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Robust quantum teleportation via a non-Markovian channel
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In this paper we propose a non-Markovian quantum channel approach to mitigating the degradation of the
average fidelity in continuous-variable quantum teleportation. The non-Markovian quantum channel is mod-
eled by an augmented system where ancillary systems are introduced to represent the internal modes of
non-Markovian environments. With a proper non-Markovianity, enhanced effects of the channels on continuous-
variable quantum teleportation are observed. Also, the logarithmic negativity of entangled states can be
effectively maintained so that the decay of the average fidelity of quantum teleportation is mitigated. In addition,
the analysis on different teleported quantum states shows that coherent states exhibit stronger robustness than
those of squeezed states and cat states in quantum teleportation with a non-Markovian channel.
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I. INTRODUCTION

Quantum teleportation based on quantum entanglement
can safely teleport quantum states carrying secret quan-
tum information from one location to a distant one. It
was firstly proposed and demonstrated based on discrete-
variable Einstein-Podolsky-Rosen (EPR) pairs by Bennett and
Bouwmeeste et al., respectively [1,2]. Based on quantum
teleportation, various protocols and technologies have been
developed, such as quantum gate teleportation [3], port-based
teleportation [4,5], quantum repeaters [6], and multihop tele-
portation [7] etc. Extensions of discrete-variable quantum
teleportation are also explored, for example, teleportation with
minimum resources [8] and remote state preparation [9,10].
Besides discrete-variable protocols, continuous-variable (CV)
quantum teleportation was proposed by Vaidman [11], fol-
lowed by research as to which teleportation of coherent states,
squeezed states, and cat states have been experimentally
demonstrated [12–15] to construct quantum communication
networks and quantum computers [6,16]. However, the per-
formance of a CV quantum teleportation system is determined
by the quality of quantum entanglement [1], which is signifi-
cantly affected by the disturbance in a quantum channel.

To counteract the unexpected impact of the channel,
various protocols have been proposed to enhance the quan-
tum entanglement on quantum sources. For example, in
Ref. [17] an entanglement purification approach was proposed
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using only one pair of hyperentangled states. Reference
[18] presents entanglement-assisted entanglement purification
protocols by utilizing auxiliary, high-dimensional entangled
states. Deterministic entanglement purification protocols and
measurement-based entanglement purification protocols were
introduced in Ref. [19]. However, few works solve such prob-
lems from the perspective of quantum channels. Actually,
optical fibers are widely employed as prominent transmis-
sion channels in quantum communication, where noises
are attributed to Raman reservoirs and Brillouin scattering
[20]. Such noise can be modeled by Lorentzian noise [20].
Lorentzian noise is a kind of quantum colored noise that can
give rise to the non-Markovian dynamics of quantum systems.
Therefore it is worthwhile to investigate the effects of a noisy
channel that exhibits non-Markovian dynamics, i.e., parts of
leaked information can be fed back to the transmitted state,
and the performance of CV quantum teleportation would be
improved.

In this paper we investigate the effect of a non-Markovian
channel on CV quantum teleportation. The non-Markovian
channel is modeled as an augmented system where ancillary
systems are introduced to represent the internal modes of a
non-Markovian channel. With this model the dynamics of the
transmitted state in the channel can be obtained from a partial
trace of time evolution of the density matrix of the augmented
system. Together with the generation of entangled states and
measurement processes, the performance of CV quantum tele-
portation can be evaluated by an average fidelity. Moreover,
how non-Markovianity affects the fidelity is also investigated,
where we find a proper non-Markovianity can help to achieve
a robust CV quantum teleportation, keeping the fidelity on
a high level. In addition, different states, including coherent
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FIG. 1. Schematic representation of CV quantum teleportation
[13]. BS represents a beam splitter. Dx and Dp represent the bal-
anced homodyne detectors for x and p quadrature components,
respectively. LOx and LOp represent local oscillators (LOs) that are
adjusted to x and p quadrature, respectively. Mx and Mp represent
the amplitude and phase modulators, respectively. Mirror refers to a
high-reflectance mirror.

states, cat states, and squeezed states, are transmitted in the
non-Markovian channels, whose performances are also com-
pared in this paper.

This paper is organized as follows. In Sec. II we describe
CV quantum teleportation in the Schrodinger picture. Based
on the augmented system, CV quantum teleportation with a
non-Markovian quantum channel is presented in Sec. III. In
Sec. IV we analyze the effects of the non-Markovian dynam-
ics of a quantum channel disturbed by Lorentzian noise and
two-Lorentzian noise. Then the influence of different input
states is investigated in Sec. V. Finally, we draw conclusions
in Sec. VI.

II. CONTINUOUS-VARIABLE QUANTUM
TELEPORTATION

In CV quantum teleportation, information is encoded on
continuous-variable quantum states and then reliably trans-
ferred to a remote receiver through a quantum entanglement
channel assisted by a classical communication channel. Here,
we will briefly review CV quantum teleportation and its cor-
responding notations are introduced. After that, two relevant
measures for evaluating the performance of CV quantum tele-
portation are introduced as well.

A. Basic process of CV quantum teleportation

A schematic diagram of CV quantum teleportation is
shown in Fig. 1. The sender, Alice, and the receiver, Bob,
first share an entangled state |q(R, B)〉, which is commonly
a two-mode squeezed vacuum state [21] expressed as

|q(R, B)〉 =
√

1 − q2
∞∑

n=0

qn|n〉R ⊗ |n〉B, (1)

where q = tanh(r), and r is a squeezing parameter. Note that
when r → ∞, then q → 1, the entangled squeezed state ap-
proaches the EPR state.

Further, Alice conducts a Bell measurement by mixing
the input state |ψE〉 with mode R of the entangled state by
a balanced beam splitter. She then performs measurements
of x̂− and p̂+ by balanced homodyne detectors (Dx, Dp),
where the local oscillators (LOs) of Dx and Dp are set to x
and p quadratures, respectively [13,22]. Subsequently, Alice
obtains the values of x− and p+, where x̂− = (x̂E − x̂R)/

√
2,

p̂+ = ( p̂E + p̂R)/
√

2, in which x̂E, p̂E and x̂R, p̂R are the
quadrature components of the input state and mode R of the
entangled state, respectively. The eigenstates of x̂− and p̂+
after measurement can be expressed as [23]

|x−, p+〉 = 1√
π

∞∑
n=0

D̂E(x− + ip+)|n〉E ⊗ |n〉R, (2)

where

D̂E(x− + ip+) = exp[2i(p+x̂E − x− p̂E)] (3)

is a displacement operator. Meanwhile, the measurement
projects the initial state of the overall system described by
|ψE〉 ⊗ |q(R, B)〉 into the quantum state of mode B [23]:

|ψB(x−, p+)〉 =
√

1 − q2

π

∞∑
n=0

qn|n〉〈n|D̂E(−x− − ip+)|ψE〉.

(4)

Finally, through a classical communication channel, Bob
gets the values of x− and p+ from Alice and then displaces
his state by the displacement operator D̂E(x− + ip+). The
displacement operation can be realized with two modulators
and a high-reflectance mirror, as shown in Fig. 1. The output
state is thus written as [22]

|ψout (x−, p+)〉 =
√

1 − q2

π

∞∑
n=0

qnD̂E(x− + ip+)|n〉〈n|

D̂E(−x− − ip+)|ψE〉. (5)

When the entangled state approaches the EPR state, i.e., q →
1, the output state approaches exactly the input state |ψE〉. In
this case the information on the input state can be successfully
reconstructed by Bob. Otherwise, the state reconstructed by
Bob is not perfect such that the fidelity of the teleportation de-
grades, which will be introduced in the following subsection.

B. Figure of merit of CV quantum teleportation

In CV quantum teleportation, the entangled state plays
a critical role, and its entanglement directly determines the
performance of information transmission. In the following
work we use logarithmic negativity, a widely used measure,
to quantify quantum entanglement [24]. For an entangle-
ment state described by a density matrix ρ̂, the logarithmic
negativity [24] is written as

EN (ρ̂ ) = log2 ||ρ̂PT ||1, (6)

where PT is the partial transpose operation of ρ̂, and
||X ||1 = tr|X | = tr

√
X †X denotes the trace norm for an arbi-

trary operator X with suitable dimensions. For the entangled
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FIG. 2. Schematic plot of a general augmented system model for
non-Markovian quantum systems.

state |q(R, B)〉, its logarithmic negativity is calculated as
EN (|q(R, B)〉〈q(R, B)|).

On the other hand, the performance of CV quantum tele-
portation is commonly evaluated by fidelity [22], indicating
the distance between the input and the reconstructed quantum
states, written as

FCV = 〈ψE|ρ̂out|ψE〉, (7)

where ρ̂out = |ψout (x−, p+)〉〈ψout (x−, p+)| is the density ma-
trix of the state reconstructed by Bob. The fidelity lies in
between 0 and 1, i.e., 0 � FCV � 1. The closer the output
state is to the input state, the closer FCV is to 1. In particular,
when the input state is completely constructed by Bob, i.e.,
|ψout (x−, p+)〉 = |ψE〉, FCV = 1. Furthermore, when using a
random coherent state as the input state, the upper boundary
in quantum teleportation is found to be Fclassical = 0.5 [25].
When FCV > Fclassical, the advantage of quantum entanglement
is implied in achieving higher fidelity for quantum teleporta-
tion.

III. CV QUANTUM TELEPORTATION WITH A
NON-MARKOVIAN QUANTUM CHANNEL

In CV quantum teleportation, quantum information tele-
ported from Alice to Bob via two channels: a classical
communication channel transferring the Bell measurement
results and a quantum communication channel sharing the en-
tangled state. The latter would be sensitive to the influence of
external environments, leading to the degrading performance
of quantum teleportation. To attenuate undesirable pertur-
bations from the environment and enhance the efficiency
of quantum teleportation, we construct a non-Markovian
quantum channel modeled by an augmented system. The
augmented system and the quantum teleportation with a non-
Markovian quantum channel will be introduced in this section.

A. An augmented system

In an augmented system model for non-Markovian quan-
tum systems, ancillary systems are introduced to represent the
internal modes of the non-Markovian environment, whose fic-
titious output carries a given quantum colored noise [26]. The
augmented system is schematically plotted in Fig. 2. Besides
the ancillary system driven by a white noise, the principal

system is commonly the system of interest. Through direct
interactions, they exchange energy and influence each other,
resulting in the non-Markovian dynamics of the principal
system.

We describe the augmented system using the so-called
SLH description, where each subsystem can be described by
a triple G(S, L, H) [27]. S is a self-adjoint scattering matrix
characterizing the scattering process of fields, L is a coupling
operator vector of the system with respect to the correspond-
ing fields, and H is a Hamiltonian describing the internal
energy of the system. Note that in the paper we let S = I, since
the augmented model for the non-Markovian quantum chan-
nel in CV quantum teleportation does not involve scattering
processes.

For the principal quantum system, since it does not couple
with other fields as shown in Fig. 2, the coupling operator Lp

should be a null matrix, i.e., Lp = O. Therefore the principal
system should be described as

Gp = (I, O, Hp), (8)

where Hp is the Hamiltonian of the principal system defined
on the Hilbert space Hp. Note that we use O to denote a null
matrix in this paper.

Similarly, the ancillary system is denoted as

Ga = (I, La, Ha), (9)

where Ha is the Hamiltonian of the ancillary system and La is
a coupling operator vector made up of a collection of coupling
operators to quantum white noises. Both Ha and La are defined
on the Hilbert space Ha, and the corresponding white noise is
defined on the Fock space Fa.

As for the energy exchange between the principal system
and the ancillary system, it is represented by a direct interac-
tion Hamiltonian,

Hpa = i(c†z − z†c), (10)

where the coupling operator z, defined on the Hilbert space
Hp, determines the influence of the principal system on the
evolution of the ancillary quantum system, and the operator
vector c, defined on the Hilbert space Ha of the ancillary
system, represents the fictitious output operator, resulting in
non-Markovian behavior of the principal system [26].

According to the general quantum feedback network the-
ory [27], the augmented system, composed of the principal
system Gp, the ancillary system model Ga, and their interac-
tions (10), is described in the SLH description as

GT =
[

I,

(
La

O

)
, Hp + Ha + Hpa

]
. (11)

Hence, the augmented system is defined on the augmented
Hilbert space Hp ⊗ Ha ⊗ Fa. The corresponding master
equation is thus written as

˙̂ρ(t ) = −i[Hp + Ha + Hpa, ρ̂(t )] + L∗
La

(ρ̂(t )), (12)

where ρ̂(t ) is the density matrix of the augmented system GT ,
and L∗

L is the adjoint of the Lindblad superoperator and calcu-
lated as L∗

L(ρ̂(t )) = 1
2 [Lρ̂(t ), L†] + 1

2 [L, ρ̂(t )L†]. The density
matrix ρ̂p(t ) of the principal system can be obtained by
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FIG. 3. Schematic representation of CV quantum teleportation
with a non-Markovian quantum channel. The displacement operation
is represented by D̂(x− + ip+). The yellow arrow represents the
quantum channel in the CV quantum teleportation, which is the
principal system of the augmented system model.

performing the partial trace over the ancillary system,

ρ̂p(t ) = tra(ρ̂(t )), (13)

where tra[·] is the partial trace operation on the ancillary
system. Note that although the dynamics of the augmented
system is Markovian as shown in Eq. (12), the dynamics
of the principal system is non-Markovian, since it mutually
exchanges energy with the ancillary system.

B. CV Quantum teleportation with a non-Markovian
quantum channel

To investigate the performance of CV quantum telepor-
tation with a non-Markovian quantum channel, we consider
the channel is modeled by an augmented system as shown in
Fig. 3. Compared with the traditional CV quantum telepor-
tation in Sec. II, only the quantum communication channel
is changed into a non-Markovian quantum channel, and
other parts are kept. In the augmented system model for the
non-Markovian channel, the principal system is the original
quantum channel, which is directly coupled to the ancillary
system.

For the non-Markovian quantum channel, we follow the
augmented system approach and directly obtain its master
equation from Eq. (12) as

˙̂ρ(t ) = −i[HB + HA + HBA, ρ̂(t )] + L∗
LA

(ρ̂(t )), (14)

where HB and HA are the Hamiltonian of the principal system
and the ancillary system, respectively. Because a quantum
state does not evolve in an ideal quantum channel, we ignore
its dynamics such that HB = ωbI, where ωb is the angular
frequency. The interaction Hamiltonian HBA describes the
energy exchange between the states in the quantum channel
and the environment.

In the non-Markovian quantum channel, mode B of the en-
tangled state |q(R, B)〉 evolves during the transmission from
Alice to Bob. Although mode B obeys a non-Markovian dy-
namic in quantum teleportation, mode R would be affected
due to the entanglement between them. Therefore the master
equation for the entangled state |q(R, B)〉 affected by the non-
Markovian quantum channel can be rewritten as

˙̂ρ(t ) = −i[HP + HA + HBA, ρ̂(t )] + L∗
LA

(ρ̂(t )), (15)

where HP is the Hamiltonian for the entangled state |q(R, B)〉.
It can be written as HP = HR ⊗ INB + INR ⊗ HB, where the
subscripts NR and NB denote the dimensions of mode R and
mode B, respectively. Since mode R does not involve an
evolution induced by itself in the process of teleportation, the
Hamiltonian operator can be written as HR = ωrI, where ωr

is the angular frequency.
Define the transit time as t = te − t0, where t0 is the time

instant when mode B starts to be transmitted from Alice to
Bob in the quantum non-Markovian channel, and te is the
time instant when the state is received by Bob. For simplic-
ity, we set t0 = 0, then t = te. The initial density matrices
of the principal system and the ancillary system are de-
noted as ρ̂RB(0) = ρ̂q(R,B) = |q(R, B)〉〈q(R, B)| and ρ̂A(0),
respectively, and then the initial density operator of the aug-
mented system in the master equation (15) is ρ̂(t0) = ρ̂(0) =
ρ̂RB(0) ⊗ ρ̂A(0). With the method described in Appendix, the
density matrix ρ̂(t ) of the augmented system at any transit
time t can be calculated. Then the density matrix ρ̂RB(t ) of
the entangled state at any transit time t can be obtained by
tracing over the ancillary system as

ρ̂RB(t ) = ρ̂P(t ) = trA(ρ̂(t )). (16)

Note that we have established an augmented system frame-
work for investigation of non-Markovian effects on CV
quantum teleportation. With the above model, by substituting
Eq. (16) into Eq. (6), we can calculate the corresponding
logarithmic negativity of the entangled state at the transit time
t as

EN (ρ̂q(R,B), t ) = EN (ρ̂RB(t )) = log2 ||ρ̂RB(t )PT ||1. (17)

After the propagation in the non-Markovian channel, the
initial entangled state ρ̂q(R,B) evolves into ρ̂RB(t ). Modes R
and B reach Alice and Bob, respectively. Then Alice mixes
mode R with the input state denoted by ρ̂E through a half
beam splitter and performs two sets of balanced homodyne
detections on the ensuing state. We assume both the beam
splitter and the balanced homodyne detector are lossless. The
measurement is a projection on the maximally entangled basis
[28]

|�(x−, p+)〉ER = 1√
π

∫ ∞

−∞
dye2ip+y|x− + y〉E|y〉R, (18)

which is equivalent to Eq. (2), written in the Fock basis. After
the measurement, Alice gets the result (x−, p+) and mode B
at Bob is given as

σ̂B(x−, p+, ρ̂q(R,B), t )

= ER〈�(x−, p+)|[ρ̂E ⊗ ρ̂RB(t )]|�(x−, p+)〉ER

P(x−, p+, ρ̂q(R,B), t )
, (19)

where

P(x−, p+, ρ̂q(R,B), t ) = trB{ER〈�(x−, p+)|[ρ̂E ⊗ ρ̂RB(t )]

× |�(x−, p+)〉ER} (20)

is the probability at transit time t [28]. Finally, Bob recon-
structs the input state ρ̂E using the information (x−, p+),
transferred through the classical channel. The density matrix
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of the output state becomes

ρ̂out (x−, p+, ρ̂q(R,B), t )

= D̂B(x− + ip+)σ̂B(x−, p+, ρ̂q(R,B), t )D̂†
B(x− + ip+),

(21)

where the displacement operator D̂B(x− + ip+) = exp[(x− +
ip+)â† − (x− − ip+)â], with the annihilation operator â and
the creation operator â† for mode B.

For a single quantum teleportation with a Bell measure-
ment result (x−, p+), the fidelity is given by

F (x−, p+, ρ̂q(R,B), t ) = tr[ρ̂Eρ̂out (x−, p+, ρ̂q(R,B), t )]. (22)

By averaging over all measurements, the average fidelity F̄ (t )
at a transit time t can be calculated as

F̄ (ρ̂q(R,B), t ) =
∫ ∞

−∞
dx−

∫ ∞

−∞
d p+P(x−, p+, ρ̂q(R,B), t )

× F (x−, p+, ρ̂q(R,B), t ). (23)

IV. EFFECTS OF NON-MARKOVIANITY ON CV
QUANTUM TELEPORTATION

As we have introduced the non-Markovian quantum chan-
nel for CV quantum teleportation, it is important to investigate
how the non-Markovianity of the channel affects the perfor-
mance of the teleportation. In this section the measure of the
non-Markovianity is introduced at first. Then the effects of the
non-Markovian dynamics of quantum channels are analyzed
based on the CV quantum teleportation with a non-Markovian
quantum channel disturbed by quantum Lorentzian noise.
Moreover, relevant results are extended from Lorentzian noise
to the environment with a rational power spectral density for
generality.

A. Measure of non-Markovianity

In this paper we simply adopt the Breuer-Laine-Piilo (BLP)
quantifier to measure the non-Markovianity of the quantum
channel, which depends on the behavior of the trace distance
in Ref. [29]. Concretely, the trace distance for two quantum
states ρ̂1 and ρ̂2 is defined as

D(ρ̂1, ρ̂2) = tr|ρ̂1 − ρ̂2|/2, (24)

where |X | =
√

X †X for an arbitrary operator X with suitable
dimensions. It satisfies a contractive property for any com-
pletely positive (CPT) map �, namely,

D(�(ρ̂1),�(ρ̂2)) � D(ρ̂1, ρ̂2). (25)

The inequality (25) holds in the Markovian process because of
the divisibility property. The monotonic decrease implies the
flow of information from the system of interest to the environ-
ment. Conversely, the key characteristic of non-Markovianity
is the inverse flow of information from the environment to
the system, leading to the failure of inequality (25) for certain
times. Therefore, in Ref. [29], non-Markovianity is defined as
the physical process where

ν(t, ρ̂1,2(0)) = d

dt
D(ρ̂1(t ), ρ̂2(t )) > 0 (26)

exists for certain times.

To measure the total amount of information flowing from
the environment to the system,

N (�) = max
ρ̂1,2(0)

∫
ν>0

dtν(t, ρ̂1,2(0)) (27)

is used to quantify the non-Markovianity of a quantum pro-
cess for the quantum process �. Here N (�) takes the time
integration on all time intervals in which ν > 0, namely, the
accumulation of the increased amount of the trace distance of
two quantum states in the quantum evolution and then chooses
the maximum value over all possible pairs of initial states. In
the following subsection, we will use the BLP quantifier N as
the measure of the non-Markovianity of the quantum channel
in CV quantum teleportation.

B. Lorentzian noise environment

Quantum Lorentzian noise is a common quantum colored
noise that has been observed in two-level systems [30,31] and
detector-preamplifier setups [32]. Moreover, Lorentzian noise
power spectral density has also been taken into consideration
in the investigation of quantum communication channels, such
as optical fibers [20] and quantum channel models [33]. In
this subsection, we focus on the CV quantum teleportation
with a non-Markovian quantum channel disturbed by quan-
tum Lorentzian noise. The corresponding quantum channel is
described at first, and then the effects of non-Markovianity on
both the logarithmic negativity of the entangled state and the
average fidelity of quantum teleportation are investigated.

1. Quantum channels disturbed by quantum Lorentzian noise

For a quantum Lorentzian noise with a spectrum width γ0

2
and a characteristic frequency ω0, its power spectral density is
written as

S0(ω) =
γ 2

0
4

γ 2
0
4 + (ω − ω0)2

. (28)

It can be generated by a one-mode quantum harmonic
oscillator driven by quantum white noise. Concretely, its
Hamiltonian HA and coupling operator LA are written as

HA = ω0â†
0â0, LA = √

γ0â0, (29)

where â0 and â†
0 are the annihilation and creation operators of

the ancillary system, respectively [26]. Parameters ω0 and γ0

are the angular frequency and damping rate of the ancillary
system, respectively.

Since in principle the dimension of the oscillator is infinite-
dimensional, we have to truncate it to a finite dimension NA

for approximation. Thus the state of the ancillary is a ground-
state system |0〉NA . In the direct interaction HBA, the fictitious

output is given as c = −
√

γ0

2 â0, which takes Lorentzian spec-
trum, and the coupling operator is z = √

κ0âB, where âB is
the annihilation operator of the principal system and κ0 is
the coupling strength. To ensure that the ancillary system
can effectively affect the channel state, we only consider the
resonant case with zero detuning, i.e., ω0 = ωb. Note that
when γ0 → ∞, quantum Lorentzian noise modeled by the
ancillary system reduces to quantum white noise, and the non-
Markovian quantum channel reduces to a Markovian quantum
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FIG. 4. The relationship between the non-Markovianity of a
quantum channel and the parameters γ0 and κ0 of the ancillary
system. The x axis is the damping rate γ0, the y axis is the coupling
strength κ0, and the z axis is the BLP quantifier N . The insert
subplot represents the non-Markovianity N as a function of γ0 when
κ0 = 1 GHz. In the subplot, the non-Markovianity of the quantum
channel increases and then decreases as the parameter γ0 increases.

channel. Meanwhile, the evolution of the principal system is
described by the following master equation [34]:

˙̂ρB(t ) = −i[HB, ρ̂B(t )] + L∗
z (ρ̂B(t )), (30)

where L∗
z (ρ̂B(t )) = 1

2 [zρ̂B(t ), z†] + 1
2 [z, ρ̂B(t )z†]. Obviously,

the dynamics of the corresponding Markovian quantum chan-
nel is mainly determined by the parameter κ0.

The non-Markovian dynamics of the quantum channel
modeled by an augmented system results from the direct in-
teraction between the ideal quantum channel and the ancillary
system. In the above model, the non-Markovianity of the
quantum channel is affected by two parameters, the damping
rate γ0 and the direct coupling strength κ0. Figure 4 shows how
the BLP quantifier N of a quantum channel varies with the
two parameters. Note that γ0 determines the bandwidth of the
Lorentzian spectrum, as shown in Eq. (28). And κ0 is closely
related to amplitude of the Lorentzian spectrum modeled by
the ancillary system, as explained in Ref. [26].

With the increase of the parameter γ0, the non-
Markovianity of the quantum channel shows a tendency to
increase and then decrease, as shown in the insert subplot
in Fig. 4. Within a certain range, e.g., 0 < γ0 < 0.3 GHz, as
γ0 increases, a broader bandwidth of the noise spectrum can
enhance the non-Markovian effect. But as γ0 keeps increas-
ing, e.g., 0.4 GHz < γ0 < 5 GHz, the bandwidth is getting
broader and broader, and the spectrum gradually tends to a
flattened one. At the same time, the impact brought about also
gradually decreases, and subsequently, the non-Markovian
dynamics gradually weaken or even disappear. In addition,
as the coupling strength κ0 increases, the amplitude of the
Lorentzian noise spectrum increases, thus intensifying the
non-Markovianity of the quantum channel as predicted. More-
over, the amplitude of the non-Markovianity of the quantum
channel disturbed by the Lorentzian noise is determined by
both γ0 and κ0, which is indicated by the slight fluctuations
that exist in the downward tendency of the non-Markovianity
with the increase of the damping rate γ0.
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FIG. 5. (a) Variation of the logarithmic negativity EN with differ-
ent γ0 where κ0 = 4 GHz. (b) Variation of the logarithmic negativity
EN with different κ0 where γ0 = 0.8 GHz.

2. The effects of non-Markovianity on the entangled state

As introduced, it is one mode of the entangled state that
propagates in the non-Markovian quantum channel, so the
entanglement is directly affected by the non-Markovian dy-
namics. Since the entanglement plays a critical role in the
quantum teleportation and determines the performance of the
system, it is necessary to investigate the effect of the non-
Markovian channel on the entangled state to better understand
the influence on quantum teleportation.

To analyze the teleportation process, we choose a squeez-
ing parameter r = 0.346 (−3 dB) for the two-mode squeezed
vacuum state. The variations of the logarithmic negativity of
the two-mode squeezed vacuum state transferred in the non-
Markovian quantum channel disturbed by Lorentzian noise
with different parameters are plotted in Fig. 5, where the
cases of corresponding Markovian quantum channels are also
considered. Here, the coupling strength κ0 is set to be 4 GHz
in Fig. 5(a) and the damping rate γ0 is given as 0.8 GHz
in Fig. 5(b). Note that since the corresponding Markovian
quantum channel is determined by κ0, in Fig. 5(a) the cor-
responding Markovian quantum channels are the same for the
non-Markovian quantum channels with the same κ0.

Under the disturbance of the environment, the entangle-
ment of the two-mode squeezed vacuum state decays in both
non-Markovian and Markovian quantum channels as shown
in Fig. 5. In the Markovian quantum channels, the logarithmic
negativity of the entangled state rapidly decays. In contrast,
that is well maintained in the non-Markovian quantum chan-
nels and even shows a slight fluctuation during the decay.
In addition, as γ0 or κ0 increases, EN of the entangled state
decays faster in transmission but still much more slowly than
that for Markovian quantum channels.

The relationship between the non-Markovianity of the
quantum channel and the logarithmic negativity of the entan-
gled state is further plotted in Fig. 6, which is based on the
non-Markovian quantum channel disturbed by the Lorentzian
noise with the parameters γ0 = 0.8 GHz and κ0 = 4 GHz.
Figure 6(a) shows the evolution of logarithmic negativity
EN of the entangled state and the BLP quantifier N in the
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FIG. 6. (a) The logarithmic negativity EN (blue full curve) and
the BLP quantifier N (red dashed curve) as functions of the dimen-
sionless time ωbt in the non-Markovian quantum channel. (b) The
logarithmic negativity EN (blue full curve) and the trace distance D
(red dashed curve) as functions of the dimensionless time ωbt in the
non-Markovian quantum channel.

non-Markovian quantum channel. Similarly, the relationship
between the evolution of logarithmic negativity EN and the
trace distance D of two quantum states is shown in Fig. 6(b).
Each fluctuating rebound of the trace distance D corresponds
to an increase of the BLP quantifier N . From the two sub-
plots, it is clear that the increase of the non-Markovianity of
the quantum channel can efficiently suppress the decline of
the entanglement of the resource state and even brings about
recovery. In addition, in Fig. 6(b) the two curves show a near
coincidence in frequency and amplitude of fluctuation. The
consistency of the fluctuating frequency strongly illustrates
the dependence of the entangled state on the non-Markovian
dynamics of the quantum channel, demonstrating that the
attenuation of the logarithmic negativity of the entangled state
stems from the effect of non-Markovian dynamics of the quan-
tum channel. The consistency of the fluctuating amplitude

indicates the close correlation between the efficiency of en-
tanglement revival and the amount of information backflow.

3. The effects of non-Markovianity on CV quantum teleportation

The indispensable role of the entangled state in CV
quantum teleportation indicates that the effects of the non-
Markovian channel on the entangled state inevitably influence
the performance of CV quantum teleportation. In this sub-
section, we will analyze the effects of the non-Markovian
dynamics of the quantum channel on the average fidelity of
CV quantum teleportation.

We consider the case that the input state for quantum tele-
portation is a coherent state. The coherent state is commonly
represented by |α〉 = D̂(α)|0〉, where |0〉 is a vacuum state and
D̂(α) is a displacement operator written as D̂(α) = exp(αâ† −
α∗â), where â and â† are the annihilation and creation oper-
ators, respectively. The input coherent state with a complex
parameter αE is written as |ψ〉E = D̂(αE)|0〉, and thus the
corresponding density matrix is written as ρ̂E = |ψ〉E〈ψ |.

The influence of the non-Markovianity of the quantum
channel on the quantum teleportation is shown in Fig. 7.
Figure 7 reveals that the decay of the average fidelity of
the quantum teleportation is effectively suppressed by the
non-Markovian dynamics of the quantum channel compared
with the corresponding Markovian quantum channel. Espe-
cially, in the early stage of information transmission, e.g.,
0 � ωbt � 20, Figs. 7(a) and 7(b) clearly show that under the
influence of the non-Markovian quantum channel, F̄ presents
fluctuating recovery and holds relatively stable during decay.
While in the corresponding Markovian quantum channel, F̄
decays at a high rate, which is consistent with the rapid
decrease in the logarithmic negativity of the entangled state
shown in Fig. 5. As the transmission time ωbt increases,
e.g., 40 � ωbt � 100, F̄ of the quantum teleportation with a
non-Markovian quantum channel shown in Figs. 7(a) and 7(b)
decreases but is still better than that of the quantum telepor-
tation with the corresponding Markovian quantum channel.
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FIG. 7. (a) Variation of the average fidelity F̄ with different γ0 where κ0 = 4 GHz. (b) Variation of the average fidelity F̄ with different κ0

where γ0 = 0.8 GHz. The horizontal dash-dotted line represents the upper boundary of classical teleportation, Fclassical = 0.5.
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FIG. 8. The average fidelity F̄ (blue full curve) and the BLP
quantifier N (red dashed curve) as functions of the dimensionless
time ωbt in the non-Markovian quantum channel. The letter G repre-
sents the intersection of two curves.

Additionally, Figs. 7(a) and 7(b) show that in the case of
non-Markovian quantum channels, F̄ > Fclassical indicates that
the entanglement remains the critical ingredient. Furthermore,
the decay rate of F̄ gradually accelerated with the increase
of γ0 or κ0, as shown in Figs. 7(a) and 7(b), respectively,
which is similar to the variation of EN of the entangled state
as shown in Figs. 5(a) and 5(b). The relationship between
the average fidelity and the non-Markovianity of the quantum
channel is plotted in Fig. 8, which is based on the same non-
Markovian quantum channel with parameters γ0 = 0.8 GHz
and κ0 = 4 GHz. Similar to the effect of the non-Markovianity
of the quantum channel on the entangled state shown in
Fig. 6, the increase in non-Markovianity N per time sup-
presses the decline of the average fidelity F̄ and even brings
about recovery. Besides, the magnitude of each increase in
non-Markovianity is closely related to the intensity of the
effect on quantum teleportation. Concretely, with the inter-
section G as the demarcation point, the non-Markovianity on
the left side exhibits a higher magnitude of each increase and
corresponds to a greater recovery of the average fidelity. In
contrast, the non-Markovianity on the right increases less and
corresponds to less recovery, or even shows only suppression.
It also explains well that through the non-Markovian quantum
channel, the average fidelity F̄ is relatively stable in the early
transmission stage, e.g., 0 � ωbt � 20, and then deteriorates
as the transmission time increases.

C. The environment with a rational power spectral density

A variety of quantum colored noise exists in actual physical
systems. The ancillary system can model quantum colored
noise with a rational power spectral density [26]. In this
section we take another type of quantum colored noise, two-
Lorentzian noise, as an example to illustrate the generality of
the augmented system framework for CV quantum teleporta-
tion.

The power spectral density of two-Lorentzian noise is de-
scribed as

S(ω) = ( γ1

2 )2

( γ1

2 )2 + (ω − ω1)2
+ ( γ2

2 )2

( γ2

2 )2 + (ω − ω2)2
, (31)
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FIG. 9. The two-Lorentzian spectra.

where γ1

2 and γ2

2 are the widths of the spectrum, and ω1 and ω2

are the center frequencies. It can be modeled by two quantum
harmonic oscillators, and the master equation is written as

˙̂ρ(t ) = −i[HB +
2∑

k=1

(HAk + HBAk ), ρ̂(t )] +
2∑

k=1

L∗
LAk

(ρ̂(t )).

(32)

The Hamiltonian of the kth ancillary system HAk = ωkâ†
k âk ,

where âk and â†
k are the annihilation and creation operators of

the kth ancillary system, respectively. The interaction Hamil-
tonian between the principal system and the kth ancillary
system is HBAk = i(c†

kzk − z†
k ck ) with the operator vector ck =

−
√

γk

2 âk and the coupling operator zk = √
κkâk . The coupling

operator of the kth ancillary system is LAk = √
γkâk . Note

that when γk → ∞, k = 1, 2, two-Lorentzian noise modeled
by the ancillary system reduces to white noise, and the non-
Markovian quantum channel reduces to a Markovian quantum
channel. The evolution of the principal system is given by the
following master equation [34]:

˙̂ρB(t ) = −i[HB, ρ̂B(t )] + L∗
z1

(ρ̂B(t )) + L∗
z2

(ρ̂B(t )), (33)

where L∗
zk

(ρ̂B(t )) = 1
2 [zk ρ̂B(t ), z†

k ] + 1
2 [zk, ρ̂B(t )z†

k ], k = 1, 2.
The corresponding parameters are chosen as ω1 = 8 GHz,

ω2 = 12 GHz, γ1 = 0.6 GHz, γ2 = 0.6 GHz, κ1 = 2 GHz,
and κ2 = 5 GHz. Its spectrum is shown in Fig. 9. Different
from Lorentzian noise, the spectrum of the two-Lorentzian
noise has two peaks. The effects of non-Markovian quantum
channels on the entangled state and CV quantum teleportation
are investigated using the two-mode squeezed vacuum state
with the squeezing parameter r = 0.346 (−3 dB) as the entan-
gled state and a coherent state as the input state. The results
are presented in Figs. 10 and 11, respectively. Figure 10(a)
demonstrates the logarithmic negativity of the entangled state
can be maintained by the non-Markovian dynamics of the
quantum channel compared with the corresponding Marko-
vian quantum channel. The increase of non-Markovianity of
the quantum channel can bring about the recovery of the
entanglement, as clearly illustrated in Fig. 10(b). Similarly,
Fig. 11(a) shows the decay of the average fidelity of CV
quantum teleportation can be effectively suppressed under the
influence of the non-Markovian dynamics of the quantum
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FIG. 10. (a) Comparison of the evolution of the logarithmic neg-
ativity EN with the dimensionless time ωbt in the non-Markovian
quantum channel disturbed by two-Lorentzian noise and the corre-
sponding Markovian quantum channel. (b) The logarithmic negativ-
ity EN (blue full curve) and the BLP quantifier N (red dashed curve)
as functions of the dimensionless time ωbt in the non-Markovian
quantum channel disturbed by two-Lorentzian noise.

channel disturbed by two-Lorentzian noise, compared with
the corresponding Markovian quantum channel. The fidelity
F̄ > Fclassical indicates that the entanglement remains used
as the quantum resource in the case of a non-Markovian
quantum channel disturbed by two-Lorentzian noise. Fig-
ure 11(b) shows the increase of non-Markovianity of the
quantum channel can likewise lead to the recovery of F̄ .
Moreover, in Figs. 10(b) and 11(b), the larger increases in
non-Markovianity are interspersed with smaller increases,
as indicated by the arrows, unlike quantum channels dis-
turbed by Lorentzian noise, where significant increases in
non-Markovianity appear only at the beginning of the trans-
mission. Meanwhile, corresponding to the larger increase in
non-Markovianity, the recovery of both entanglement and the
average fidelity exhibit greater magnitude. This also demon-
strates that the strength of the effect is determined by the
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FIG. 11. (a) Comparison of the evolution of the average fidelity
F̄ with the dimensionless time ωbt in the non-Markovian quantum
channel disturbed by two-Lorentzian noise and the corresponding
Markovian quantum channel. The horizontal dash-dotted line rep-
resents the upper boundary of classical teleportation, Fclassical = 0.5.
(b) The average fidelity F̄ (blue full curve) and the BLP quantifier N
(red dashed curve) as functions of the dimensionless time ωbt in the
non-Markovian quantum channel disturbed by two-Lorentzian noise.

magnitude of each increase in the non-Markovianity of the
quantum channel. These results are consistent with the case
of Lorentzian noise.

V. TELEPORTATION OF OTHER STATES

Besides coherent states, we also investigate the perfor-
mance of quantum teleportation with other input states, such
as squeezed states and cat states. Similarly, all these analyses
are based on the non-Markovian quantum channel disturbed
by Lorentzian noise with parameters γ0 = 0.8 GHz and κ0 =
4 GHz.

The squeezed coherent state is written as |α〉s =
D̂(αs)Ŝ(ξ )|0〉 [35], where Ŝ(ξ ) = exp[ 1

2ξ ∗â2 − 1
2ξ â†2] is the

squeezing operator with ξ = rsexp(iθ ). Note that we dis-
tinguish the squeezing parameter rs from the squeezing
parameter r of the two-mode squeezed vacuum state. Also, the
cat state is denoted as |α〉c = N−1(|αc〉 + eiθc | − αc〉), where
N is the normalization constant N =

√
2(1 + e−2|αc|2 cos θc),

| ± αc〉 are coherent states with the complex number αc, and
θc is the phase [36]. In addition, the cat states with θc = 0
and θc = π are called even cat state and odd cat state, re-
spectively. Note that the teleportation fidelity is not less than
2/3 and is the prerequisite for the cat state to be successfully
teleported in CV quantum teleportation [37]; thus the squeez-
ing parameter r of the two-mode squeezed vacuum state is
set to r = 0.4 (i.e., −3.47 dB). Moreover, to fairly compare
the difference in the effect of different input states, we set
αs = αc = α and |α| = 1.

The average fidelity for the squeezed states with differ-
ent squeezing parameters and the cat states with different
phases through the non-Markovian quantum channel and the
corresponding Markovian quantum channel are illustrated in
Figs. 12(a) and 12(b), respectively. The effects of the non-
Markovian quantum channel on the quantum teleportation for
squeezed states and cat states are consistent with the case
of coherent states as shown in Fig. 7. Under the influence
of non-Markovian quantum channels, the average fidelity F̄
exhibits fluctuating recoveries and holds relatively stable dur-
ing the early stage of teleportation, e.g., 0 � ωbt � 20, and
then decays with the increase of the transmission time, while
for the corresponding Markovian quantum channels, F̄ decays
faster from the beginning of transmission.

To clearly illustrate the effect of the non-Markovian quan-
tum channel on the performance of quantum teleportation,
Wigner functions of the reconstructed states at Bob with dif-
ferent input states are investigated. When a coherent state
is teleported, the Wigner functions of the output state |α〉out

at Bob at different times are plotted on the top (a)–(d) of
Fig. 13, while the Wigner functions of |α〉out in the corre-
sponding Markovian quantum channel at the same times are
plotted on the bottom (e)–(h). Both in the non-Markovian
and Markovian quantum channels, the Wigner function of
the output state |α〉out gradually deviates from its initial
position as the transmission time increases. The amplitude
of the output state evolves from d = 1.53 to d = 1.63,
shown in subplot (d), and d = 1.80 shown in subplot (h),
in the non-Markovian quantum channel and the correspond-
ing Markovian quantum channel, respectively. However, for
any same transmission time, the Wigner function of |α〉out
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FIG. 12. (a) F̄ for the squeezed states with different squeezing parameters through the non-Markovian quantum channel and the corre-
sponding Markovian quantum channel; |αs| = 1. (b) F̄ for the cat states with different phases through the non-Markovian quantum channel
and the corresponding Markovian quantum channel; |αc| = 1.

through the non-Markovian quantum channel is closer to the
input state |α〉 than that through the corresponding Marko-
vian quantum channel. This demonstrates less information
loss and better performance in the non-Markovian quantum
channel. Specifically, when 0 � ωbt � 20, compared with
the fast change of the Wigner functions of |α〉out through
the corresponding Markovian quantum channel described
in subplots (e)–(g), the Wigner functions of |α〉out through
the non-Markovian quantum channel described in subplots
(a)–(c) are stable and almost the same as the Wigner function

described in subplot (a) for the theoretical output state at
wbt = 0.

In the case of the squeezed state |α〉s teleportation with
a squeezing parameter rs = 1, the Wigner functions for
the output states with different transmission times through
a non-Markovian quantum channel and the corresponding
Markovian quantum channel are plotted on the top and bottom
rows of Fig. 14, respectively. Figures 14(a)–14(e) illustrate
the evolution of the Wigner function of the output state with
the increase of the transmission time in the non-Markovian

FIG. 13. Wigner functions of the output state |α〉out with different transfer times. Subplots (a)–(d) describe the evolution in the non-
Markovian quantum channel. Subplots (e)–(h) describe the evolution in the corresponding Markovian quantum channel. In each subplot the
intersection of the two black solid lines with arrows is denoted as (0,0), indicating the origin of phase space. The red solid arrow with the tail
noted as E indicates the amplitude of the input state |α〉 at Alice, and the amplitude of the output state |α〉out at Bob is represented by the black
dashed arrow, with the exact amplitude d marked below.
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FIG. 14. Wigner functions of the output states with different transmission time points of a squeezed state. Subplots (a)–(e) describe the
evolution in the non-Markovian quantum channel. The major and minor semiaxis of the output state at Bob are depicted by solid black arrows
labeled with specific values h and w at their tails, respectively. The phase shift of the output state in relation to the horizontal dashed line is
indicated by ∠a. The precise angle is also calculated and labeled. The flattening of an ellipse is denoted by f = (h − w)/w. This parameter
describes the degree of flattening of an ellipse and ranges between 0 and 1. The closer the value is to 1, the flatter the shape is. When f = 0, it
indicates a circular shape. Subplots (f)–(j) describe the evolution in the Markovian quantum channel.

quantum channel. The flattening of an ellipse, denoted as
f , remains at around 0.19. This indicates that all of these
Wigner functions maintain a compressed shape. However,
the phase shift of the output state is observed. As the trans-
mission time increases, the angle of rotation experiences an
increment from −4.37◦ to 45.31◦, while through the corre-
sponding Markovian quantum channel, the compressed shape
observed in the Wigner function of the output state quickly
evolves into a circular shape, as shown in subplots (f)–(j)
in Fig. 14. For the case of teleporting an odd cat state |α〉c

with θc = π , the Wigner functions are shown in Fig. 15.
Figures 15(a)–15(e) show the Wigner function with differ-
ent transmission times through the non-Markovian quantum
channel. In all these Wigner functions, the value at the origin
(0,0) is less than 0, which indicates that the nonclassicality
can be maintained in the non-Markovian quantum channel,

while in the corresponding Markovian quantum channel, the
nonclassicality disappears rapidly and the cat state degener-
ates to a Gaussian state as shown in Figs. 15(f)–15(j). Similar
to the case of coherent-state teleportation, the fidelities of
the squeezed-state and cat-state teleportation decay slower in
non-Markovian quantum channel than that of the Markovian
one such that the average fidelity can be kept at a high level.

In addition, there are inherent differences in the efficiency
of information transmission for quantum teleportation with
different input states, as shown in Fig. 12. To avoid any errors
resulting from these unavoidable differences and evaluate the
performance of the different input state teleportation through
the non-Markovian quantum channel, the concept of the rel-
ative average fidelity is introduced. It serves as a numerical
indicator that quantifies the relative change in the average
fidelity with respect to the average fidelity of the theoretical

FIG. 15. Wigner functions for the output states with different transmission time points of a cat state. The nonclassicality of the cat state
can be maintained in the non-Markovian quantum channel.
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FIG. 16. The relative average fidelity F̄r varying with different
input states. The same parameters α of them are set |α| = 1.

state due to the non-Markovian dynamics of the quantum
channels. The relative average fidelity is defined as

F̄r (ρq(R,B), t ) = F̄ (ρq(R,B), t )

F̄ (ρq(R,B), 0)
, (34)

where t is the transit time, and F̄ (ρq(R,B), t ) is calculated based
on Eq. (23). Then the relative average fidelities for squeeze
states with different rs, cat states with different θc (the even
cat state and the odd cat state) and the coherent state are
calculated. The results are shown in Fig. 16. Meanwhile, the
same indices are calculated for the case of the corresponding
Markovian quantum channel and plotted in the same figure.

Figure 16 reveals the relative average fidelities for different
input states can remain relatively stable for a certain transmis-
sion time under the influence of the non-Markovian dynamics
of the quantum channel. Concretely, when ωbt � 20, all the
relative average fidelities fluctuate near unit 1, where the
minimum value is Fr = 0.9791. However, in the same envi-
ronment, the performance of different input states is different
for both non-Markovian and Markovian. The coherent state
|α〉 is the most robust, followed by the squeezed coherent
state |α〉s, and the cat state |α〉c is the worst, especially the
odd cat state |α〉c(θ = π ). This is consistent with the fact that
the cat state is more susceptible to decoherence caused by the
disturbance of the environment.

VI. DISCUSSION

A. Experimental feasibility

The physical realization of an augmented system has been
investigated, and it can be achieved by two coupled cavities
[26,38]. One of the cavities, driven by quantum white noise,
serves as the ancillary system to realize the internal modes of
the non-Markovian environment. Through an optical crystal,
the optical mode in the ancillary cavity is directly coupled to
the optical mode in the other cavity, i.e., the principal cav-
ity. Similarly, in the experiment of continuous teleportation,
the non-Markovian quantum channel can be realized by an
optical fiber which couples to a waveguide cavity through
their coupler [39]. In this way, the mode in the fiber can be
disturbed by quantum Lorentzian noise, which would exhibit

non-Markovian behavior. To realize quantum colored noise
with a complicated spectrum, a network of waveguide cavities
is required to serve as the ancillary system where one of
them is driven by quantum white noise such that a fictitious
output of one cavity takes the quantum colored noise [26].
In an experiment we can also couple the fictitious output to
an optical fiber, i.e., the non-Markovian quantum channel,
through a carefully designed coupler with sophisticated hole
structures [39].

However, several potential challenges should be taken into
consideration. On the one hand, to generate a given quantum
colored noise with a complicated spectrum, the parameters of
every cavity in the network for the ancillary system should be
locked to keep the shape of the spectrum stable in an experi-
ment. The parameters can be the frequency of each cavity, the
damping rate of each cavity to a field, or the coupling strength
between two cavities [26]. Although some techniques are
valid, for example, frequency locking of a cavity [40], locking
multiple parameters simultaneously would not be easy in an
experiment. To tackle the locking challenge, model reduction
methods [41] can be considered to obtain an effective network
with fewer cavities for the ancillary system so as to relieve
the heavy task of parameter locking in an experiment. On the
other hand, supposing the quantum channel is realized by an
optical fiber, how to design the coupler with sufficient cou-
pling strength between the channel and the fictitious output is
also an important issue since the coupling strength can affect
the amplitude of the noise. One may carefully design the hole
structure for the coupler or use special materials for the hole
such that the coupling strength can be sufficient.

B. Comparison with other techniques

Decoherence caused by noisy quantum channels is a sig-
nificant issue in quantum information processing. Various
methods have been investigated to mitigate this problem,
including a photon-subtracted two-mode squeezed vacuum
state (PSTMSV) [28], quantum scissors [42], and quan-
tum catalysis [43]. Among these methods, PSTMSV has
great advantages in performance and experimental realization.
PSTMSV is a method to obtain the high quality of entan-
gled states by subtracting single photons from a two-mode
squeezed vacuum state [28]. By directly improving the quality
of entangled states, PSTMSV can enhance the performance of
quantum teleportation.

However, it is important to note that quantum telepor-
tation based on PSTMSV still suffers from the noise and
decoherence in the quantum channel. As a consequence,
PSTMSV imposes strict requirements on the squeezing aspect
of the two-mode squeezed vacuum state for better infor-
mation transmission performance. In contrast, our approach,
non-Markovian quantum channels, aims to mitigate the de-
coherence from the perspective of quantum channels, which
offers benefits for quantum teleportation based on any en-
tangled states. Quantum teleportation with higher fidelity is
available even if the entanglement of quantum resources is
not quite high. Therefore our approach can be combined
with PSTMSV to further enhance the performance of quan-
tum teleportation. This integration offers the opportunity to
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leverage the advantages of both techniques, resulting in an
overall improvement in performance.

VII. CONCLUSION

In this paper we have constructed a non-Markovian
quantum channel modeled by an augmented system and in-
vestigated the effect of the non-Markovian dynamics of the
quantum channel on the performance of the CV quantum
teleportation. Compared with the corresponding Markovian
quantum channels, the non-Markovian dynamics of the quan-
tum channels can effectively slow the degradation of the
entanglement of the two-mode squeezed vacuum state, thus
mitigating the deterioration of the performance of the CV
quantum teleportation and maintaining the average fidelity
relatively stable for a certain transmission time. The intensity
of effects on both the entangled state and the CV quantum
teleportation is closely related to the amount of information
backflow per time. These results also work for the case of
teleporting different input states, where coherent states have
the best robustness.

Quantum teleportation is a crucial foundation of quantum
communication networks. The robust quantum teleporta-
tion we proposed can mitigate the decoherence of quantum
resources and achieve a higher fidelity in long-distance infor-
mation transmission. This advantage can effectively improve
the performance and distance of information transmission,
making it particularly valuable in quantum networks. In par-
ticular, for quantum networks with star-topology structures
[44], the robust quantum teleportation can extend the dis-
tance between the relay nodes and the central node, thereby
expanding the coverage area for communication. Moreover,
the robust quantum teleportation enables the communication
of multiple pairs over long distances using fewer nodes in
quantum teleportation networks [45], which offers advantages
in terms of cost effectiveness and security.
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APPENDIX: THE SOLUTION TO AN AUGMENTED
SYSTEM MODEL

In this section we review the solution to the master equa-
tion, Eq. (12), introduced in the main text, calculating the
evolution of the density matrix of an augmented Markovian
system. Rewrite the master equation (12) as

˙̂ρ(t ) = −i[Hp, ρ̂(t )] − i[Ha + Hpa, ρ̂(t )] + L∗
La

(ρ̂(t )).
(A1)

In Eq. (A1) the first term can be represented with a superop-
erator,

Lpρ̂(t ) = −i[Hp, ρ̂(t )]. (A2)

The second term, which represents the internal dynamics of
the ancillary system and the couplings to the principal system,
can be described by another superoperator [46],

Laρ̂(t ) = −i[Ha + Hpa, ρ̂(t )]. (A3)

The last remaining term can be expressed with superoperators
as well. In particular, it is a Lindblad superoperator,

L∗
La

(ρ̂(t )) = DLρ̂(t ). (A4)

Therefore the master equation (A1) can be expressed by the
above three superoperators, namely,

˙̂ρ(t ) = (Lp + La + DL )ρ̂(t )

= Lρ̂(t ). (A5)

The solution to Eq. (A5) is generally expressed in the follow-
ing form:

ρ̂(t ) = exp{L(t − t0)}ρ̂(t0), (A6)

where t0 can be any point in the evolution, and generally
t0 � t . Substituting a density matrix at the initial time t0 = 0,
ρ̂(0) into Eq. (A6), the density matrix at any time t can be
calculated. However, it is difficult to obtain an analytical ex-
pression of Eq. (A6) due to the calculations of the exponential
of the superoperator L.

Considering that the superoperator L is time independent,
the density matrix ρ̂(t ) can be calculated by discretizing the
evolution of an augmented quantum system. Define the to-
tal evolution time of the initial density matrix ρ̂(0) in the
augmented system as T . Dividing the time T into N equal
intervals, each time period can be expressed as �t = T/N . tn
denotes the nth time tn = n�t with n = 1, . . . , N . Then the
density matrix ρ̂(tn) can be calculated as

ρ̂(tn) = Mn . . .M2M1ρ̂(0), n = 1, . . . , N. (A7)

In Eq. (A7) above, Mn is a matrix exponential form of the dis-
cretized superoperator of L at time tn, which can be calculated
by

Mn = exp(�tL), n = 1, . . . , N. (A8)

Based on this method, the evolution of the initial density op-
erator ρ̂(0) at time tn, n = 1, . . . , N , in the augmented system
can be calculated.
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