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Quantum signatures of the topological phase in bosonic quadratic systems
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Quantum entanglement and classical topology are two distinct phenomena that are difficult to be connected
together. Here we discover that an open bosonic quadratic chain exhibits topology-induced entanglement effect.
When the system is in the topological phase, the edge modes can be entangled in the steady state, while no
entanglement appears in the trivial phase. This finding is verified through the covariance approach based on the
quantum master equations, which provide exact numerical results without truncation process. We also obtain
concise approximate analytical results through the quantum Langevin equations, which perfectly agree with
the exact numerical results. We show the stationary entanglement originates from the matching between the
near-zero eigenenergies of the topological edge states and the system-environment coupling (denoted by the
dissipation rate). Our work reveals that the stationary entanglement can be a quantum signature of the topological
phase in bosonic systems and, inversely, the topological quadratic systems can be powerful platforms to generate
robust entanglement.
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I. INTRODUCTION

Quantum entanglement, a key feature of quantum effects,
plays an important role in quantum information [1] and quan-
tum metrology [2]. Quantum entanglement allows two distant
systems to be correlated with each other, and the measure-
ment results of one system can influence that of the other
system, which is in stark contrast to classical physics [3,4].
Nowadays, quantum entanglement has been considered as a
major quantum resource to realize quantum computational ad-
vantages [5–7]. Moreover, entanglement in atomic ensembles
can reduce the quantum noise with enhanced measurement
sensitivity [8–16].

In the field of condensed matter physics, long-range en-
tanglement is a signature of the quantum topological phase,
which is a property of many-body systems with topological
order [17]. On the contrary, the topology widely investigated
in ultracold atoms [18–24] and photonic systems [25–32] is
indeed classical topology, which originates from the geomet-
ric properties of the single-particle wave nature. This kind of
topology is characterized by robust edge states or topological
invariants and is conventionally believed to be uncorrelated
with quantum properties [33].

Parallelly, in the field of quantum optics, bosonic quadratic
systems, which possess Hamiltonians that are quadratic in
terms of bosonic creation and annihilation operators [34],
are an important method to generate quantum entanglement
[35–37]. The quadratic interactions exist in various plat-
forms, such as bosonic fields with parametrically driving
[38–40], interacting Bose-Einstein condensate [41–44], and
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optomechanical systems [45,46]. Recently, it is shown that
an open quadratic chain exhibits non-Hermitian dynamics
[47–50] and novel topology [51–53]. However, the relation
between quantum entanglement and topology remains unclear
in this system.

Here we uncover the topology-induced entanglement ef-
fect in an open bosonic quadratic chain in the steady state.
Such an entanglement only emerges between edge modes
in the topological phase, while there is no entanglement in
the trivial phase, as sketched in Fig. 1. The stationary en-
tanglement is related to the coupling of the system to the
environment quantum fluctuations and will be greatly sup-
pressed if the system-environment couplings (denoted by
the dissipation rate) do not match the intrasystem couplings
(which determines the system eigenenergies). As the absolute
values of the eigenenergies of the topological edge states
are much smaller than that of the bulk states, it offers the
opportunity to match only the topological edge states with
the system-environment coupling and thus selectly generate
stationary entanglement between the topological edge states.
Importantly, this kind of topological matching and related en-
tanglements disappears in the trivial phase when there are no
topological edge states. To prove this idea, we approximately
solve the Langevin equations by neglecting other eigenener-
gies except for the near-zero ones of the topological edge
states, leading to analytical results, which perfectly match
the numerical results obtained from the covariance approach
based on the quantum master equations. It is revealed that the
emergence of the topological edge states can greatly enhance
the squeezing correlations. Our work establishes a relation-
ship between classical topology and quantum entanglements,
which sheds new light on the study of quantum topological
photonics.
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FIG. 1. Stationary entanglement induced by bosonic topology.
Phase diagram of the topology and the stationary entanglement with
real parameters. The entanglement only emerges in the topological
phase, while there is no entanglement in the trivial phase. The equa-
tions denote the parameter ranges of the trivial and the topological
phases (see definition in Sec. II).

The rest of this work is organized as follows. In Sec. II,
we describe the system model of a bosonic quadratic chain
and derive the topological phase transition through both the
Bloch and non-Bloch band theories. In Sec. III, we analyze
the system through the covariance approach based on quan-
tum master equations to obtain exact numerical results. In
Sec. IV, we deduce approximate analytical results using the
quantum Langevin equations. In Sec. V, we present the analyt-
ical results for the quantum behaviors in a two-mode system.
In Secs. VI and VII, we describe the quantum behaviors in
the trivial and topological phases of the bosonic quadratic
chain, respectively. In Sec. VIII, we investigate the topology-
induced entanglements between two edge modes. In Sec. IX,
we show how to understand the pattern of the logarithmic
negativity and maximize the stationary entanglement through
the analytical expressions. In Sec. X, we discuss the station-
ary entanglements with complex-valued coupling strengths.
In Sec. XI, we discuss the possible experimental realization.
In Sec. XII, we conclude this work with some discussions.
In the Appendixes, we provide several parts of the detailed
derivations, including the Bloch band theory (Appendix A),
the non-Bloch band theory (Appendix B), and the quantum
Langevin equations (Appendix C).

II. BOSONIC QUADRATIC CHAIN AND TOPOLOGICAL
PHASE TRANSITION

As depicted in Fig. 2(a), we consider a bosonic quadratic
chain with both staggered linear interactions and squeezing
interactions, which can be viewed as a generalization of the
Su-Schrieffer-Heeger (SSH) model [54,55] by adding squeez-
ing interactions. Moreover, we take the system-environment
coupling into account by assuming that all the modes are
coupled to a Markovian environment with a dissipation rate
κ . The system Hamiltonian can be written as (h̄ = 1)

H =
N∑

j=1

(t1a†
2 j−1a2 j + �1a†

2 j−1a†
2 j + H.c.)

+
N−1∑
j=1

(t2a†
2 j+1a2 j + �2a†

2 j+1a†
2 j + H.c.), (1)

FIG. 2. (a) Bosonic quadratic chain with both staggered linear
interactions (t1, t2) and squeezing interactions (�1, �2). The dotted
boxes indicate the unit cells, and each unit cell contains two bosonic
modes. The wavy arrows denote the system-environment couplings
described by the dissipation rate κ . (b), (c) The real (b) and imaginary
(c) parts of energy spectra for an open chain with length N = 10 (unit
cell). The red dashed lines indicate the topological edge modes at
zero energy. Other parameters are t2 = 0.8, �1 = 0.6, and �2 = 0.

where t1 (t2) and �1 (�2) are the intracell (intercell) coupling
strengths of linear and squeezing interactions, respectively, N
is the number of unit cells, and a j is the annihilation operator
of the jth mode. The Bloch Hamiltonian of the system can be
written as

H(k) = (t1 + t2eik )a†
ka′

k + (�1 + �2eik )a†
ka′†

−k + H.c., (2)

or in the matrix form H(k) = 1
2C†

kHM(k)Ck , where C†
k =

(a†
k, a′†

k , a−k, a′
−k ) (see Appendix A for details). The system

satisfies the chiral symmetry, i.e., �HM� = −HM for � =
σ3 ⊗ σ0, where σ3 is the third Pauli matrix and σ0 is the
two-dimensional identity matrix.

When the quadratic squeezing terms are nonzero, the exci-
tation modes are no longer unitary transformations of initial
bosonic modes. Instead, the excitation modes are Bogoli-
ubov modes that are determined by the eigenvalue equation
of τzHM, where τz = Diagonal(1,−1) and 1 is an identity
matrix with half the dimension of HM [48].

Without loss of generality, we assume t2 = qtt1eiφt , �2 =
q��1eiφ� , and t1, �1, qt,� are all real. Then the eigenvalues
of τzHM(k) can be obtained as

ξ 2 = 	1 + 	2 + 2	3 cos k ± 2| sin k|
√

	1	2 − 	2
3 , (3)

where 	1 = t2
1 − �2

1, 	2 = q2
t t2

1 − q2
��2

1, and 	3 =
qt cos φtt2

1 − q� cos φ��2
1. For 	1	2 − 	2

3 � 0, the Bloch
spectrum is real, indicating that there is no non-Hermitian
skin effect. We can directly obtain the energy spectrum as

(
√

	1 −
√

	2)2 < ξ 2 < (
√

	1 +
√

	2)2, (4)

where we assume 	1,2 are both positive. When 	1 < 0 or
	2 < 0, the eigenvalues of the long open chain are imaginary,
and the system becomes unstable. Consequently, we are only
interested in the stable region for 	1,2 > 0. According to
the bulk-edge correspondence, the gap-closing points 	1 =
	2 (|t1|2 − |�1|2 = |t2|2 − |�2|2) also denote the gap-closing
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points of an open chain and are where the topological phase
transition takes place.

However, when 	1	2 − 	2
3 < 0, the Bloch spectrum

forms a loop in the complex energy plane with the emer-
gence of the non-Hermitian skin effect. In this case, the Bloch
bulk-edge correspondence fails but can be rebuilt with the
non-Bloch theory. The non-Bloch matrix HM(β ) can be ob-
tained from HM(k) by the replacements eik → β, e−ik → β−1

[48], which is

H(β ) = (t1 + t2β )a†
ka′

k + (�1 + �2β )a†
ka′†

−k

+ (t∗
1 + t∗

2 β−1)aka′†
k + (�∗

1 + �∗
2β

−1)aka′
−k . (5)

The eigenvalues of τzHM(β ) become

ξ 2 = 	1 + 	2 + 	3(β + β−1)

±
√

−(β − β−1)2
√

	1	2 − 	2
3 . (6)

We can also obtain the generalized momentum as

β = 1

2

λ2 − 	1 − 	2 ±
√

(ξ 2 − 	1 − 	2)2 − 4	1	2

	3 ±
√

	2
3 − 	1	2

. (7)

There are two “±” and four β. The four β are two pairs ac-
cording to the ± in the denominator. We note the denominator
is real as the term under the root sign is positive. The existence
of the generalized Brillouin zone requires the absolute values
of two β in each pair equal to each other. It means the term
under the root sign in the numerator is negative, i.e. (see
Appendix B for details),

(ξ 2 − 	1 − 	2)2 − 4	1	2 < 0. (8)

Interestingly, the non-Bloch Hamiltonian also gives the
same energy spectrum as Eq. (4). It means the topological
phase transition also takes place at 	1 = 	2 in the case with
the non-Hermitian skin effect. The open chain is in the topo-
logical phase for 	1 < 	2 and in the trivial phase for 	1 >

	2. We note the same energy spectrum is a coincidence. The
conventional bulk-boundary correspondence still fails as the
Bloch spectrum can not provide the open-boundary spectrum.

Figures 2(b) and 2(c) are typical energy spectra of
the quadratic system with the emergence of the non-
Hermitian skin effect. The energy spectra is all real when
|t1/�1| > 1, although the Bloch spectrum can be com-
plex. We observe a topological phase transition at t1 = 1 =√

|t2|2 − |�2|2 + |�1|2, as predicted by the non-Bloch theory.

III. COVARIANCE APPROACH BASED ON QUANTUM
MASTER EQUATIONS

We focus on the stationary quantum behaviors of the sys-
tem, which can be obtained by calculating the time evolution
of the system and taking the long-time limits or directly cal-
culating the time-independent equilibrium solutions. In this
section, we use the covariance approach based on quantum
master equations to obtain exact numerical results.

The quantum master equation is given by ρ̇ =
i[ρ, H] + κ (1 + nth )

∑2N
j=1 D(a j )ρ + κnth

∑2N
j=1 D(a†

j )ρ,
where D(ô)ρ = ôρô† − (ô†ôρ + ρô†ô)/2 is the Liouvillian
for operator ô, and nth is the environment photon number.

This equation gives all the information of the density matrix,
but the Hilbert space of bosonic systems is infinity, so the
truncation process is required, and it still consumes too much
computational resources.

To capture the most important features of quantum correla-
tions, we only need to consider the covariances (second-order
moments) 〈ôô′〉, where ô, ô′ ∈ {a j, a†

j , j = 1, 2, . . . , N} are
either an annihilation or creation operator. By using this
covariance approach we can obtain exact numerical results
without truncation process [56]. The evolution equations of
the second-order moments can be obtained from the quantum
master equations d〈ôô′〉/dt = Tr(ρ̇ôô′), which allow us to nu-
merically analyze both the dynamic and stationary behaviors
of the system. To obtain the stationary mean values of the
second-order moments, we can let the time derivations equal
to zero. Specifically, we are interested in the entanglement
between two edge modes a1 and a2N . Then the degree of the
two-mode entanglement can be quantified by the logarithmic
negativity EN , which is a function of the covariance matrix of
the two modes [37,57].

IV. ANALYTICAL RESULTS THROUGH QUANTUM
LANGEVIN EQUATIONS

Although the exact numerical results can be obtained using
the approach in the previous section, the underlying physical
mechanism is hard to analyze. In this section we calculate the
quantum Langevin equations which provide an approximate
route to capture the physical mechanism analytically.

From the original system Hamiltonian in Eq. (1), we can
find that the Langevin equations of a quadratic system include
both the annihilation and creation operators, which is diffi-
cult to be solved analytically. To overcome this problem, we
employ a squeezing transformation to transform the quadratic
Hamiltonian into a Hamiltonian without the quadratic inter-
actions [47], and the squeezing property now is transformed
to the noise operators. For simplicity in calculation, we first
rewrite the system Hamiltonian in the quadrature representa-
tion [a j = (x j + ip j )/

√
2], which is

H =
N∑

j=1

[(t1 + �1)x2 j−1x2 j + (t1 − �1)p2 j−1 p2 j]

+
N−1∑
j=1

[(t2 + �2)x2 j+1x2 j + (t2 − �2)p2 j+1 p2 j]. (9)

We employ the squeezing transformation x j = e−r j x̃ j and
p j = er j p̃ j , then the quadratic Hamiltonian becomes the
Hamiltonian of a simple SSH chain

H̃ =
N∑

j=1

t ′
1(x̃2 j−1x̃2 j + p̃2 j−1 p̃2 j )

+
N−1∑
j=1

t ′
2(x̃2 j x̃2 j+1 + p̃2 j p̃2 j+1)

=
N∑

j=1

t ′
1ã†

2 j−1ã2 j +
N−1∑
j=1

t ′
2ã†

2 j+1ã2 j + H.c., (10)
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where t ′
j =

√
t2

j − �2
j for j = 1, 2. The site-dependent

squeezing parameters in the squeezing transformation are
given by

r2 j−1 = ( j − 1)(rb − ra ) + r0, (11)

r2 j = − j(rb − ra ) + rb − r0, (12)

where e2ra = (t1 + �1)/(t1 − �1) and e2rb =
(t2 + �2)/(t2 − �2). r0 is a constant that can be arbitrarily
chosen in the squeezing transformation. Here we determine
it through the mirror symmetry, i.e., r1 = r2N , which can
simplify the calculation of the Langevin equations.

Then we can obtain the Langevin equations of the new
operators as

˙̃a2 j−1 = −κ

2
ã2 j−1 − it ′

1ã2 j − it ′
2ã2 j−2 − √

κ ãin,2 j−1, (13)

˙̃a2 j = −κ

2
ã2 j − it ′

1ã2 j−1 − it ′
2ã2 j+1 − √

κ ãin,2 j, (14)

where ãin, j are the noise operators. Due to the squeezing
transformation, these noise operators denote couplings to a
squeezed environment. The above Langevin equations can be
rewritten in the matrix form as

˙̃A =
(
−κ

2
1 − iS

)
Ã − √

κÃin, (15)

where Ã = (ã1, . . . )T, Ãin = (ã1,in, . . . )T, 1 is the identity
matrix, and S is the coupling matrix (see Appendix C for
details). Importantly, after the squeezing transformation, the
coupling matrix S is Hermitian and can be diagonalized as
S = PJP−1. P = (α1,α2, . . . ) and the column vectors α j are
the eigenvectors of S. The diagonal elements of the diagonal
matrix J = Diag(λ1, λ2, . . .) are the corresponding eigenval-
ues. Then we can obtain the stationary solutions as

Ãs = √
κ

2N∑
j=1

lim
t→∞

∫ t

0
e(− κ

2 −iλ j )(t−t ′ )[α j · Ãin(t ′)]α jdt ′ (16)

or

ãm,s = √
κ

∑
j,k

lim
t→∞

∫ t

0
e(− κ

2 −iλ j )(t−t ′ )α j,kα j,mãin,k (t ′)dt ′.

(17)

Following the stationary solutions, the mean values of the
second-order moments can be obtained as

〈ã†
mãm′ 〉s =

∑
j,k, j′

κα j,kα j,mα j′,kα j′,m′

κ + i(−λ∗
j + λ j′ )

e2rk + e−2rk − 2

4
, (18)

〈ãmãm′ 〉s =
∑
j,k, j′

κα j,kα j,mα j′,kα j′,m′

κ + i(λ j + λ j′ )

e2rk − e−2rk

4
. (19)

Here and below the summation range is from 1 to 2N if there is
no additional description. For simplicity, we have assumed the
environment photon number nth = 0, and the full expressions
can be found in Appendix C.

V. HINT FROM THE TWO-MODE SYSTEM

In this section we analyze the quantum behaviors of a
two-mode system, which is a special case of N = 1 and can

be solved analytically without approximation, so that we can
obtain some hints on the quantum entanglement generation.
Following the derivation in Sec. IV, for two-mode system
the squeezing parameters are r1 = r2 = r0 = ra/2. The eigen-
values and the eigenvectors are λ1 = −λ2 = t ′

1 and α1 =
(1/

√
2, 1/

√
2)T, α2 = (1/

√
2,−1/

√
2)T. So the mean values

of the second-order moments are

〈ã†
1ã1〉s = 〈ã†

2ã2〉s = era + e−ra − 2

4
, (20)

〈ã†
1ã2〉s = 0, (21)

〈
ã2

1

〉
s = 〈ã2

2〉s = κ2

κ2 + 4t ′2
1

era − e−ra

4
, (22)

〈ã1ã2〉s = − 2iκt ′
1

κ2 + 4t ′2
1

era − e−ra

4
. (23)

From the squeezing correlation term (23) we can find that
the quantum correlation depends on two factors. The first
factor is the squeezing parameter ra. The squeezing corre-
lation term becomes zero when ra = 0, i.e., �1 = 0, which
reveals that the existing of squeezing interaction is neces-
sary for the emergence of stationary correlations. The second
factor is the ratio between the dissipation rate κ and the
effective coupling strength t ′

1. According to the fluctuation-
dissipation theorem, the dissipation of a system is always
connected to the noise fluctuation from the environment, so
both processes correspond to the same parameter κ denot-
ing system-environment coupling, which appears both at the
denominator and numerator in Eq. (23). When κ � t ′

1, the
squeezing correlation will be suppressed because the the cou-
pling to the environment fluctuation is weak. On the other
hand, when κ � t ′

1, the strong dissipation will also suppress
the squeezing correlation. Therefore, the optimal squeezing
correlation is obtained for a moderate κ/t ′

1, which means that
the system-environment coupling should match the intrasys-
tem coupling. From Eq. (23) we can find that the optimal
condition is κ = 2t ′

1.
The above analysis for the two-mode system provides the

physical insights for a bosonic chain with more modes. In this
case the energy levels become energy bands, thus, it is natural
to consider the effect of eigenenergies. We can infer that the
eigenenergies should match the system-environment coupling
to obtain optimal squeezing correlation. In the topological
phase, there exist topological edge states whose eigenenergies
are near zero and separated from the bulk energy bands, thus
it offers the opportunity to generate long-range entanglement
between two edge modes when the corresponding eigenener-
gies match the system-environment coupling with near zero
κ , while at the same time the squeezing correlations between
bulk states are suppressed.

VI. QUANTUM BEHAVIORS IN THE TRIVIAL PHASE

In this section, we will prove that the squeezing correla-
tions in a bosonic quadratic chain with trivial phase are greatly
suppressed for small κ (compared to the coupling strength),
and there are no stationary entanglements in this case. In
the trivial phase for 	1 > 	2, the lattice spectrum opens a
trivial gap, and all the eigenvalues have finite absolute values
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which we assume are much larger than the dissipation rate
|λ j | � κ . So in the summations (18) and (19), those terms
with eigenvalues that cancel out with each other are much
larger than other terms. Appropriately, we only consider these
large terms, and the summations become

〈ã†
mãm′ 〉s ≈

∑
k, j

α2
j,kα j,mα j,m′

e2rk + e−2rk − 2

4
, (24)

〈ãmãm′ 〉s ≈
∑
k, j

α j,kα j,mα′
j,kα

′
j,m′

e2rk − e−2rk

4
, (25)

where α′
j,k denotes the eigenvector with an opposite eigen-

value of α j,k . As this system preserves chiral symmetry,
the pair of eigenvectors with opposite eigenvalues sat-
isfy α j,2k−1 = α′

j,2k−1, α j,2k = −α′
j,2k . Moreover, the system

preserves mirror symmetry |α j,k| = |α j,2N+1−k|. In the mean-
while, the squeezing parameters satisfy rk = r2N+1−k . Con-
sequently, every term in the summation (25) is zero. For a
similar reason, the summations in Eq. (18) are equal to zero
when m and m′ are not both odd or even, as every pair of
terms with opposite eigenvalues cancel out (α2

j,kα j,mα j,m′ +
α′2

j,kα
′
j,mα′

j,m′ = 0). It means the only nonzero terms are those

like 〈ã†
2mã2m′ 〉s and 〈ã†

2m+1ã2m′+1〉s.
These properties mean the total lattice can be divided into

two sublattices: the odd modes and the even modes. The
modes between two sublattices have no quantum correlation.
Moreover, as the squeezing correlation terms (m �= m′) or
single-mode squeezing terms (m = m′) in Eq. (25) are always
zero, there is no quantum squeezing effect in the squeezing
representation. In other words, the squeezing parameters r j

in the squeezing transformation are exactly the squeezing
coefficient of every mode in the steady state.

VII. QUANTUM BEHAVIORS IN THE
TOPOLOGICAL PHASE

In the topological phase for 	1 < 	2, the energy spectrum
is different from that in the trivial phase, with the emergence
of topological edge states. The absolute energy of two edge
states |λ1,2| is much smaller than the absolute values of other
eigenvalues. Consequently, the contribution of the topologi-
cal edge states must be considered in the summations. For
simplicity, we note that in this work the concept of “state”
denotes the eigenstates of the chain, while the concept of
“mode” denotes the original physical modes in the chain. The
summations of Eqs. (18) and (19) become

〈ã†
mãm′ 〉s ≈

∑
k, j

α2
j,kα j,mα j,m′

e2rk + e−2rk − 2

4

+
∑

k
j=1,2

κ

κ + 2iλ j
α j,kα j,mα′

j,kα
′
j,m′

e2rk + e−2rk − 2

4
,

(26)

〈ãmãm′ 〉s ≈
∑
k, j

α j,kα j,mα′
j,kα

′
j,m′

e2rk − e−2rk

4

+
∑

k
j=1,2

κ

κ + 2iλ j
α2

j,kα j,mα j,m′
e2rk − e−2rk

4
. (27)

As proved in the previous section, the first line in Eq. (27) is
zero. Similarly, the second line in Eq. (26) is also zero. Then
the summation Eq. (26) returns to Eq. (24), but the squeezing
correlation terms or single-mode squeezing terms (27) keep
nonzero as

〈ãmãm′ 〉s ≈
∑

k
j=1,2

κ

κ + 2iλ j
α2

j,kα j,mα j,m′
e2rk − e−2rk

4
. (28)

We point out that Eq. (28) summarizes the key analyti-
cal results of this work. The nonzero squeezing correlation
terms in Eq. (28) lead to the emergence of two-mode entan-
glement in the steady state, and the single-mode squeezing
terms in Eq. (28) lead to a modulation of squeezing degree
and squeezing phase in every mode. Importantly, unlike the
terms in Eq. (24) which are non-zero only when m and m′
are both odd or even, the terms in Eq. (28) are always nonzero
irrespective of m and m′. It denotes that there are also quantum
correlations between modes in two sublattices, which do not
exist in the trivial phase. Moreover, as shown in the derivation,
the nonzero terms in Eq. (28) originate from the near-zero
energies of two topological edge modes. So the quantum
effects such as the quantum entanglements can be viewed as
the quantum signatures of the topological edge modes.

We assume the eigenvalues of two edge states are
λ1 = δ and λ2 = −δ. The distributions of two edge
states can be approximately given by α1,2 j−1 = α2,2 j−1 ≈
le−( j−1)ε and α1,2 j = −α2,2 j ≈ le( j−N )ε, where ε ≈ ln t ′

2 −
ln t ′

1 is the topological localization coefficient, and l =
1/

√
2(1 − e−2(N−1)ε )/(1 − e−2ε ) is the normalization coeffi-

cient [58]. Then Eq. (28) can be reduced to

〈ã2mã2m′ 〉s ≈ κ2l4e(m+m′−2N )ε

κ2 + 4δ2
[e−2r0 L1 − e2r0 L2], (29)

〈ã2m+1ã2m′+1〉s ≈ κ2l4e−(m+m′−2)ε

κ2 + 4δ2
[e−2r0 L1 − e2r0 L2], (30)

〈ã2mã2m′+1〉s

≈ −2iδκl4e(m−m′−N+1)ε

κ2 + 4δ2
[e−2r0 L1 − e2r0 L2], (31)

where L1 = [1 − e−2(N−1)(ε+rb−ra )]/[1 − e−2(ε+rb−ra )] and
L2 = [1 − e−2(N−1)(ε−rb+ra )]/[1 − e−2(ε−rb+ra )].

All the above squeezing terms are modulated by the ex-
ponential distribution of the topological edge state, and these
terms decrease quickly when considering modes far away
from the edges. In Fig. 3, we plot the stationary entangle-
ment (quantified by EN ) between two edge modes (red) and
between the first mode and the third mode (blue) versus the
ratio of linear coupling strengths t2/t1. The maximal station-
ary entanglement in the latter case is much smaller than in
the former case. Moreover, we find that there is no stationary
entanglement between other pairs of modes [except between
the (2N − 2)th and 2N th modes].

Therefore, as the absolute eigenenergies of the topological
edge states are much smaller than those of the bulk states, we
can selectively enhance the stationary entanglement between
two topological edge states, when the dissipation rate κ is
much smaller than the coupling strengths.
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FIG. 3. Stationary entanglement (quantified by EN ) between two
edge modes (red solid line) and between the first mode and the third
mode (blue dashed line) versus the ratio of linear coupling strengths
t2/t1. Other parameters are κ = 0.01, N = 5, μ = 0, and �1/t1 =
�2/t2 = 0.6.

VIII. TOPOLOGY-INDUCED ENTANGLEMENT BETWEEN
TWO EDGE MODES

As the topological edge states are most distributed at two
edge modes, they have the maximal quantum entanglement.
For m, m′ ∈ {1, N}, Eqs. (29)–(31) can be reduced to

〈
ã2

1

〉
s = 〈

ã2
2N

〉
s ≈ κ2l4

κ2 + 4δ2
[e−2r0 L1 − e2r0 L2], (32)

〈ã1ã2N 〉s ≈ − 2iδκl4

κ2 + 4δ2
[e−2r0 L1 − e2r0 L2]. (33)

Moreover, in this case, we can neglect other terms except
for j = 1, 2 in Eq. (24) because the topological edge states
have distinct profiles compared with the bulk states. For m,
m′ ∈ {1, N}, the distributions of the bulk states in Eq. (24)
are much smaller than the edge states (|α j,mα j,m′ | j=1,2 �
|α j,mα j,m′ | j �=1,2). Consequently, the summations can be re-
duced to 〈ã†

1ã2N 〉s = 〈ã†
2N ã1〉s = 0 and

〈ã†
1ã1〉s = 〈ã†

2N ã2N 〉s ≈ l4(e−2r0 L1 + e2r0 L2) − l2. (34)

Due to the symmetry between two edge modes, the loga-
rithmic negativity is given by EN = max[0,− ln 2η−], where

η− = |
√

(1/2 + K1)2 − K2
2 − K3|, and K1 = 〈ã†

1(2N )ã1(2N )〉s,

K2 = 〈ã2
1(2N )〉s, K3 = −i〈ã1ã2N 〉s are three different stationary

mean values of the second-order moments. We note here
we directly calculate the logarithmic negativity using the
squeezed operators because the value of logarithmic negativ-
ity is independent of the squeezing transformation.

To verify the above results, in Figs. 4 and 5 we plot the
logarithmic negativity as functions of the system parameters
for an open chain with 10 modes (N = 5), where both exact
numerical results and approximate analytical results are pre-
sented. In Fig. 4, the coupling strengths satisfy t2/t1 = 4, and
thus the system is in the topological phase when |�2/t2| <√

3 + (�1/t1)2/2. The green solid line indicates the phase
boundary between the topological phase (above the line) and
the trivial phase (below the line). In Fig. 5, the coupling
strengths satisfy �1/t1 = �2/t2, and thus the system is in the
topological phase when t2/t1 > 1 (including all the regions in

FIG. 4. Stationary entanglement as quantified by the logarith-
mic negativity EN between two edge modes as functions of �1/t1

and �2/t2. (a) Exact numerical results obtained from the quantum
master equations. (b) Approximate analytical results obtained from
the quantum Langevin equations. The green solid line indicates the
phase boundary between the trivial phase (above the line) and the
topological phase (below the line). The green dashed line indicates
the vanished entanglement for e−2r0 L1 = e2r0 L2. The parameters are
t2/t1 = 4, N = 5, and κ = 0.01.

Fig. 5). We can find that for a wide parameter region in the
topological phase, the logarithmic negativity is nonzero.

Remarkably, the approximate analytical results agree well
with the exact numerical results obtained from the quantum
master equations, which means that our approximations in
the derivation of the analytical results perfectly catch the key
point of the entanglement phenomenon. It is the existence of
the topological edge states that leads to the stationary entan-
glement between two edge modes.

IX. MAXIMIZING ENTANGLEMENT

The analytical solutions can also help us to understand
the pattern of the logarithmic negativity and to maximize the
entanglement. In Fig. 4, the logarithmic negativity splits into
two bright areas. In the analytical expression, the dark area
between the two bright areas corresponds to the case when
e−2r0 L1 − e2r0 L2 ≈ 0 (denoted by the green dashed line). The
factor e−2r0 L1 − e2r0 L2 appears both in the squeezing term
[cf. Eq. (32)] and in the correlation term [cf. Eq. (33)]. So
when the entanglement disappears in the central dark area, the

FIG. 5. Stationary entanglement as quantified by the logarithmic
negativity EN between two edge modes as functions of t2/t1 and
�/t for �1/t1 = �2/t2. (a) Exact numerical results obtained from
the quantum master equations. (b) Approximate analytical results
obtained from the quantum Langevin equations. Other parameters
are N = 5 and κ = 0.01.
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FIG. 6. Stationary entanglement between two edge modes (quan-
tified by EN ) versus the ratio of linear coupling strengths t2/t1

considering the influence of the dissipation rate κ (a), the number
of the unit cell N (b), the environment photon number nth (c), and
the chemical potential μ (d). The squeezing interactions satisfy
�1/t1 = �2/t2 = 0.6. The inset of (c) is the logarithmic negativity
EN as a function of nth for t2/t1 = 4. The dashed line in (d) denotes
the region where the system is unstable (no stationary solutions).
Other parameters are μ = 0 in (a), (b), and (c); N = 5 in (a), (c),
and (d); nth = 0 in (a), (b), and (d); κ = 0.01 in (b), (c), and (d).

steady state of every mode is nearly an unsqueezed coherent
state in the squeezing representation (but a squeezed state in
the original representation), which is similar to the behaviors
in the trivial phase. In this case, the entanglement is totally
suppressed and there is only the single-mode squeezing effect.

We then focus on the special case �1/t1 = �2/t2 consid-
ered in Fig. 5. It is the condition when the non-Hermitian skin
effect disappears (	1	2 = 	2

3 ). In this case, the squeezing
parameters become ra = rb = 2r0, and the mean values of
the second-order moments [cf. Eqs. (32)–(34)] can be greatly
reduced, which are

〈ã†
1ã1〉s = 〈ã†

2N ã2N 〉s ≈ l2 e−2r0 + e2r0 − 2

2
, (35)

〈
ã2

1

〉
s = 〈

ã2
2N

〉
s ≈ κ2l2

κ2 + 4δ2

e−2r0 − e2r0

2
, (36)

〈ã1ã2N 〉s ≈ − 2iδκl2

κ2 + 4δ2

e−2r0 − e2r0

2
. (37)

Then the logarithmic negativity mainly depends on the inter-
play between the dissipation κ and the absolute energy of the
topological edge modes δ. According to Eqs. (36) and (37),
the maximal logarithmic negativity is obtained near κ = 2δ.
We note that the absolute energy of the topological edge
modes δ is smaller when the ratio t2/t1 is larger. Inversely,
the absolute energy δ is smaller when the number of unit cells
N is smaller. So for a smaller dissipation rate or a smaller
unit-cell number, the maximal entanglement is obtained at a
larger ratio t2/t1, as shown in Figs. 6(a) and 6(b).

We also investigate the influence of the environment pho-
ton number nth and the chemical potential (onsite energy)

FIG. 7. Stationary entanglement (quantified by EN ) between two
edge modes versus the coupling phase φt (a) and φ� (b). Other pa-
rameters are κ = 0.01, N = 5, μ = 0, t1 = 1, |t2| = 4, and �1/t1 =
|�2/t2| = 0.6.

μ on the stationary entanglement, which are not included
in the above calculation. For simplicity, we assume nth and
μ of all modes are the same. As plotted in Fig. 6(c), the
stationary entanglement decays linearly when increasing the
environment photon number nth. As shown in Fig. 6(d), the
chemical potential will also affect the entanglement. In some
parameter ranges when the system is in the stable region, the
chemical potential can enhance the maximal entanglement,
while it can also enhance the instability due to the intrinsic
non-Hermiticity of the squeezing interactions.

X. STATIONARY ENTANGLEMENTS WITH
COMPLEX-VALUED COUPLINGS

As shown in Sec. II, the topological phase transition is
independent of the coupling phases. However, the stationary
entanglements are highly dependent on the coupling phases.
This is because the squeezing transformation is phase depen-
dent. Figure 7 plots the stationary entanglement (quantified
by EN ) between two edge modes versus the coupling phase φt

and φ�. The stationary entanglement exhibits an interesting
fingerlike pattern versus the coupling phase φt , while there
is stationary entanglement only for a small range of coupling
phase φ� near 0 or 2π .

In particular, the case for π phase can be understood
through the analytical expression, as the coupling strengths
are still real. The cases for φt = π and φ� = π are equivalent.
For example, in the case of φ� = π , the squeezing parameters
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rb in the squeezing transformation become negative, while ra

is still positive. Then the squeezing parameter of every mode
r j is greatly enhanced, which leads to more enhancement of
the stationary photon number (34) than the enhancement of
the squeezing correlation (32), so the quantum entanglement
disappears.

XI. EXPERIMENTAL REALIZATION

The main requirements of the system are site-dependent
coupling strengths and the squeezing interactions. These re-
quirements are already satisfied by a recent experiment based
on an optomechanical cavity [49]. They make use of the
idea of synthetic dimension realized from multiple nonde-
generate mechanical modes. These mechanical modes are
coupled to an optical cavity mode through the radiation pres-
sure, and the optical cavity mode can be used to generate
both the beam-splitter (linear) and squeezing interactions
between different mechanical modes. These couplings are
obtained through modulation at a special frequency in the
large-detuning regime. Moreover, the coupling strengths can
be individually controlled by the modulation depth. So the
multimode optomechanical system is a perfect platform to
realize the topology-induced entanglement, and the stationary
entanglement can be read out by an additional probe laser. As
shown in Fig. 6(b), there are obvious quantum entanglements
for only four modes.

XII. DISCUSSION AND CONCLUSION

We establish a direct relationship between quantum en-
tanglement and classical topology. It is distinct from the
proposals utilizing topology to enhance the robustness of
quantum effects [59–66]. It is also different from the efforts
to include quantum effects to obtain novel topological phase
transition [67–69]. Our work shows that the bosonic topol-
ogy can be a source of the quantum entanglements and the
quantum entanglements can be a quantum signature of the
topological phase. It also has the potential to investigate quan-
tum phase transition driven by bosonic topology.

The results in this work reveal a general mechanism that
can be applied to various systems and can be generalized
to higher dimensions. For example, this mechanism can be
directly applied to the lattice model with dissipative pairing
interactions [52] and the model with single-mode squeez-
ing [67]. Moreover, this mechanism can be generalized to
high-dimensional systems such as the higher-order topolog-
ical corner modes, and the mechanism can also be used to
generate quantum entanglements as a witness of the Floquet
topology.

We note that the relationship between topology and en-
tanglement is only valid in bosonic quadratic systems, as
the quadratic squeezing interactions are the source of entan-
glement. In no-quadratic systems, there is no squeezing or
entanglement, and we can not investigate the relationship be-
tween the topology and the entanglement. Moreover, although
the bosonic quadratic systems possess no-Hermitian dynamics
and may exhibit non-Hermitian skin effects. The relationship
between topology and entanglement we find here is irrelevant
without the non-Hermitian skin effects.

In summary, we discover that there is a topology-induced
entanglement effect in the steady state of a bosonic quadratic
chain. We show the stationary entanglement only exists in
the topological phase. The relation between the entangle-
ment and the topological edge states is established with
analytical expressions by appropriately solving the quantum
Langevin equations, where we neglect the terms contain-
ing bulk-state eigenenergies but keep the terms containing
near-zero eigenenergies which correspond to the topological
edge states. The analytical results show good agreement with
the numerical results obtained from the covariance approach
based on the quantum master equations, which proves that our
approximation perfectly catches the key point of the emerging
entanglement phenomenon. We verify that the approxima-
tion is valid because the squeezing correlations are greatly
suppressed when the intrasystem coupling strengths (which
determine the system eigenenergies) do not match the system-
environment coupling strengths (denoted by the dissipation
rate). For a topological system, the topological edge states
possess near-zero eigenenergies, which are much smaller than
the absolute value of the eigenenergies of the bulk states,
so we can selectively match the topological edge states with
the system-environment coupling and generate obvious sta-
tionary entanglements between these states. This kind of
topological matching and related entanglements disappears in
the trivial phase when there are no topological edge states.
Based on this finding, we thoroughly discuss the influence
of different parameters on the stationary entanglements and
maximal conditions. This model is implementable in a variety
of experimental platforms, such as multimode optomechani-
cal systems and superconducting quantum circuits. Our work
opens an avenue for investigating quantum entanglement in
topological systems.
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APPENDIX A: BLOCH THEORY FOR A QUADRATIC CHAIN

In this Appendix, we provide a detailed calculation of the Bloch theory for a quadratic chain with staggered couplings. The
Hamiltonian is written as

H =
N∑

j=1

(t1a†
2 j−1a2 j + �1a†

2 j−1a†
2 j + H.c.) +

N−1∑
j=1

(t2a†
2 j+1a2 j + �2a†

2 j+1a†
2 j + H.c.), (A1)
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where t1 (t2) and �1 (�2) are the intracell (intercell) coupling strengths of linear and squeezing interactions, respectively, N is the
number of unit cells, and a j is the annihilation operator of the jth mode. After the Fourier transformation, the Bloch Hamiltonian
of the system can be written as

H(k) = (t1 + t2eik )a†
ka′

k + (�1 + �2eik )a†
ka′†

−k + H.c., (A2)

or in the matrix form H(k) = 1
2C†

kHM(k)Ck , where C†
k = (a†

k, a′†
k , a−k, a′

−k ) and

HM(k) =

⎛
⎜⎜⎝

0 t1 + t2eik 0 �1 + �2eik

t∗
1 + t∗

2 e−ik 0 �1 + �2e−ik 0
0 �∗

1 + �∗
2eik 0 t∗

1 + t∗
2 eik

�∗
1 + �∗

2e−ik 0 t1 + t2e−ik 0

⎞
⎟⎟⎠. (A3)

Here the excitation modes are Bogoliubov modes that are determined by the eigenvalue equation of τzHM, where τz =
Diagonal(1,−1) and 1 is an identity matrix with half the dimension of the corresponding Hamiltonian [48]. The eigenvalue
equation det|τzHM − ξ1| = 0 can be obtained as

(ξ 2 − |t1 + t2eik|2)(ξ 2 − |t1 + t2e−ik|2) + ξ 2(|�1 + �2eik|2 + |�1 + �2e−ik|2)

+ |(�1 + �2eik )(�1 + �2e−ik )|2 − 2 Re[(t1 + t2eik )(t∗
1 + t∗

2 eik )(�1 + �2e−ik )(�∗
1 + �∗

2e−ik )] = 0. (A4)

Consequently, only the relative phases between t1 (�1) and t2 (�2) are important. So we can assume

t2 = qtt1eiφt , �2 = q��1eiφ�, (A5)

where qt,�, t1, and �1 are all real, φt (φ�) are the relative phases between t1 (�1) and t2 (�2), respectively. So Eq. (A4) can be
rewritten as

ξ 4 − 2ξ 2
[(

1 + q2
t + 2qt cos k cos φt

)
t2
1 − (

1 + q2
� + 2q� cos k cos φ�

)
�2

1

]
+ [

1 + q2
t + 2qt cos(k + φt )

][
1 + q2

t + 2qt cos(k − φt )
]
t4
1

+ [
1 + q2

� + 2q� cos(k + φ�)
][

1 + q2
� + 2q� cos(k − φ�)

]
�4

1

− 2 Re
[(

1 + 2qte
ik cos φt + q2

t e2ik
)(

1 + 2q�e−ik cos φ� + q2
�e−2ik

)]
t2
1 �2

1 = 0. (A6)

Then we can obtain

ξ 2 = (
1 + q2

t + 2qt cos k cos φt
)
t2
1 − (

1 + q2
� + 2q� cos k cos φ�

)
�2

1

± 2| sin k|
√(

qt sin φtt2
1

)2 + (
q� sin φ��2

1

)2 − t2
1 �2

1

(
q2

t + q2
� − 2qtq� cos φt cos φ�

)
(A7)

or

ξ 2 = (
1 + q2

t + 2qt cos k cos φt
)
t2
1 − (

1 + q2
� + 2q� cos k cos φ�

)
�2

1

± 2| sin k|
√(

q2
t t2

1 − q2
��2

1

)(
t2
1 − �2

1

) − (
qt cos φtt2

1 − q� cos φ��2
1

)2
. (A8)

For simplicity, we let 	1 = t2
1 − �2

1, 	2 = q2
t t2

1 − q2
��2

1, and 	3 = qt cos φtt2
1 − q� cos φ��2

1. So Eq. (A8) becomes

ξ 2 = 	1 + 	2 + 2	3 cos k ± 2| sin k|
√

	1	2 − 	2
3 , (A9)

corresponding to Eq. (3) in the main text. When 	1	2 − 	2
2 > 0, the system does not exhibit the non-Hermitian skin effect. In

this case, Eq. (A9) can be rewritten as

ξ 2 = 	1 + 	2 + 2	1	2 cos(±k + ϕ), (A10)

where tan ϕ =
√

	1	2 − 	2
3/	3. Then we can obtain the energy spectrum as

(
√

	1 −
√

	2)2 < ξ 2 < (
√

	1 +
√

	2)2, (A11)

where we assume 	1,2 are both positive.

APPENDIX B: NON-BLOCH THEORY FOR A QUADRATIC CHAIN

When there is the non-Hermitian skin effect, i.e., 	1	2 − 	2
3 < 0, the Bloch theory fails in the calculation of the open-

boundary bulk spectrum. Then we need to use the non-Bloch theory, with the replacements eik → β and e−ik → β−1. So the

062405-9



YAOHUA LI AND YONG-CHUN LIU PHYSICAL REVIEW A 108, 062405 (2023)

non-Bloch Hamiltonian matrix can be written as

HM(β ) =

⎛
⎜⎜⎝

0 t1 + t2β 0 �1 + �2β

t∗
1 + t∗

2 β−1 0 �1 + �2β
−1 0

0 �∗
1 + �∗

2β 0 t∗
1 + t∗

2 β

�∗
1 + �∗

2β
−1 0 t1 + t2β−1 0

⎞
⎟⎟⎠. (B1)

The eigenvalue equation det|τzHM − ξ1| = 0 is

ξ 4 − 2ξ 2{[1 + q2
t + qt cos φt (β + β−1)

]
t2
1 − [

1 + q2
� + q� cos φ�(β + β−1)

]
�2

1

}
+ {[

1 + q2
t + qt cos φt (β + β−1)

]2 + [
qt sin φt (β − β−1)

]2}
t4
1

+ {[
1 + q2

� + q� cos φ�(β + β−1)
]2 + [

q� sin φ�(β − β−1)
]2}

�4
1

− [
2
(
1 + q2

t q2
�

) + (
q2

t + q2
�

)(
β2 + β−2

) + 8 cos φt cos φ�qtq�

]
t2
1 �2

1

− 2
[

cos φtqt
(
1 + q2

�

) + cos φ�q�

(
1 + q2

t

)]
(β + β−1)t2

1 �2
1 = 0. (B2)

Then we obtain

ξ 2 = [
1 + q2

t + qt cos φt (β + β−1)
]
t2
1 − [

1 + q2
� + q� cos φ�(β + β−1)

]
�2

1

±
√

−(β − β−1)2

√(
qt sin φtt2

1

)2 + (
q� sin φ��2

1

)2 − t2
1 �2

1

(
q2

t + q2
� − 2qtq� cos φt cos φ�

)
, (B3)

or

ξ 2 = [
1 + q2

t + qt cos φt (β + β−1)
]
t2
1 − [

1 + q2
� + q� cos φ�(β + β−1)

]
�2

1

±
√

−(β − β−1)2

√(
q2

t t2
1 − q2

��2
1

)(
t2
1 − �2

1

) − (
qt cos φtt2

v − q� cos φ��2
1

)2
. (B4)

We can also obtain the generalized momentum as

β = 1

2

λ2 − (
1 + q2

t

)
t2
1 + (

1 + q2
�

)
�2

1 ±
√

[ξ 2 − (
1 + q2

t

)
t2
1 + (

1 + q2
�

)
�2

1]2 − 4
(
q2

t t2
1 − q2

��2
1

)(
t2
1 − �2

1

)

qt cos φtt2
1 − q� cos φ��2

1 ±
√(

qt cos φtt2
1 − q� cos φ��2

1

)2 − (
q2

t t2
1 − q2

��2
1

)(
t2
1 − �2

1

) . (B5)

There are two “±” and four β. The four β are two pairs according to the ± in the denominator. We note the denominator is real
as the term under the root sign is positive. The existence of the generalized Brillouin zone requires the absolute values of two β

in each pair equal to each other. To be clear, we let

βi,± = 1

2

λ2 − (
1 + q2

t

)
t2
1 + (

1 + q2
�

)
�2

1 ±
√

[ξ 2 − (
1 + q2

t

)
t2
1 + (

1 + q2
�

)
�2

1]2 − 4
(
q2

t t2
1 − q2

��2
1

)(
t2
1 − �2

1

)

qt cos φtt2
1 − q� cos φ��2

1 + (−1)i

√(
qt cos φtt2

1 − q� cos φ��2
1

)2 − (
q2

t t2
1 − q2

��2
1

)(
t2
1 − �2

1

) , (B6)

for i = 1, 2. The requirement becomes |βi,+| = |βi,−|, which means the term under the root sign in the numerator is negative,
i.e.,

[
ξ 2 − (

1 + q2
t

)
t2
1 + (

1 + q2
�

)
�2

1

]2 − 4
(
q2

t t2
1 − q2

��2
1

)(
t2
1 − �2

1

)
< 0. (B7)

So we can obtain the energy spectrum as

(√
t2
1 − �2

1 −
√

q2
t t2

1 − q2
��2

1

)2
< λ2 <

(√
t2
1 − �2

1 +
√

q2
t t2

1 − q2
��2

1

)2
, (B8)

which is the same as the energy spectrum (4) for 	1	2 − 	2
3 > 0 when there is no non-Hermitian skin effect.

APPENDIX C: DERIVATION OF THE QUANTUM LANGEVIN EQUATIONS

We start from the quantum Langevin equations of operators after the squeezing transformation [Eqs. (13) and (14)], which
are

˙̃a2 j−1 = −κ

2
ã2 j−1 − it ′

1ã2 j − it ′
2ã2 j−2 − √

κ ãin,2 j−1, (C1)

˙̃a2 j = −κ

2
ã2 j − it ′

1ã2 j−1 − it ′
2ã2 j+1 − √

κ ãin,2 j, (C2)
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where ãin, j are the noise operators. Due to the squeezing transformation, these noise operators denote couplings to a squeezed
environment. The above Langevin equations can be rewritten in the matrix form as

˙̃A =
(
−κ

2
1 − iS

)
Ã − √

κÃin, (C3)

where 1 is the identity matrix, Ã = (ã1, . . . )T, Ãin = (ãin,1, . . . )T, and S is the coupling matrix (Sj, j′ = tmin( j, j′ )δ j, j′±1). The
coupling matrix is Hermitian now and can be diagonalized as

S = PJP−1. (C4)

P = (α1,α2, . . . ) and the column vectors α j are the eigenvectors of S. The diagonal elements of the diagonal matrix J =
Diag(λ1, λ2, . . .) are the corresponding eigenvalues. Then we can rewrite the quantum Langevin equations as

d

dt
(P−1Ã) =

(
−κ

2
1 − iJ

)
P−1Ã − √

κP−1Ãin. (C5)

The time-dependent solution is

P−1Ã(t ) = P−1Ã(0)e(− κ
2 1−iJ )t + √

κ

∫ t

0
e(− κ

2 1−iJ )(t−t ′ )P−1Ãin(t ′)dt ′. (C6)

The stationary solution is

Ã
′
s = √

κP lim
t→∞

∫ t

0
e(− κ

2 1−iJ )(t−t ′ )P−1Ãin(t ′)dt ′ = √
κ

∑
j

lim
t→∞

∫ t

0
e(− κ

2 −iλ j )(t−t ′ )[�α j · Ãin(t ′)]�α jdt ′ (C7)

or

ãm,s = √
κ

∑
j,k

lim
t→∞

∫ t

0
e(− κ

2 −iλ j )(t−t ′ )α j,kα j,mãin,k (t ′)dt ′. (C8)

The noise operators before the squeezing transformation satisfy

〈ain, j (t )a†
in, j (t

′)〉 = (nth + 1)δ(t − t ′), (C9)

〈a†
in, j (t )ain, j (t

′)〉 = δ(t − t ′), (C10)

and the noise operators after the squeezing transformation satisfy

〈ãin, j (t )ã†
in, j (t

′)〉 = δ(t − t ′)
(e2r j + e−2r j )(2nth + 1) + 2

4
, (C11)

〈ã†
in, j (t )ãin, j (t

′)〉 = δ(t − t ′)
(e2r j + e−2r j )(2nth + 1) − 2

4
, (C12)

〈ãin, j (t )ãin, j (t
′)〉 = δ(t − t ′)

e2r j − e−2r j

4
(2nth + 1). (C13)

So the stationary mean values of the second-order moments can be obtained as

〈ãmãm′ 〉s = κ
∑

j,k, j′,k′
lim

t→∞

∫ t

0
dt ′

∫ t

0
dt ′′e(−κ/2−iλ j )(t−t ′ )α j,kα j,me(−κ/2−iλ j′ )(t−t ′′ )α j′,k′α j′,m′ 〈ãin,k (t ′)ãin,k′ (t ′′)〉

= κ
∑
j,k, j′

lim
t→∞

∫ t

0
dt ′e[−κ−i(λ j+λ j′ )](t−t ′ )α j,kα j,mα j′,kα j′,m′

e2rk − e−2rk

4
(2nth + 1)

= κ
∑
j,k, j′

1

κ + i(λ j + λ j′ )
α j,kα j,mα j′,kα j′,m′

e2rk − e−2rk

4
(2nth + 1), (C14)

and similarly

〈ã†
mãm′ 〉s = κ

∑
j,k, j′

1

κ + i(−λ∗
j + λ j′ )

α j,kα j,mα j′,kα j′,m′
(e2rk + e−2rk )(2nth + 1) − 2

4
. (C15)
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