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Fault-tolerant qubit encoding using a spin-7/2 qudit
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The implementation of error correction protocols is a central challenge in the development of practical
quantum information technologies. Recently, multilevel quantum resources such as harmonic oscillators and
qudits have attracted interest in this context because they offer the possibility of additional Hilbert space
dimensions in a spatially compact way. Here, we propose a quantum memory, implemented on a spin-7/2 nucleus
hyperfine coupled to an electron spin-1/2 qubit, which provides first-order X , Y , and Z error correction using
significantly fewer quantum resources than the equivalently effective qubit-based protocols. Our encoding may
be efficiently implemented in existing experimentally realized molecular electron-nuclear quantum spin systems.
The strategy can be extended to higher-order error protection on higher-spin nuclei.
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On the path towards a universal quantum computer, there is
a broad consensus that we are now in the noisy-intermediate-
scale-quantum (NISQ) era [1]. Although some reports [2,3]
suggest that quantum supremacy is possible even with NISQ
devices, we are currently limited to certain specific tasks and
to computations on the scale of tens of qubits. Progress be-
yond this will depend on the development of reliable quantum
error correction strategies [4–6], because the major limitation
to scalability is the rapid drop in fidelity owing to environ-
mental noise as the system grows.

A qubit-based quantum error correction algorithm employs
additional physical qubits to encode logical qubits [7–9] by
providing redundancy in the Hilbert space to protect the infor-
mation. Although this approach has the advantage of being
mathematically compact [10] (which means it is scalable),
its implementation in real systems poses challenges arising
from the inherent proliferation of quantum resources required.
Thus, in the current NISQ era, the traditional error-correction
approach offers the dilemma of adding noisy qubits to the
quantum system in an attempt to reduce noise.

This highlights the imperative of identifying hardware-
efficient implementations in which error correction can be
incorporated with minimal quantum resource requirements.
In this context error correction algorithms exploiting not
only qubits but also qudits (physical systems each offering
a d-dimensional Hilbert space, with d > 2 in general) have
attracted attention in recent years.

Among the best known is the Gottesman-Kitaev-Preskill
(GKP) code and its expansion [11–13]. These proposals ex-
plore physical systems described by the quantum harmonic
oscillator because, in principle, it can provide an infinite-
dimensional bosonic Hilbert space for information encoding.
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Implementations can be provided by systems such as trapped
ions or superconducting circuits [14,15]. Indeed, some exper-
iments [16,17] have already shown enhanced coherence times
for quantum states. Various theoretical programs [18,19] to
generalize bosonic error correction codes are in progress.

A similar but alternative approach is to use a spin qudit,
which can provide an intrinsically bounded d-level system.
Qudits may be realized, for example, by electronic and nuclear
spins in the solid state. Although spin-based quantum com-
puting (specifically, exploiting ensembles of molecules whose
nuclear spins were driven and detected using nuclear magnetic
resonance) attracted attention and yielded some milestone
experimental results in the early days of the field [20–23], in-
trinsic limitations on scalability were quickly identified [24].
However, recent remarkable progress on studies related to
molecular magnets encourages us to explore these ingredients
as basic building blocks for quantum information processing
[25–29].

The size, number of spins, and basic Hamiltonian pa-
rameters for molecular magnets can be carefully tuned by
chemical engineering, for example, by the selection from
various options for ligand cages of a choice of magnetic
ions. Furthermore, strategies for single-qudit-molecule ad-
dressing are active areas of research. For example, by analogy
with the single electron transistor quantum dot, control and
readout of a molecular nuclear spin in a single-molecule
transistor has been reported [30,31]. Electrical control of
spin—which is essential for fast manipulation and spatially
localized control—is also being studied by various research
groups [32–34]. The fact that spin is a basic quantum property
of matter which is often only weakly coupled to other degrees
of freedom suggests that may be a useful and error-robust
embodiment for encoding quantum information.

In this context, we propose a strategy for constructing com-
pact and hardware-efficient information encoding in a single
spin qudit. As with the GKP code, it can provide N th-order
error correction in a Hilbert space with dimension of order N2,
which is significantly smaller than the ∼exp(N ) scaling for
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FIG. 1. A brief schematic of (a) the entire quantum error correction code, (b) the code word with first-order error, (c) the encoding pulse
sequence Uenc, and (d) decoding pulse sequence Udec. Unitary rotations Uθi are around the y axis, with cos θi = √

3/10,
√

7/10,
√

1/5,
√

1/2
for i = 1, 2, 3, 4, respectively.

qubit implementations. However, while the GKP code is im-
plemented on a finite subspace of an infinite-dimensional
space, this encoding targets a finite-dimensional space, and we
find that we need a volume half as big as for GKP. Previous
reports have proposed spin qudit quantum error correction
(QEC) algorithms for correcting phase errors [35–37], or log-
ical code words to correct first-order rotation errors using one
large spin [38]. In this article, we adapt a proposed encoding
[38] to describe a practical implementation yielding full first-
order error correction based on an electron spin qubit and a
hyperfine-coupled nuclear spin-7/2, addressing the required
hardware-level implementation operations, the gain offered
by the protocol, and the required experimental operation fi-
delities. We offer a generalization to higher-order correction
cases, with example code words.

Our protocol can be implemented directly in a quantum
processor based on nuclear spins in the solid state (including,
for example, spin-7/2 nuclei such as 51V, 165Ho, or 123Sb)
[34,39,40]. Since, among spin-qubit candidates, nuclear spins
usually exhibit superior coherence times, they have already
been explored as quantum information storage units in many
pivotal proposals, such as Kane’s early model using phos-
phorus donors in silicon [41], nitrogen vacancy centers in
diamond [42], or hybrid structures incorporating electrical
circuits and molecular magnets [31,43].

The protocol relies on projective measurement of the nu-
clear spin state. From a practical perspective, in the solid state
this is typically achieved via measurement of a coupled elec-
tronic spin. We therefore base our proposal on an electronic
spin-1/2 (acting as the ancillary detection and “interface”
qubit) which is hyperfine-coupled to a spin-7/2 nucleus (the
data storage qudit); this represents a Hilbert space extension
of d = 8 over the qubit space.

We remark that a quantum information processor unit
(based on the 123Sb donor in Si) has already been realized

experimentally that exhibits these properties and all of the
necessary operations for implementation of the protocol [40].
We would expect our protocol to yield substantially enhanced
relaxation and coherence times, thereby offering a highly effi-
cient structure for robust quantum data storage.

A schematic diagram is presented in Fig. 1. The quantum
state to be protected, |ψ〉 = α|0〉 + βeiφ |1〉, will be encoded
into Uenc|ψ〉 = |�enc〉 = α|0L〉 + βeiφ|1L〉 by the encoding
pulse sequence in Fig. 1(c), with logical code words

|0L〉 =
√

3

10

∣∣∣∣−7

2

〉
+

√
7

10

∣∣∣∣+3

2

〉
and |1L〉

= −
√

7

10

∣∣∣∣−3

2

〉
+

√
3

10

∣∣∣∣+7

2

〉
. (1)

This logical qubit encoding is designed to handle phase (Z),
shift (X ), and phase-shift (Y ) errors simultaneously (see Ap-
pendix A).

Under the assumption that the states of SZ form good eigen-
states (which is reasonable for a spin system in a significant
magnetic field along z), we follow the procedure in Ref. [35]
to find the time evolution of the density matrix in the presence
of magnetic field fluctuations in all directions,

ρ(t ) = ρ(0) +
∑
k,i

Ek,iρ(0)E†
k,i, (2)

with error operators

Ek,i ∼
√

(t/Trelax,i )k

k!
Sk

i , (3)

where i = X , Y , or Z; k = 1, . . . ,∞; and t is short com-
pared to Trelax,i, the typical relaxation time of the system (see
Appendix B).
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TABLE I. Code words and error spaces for spin 7/2 encoding.

Logical code word Representation in z basis

|0L〉
√

+ 3
10 |− 7

2 〉 +
√

7
10 |+ 3

2 〉
|1L〉 −

√
7

10 |− 3
2 〉 +

√
3

10 |+ 7
2 〉

SX |0L〉 +
√

1
10 |− 5

2 〉 +
√

1
2 |+ 1

2 〉 +
√

2
10 |+ 5

2 〉
SX |1L〉 −

√
2

10 |− 5
2 〉 −

√
1
2 |− 1

2 〉 +
√

1
10 |+ 5

2 〉
iSY |0L〉 −

√
1

10 |− 5
2 〉 +

√
1
2 |+ 1

2 〉 −
√

2
10 |+ 5

2 〉
iSY |1L〉 −

√
2

10 |− 5
2 〉 +

√
1
2 |− 1

2 〉 +
√

1
10 |+ 5

2 〉
SZ |0L〉 −

√
7

10 |− 7
2 〉 +

√
3

10 |+ 3
2 〉

SZ |1L〉 +
√

3
10 |− 3

2 〉 +
√

7
10 |+ 7

2 〉

We may assume that for times short compared to Trelax, only
first-order (i = 1) terms contribute significantly to the error,
i.e.,

ρ(t ) = (1 − ε)I + εX SX ρ(0)S†
X + εY SY ρ(0)S†

Y + εZSZρ(0)S†
Z

+ O(ε2 and higher), (4)

where εi ∼ t/Trelax,i is indicative of the scale of the error. We
note here that unlike for spin qubits (for which S2

i = I), the
higher-order qudit spin operators Sk

i contribute to higher-order
errors.

Thus, following application of the error operator, the state
becomes corrupted to

|�enc+error〉 = √
1 − ε(α|0L〉 + βeiφ|1L〉)

+√
εX (αSX |0L〉 + βeiφSX |1L〉)

+√
εY (αSY |0L〉 + βeiφSY |1L〉)

+√
εZ (αSZ |0L〉 + βeiφSZ |1L〉) + higher order.

(5)

As required if we are to use these states for quantum error
correction, the states in this superposition satisfy the Knill-
Laflamme criteria [7]. Under the action of the error operator
the original code words |0L〉, |1L〉 are transformed to span
the states |0L〉, |1L〉, SX |0L〉, SX |1L〉, SY |0L〉, SY |1L〉, SZ |0L〉,
and SZ |1L〉 (see Table I), and these eight states are mutually
orthonormal; they satisfy the conditions

〈0L|Sl
i S

k
j |1L〉 = 0 and

〈0L|Sl
i S

k
j |0L〉 = 〈1L|Sl

i S
k
j |1L〉 = δi jδlk, (6)

where i, j = X,Y , or Z and l, k = 0 or 1.
This implies that first-order errors on the logical state can

be detected and corrected. Indeed, the sequence of pulses in
Fig. 1(d) transforms the corrupted state (see Appendix D) into

Udec|�enc+error〉 = √
1 − ε

(
α

∣∣∣∣−7

2

〉
+ βeiφ

∣∣∣∣+7

2

〉)

+√
εZ

(
α

∣∣∣∣−5

2

〉
+ βeiφ

∣∣∣∣+5

2

〉)

+√
εX

(
α

∣∣∣∣−3

2

〉
+ βeiφ

∣∣∣∣+3

2

〉)

+√
εY

(
α

∣∣∣∣−1

2

〉
+ βeiφ

∣∣∣∣+1

2

〉)
+ higher order. (7)

Following this decoding, a conditional excitation and mea-
surement of the ancillary electron spin reveals whether the
state is corrupted, and if so, the nature of the error. For ex-
ample, a conditional swap from the nuclear |−1/2〉, |+1/2〉
subspace onto the electron ancilla generates a full electron-
nuclear state of the form

|�〉 ∼ (remaining terms)|0ancilla〉

+ √
εY

(
α

∣∣∣∣−1

2

〉
+ βeiφ

∣∣∣∣+1

2

〉)
|1ancilla〉. (8)

If a subsequent projective measurement of the electron spin
ancilla yields |1〉, we conclude that there was a SY error. If it
yields |0〉, we can iterate as shown in Fig. 1 until the ancilla
measurement yields |1〉. In this way we can identify the error
cases (i.e., which of I, SZ , SX , or SY occurred), the individual
terms of Eq. (7), and thus the original state |ψ〉.

The algorithm fails if the measured state does not yield one
of these four (I, SZ , SX , SY ) outcomes; this corresponds to a
higher-order error case and has probability of order (t/Trelax )2.
Therefore, as long as t is short compared to Trelax we obtain a
fidelity gain corresponding to the first-order error probability.
This is shown in Fig 2, which shows how the fidelity varies
with t/Trelax under the assumption that the relaxation rate
is isotropic (i.e., rates for X,Y , or Z errors are equal) with
(orange) and without (blue) error correction.

The operations implementing this protocol on an electronic
S = 1/2 qubit coupled to a nuclear spin qudit I = 7/2 corre-
spond to simple microwave or radio-frequency pulses, as long
as the spin Hamiltonian includes a Zeeman term (provided by
an external magnetic field), a hyperfine coupling between the
electronic and nuclear spins, and a term (such as a nuclear
quadrupole interaction) lifting the degeneracy of transitions
within the nuclear manifold. In a realistic apparatus encoding
and decoding pulse sequences have durations of the order of
tens of microseconds [39,44–46]. For a condensed matter spin
system with relaxation times of the order of tens of millisec-
onds (as has been reported in various isotopically enriched
materials [47,48]), t/Trelax ∼ 103, and our scheme extends the
qubit coherence by multiple orders of magnitude.

Given that the entire encoding and decoding procedure
requires about 40 pulses, the effectiveness of the protocol is
naturally sensitive to the fidelity of the individual spin manip-
ulation operations. Figure 2 shows how imperfect magnetic
resonance pulses compromise the overall fidelity; individual
pulse fidelities must exceed about 0.99 for the protocol to offer
any advantage over natural relaxation.

In particular physical systems the range of available oper-
ations is wider, and this can be exploited to implement the
protocol more efficiently with fewer operations. For exam-
ple, through electric field induced modulation of the nuclear
quadrupole interaction of 123Sb nuclear spins in Si, it is possi-
ble to drive resonant �m = ±2 transitions within the I = 7/2
nuclear spin manifold [40]; this significantly reduces the num-
ber of SWAP operations (π pulses) required in the encoding
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FIG. 2. (a) The qubit fidelity as a function of time without (black) and with (red) error correction. The detrimental effect of imperfect
magnetic resonance pulses is simulated for pulse fidelities of 0.999 (blue), 0.995 (green), and 0.99 (purple). (b) Fidelity gain (defined as the
ratio of the infidelities of the uncorrected and corrected cases) for a range of pulse fidelities.

and decoding sequences and therefore relaxes the threshold
for the pulse fidelity to 0.98.

Interestingly, the effectiveness of our protocol corresponds
to what is possible in distance-3 codes in qubit error correc-
tion. (Distance-3 codes fail when simultaneous errors occur
on more than two qubits; for a single-qubit error rate 1/Trelax,
the probability of two or more simultaneous errors in time
t is ∼(t/Trelax )2, as we find above for our protocol.) Based
on the quantum Hamming bound [49], the minimal num-
ber of qubits for building a distance-3 error correction code
is 5, requiring a Hilbert space dimension of 32. Thus, our
spin-7/2 qudit-based code has advantages over the existing
qubit counterpart, in both the size of Hilbert space and the
number of actual physical objects over which quantum control
is required. We can generalize this resource argument: for a
qubit-based [n, k, 2t + 1] code, the quantum Hamming bound

2k
t∑

l=0

3l

(
n
l

)
� 2n (9)

determines the number of qubits required [49]. Thus a
distance-5 encoding of a single logical qubit requires 11 phys-
ical qubits, i.e., a Hilbert space of dimension 2048.

The strategy for fault-tolerant encoding on spin qudits can
be generalized as follows. Inspired by previous studies and
the basic concept of the original GKP code, we suggest code
words comprising ∼N periodic terms on a ∼4N2-dimensional
qudit. The logical code words supporting N th order error
correction can be generated in the form

|0L〉 = a0|−S〉 +
N∑

i=1

ai|−S + (Ai − B)〉

|1L〉 = b0|+S〉 +
N∑

i=1

bi|+S − (Ai − B)〉, (10)

where the parameters S, A, B, ai, bi are chosen to satisfy the
Knill-Laflamme criteria (see Appendices A and C). Here,
we present example cases of solutions corresponding to d =
4N (N + 1) and d = 4N (N + 1) + 2, as shown in Table II.

The example code word in Table II shows that distance-5
encoding for a spin qudit is possible with a system of only
d = 24. These codes can offer orders of magnitude improved
resource efficiency compared to qubit-based encodings.

A previous Bosonic quantum error correction proposal ex-
ploiting an analogy with generalized Pauli matrix formalism
was suggested in Ref. [10], but this sequence is somewhat
different from the perspective of required resources. In the
GKP code formalism and its expansion to harmonic oscillator
systems, each sign of amplitude damping (±X ) and phase
damping (±Z) is mapped into a different basis [50]. Error
correction up to N th order requires a Hilbert space dimension
of 2 × (2N + 1) × (2N + 1), resulting in minimum d = 18
basis states for first-order correction, and d = 50 for up to
second-order correction, about twice the resource compared
to our proposal here.

We also note that a Hilbert space comprising multiple
qudits can also provide a viable code space (for example,
encoding for second-order error correction using four spin-
7/2 qudits; see Appendix C 1), and can offer optimized code
words when the size or number of spins are limited in specific
experimental implementations.

Finally, we address the comparison between T1 (bit error)
and T2 (phase error) relaxation in spin systems. Often in the
solid state T2 is found to be much shorter than T1; practical
proposals have therefore concentrated on phase error protec-
tion [35] for pragmatic reasons. However, it has been found
in certain systems that careful optimization of the environ-
ment can significantly reduce phase relaxation, for example,
by isotopically purifying the 28Si or 12C host environments
for P donors [48,51] or NV centers [47], respectively, or
by engineering the ligand environment in molecular magnets
[52]. When phase relaxation mechanisms are suppressed, T1
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TABLE II. Example code words for N th-order error correction on high-spin qudits.

N th order, d-dim |0L〉 Representation in z basis |1L〉 Representation in z basis

N = 1, d = 8 (spin 7/2) +
√

3
10 |− 7

2 〉 +
√

7
10 |+ 3

2 〉 −
√

3
10 |+ 7

2 〉 +
√

7
10 |− 3

2 〉
N = 1, d = 10 (spin 9/2) +

√
1
4 |− 9

2 〉 +
√

3
4 |+ 3

2 〉 +
√

1
4 |+ 9

2 〉 +
√

3
4 |− 3

2 〉
N = 2, d = 24 (spin 23/2) +

√
125

1482 |− 23
2 〉 +

√
874

1482 |− 5
2 〉 +

√
483

1482 |+ 15
2 〉 −

√
125

1482 |+ 23
2 〉 +

√
874

1482 |+ 5
2 〉 +

√
483

1482 |− 15
2 〉

N = 2, d = 26 (spin 25/2) +
√

1
16 |− 25

2 〉 +
√

10
16 |− 5

2 〉 +
√

5
16 |+ 15

2 〉 +
√

1
16 |+ 25

2 〉 +
√

10
16 |+ 5

2 〉 +
√

5
16 |− 15

2 〉
N = 3, d = 50 (spin 49/2) +

√
1

64 |− 49
2 〉 +

√
21
64 |− 21

2 〉 +
√

35
64 |+ 7

2 〉 +
√

7
64 |+ 35

2 〉 +
√

1
64 |+ 49

2 〉 +
√

21
64 |+ 21

2 〉 +
√

35
64 |− 7

2 〉 +
√

7
64 |− 35

2 〉

relaxation will become increasingly important, and error
correction algorithms addressing both error classes become
important. Furthermore, the strategy that we present here
allows for the possibility of checking for each error indepen-
dently. Under the circumstances that T2 << T1 and projective
measurement of the ancilla electron spin is expensive, an op-
timal practical implementation might check more frequently
for SZ errors than for SX and SY errors.
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APPENDIX A: CANDIDATES FOR LOGICAL QUBIT |0L〉
AND |1L〉 STATES

1. Encoding for first-order error correction

In order to enable first-order error correction for SX , SY ,
and SZ , the logical qubits, |0L〉 and |1L〉, should satisfy the
Knill-Laflamme criteria

〈0L|Sl
i S

k
j |1L〉 = 0,

〈0L|Sl
i S

k
j |0L〉 = 〈1L|Sl

i S
k
j |1L〉 = δi, jδl,k, (A1)

where i, j = X,Y , or Z and l, k = 0 or 1. It is not strictly
necessary for the second equation to be identical to the Kro-
necker delta. However, it (a) helps to distinguish the corrupted
state from pure states and (b) does not change the minimum
hardware required for the QEC. (While it is not necessary for
all error states to be orthogonal to each other, they need to be
linearly independent to ensure that different errors can be dis-
tinguished. Hence, lifting the orthogonality condition implied
by the Kronecker delta would not change the dimension of
the vector space spanned by the logic qubits and all possible
error states.) Effectively, Eq. (A1) requires the following eight
states,

|0L〉, SX |0L〉, SY |0L〉, SZ |0L〉, |1L〉, SX |1L〉, Sy|1L〉, Sz|1L〉
(A2)

to be nonzero and mutually orthogonal. The smallest Hilbert
space that can accommodate these states is eight-dimensional,
in which case the eight states in Eq. (A2) form a complete
orthogonal basis set. Hence, the minimum spin qudit that can

potentially allow corrections for all first-order errors is a S =
7/2 system.

Finding all possible solutions for Eq. (A1) with S =
7/2 is cumbersome as it involves solving multiple coupled
second-order polynomials. Thus, we confirmed the existence
of |0L〉 and |1L〉 combinations by finding examples satisfying
Eq. (A1) numerically. The simplest solution we found is

|0L〉 =
√

3

10

∣∣∣∣−7

2

〉
+

√
7

10

∣∣∣∣+3

2

〉

|1L〉 = −
√

7

10

∣∣∣∣−3

2

〉
+

√
3

10

∣∣∣∣+7

2

〉
. (A3)

It is straightforward to verify that these logical qubits meet the
criteria listed in Eq. (A1). It is worth pointing out, however,
that this solution (which was previously identified by Gross
[38]) is not unique. For example, the following states,

|0L〉 = −
√

21

64

∣∣∣∣−5

2

〉
+

√
21

64

∣∣∣∣−1

2

〉
+

√
7

64

∣∣∣∣+3

2

〉
+

√
15

64

∣∣∣∣+7

2

〉

|1L〉=−
√

15

64

∣∣∣∣−7

2

〉
−

√
7

64

∣∣∣∣−3

2

〉
−

√
21

64

∣∣∣∣+1

2

〉
+

√
21

64

∣∣∣∣+5

2

〉
,

(A4)

can also be used for correcting all first-order errors. However,
the encoding and decoding pulse sequences for Eq. (A4),
when implemented on a spin qudit, are significantly more
complicated than those for Eq. (A3); thus, we choose to use
Eq. (A3) as the working example for all discussions presented
in this work.

For qudits with S > 7/2, similar code words for first-order
QEC can be found easily. For instance, in S = 9/2 systems
(e.g., the nuclear spins of Bi and Sr) the simplest logical qubits
are

|0L〉 = −
√

1

4

∣∣∣∣−9

2

〉
+

√
3

4

∣∣∣∣+3

2

〉

|1L〉 = +
√

3

4

∣∣∣∣−3

2

〉
+

√
1

4

∣∣∣∣+9

2

〉
. (A5)

APPENDIX B: TIME EVOLUTION
OF THE DENSITY MATRIX

We follow closely the treatment established by Chiesa et al.
in the Supporting Information of Ref. [35]. We extend their
treatment to consider the effect on the qudit of magnetic
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field fluctuations in all directions by describing the qudit-
environment interaction via couplings of the form Si ⊗ B,
where Si = SX , SY , SZ and B is a suitable operator acting on
bath. Based on the standard derivation of the Lindblad master
equation, the time evolution of the density matrix is

dρ(t )

dt
= γX

(
SX ρ(t )S†

X − 1

2

{
S2

X , ρ(t )
})

+ γY

(
SY ρ(t )S†

Y − 1

2

{
S2

Y , ρ(t )
})

+ γZ

(
SZρ(t )S†

Z − 1

2

{
S2

Z , ρ(t )
})

, (B1)

where γi = 2
Trelax,i

. Following the procedure of Chiesa et al.
yields the time evolution of the density matrix

ρ(t ) = ρ(0) +
∑

i=X,Y,Z

∞∑
k=1

e− (γX S2
X +γY S2

Y +γZ S2
Z )

2 t (γit )k

k!
Sk

i ρ(0)S†
i

k

× e− (γX S2
X +γY S2

Y +γZ S2
Z )

2 t . (B2)

Thus, the Kraus error operators can be written as

Ek,i =
√(

γit
)k

k!
e− (γX S2

X +γY S2
Y +γZ S2

Z )

2 t Sk
i ≈

√(
γit

)k

k!
Sk

i (B3)

in the short-time limit, yielding the form given in Eq. (3) of
the main manuscript.

APPENDIX C: ENCODING FOR SECOND- AND HIGHER-ORDER ERROR CORRECTION

One can apply the same strategy to develop an efficient protocol for correcting high-order quantum errors using qudits.
To correct an N th-order error, the logical qubits should meet the following criteria:

〈0L|Sl
i S

k
j |1L〉 = 0, 〈0L|Sl

i S
k
j |0L〉 = 〈1L|Sl

i S
k
j |1L〉, (C1)

where i, j = X,Y , or Z and l, k = 0, 1 . . . N .
Here, we propose a general approach for designing the logical qubits within 4N (N + 1)- or 4N (N + 1) + 2-dimensional

spaces, hence enabling any N th-order error correction to be implemented with a S = [4N (N + 1) − 1]/2 or a S = [4N (N +
1) + 1]/2 qudit, respectively.

In the case of S = [4N (N + 1) + 1]/2, both |0L〉 and |1L〉 are superpositions of the N + 1 Sz eigenstates such that

|0L〉 = a0|−S〉 +
N∑

i=1

ai|−S + (Ai − B)〉

|1L〉 = b0|+S〉 +
N∑

i=1

bi|+S − (Ai − B)〉, (C2)

where A = 4N + 2, B = 0, and the coefficients for |0L〉, {ai} (i = 0, 1 . . . N), are calculated by solving the following equations:

〈0L|0L〉 = 1, 〈0L|S j
X SZ S j

X |0L〉 = 0, (C3)

where 0 � j � N − 1. Equation (C3) imposes N + 1 constraints on {ai}. Indeed, Eq. (C3) can be rewritten as N + 1 real linear
equations with {|ai|2} being N + 1 independent variables. Solving them gives a set of positive |ai|2 and we choose the root
ai = |ai| for constructing |0L〉. |1L〉 can then be defined with b0 = a0 and bi = ai for 1 � i � N .

In the case of S = [4N (N + 1) − 1]/2, both |0L〉 and |1L〉 are constructed in similar form, but with A = 4N + 2 and B = 1.
The coefficients are obtained with almost the same conditions, except for b0, which is defined by b0 = −a0.

We do not offer a proof that this approach works in all cases, though we find that it works for a wide range of cases that we
have explored, and we have found none where it does not.

By way of illustration, the approach yields logical qubits for third-order QEC (N = 3) on a S = 47/2 system, given by

|0L〉 = +
√

16807

796302

∣∣∣∣−47

2

〉
+

√
260145

796302

∣∣∣∣−21

2

〉
+

√
425867

796302

∣∣∣∣+7

2

〉
+

√
93483

796302

∣∣∣∣+35

2

〉

|1L〉 = −
√

16807

796302

∣∣∣∣+47

2

〉
+

√
260145

796302

∣∣∣∣+21

2

〉
+

√
425867

796302

∣∣∣∣−7

2

〉
+

√
93483

796302

∣∣∣∣−35

2

〉
, (C4)

and fourth-order QEC (N = 4) on a S = 81/2 system, given by

|0L〉 = +
√

1

256

∣∣∣∣−81

2

〉
+

√
36

256

∣∣∣∣−45

2

〉
+

√
126

256

∣∣∣∣−9

2

〉
+

√
84

256

∣∣∣∣+27

2

〉
+

√
9

256

∣∣∣∣+63

2

〉

|1L〉 = +
√

1

256

∣∣∣∣+81

2

〉
+

√
36

256

∣∣∣∣+45

2

〉
+

√
126

256

∣∣∣∣+9

2

〉
+

√
84

256

∣∣∣∣−27

2

〉
+

√
9

256

∣∣∣∣−63

2

〉
, (C5)

which satisfy all KL criteria in Eq. (C1).
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Finally, the spin operator identities
∑

i=X,Y,Z S2
i = S(S + 1) and [Si, S j] = iSk encapsulate the behavior of the physical system

that embodies the quantum information and is subject to noise. We note that they constrain the evolution of second-order errors
in such a way that it may be possible to perform high-order QEC (N � 2) with a qudit smaller than S = [4N (N + 1) − 1]/2.

1. Encoding for multiple qudits

The same approach may be used to build logical qubits for a physical system comprising multiple qudits. For example, for
the three spin-3/2 qudits, (labeled A, B, and C) the code words given by

|0L〉 = +
√

1

4

∣∣∣∣−3

2

〉
A,B,C

+
√

3

4

∣∣∣∣+1

2

〉
A,B,C

|1L〉 = +
√

1

4

∣∣∣∣+3

2

〉
A,B,C

+
√

3

4

∣∣∣∣−1

2

〉
A,B,C

(C6)

satisfy all KL criteria in Eq. (C1) up to first order. (Here, the notation |mI〉A,B,C represents the tensor product of three spin states,
|mI〉A ⊗ |mI〉B ⊗ |mI〉C .) And for four spin-7/2 qudits, (labeled A, B, C, and D), the code words given by

|0L〉 = +
√

2

16

∣∣∣∣−7

2

〉
A,B,C,D

+
√

7

16

∣∣∣∣−3

2

〉
A,B,C,D

+
√

7

16

∣∣∣∣+5

2

〉
A,B,C,D

|1L〉 = +
√

2

16

∣∣∣∣+7

2

〉
A,B,C,D

+
√

7

16

∣∣∣∣+3

2

〉
A,B,C,D

−
√

7

16

∣∣∣∣−5

2

〉
A,B,C,D

, (C7)

satisfy all KL criteria in Eq. (C1) up to second order.

APPENDIX D: PULSE SEQUENCES FOR ENCODING AND DECODING LOGICAL QUBITS

Here, we discuss the physical operations that implement the spin-7/2 first-order protection presented in the main manuscript
and in Appendix A 1.

1. Encoding pulse sequence

Without loss of generality, we may assume a qubit |ψ〉 is initially stored in a superposition between |−7/2〉 and |−5/2〉 states,
such that |ψ〉 = α|−7/2〉 + βeiθ |−5/2〉, where α, β, and θ encode the quantum information. In the SZ basis,

|ψ〉 = [α, βeiθ , 0, 0, 0, 0, 0, 0]T . (D1)

The first four pulses in the encoding sequence [Fig. 1(c) in the main text], i.e., the first π pulse, Uθ1, Uθ2, and the second π pulse,
transform |ψ〉 into [√

3

10
α, −

√
7

10
βeiθ ,

√
7

10
α,

√
3

10
βeiθ , 0, 0, 0, 0

]T

. (D2)

The subsequent eight π pulses further transform the state into the encoded state

|�enc〉 =
[√

3

10
α, 0, −

√
7

10
βeiθ , 0, 0,

√
7

10
α, 0,

√
3

10
βeiθ

]T

= α|0L〉 + βeiθ |1L〉. (D3)

As shown in Eq. (D3), the entire encoding sequence maps the original qubit onto the corresponding superposition of QEC logical
qubit states |0L〉 and |1L〉.

2. Decoding pulse sequence

After the storage period during which first-order errors may occur, the density matrix of the nuclear spin can be written as

ρ(t ) = (1 − ε)I + εX SX ρ(0)S†
X + εY SY ρ(0)S†

Y + εZSZρ(0)S†
Z + O(ε2), (D4)

where εi ∼ t/Trelax,i is indicative of the scale of the error. Interpreting the decoding sequence using the general form of Eq. (D4)
can be laborious. However, as we discussed in the previous section, the logical qubit states and their first-order errors form
an orthogonal basis for the Hilbert state [Eq. (A2)]. Therefore, we demonstrate the decoding sequence for the states |�enc〉,
SX |�enc〉, SX |�enc〉, and SY |�enc〉 individually. As we will show in the following section, the decoding sequence converts the
states in Eq. (A2) into another set of orthogonal states that are spectroscopically distinguishable, allowing errors to be identified
using the corresponding projective measurements. The general error form is the linear combination of these decoupled orthogonal
states.
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a. Error free

If no error occurs, the spin remains in the |�enc〉 state. To decode this state, the first seven successive π pulses in the decoding
sequence Udec transform |�enc〉 into[√

3

10
α,

√
7

10
α, 0, 0, 0, 0, −

√
7

10
βeiθ ,

√
3

10
βeiθ

]T

, (D5)

and the subsequent two simultaneous U−θ1 pulses further rotate it to the state[
α, 0, 0, 0, 0, 0, 0, βeiθ

]T
. (D6)

The remaining pulses do not act on either |−7/2〉 or |7/2〉, so this is the final decoded state.

b. SZ error

A SZ error will lead to a nonzero component for the state

SZ |�enc〉 =
[
−

√
7

10
α, 0,

√
3

10
βeiθ , 0, 0,

√
3

10
α, 0,

√
7

10
βeiθ

]T

. (D7)

To decode this component, the first seven π pulses in Udec transform the state to[
−

√
7

10
α,

√
3

10
α, 0, 0, 0, 0,

√
3

10
βeiθ ,

√
7

10
βeiθ

]T

, (D8)

and the following two U−θ1 pulses transform it to

[0, α, 0, 0, 0, 0, βeiθ , 0]T , (D9)

at which point the decoding process is complete. Any SZ error is readily detectable by a subsequent projective measurement on
the mI = ±5/2 hyperfine transition of the electron spin ancilla.

c. SX error

A SX error will lead to a nonzero component for the state

SX |�enc〉 =
[

0, +
√

1

10
α −

√
4

10
βeiθ , 0, −

√
5

10
βeiθ ,

√
5

10
α, 0,

√
4

10
α +

√
1

10
βeiθ , 0

]T

. (D10)

To decode this component, the first seven π pulses in Udec transform the state to[
0, 0, +

√
1

10
α −

√
4

10
βeiθ , +

√
5

10
βeiθ , −

√
5

10
α,

√
4

10
α +

√
1

10
βeiθ , 0, 0

]T

. (D11)

The two following U−θ1 pulses do not alter the state since they only act on the {|−7/2〉, |−5/2〉, |5/2〉, and |7/2〉} subspace.
Instead, the two π pulses and U−θ3 subsequently transform the state to[

0, 0, −
√

5

10
βeiθ , +

√
5

10
α,

√
5

10
βeiθ , −

√
5

10
α 0, 0

]T

, (D12)

which is further transformed by the subsequent five π pulses into[
0, 0,

√
5

10
α, −

√
5

10
α, −

√
5

10
βeiθ , −

√
5

10
βeiθ , 0, 0

]T

. (D13)

The final part of the decoding sequence, consisting of two Uθ4 pulses and two π pulses, transforms the state into the form

[0, 0, α, 0, 0, βeiθ , 0, 0]T , (D14)

which allows any SX error to be detected via a measurement on the mI = ±3/2 hyperfine transition of the electron ancilla.
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d. SY error

The underlying principle for decoding SY error is equivalent to that for SX error, albeit the exact states involved are slightly
different. A SY error will lead to the state

SY |�enc〉 =
[

0, −
√

1

10
α −

√
4

10
βeiθ , 0,

√
5

10
βeiθ ,

√
5

10
α, 0, −

√
4

10
α +

√
1

10
βeiθ , 0

]T

. (D15)

The first seven π pulses in Udec transform the state to[
0, 0, −

√
1

10
α −

√
4

10
βeiθ , −

√
5

10
βeiθ , −

√
5

10
α,

√
4

10
α −

√
1

10
βeiθ , 0, 0

]T

. (D16)

The following two U−θ1 pulses, the two π pulses, and U−θ3 transform it to[
0, 0, +

√
5

10
βeiθ , −

√
5

10
α, +

√
5

10
βeiθ , −

√
5

10
α 0, 0

]T

. (D17)

Then, the five π pulses reorder the state to[
0, 0, +

√
5

10
α, +

√
5

10
α, −

√
5

10
βeiθ , +

√
5

10
βeiθ , 0, 0

]T

. (D18)

The final step for decoding is performed by the two Uθ4 pulses and two π pulses, resulting in the final state of[
0, 0, 0, α, βeiθ , 0, 0, 0

]T
. (D19)

Again, this state allows the detection of SY errors using projective measurements on the mI = ±1/2 hyperfine transition of the
electron spin ancilla.
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