR-PARTITE SYSTEMS

In this section, we construct the strongest nonlocal orthog-
onal states in d ⊗ d ⊗ d ⊗ d . Let

A0 := {|0000〉},
A1 := {|i000〉, |0i00〉, |00i0〉, |000i〉}d−1

i=1 ,

A2 :=
{

1√
2

(|00i j〉 + |i j00〉) : 1 � i, j � d − 1

}
⋃ {

1√
2

(|0i j0〉 + | j00i〉) : 1 � i, j � d − 1

}
⋃ {

1√
2

(|0i0 j〉 + |i0 j0〉) : 1 � i, j � d − 1

}
,

A3 :=
{

1

2
(|0i jk〉 + |k0i j〉 + | jk0i〉 + |i jk0〉) :

1 � i, j, k � d − 1

}
,

where |A0| = 1, |A1| = 4(d − 1), |A2| = 3(d − 1)2, |A3| =
(d − 1)3, and |A0| + |A1| + |A2| + |A3| = d3 + d − 1 =
S(d, d, d, d ).

We denote |α0〉 = |0000〉 and {|αi}〉S(d,d,d,d )−1
i=1 =

A1
⋃

A2
⋃

A3. Then we can construct a set of orthogonal
states {|ψi〉}i∈ZS(d,d,d,d ) , where

|ψ0〉 = |α0〉,
|ψi+1〉 =

∑
j∈ZS(d,d,d,d )−1

w
i j
S(d,d,d,d )−1|α j+1〉, (14)

where i ∈ ZS(d,d,d,d )−1.
Proposition 3. In d ⊗ d ⊗ d ⊗ d , d � 2, the set of or-

thogonal states {|ψi〉}i∈ZS(d,d,d,d ) given by Eq. (14) is strongest
nonlocal.

The proof of Proposition 3 is given in the Supplemental
Material [49]. Note that we construct a strongest nonlocal set
with size S(d, d, d, d ) in d ⊗ d ⊗ d ⊗ d , which is also close
to the minimum size d3 + 1 given in Eq. (1), which is smaller
than all known constructions. When d = 2, our construction
has the minimum size of 9. Note that |ψ0〉 = |0000〉 is a prod-
uct state, while other states {|ψi〉}S(d,d,d,d )−1

i=1 are genuinely
entangled states.

Example 2. In 2 ⊗ 2 ⊗ 2 ⊗ 2, let

A0 := {|0000〉} = {|α0〉},
A1 := {|0001〉, |0010〉, |0100〉, |1000〉}

= {|α1〉, |α2〉, |α3〉, |α4〉},

A2 :=
{

1√
2

(|0011〉 + |1100〉),
1√
2

(|0110〉 + |1001〉),

1√
2

(|1010〉 + |0101〉)

}
= {|α5〉, |α6〉, |α7〉},

A3 :=
{

1

2
(|0111〉 + |1011〉 + |1101〉 + |1110〉)

}
= {|α8〉}.

Then the set of orthogonal states {|ψi〉}i∈Z9 is strongest non-
local with the minimum size, where

|ψ0〉 = |α0〉,
|ψ1〉 = |α1〉 + |α2〉 + |α3〉 + |α4〉

+ |α5〉 + |α6〉 + |α7〉 + |α8〉,
|ψ2〉 = |α1〉 + w8|α2〉 + w2

8|α3〉 + w3
8|α4〉

+ w4
8|α5〉 + w5

8|α6〉 + w6
8|α7〉 + w7

8|α8〉,
|ψ3〉 = |α1〉 + w2

8|α2〉 + w4
8|α3〉 + w6

8|α4〉
+ w8

8|α5〉 + w10
8 |α6〉 + w12

8 |α7〉 + w14
8 |α8〉,

|ψ4〉 = |α1〉 + w3
8|α2〉 + w6

8|α3〉 + w9
8|α4〉

+ w12
8 |α5〉 + w15

8 |α6〉 + w18
8 |α7〉 + w21

8 |α8〉,
|ψ5〉 = |α1〉 + w4

8|α2〉 + w8
8|α3〉 + w12

8 |α4〉
+ w16

8 |α5〉 + w20
8 |α6〉 + w24

8 |α7〉 + w28
8 |α8〉,

|ψ6〉 = |α1〉 + w5
8|α2〉 + w10

8 |α3〉 + w15
8 |α4〉

+ w20
8 |α5〉 + w25

8 |α6〉 + w30
8 |α7〉 + w35

8 |α8〉,
|ψ7〉 = |α1〉 + w6

8|α2〉 + w12
8 |α3〉 + w18

8 |α4〉
+ w24

8 |α5〉 + w30
8 |α6〉 + w36

8 |α7〉 + w42
8 |α8〉,

|ψ8〉 = |α1〉 + w7
8|α2〉 + w14

8 |α3〉 + w21
8 |α4〉

+ w28
8 |α5〉 + w35

8 |α6〉 + w42
8 |α7〉 + w49

8 |α8〉.

V. APPLICATION: PARTIALLY GENUINELY ENTANGLED
SUBSPACES FROM THE STRONGEST NONLOCAL SETS

In this section, we construct some genuinely entangled
mixed states from our strongest nonlocal sets. First, let us
recall some concepts. A bipartite pure state |ψ〉 ∈ HA1 ⊗ HA2

with dimension m ⊗ n can be written as

|ψ〉 =
∑

i∈Zm, j∈Zn

ai, j |i j〉,

where {|i〉i∈Zm} and {| j〉 j∈Zn} are computational bases of HA1 .
Then |ψ〉 corresponds to an m × n matrix M = (ai, j )i∈Zm, j∈Zn ,
and |ψ〉 is a product state if and only if rank(M ) = 1. For a
pure state |ψ〉 ∈ HA1 ⊗ HA2 ⊗ · · · ⊗ HAn , |ψ〉 is biproduct if
a bipartition S|S (where S ∪ S = {A1, A2, . . . , An}) exists such
that |ψ〉 = |φ〉S ⊗ |ϕ〉S . The state |ψ〉 is genuinely entangled
if it is not a biproduct state. A mixed state ρ is biseparable if
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it can be written as

ρ =
∑

i

pi|ψi〉〈ψi|, pi � 0,
∑

i

pi = 1,

where |ψi〉 is a biproduct state for each i. A mixed state is
a genuinely entangled state if it is not a biseperable state.
Now, we give the definition of a partially genuinely entangled
subspace.

Definition 3. Given a subspace S of HA1 ⊗ HA2 ⊗ · · · ⊗
HAn , we call S partially genuinely entangled if all the biprod-
uct states in S cannot span S .

By the range criterion [50], if the range of a mixed state
ρ is contained in a partially genuinely entangled subspace S
and rank(ρ) = dim(S ), then ρ is genuinely entangled. For
example, the normalized projector on a partially genuinely
entangled subspace must be a genuinely entangled state.

For a subspace B0 of HA1 ⊗ HA2 ⊗ · · · ⊗ HAn , we can
write |φ〉 = |φ1〉 + |φ2〉, where |φ1〉 ∈ B0 and |φ2〉 ∈ B⊥

0 .
Then |φ1〉 is called the projection of |φ〉 on B0. Assume
B is another subspace of HA1 ⊗ HA2 ⊗ · · · ⊗ HAn ; then the
projection of B on B0 is a subspace of B0 which consists of
the projections of all states in B on B0. Note that if B0 ⊆ B,
then the projection of B on B0 is B0.

Proposition 4. In d1 ⊗ d2 ⊗ d3, 2 � d1 � d2 � d3, and
d2 � 3, let S be the subspace spanned by {|ψi〉}i∈ZS(d1 ,d2 ,d3 )

given in Eq. (13); the complementary subspace S⊥ of S
is partially genuinely entangled with dim(S⊥) = d1d2d3 −
S(d1, d2, d3).

Proof. Note that S is also spanned by the states in A0 ∪
A1 ∪ A2 given in Eq. (12). There are two cases.

Case 1. d1 = 2. Suppose all the biproduct states in S⊥
span a subspace B. Our aim is to prove B � S⊥. Obviously,
|021〉 − |102〉 ∈ S⊥. If |021〉 − |102〉 /∈ B, then B � S⊥. We
need to show only |021〉 − |102〉 /∈ B.

If |021〉 − |102〉 ∈ B, then a set of biproduct states {|φi〉}
of B exists such that |021〉 − |102〉 = ∑

i ai|φi〉. Then a
biproduct state |φ〉 of {|φi〉} must exist such that |φ〉 =∑

i jk λi jk|i jk〉, where λ021 �= 0. Since |φ〉 is orthogonal to
|021〉 + |102〉 ∈ A2, we have λ021 = −λ102. Note that |φ〉 is
orthogonal to any state in A1, which implies λi jk = 0 for
wt (i, j, k) = 1.

If |φ〉 is a biproduct across the bipartition A1|A2A3,
then |φ〉A1|A2A3 corresponds to a d1 × d2d3 matrix M1 with
rank(M1) = 1. Consider the submatrix of M1,

( 21 02
0 λ021 0
1 λ121 λ102

)
.

Since this submatrix has rank 2, |φ〉 is not a biproduct across
the bipartition A1|A2A3.

If |φ〉 is a biproduct state across the bipartition A2|A1A3,
then |φ〉A2|A1A3 corresponds to a d2 × d1d3 matrix M2 with
rank(M2) = 1. Consider the submatrix of M2,

( 01 12
0 0 λ102

2 λ021 λ122

)
.

Since this submatrix has rank 2, |φ〉 is not a biproduct state
across the bipartition A2|A1A3.

If |φ〉 is a biproduct state across the bipartition A3|A1A2,
then |φ〉A3|A1A2 corresponds to a d3 × d1d2 matrix M3 with
rank(M3) = 1. Consider the submatrix of M3,

⎛⎝
01 02 10 11 12

0 0 0 0 λ110 λ120

1 λ011 λ021 λ101 λ111 λ121

2 λ012 λ022 λ102 λ112 λ122

⎞⎠.

Since λ021 = −λ102 �= 0, we have λ101 �= 0, λ022 �= 0, and
λ120 = λ110 = 0. Since |φ〉 is orthogonal to |101〉 + |110〉 +
|011〉, we have λ011 �= 0 and λ012 �= 0. Since |φ〉 is orthogonal
to |012〉 + |120〉, we have λ120 = −λ012 �= 0, which is impos-
sible. Thus, |φ〉 is not a biproduct state across the bipartition
A3|A1A2.

Above all, |021〉 − |102〉 /∈ B.
Case 2. d2 � 3. Suppose all the biproduct states in S⊥

span a subspace B. Our aim is to prove B � S⊥. Since
|012〉 + |201〉 + |120〉, |021〉 + |102〉 + |210〉 ∈ A2, we have
the four states |012〉 − |201〉, |201〉 − |120〉, |021〉 − |102〉,
and |102〉 − |210〉 ∈ S⊥, which span a subspace B0. If B0 �
B, then B � S⊥. We need to show only B0 � B.

For any biproduct state |φ〉 = ∑
i jk λi jk|i jk〉 ∈ B, we have

λi jk = 0 for wt (i, j, k) = 1. If |φ〉 is a biproduct state across
the bipartition A1|A2A3, then |φ〉A1|A2A3 corresponds to a d1 ×
d2d3 matrix M with rank(M ) = 1. Consider the submatrix of
M,

⎛⎝
01 02 10 11 12 20 21 22

0 0 0 0 λ011 λ012 0 λ021 λ022

1 λ101 λ102 λ110 λ111 λ112 λ120 λ121 λ122

2 λ201 λ202 λ210 λ211 λ212 λ220 λ221 λ222

⎞⎠.

Note that |φ〉 is orthogonal to |011〉 + |101〉 + |110〉, |022〉 +
|202〉 + |220〉, |012〉 + |201〉 + |120〉, and |021〉 + |102〉 +
|201〉. If λ011 �= 0, then λ101 �= 0 or λ110 �= 0, which contra-
dicts rank(M ) = 1. Then λ011 = 0. Similarly, we also have
λ012 = λ021 = λ022 = 0. Then λ101 = −λ110, λ202 = −λ220,
λ201 = −λ120, and λ102 = −λ201. Now we will consider the
projection of |φ〉 in B0. If λ201 = λ210 = λ102 = λ120 = 0,
then the projection of |φ〉 on B0 is zero. Assume there is at
least one nonzero coefficient of {λ201, λ210, λ102, λ120}; with-
out loss of generality, λ201 �= 0 (other cases are the same).

Since λ201 �= 0, we have λ201 = −λ120 �= 0, which im-
plies λ101, λ220 �= 0. Then we have λ110, λ202 �= 0 and
λ210, λ102 �= 0. Consider the following submatrix of M:

( 01 10
1 λ101 λ110

2 λ201 λ210

)
.

Then we have λ201 = −λ210. Therefore, we can conclude
λ201 = −λ210 = λ102 = −λ120. So the projection of |φ〉 on B0

is λ201(|201〉 − |210〉 + |102〉 − |120〉). Similarly, if |φ〉 is a
biproduct state across bipartition A2|A1A3, then the projection
of |φ〉 on B0 is λ021(|021〉 − |120〉 + |012〉 − |210〉). If |φ〉 is a
biproduct state across bipartition A2|A1A3, then the projection
of |φ〉 on B0 is λ012(|012〉 − |102〉 + |021〉 − |201〉). For any
|ψ〉 = ∑

i ai|φi〉 ∈ B, each |φi〉 is a biproduct state. Note that
the nonzero projection of each |φi〉 on B0 can have only three
forms; then the projection of |φ〉 on B0 belongs to a three-
dimensional space. This means that the projection of B on
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B0 has dimension 3. Since B0 has dimension 4, B0 � B. This
completes this proof. �

In 2 ⊗ 2 ⊗ d3, the subspace S⊥ is not partially genuinely
entangled since the biproduct states {|111〉 − |110〉 + |101〉,
|111〉 − |101〉 + |011〉, |111〉 − |011〉 + |110〉, |012〉− |102〉,
|013〉 − |103〉, . . . , |01d3 − 1〉 − |10d3 − 1〉, |112〉, . . . ,
|11d3 − 1〉} = {|φi〉}2d3−2

i=0 in S⊥ span S⊥.
Now we have constructed some genuinely entangled mixed

states from our strongest nonlocal sets. For example, let

ρ = 1

d1d2d3 − S(d1, d2, d3)

(
I −

∑
i∈ZS(d1 ,d2 ,d3 )

|ψ̃i〉〈ψ̃i|
)

,

where |ψ̃i〉 is the normalized state of |ψi〉 for i ∈ ZS(d1,d2,d3 ).
Then ρ is genuinely entangled when d2 � 3. For d2 = 2, ρ is
biseparable, but one can check that ρ is genuinely entangled
across every bipartition.

VI. CONCLUSION AND DISCUSSION

In this paper, we constructed the strongest nonlocal sets
in three-partite and four-partite systems. The sizes of our
strongest nonlocal sets are close to the minimum size.
Especially, our strongest nonlocal sets have the minimum size

in 2 ⊗ d2 ⊗ d3 and 2 ⊗ 2 ⊗ 2 ⊗ 2. All of our strongest nonlo-
cal sets consist of genuinely entangled states except one pro-
duct state. Moreover, in the same systems, our strongest non-
local sets have smaller sizes than those of all the strongest
nonlocal sets in [37,40–48] (see Table I). We also con-
structed some partially genuinely entangled subspaces from
our strongest nonlocal sets.

There are some questions left. For example, how do we
construct the strongest nonlocal sets with the minimum size in
general d1 ⊗ d2 ⊗ · · · ⊗ dn? Can we improve the lower bound
on the sizes of the strongest nonlocal sets in [37].

ACKNOWLEDGMENTS

The authors are very grateful to the anonymous review-
ers for providing many useful suggestions which greatly
improved the presentation of this paper. We also thank Mao-
Sheng Li for discussing this problem. J.L., F.S., and X.Z. were
supported by the Innovation Program for Quantum Science
and Technology (Grant No. 2021ZD0302902), the NSFC un-
der Grants No. 12171452 and No. 12231014, and the National
Key Research and Development Program of China (Grant No.
2020YFA0713100).

[1] B. M. Terhal, D. P. Divincenzo, and D. W. Leung, Hiding bits
in Bell states, Phys. Rev. Lett. 86, 5807 (2001).

[2] D. P. DiVincenzo, D. Leung, and B. M. Terhal, Quantum data
hiding, IEEE Trans. Inf. Theory 48, 580 (2002).

[3] T. Eggeling and R. F. Werner, Hiding classical data in multipar-
tite quantum states, Phys. Rev. Lett. 89, 097905 (2002).

[4] M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret
sharing, Phys. Rev. A 59, 1829 (1999).

[5] R. Rahaman and M. G. Parker, Quantum scheme for secret shar-
ing based on local distinguishability, Phys. Rev. A 91, 022330
(2015).

[6] J. Wang, L. Li, H. Peng, and Y. Yang, Quantum-secret-sharing
scheme based on local distinguishability of orthogonal multiqu-
dit entangled states, Phys. Rev. A 95, 022320 (2017).

[7] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.
Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).

[8] C. H. Bennett, D. P. Divincenzo, C. A. Fuchs, T. Mor, E. Rains,
P. W. Shor, J. A. Smolin, and W. K. Wootters, Quantum nonlo-
cality without entanglement, Phys. Rev. A 59, 1070 (1999).

[9] J. Walgate, A. J. Short, L. Hardy, and V. Vedral, Local
distinguishability of multipartite orthogonal quantum states,
Phys. Rev. Lett. 85, 4972 (2000).

[10] S. Ghosh, G. Kar, A. Roy, A. Sen(De), and U. Sen, Dis-
tinguishability of Bell states, Phys. Rev. Lett. 87, 277902
(2001).

[11] M. Horodecki, A. Sen(De), U. Sen, and K. Horodecki, Local
indistinguishability: More nonlocality with less entanglement,
Phys. Rev. Lett. 90, 047902 (2003).

[12] D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M.
Terhal, Unextendible product bases, uncompletable product
bases and bound entanglement, Commun. Math. Phys. 238, 379
(2003).

[13] S. De Rinaldis, Distinguishability of complete and unextendible
product bases, Phys. Rev. A 70, 022309 (2004).

[14] S. Ghosh, G. Kar, A. Roy, and D. Sarkar, Distinguishability of
maximally entangled states, Phys. Rev. A 70, 022304 (2004).

[15] H. Fan, Distinguishability and indistinguishability by local
operations and classical communication, Phys. Rev. Lett. 92,
177905 (2004).

[16] J. Niset and N. J. Cerf, Multipartite nonlocality without entan-
glement in many dimensions, Phys. Rev. A 74, 052103 (2006).

[17] H. Fan, Distinguishing bipartite states by local operations and
classical communication, Phys. Rev. A 75, 014305 (2007).

[18] Y. Feng and Y. Shi, Characterizing locally indistinguishable
orthogonal product states, IEEE Trans. Inf. Theory 55, 2799
(2009).

[19] N. Yu, R. Duan, and M. Ying, Four locally indistinguish-
able ququad-ququad orthogonal maximally entangled states,
Phys. Rev. Lett. 109, 020506 (2012).

[20] S. Bandyopadhyay, Entanglement, mixedness, and perfect local
discrimination of orthogonal quantum states, Phys. Rev. A 85,
042319 (2012).

[21] A. Cosentino, Positive-partial-transpose-indistinguishable
states via semidefinite programming, Phys. Rev. A 87, 012321
(2013).

[22] Z.-C. Zhang, F. Gao, G.-J. Tian, T.-Q. Cao, and Q.-Y.
Wen, Nonlocality of orthogonal product basis quantum states,
Phys. Rev. A 90, 022313 (2014).

[23] M.-S. Li, Y.-L. Wang, S.-M. Fei, and Z.-J. Zheng, d lo-
cally indistinguishable maximally entangled states in Cd⊗Cd ,
Phys. Rev. A 91, 042318 (2015).

[24] Y.-L. Wang, M.-S. Li, Z.-J. Zheng, and S.-M. Fei, Nonlocality
of orthogonal product-basis quantum states, Phys. Rev. A 92,
032313 (2015).

062407-7

https://doi.org/10.1103/PhysRevLett.86.5807
https://doi.org/10.1109/18.985948
https://doi.org/10.1103/PhysRevLett.89.097905
https://doi.org/10.1103/PhysRevA.59.1829
https://doi.org/10.1103/PhysRevA.91.022330
https://doi.org/10.1103/PhysRevA.95.022320
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/PhysRevA.59.1070
https://doi.org/10.1103/PhysRevLett.85.4972
https://doi.org/10.1103/PhysRevLett.87.277902
https://doi.org/10.1103/PhysRevLett.90.047902
https://doi.org/10.1007/s00220-003-0877-6
https://doi.org/10.1103/PhysRevA.70.022309
https://doi.org/10.1103/PhysRevA.70.022304
https://doi.org/10.1103/PhysRevLett.92.177905
https://doi.org/10.1103/PhysRevA.74.052103
https://doi.org/10.1103/PhysRevA.75.014305
https://doi.org/10.1109/TIT.2009.2018330
https://doi.org/10.1103/PhysRevLett.109.020506
https://doi.org/10.1103/PhysRevA.85.042319
https://doi.org/10.1103/PhysRevA.87.012321
https://doi.org/10.1103/PhysRevA.90.022313
https://doi.org/10.1103/PhysRevA.91.042318
https://doi.org/10.1103/PhysRevA.92.032313


JICUN LI, FEI SHI, AND XIANDE ZHANG PHYSICAL REVIEW A 108, 062407 (2023)

[25] Z.-C. Zhang, F. Gao, Y. Cao, S.-J. Qin, and Q.-Y. Wen, Local
indistinguishability of orthogonal product states, Phys. Rev. A
93, 012314 (2016).

[26] G. Xu, Q. Wen, F. Gao, S. Qin, and H. Zuo, Local indistin-
guishability of multipartite orthogonal product bases, Quantum
Inf. Process. 16, 276 (2017).

[27] Y.-L. Wang, M.-S. Li, Z.-J. Zheng, and S.-M. Fei, The local
indistinguishability of multipartite product states, Quantum Inf.
Process. 16, 5 (2017).

[28] Z.-C. Zhang, K.-J. Zhang, F. Gao, Q.-Y. Wen, and C. H.
Oh, Construction of nonlocal multipartite quantum states,
Phys. Rev. A 95, 052344 (2017).

[29] S. Halder, Several nonlocal sets of multipartite pure orthogonal
product states, Phys. Rev. A 98, 022303 (2018).

[30] G.-B. Xu and D.-H. Jiang, Novel methods to construct nonlo-
cal sets of orthogonal product states in an arbitrary bipartite
high-dimensional system, Quantum Inf. Process. 20, 128
(2021).

[31] Z.-X. Xiong, M.-S. Li, Z.-J. Zheng, C.-J. Zhu, and S.-M.
Fei, Positive-partial-transpose distinguishability for lattice-
type maximally entangled states, Phys. Rev. A 99, 032346
(2019).

[32] H.-J. Zuo, J.-H. Liu, X.-F. Zhen, and S.-M. Fei, Nonlocal sets
of orthogonal multipartite product states with less members,
Quantum Inf. Process. 20, 382 (2021).

[33] M.-S. Li, Y.-L. Wang, F. Shi, and M.-H. Yung,
Local distinguishability based genuinely quantum
nonlocality without entanglement, J. Phys. A 54, 445301
(2021).

[34] Y.-Y. Zhu, D.-H. Jiang, X.-Q. Liang, G.-B. Xu, and Y.-G.
Yang, Nonlocal sets of orthogonal product states with the less
amount of elements in tripartite quantum systems, Quantum Inf.
Process. 21, 252 (2022).

[35] X.-F. Zhen, S.-M. Fei, and H.-J. Zuo, Nonlocality without en-
tanglement in general multipartite quantum systems, Phys. Rev.
A 106, 062432 (2022).

[36] Y.-L. Wang, W. Chen, and M.-S. Li, Small set of orthogonal
product states with nonlocality, Quantum Inf. Process. 22, 15
(2022).

[37] M.-S. Li and Y.-L. Wang, Bounds on the smallest sets of quan-
tum states with special quantum nonlocality, Quantum 7, 1101
(2023).

[38] H.-Q. Cao, M.-S. Li, and H.-J. Zuo, Locally stable sets with
minimum cardinality, Phys. Rev. A 108, 012418 (2023).

[39] S. Halder, M. Banik, S. Agrawal, and S. Bandyopadhyay,
Strong quantum nonlocality without entanglement, Phys. Rev.
Lett. 122, 040403 (2019).

[40] F. Shi, M. Hu, L. Chen, and X. Zhang, Strong quantum nonlo-
cality with entanglement, Phys. Rev. A 102, 042202 (2020).

[41] P. Yuan, G. Tian, and X. Sun, Strong quantum nonlocal-
ity without entanglement in multipartite quantum systems,
Phys. Rev. A 102, 042228 (2020).

[42] Y.-L. Wang, M.-S. Li, and M.-H. Yung, Graph-connectivity-
based strong quantum nonlocality with genuine entanglement,
Phys. Rev. A 104, 012424 (2021).

[43] F. Shi, M.-S. Li, L. Chen, and X. Zhang, Strong quantum nonlo-
cality for unextendible product bases in heterogeneous systems,
J. Phys. A 55, 015305 (2022).

[44] F. Shi, M.-S. Li, M. Hu, L. Chen, M.-H. Yung, Y.-L. Wang,
and X. Zhang, Strongly nonlocal unextendible product bases do
exist, Quantum 6, 619 (2022).

[45] Y. He, F. Shi, and X. Zhang, Strong quantum nonlocality and
unextendibility without entanglement in N-partite systems with
odd N , arXiv:2203.14503.

[46] H. Zhou, T. Gao, and F. Yan, Orthogonal product sets with
strong quantum nonlocality on a plane structure, Phys. Rev. A
106, 052209 (2022).

[47] F. Shi, Z. Ye, L. Chen, and X. Zhang, Strong quantum nonlo-
cality in N-partite systems, Phys. Rev. A 105, 022209 (2022).

[48] H. Zhou, T. Gao, and F. Yan, Strong quantum nonlocality with-
out entanglement in an n-partite system with even n, Phys. Rev.
A 107, 042214 (2023).

[49] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.108.062407 for the proofs of Propositions
2 and 3.

[50] P. Horodecki, Separability criterion and inseparable mixed
states with positive partial transposition, Phys. Lett. A 232, 333
(1997).

062407-8

https://doi.org/10.1103/PhysRevA.93.012314
https://doi.org/10.1007/s11128-017-1725-5
https://doi.org/10.1007/s11128-016-1477-7
https://doi.org/10.1103/PhysRevA.95.052344
https://doi.org/10.1103/PhysRevA.98.022303
https://doi.org/10.1007/s11128-021-03062-8
https://doi.org/10.1103/PhysRevA.99.032346
https://doi.org/10.1007/s11128-021-03320-9
https://doi.org/10.1088/1751-8121/ac28cd
https://doi.org/10.1007/s11128-022-03601-x
https://doi.org/10.1103/PhysRevA.106.062432
https://doi.org/10.1007/s11128-022-03764-7
https://doi.org/10.22331/q-2023-09-07-1101
https://doi.org/10.1103/PhysRevA.108.012418
https://doi.org/10.1103/PhysRevLett.122.040403
https://doi.org/10.1103/PhysRevA.102.042202
https://doi.org/10.1103/PhysRevA.102.042228
https://doi.org/10.1103/PhysRevA.104.012424
https://doi.org/10.1088/1751-8121/ac3bea
https://doi.org/10.22331/q-2022-01-05-619
http://arxiv.org/abs/arXiv:2203.14503
https://doi.org/10.1103/PhysRevA.106.052209
https://doi.org/10.1103/PhysRevA.105.022209
https://doi.org/10.1103/PhysRevA.107.042214
http://link.aps.org/supplemental/10.1103/PhysRevA.108.062407
https://doi.org/10.1016/S0375-9601(97)00416-7

