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Two-mode Raman quantum battery dependent on coupling strength
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We investigate a series of two-mode quantum batteries (QBs) which exhibits better performance in both
the stored energy and average charging power compared to the two-photon case. In both the model related
to coupling strength and Raman cases, we find the QBs can store energy faster and have a higher efficiency
than the original case. Among the derived models we have studied, the two-mode Raman QB dependent
on coupling strength has the best performance. We also present the relationship between the ergotropy and
battery-charger entanglement of incoherent QBs and define the resource utilization efficiency k(t ) and kins(t ).
We find that entanglement in the energy-extraction stage is a key resource. In addition, we consider a collection
of two-level systems embedded in a two-mode microwave cavity with counterrotating terms, which shows that
the counterrotating terms lead to a higher stored energy in the ultrastrong-coupling regime.
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I. INTRODUCTION

With the continuous development of quantum technology
[1–3], it has been possible to access and manipulate micro-
scopic systems with very high precision at the level of a single
atom or single photon. Quantum resources, such as coherence
and entanglement, play a crucial role from both theoretical
and applied perspectives. Researchers are also working on
using quantum resources to bypass bottlenecks in classical
physics and improving computing power and device perfor-
mance [4]. With this background, Alicki and Fannes first
proposed the concept of quantum battery [5]. They tried to
use nonclassical effects to give quantum batteries (QBs) more
advantages than classical batteries, such as shorter charging
time and higher charging efficiency [6–11].

Theoretical schemes for possible QBs are usually based
on two-level systems (TLSs), such as trapped ions [12–14],
superconducting qubits [15], and quantum dots in semicon-
ductors [16]. These platforms can be used as batteries and
coupled to chargers with different properties that can coher-
ently transfer energy to them. One of the most important
charging schemes is energy transformed from a microwave
cavity [17–20] to a series of interacting TLSs [21–23]. For
such a QB, it is shown that the average charging power can be
increased by the collective interactions between the N TLSs.
Specifically, the scale of this enhancement is proportional to
the square root of the number of TLSs involved, denoted as√

N [8,24,25]. Interestingly, a similar scale which is in agree-
ment with theoretical predictions was reported in a recent
experiment for the first time [26].

In addition, recent theoretical studies showed that the two-
mode cavity model [27–29] is similar to the two-photon model
[30,31]. Both of them can be implemented through circuit
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electrodynamics. And they can characterize the process of a
TLS transition with the absorption and emission of two pho-
tons. However, they also have some unique characteristics. For
the two-photon model, the two photons come from the same
mode, while for the two-mode cavity model, the two photons
come from different modes. Researchers have studied the
two-photon QB. When the initial state of the cavity is a Fock
state, at resonance (where the number of photons is twice the
number of TLSs), all the radiation energy is transferred to the
QB (charging) and back (discharging) [32,33]. It was found
that two-photon coupling can increase the average charging
power of QBs. However, QBs in the two-mode model have
not been studied.

In this paper, a series of two-mode QBs are considered,
and the complete description of these QBs is realized. For
clarity, we will first consider the case of a single TLS as
a battery, avoiding other competing mechanisms based on
collective behavior [17,21]. And we will use the rotating-
wave-approximation (RWA) method [34] to conduct a simple
analysis of a single TLS to study the performance of a QB
in the charging and discharging process, including the stored
energy and related charging time [32,35–38]. In addition, we
will consider the average charging power and fluctuations
of stored energy [39]. Next, we will discuss the maximum
extractable energy that is stored in the battery and can actually
be extracted and used again. This quantity is called ergotropy
[40,41] and is usually different from the total energy stored in
a battery due to the existence of quantum correlations [22,42].
All these performance parameters will be analyzed under the
three different initial conditions for the cavity.

Reference [11] reported that the QBs can be divided into
coherent QBs and incoherent QBs according to whether there
are nondiagonal elements in the reduced density matrix of bat-
teries, and the competitive relationship between entanglement
and ergotropy in incoherent batteries was also discussed qual-
itatively. In this work, we present the quantitative relationship
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between the ergotropy and battery-charger entanglement of
incoherent QBs and define the resource utilization efficiency
k(t ) and kins(t ). Our results suggest that entanglement is a key
resource for the high efficiency of such QBs. In addition, we
review the differences between some derived models of two-
mode QBs. Moreover, in the last section, we extend the above
model to multiple TLSs and a cavity with counterrotating
terms [8,32].

The organization of this paper is as follows: In Sec. II, we
present a two-mode QB in which a single TLS is coupled to
a two-mode cavity. In Sec. III, we discuss the performance of
two-mode QBs in different initial states. In Sec. IV, we pro-
pose some derived models of a two-mode QB (TM), including
a two-mode QB dependent on coupling strength (TMD), a
two-mode Raman QB (TMR), and a two-mode Raman QB
dependent on coupling strength (TMRD), and compare their
performances. In Sec. V, we extend the above model and
investigate the two-mode Dicke QB (TM-Dicke). In Sec. VI,
we draw the conclusions for our work.

II. TWO-MODE QB

We investigate a single QB as a TLS coupled to a two-mode
microwave cavity by matter-light interaction. Each transition
of the TLS is accompanied by the absorption or emission of
a photon from each mode. This simple single battery can be
replicated M times, forming a QB that works in a parallel
charging configuration [8,34]. The corresponding Hamilto-
nian can be written as (hereafter we set h̄ = 1)

Ĥ = 1
2ωaσ̂z + ωcâ†â + ωcb̂†b̂ + θ (t )λ(â†b̂† + âb̂)σ̂x, (1)

where a (b) is the annihilation operator of cavity radiation,
a† (b†) is the creation operator of cavity radiation, σ̂x(z) is the
Pauli matrix, ωa is the energy-level spacing of the TLS, and
ωc is the cavity radiation frequency of each mode. θ (t ) is a
classical parameter set to 1 during the charging period [0, τ ]
and 0 otherwise, representing the external control exerted on
the system. Before t = 0, there is no interaction between the
charger and battery, so the energy exchange cannot be carried
out. In the time interval 0 < t < τ , the coupled Hamiltonian is
turned on, and the two subsystems are coupled together, trans-
ferring energy from the cavity to the TLS. The energy stored
in the battery is preserved after the interaction is switched off
at the moment t = τ . Now we discuss the charging process of
a QB in the time interval 0 < t < τ .

|ψ (t )〉 represents the evolution state of the whole system
at the moment t . The total energy E = 〈ψ (t )| Ĥ |ψ (t )〉 of the
QB system is constant at all moments except at the switching
points t = 0 and t = τ since the nonzero energy can be trans-
ferred to the whole system through external control at these
points. (See [34] for a detailed analysis of the energy cost
of modulating the interaction.) For simplicity it is assumed
that the interacting Hamiltonian is commutative to the lo-
cal Hamiltonian [43]; therefore, these contributions are equal
to zero.

When the intensity of the matter-light interaction λ satisfies
λ � ωa, ωc, the RWA [34] in Eq. (1) can be considered, where
the Hamiltonian is expressed as (see Appendix A for the

FIG. 1. Scheme of a QB with a set of N identical and indepen-
dent TLSs with energy separation ωa between the ground state |g〉
and the excited state |e〉, which interacts with a two-mode cavity
mode of frequency ωc via two-photon coupling.

microscopic derivation)

ĤTM = 1
2ωaσ̂z + ωcâ†â + ωcb̂†b̂ + θ (t )λ(â†b̂†σ̂− + âb̂σ̂+),

(2)

where the first term is the battery represented by the TLS,
the middle two terms are the charger represented by the mi-
crowave cavity, the last term is the interaction of the TLS with
the cavity under the RWA, and

σ̂± = σ̂x ± iσ̂y

2
, (3)

where σ̂x(y) is the Pauli matrix.
Next, we focus on the case of resonance ωa = 2ωc (see

Fig. 1). In this case, all the energy associated with the radiation
can be transferred to the TLS; otherwise, the energy transfer
is zero. This condition ensures the optimal function of the QB,
which cannot be achieved in other configurations [32,33].

At time t = 0, the initial state of total system is the tensor
product state of the TLS and cavity,

|ψ (0)〉 = |g〉 ⊗
∑

n

αn |n〉 ⊗
∑

m

αm |m〉 . (4)

The first term represents the TLS in the ground state, the
second term represents one of the modes with n photons in
the initial state, and the third term represents another mode
with m photons in the initial state. We consider the cases in
which the initial state of the cavity is in the Fock-Fock state
(F-F state), in the Fock-coherent state (F-C state), and in the
coherent-coherent state (C-C state). Therefore, we introduce
the probability amplitudes αn,

α(F )
n = δn,N , (5)

α(C)
n = e− N

2
N

n
2√
n!

, (6)

where the superscript F and C represent the Fock state and
coherent state, respectively. For the Fock state, N represents
the number of photons precisely, while for the coherent state,
N represents the average number of photons.
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III. PERFORMANCE OF A TWO-MODE QB

We now investigate the performance of a two-mode QB
and compare the three different cavity initial states mentioned
in the previous section.

In order to study the performance of a QB, it is necessary to
study the evolution state of the whole system at any time under
the initial state in Eq. (4). We observe that in the base vec-
tor given by |g〉 ⊗ |n〉 ⊗ |m〉 and |e〉 ⊗ |n − 1〉 ⊗ |m − 1〉 (n >

1, m > 1), the Hamiltonian in Eq. (2) can be simply rewritten
as

Ĥ (n,m) =
(

ωa
2 (n + m − 1) λ

√
nm

λ
√

nm ωa
2 (n + m − 1)

)
, (7)

where n and m represent the actual photon numbers in each
mode of the two-mode cavity. The dynamic evolution of the
whole system is still limited to a two-dimensional space. The
eigenstates of Hamiltonian (7) are

|ψ (n,m)
± 〉 = |g〉 ⊗ |n〉 ⊗ |m〉 ± |e〉 ⊗ |n − 1〉 ⊗ |m − 1〉√

2
. (8)

The eigenvalues are

E (n,m)
± = ωa

2
(n + m − 1) ± λ

√
nm. (9)

From these equations, we can transform Eq. (4) into

|ψ (0)〉 =
∑
n,m

αnαm

( |ψ (n,m)
+ 〉 + |ψ (n,m)

− 〉√
2

)
. (10)

Therefore, the state function at any time can be expressed as
|ψ (t )〉 = e−iĤt |ψ (0)〉.

In our study, the evolution behavior of the reduced density
matrix over time is very important. Therefore, we can obtain
ρTLS(t ) = TrC (|ψ (t )〉 〈ψ (t )|), which is the reduced density
matrix of the TLS at any time, where C represents the par-
tial trace of the cavity in the whole-system density matrix
ρ(t ) = |ψ (t )〉 〈ψ (t )|.

A. Stored energy and average power

The energy stored in the QB at time t is [8,32,36,44]

�E (t ) = E (t ) − E (0), (11)

where E (t ) = 〈ψ (t )| ĤQB |ψ (t )〉 is the energy of the QB at
time t and ĤQB is the battery-related part of the total Hamilto-
nian in Eq. (2),

ĤQB = ωa

2
σ̂z. (12)

Inserting the time-evolved state of the battery into Eq. (11) we
have

�E (t ) = ωa

∑
n,m

PnPm sin2(λ
√

nmt ), (13)

where Pn(m) = ∑
n(m) |αn(m)|2.

An important task for QBs is to store the most energy in
the fastest time. From this perspective, the maximum energy
stored can be defined as [32,34]

�Emax = max
t

[�E (t )] = �E (tE ), (14)

FIG. 2. Behavior of stored energy �E (t ) over time. The initial
state of the two-mode cavity is in the F-F state (blue solid line), in
the F-C state (green dot-dashed line), or in the C-C state (red dashed
line); the average photon number is N = M = 8.

where tE is the time when the maximum stored energy occurs.
When the cavity is in the F-F state (αF

n(m) = δn(m),N (M ) ) at the
initial moment and sin2 (λ

√
nmt ) = 1, one can analytically

calculate the time it takes for tE ,

tF-F
E = (k + 1

2 )π

λ
√

nm
, (15)

k ∈ R. On the contrary, the corresponding time tE can be
obtained using a numerical method for the case in which
the cavity is in the F-C state and the C-C state at the initial
moment.

In Fig. 2, we show the evolution of stored energy �E (t )
over time for three different initial states [see Eq. (13)]; the
unit is ωa, and the average photon number is N = M = 8.
From Fig. 2, we can see that the battery can reach a fully
charged state (�EF-F

max = ωa) only when the two-mode cavity
is in the F-F state. However, when the cavity is in the F-C state
with the same average number of photons (N = M = 8), the
maximum storage energy can reach 0.93ωa. When the initial
state of the two-mode cavity is in the C-C state, the charging
energy can reach only 0.86ωa. This has guiding significance
for the experimental realization of such QBs [45].

In addition, the minimum charging times are comparable
in the cases of the two-mode cavity in the F-F state and C-C
state (N = M = 8). In fact, from Eq. (15), we get λtF-F

E ∼
0.196, λtF-C

E ∼ 0.193, and λtC-C
E ∼ 0.192. From the previous

discussion, it can be concluded that the F-F state is the best
choice for the initial state of the charger to store all energy
in the battery in the shortest time [33,34]. It is worth noting
that for a given quantum state of the charger, the charging
time in the two-mode QB is usually shorter than the corre-
sponding charging time in the two-photon case with the same
average photon number [32,33]. In fact, as mentioned in the
Ref. [33], the energy of the two-photon process is given by
�E (t ) = ωa

∑
n Pn sin2[λ

√
n(n − 1)t], which means that the

ratio of time required for the maximum energy to be charged
is 1/

√
n(n − 1). For the two-mode QB, the ratio of time is

1/
√

nm. Therefore, the charging time of the two-mode QB is
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FIG. 3. Behavior of average power P(t ) over time. The initial
state of the two-mode cavity is in the F-F state (blue solid line), in
the F-C state (green dot-dashed line), or in the C-C state (red dashed
line); the average photon number is N = M = 8.

faster than that of the two-photon QB with other parameters
being constant.

Another related performance parameter is average charg-
ing power, which is defined as [8,26,44]

P(t ) = �E (t )

t
. (16)

In this case, we are interested in achieving the maximum
charging power in the shortest possible time. Therefore, we
need to consider the maximum charging power [8,32,34]

Pmax = max
t

[P(t )] = P(tP ), (17)

where tP represents the time when the charging power reaches
the maximum value.

In Fig. 3, we show the evolution of average power P(t ) over
time for three different initial states [see Eq.(16)]; the unit is
λωa, and the average photon number is N = M = 8. Further-
more, we find that this quantity reaches the largest value when
the two-mode cavity is in the F-F state (PF-F

max = 5.76λωa) and
decreases in the F-C state (PF-C

max = 5.48λωa) with the same av-
erage photon number and in the C-C state (PC-C

max = 5.22λωa).
However, the times to reach their maxima are very close
(λtF-F

E ∼ 0.146, λtF-C
E ∼ 0.140, and λtC-C

E ∼ 0.138).

B. Energy fluctuations

In order to get a complete description of the performance of
the two-mode QB, we also need to evaluate the quantum fluc-
tuations associated with stored energy since it can affect the
charging performance negatively. We can discuss the stability
of the charging process according to the fluctuation of stored
energy in the same time interval, which can be expressed as
[32,36,45]

2(t ) = 〈ψ (0)| [ĤQB(t ) − ĤQB(0)]2 |ψ (0)〉
− {〈ψ (0)| [ĤQB(t ) − ĤQB(0)] |ψ (0)〉}2

= �E (t )[ωa − �E (t )],

(18)

FIG. 4. Behavior of energy fluctuations (t ) over time. The ini-
tial state of the two-mode cavity is in the F-F state (blue solid line), in
the F-C state (green dot-dashed line), or in the C-C state (red dashed
line); the average photon number is N = M = 8.

where |ψ (0)〉 is the initial state in Eq. (10) and ĤQB is the
evolution of the TLS Hamiltonian over time in the Heisenberg
picture.

In Fig. 4, we show the evolution of (t ) over time for three
different initial states. We are interested in the value (t ) at
the moment tE when the stored energy reaches its maximum
and try to understand how it affects the performance of the
QB. At tE , the energy fluctuation is defined as [33]

(tE ) = ̄. (19)

It can be seen that when the charging energy reaches the
maximum value, the energy fluctuation is zero (̄F-F = 0) for
the case in which the two-mode cavity is in the F-F state.
This can be understood from Eq. (18). When the stored en-
ergy reaches its maximum value, the whole system (battery
and charger) is in a separable state |ψ (tE )〉 = |e〉 ⊗ |n − 1〉 ⊗
|m − 1〉. However, this is not true for the cases in which the
two-mode cavity is in the F-C state and the C-C state. When
the stored energy reaches its maximum, the energy fluctuation
is nonzero. Because in these two initial states the two-mode
QB cannot be fully charged, they do not reach ̄ = 0. In
fact, for the two-mode cavity in the F-C state, we get ̄F-C =
0.26ωa, and for the C-C state, we have ̄C-C = 0.35ωa.

It is confirmed again that the Fock state is the best initial
state for building a QB with good performance. In fact, this
particular initial state is unaffected by fluctuations in stored
energy.

C. Ergotropy

Another performance parameter related to QB efficiency
that needs to be studied is ergotropy [5,41]. It contains the
maximum amount of stored energy that can be converted into
usable work and can be extracted from the QB as it evolves.
In general, this ergotropy is not the same as stored energy.
Because some of the stored energy may be locked up in
correlation, it cannot be extracted [41]. The general derivation
of this quantity starts with the Hamiltonian for the QB, written
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FIG. 5. Behavior of ergotropy ε(t ) over time. The initial state of
the two-mode cavity is in the F-F state (blue solid line), in the F-C
state (green dot-dashed line), or in the C-C state (red dashed line);
the average photon number is N = M = 8.

as [5]

ĤQB =
∑

n

εn |εn〉 〈εn| , (20)

where the energy eigenvalues are arranged in order εn < εn+1,
|εn〉 are the eigenvectors, and the density matrix at a given
time is

ρTLS(t ) =
∑

n

rn(t ) |rn(t )〉 〈rn(t )| , (21)

where rn > rn+1 and |rn(t )〉 are the eigenvectors. The maxi-
mum work that can be extracted from the QB after a period of
time t is called ergotropy, which can be written as [40]

ε(t ) =
∑

j,k

r j (t )εk[
∣∣〈r j (t )| εk〉

∣∣2 − δ j,k]. (22)

When j = k, δ j,k = 1; otherwise, δ j,k = 0.
When the initial state of the system is a passive state, we

cannot extract work from it, ε = 0. In general, the ergotropy
reaches its maximum εth when the final state of the system is
the thermal state ρTLS = e−βHQB/Z (β is the inverse tempera-
ture of the system and Z = Tre−βHQB ). Therefore, the range of
ergotropy is 0 < ε < εth [40].

Now we try to find an expression for the ergotropy of our
system. To do this, we need to diagonalize the density matrix
of the TLS in the equation for ρTLS(t ). Its eigenvalues are

rs(t ) = 1 + (−1)s√1 − 4 det ρTLS(t )

2
, (23)

where s = 0, 1. In addition, the eigenvalue of ĤQB in Eq. (12)
is εs = (−1)sωa/2. Therefore, substituting rs(t ) and εs(t ) into
Eq. (22), the ergotropy at time t can be obtained,

ε(t ) = E (t ) −
∑
s=0,1

rs(t )εs = E (t ) − ωa

2

√
1 − 4 det ρTLS(t ).

(24)
Figure 5 illustrates the evolution of ergotropy ε(t ) over time.
We can see that the behavior of ergotropy over time is similar

to that of the stored energy. We can also observe that the
ergotropy can reach the maximum only when the initial state
of the two-mode cavity is in the F-F state (εmax = ωa). This
occurs at the moment tF-F

E when the stored energy reaches its
maximum and the TLS is in a pure state, which also indicates
the relevant properties of the cavity state.

Based on previous research [11], we know that the bat-
tery can be divided into coherent QBs and incoherent QBs,
according to whether there is a nondiagonal element in the
reduced density matrix of the TLS. Because of the vanishing
coherence, the final extractable work is dependent on the
battery-charger entanglement and is negatively correlated in
incoherent QBs. Incoherent QBs are promising candidates;
due to the vanishing entanglement and coherence of the
charged battery, it can achieve the optimal ergotropy. For
the three different initial states of the two-mode QB, the
battery is an incoherent QB only when the cavity is in the
F-F state due to the disappearance of nondiagonal elements
in the reduced density matrix of the TLS (see Appendix B
for more details). Next, we will further investigate the effects
of entanglement in the above situation. For a bipartite pure
state, the battery-charger entanglement is characterized by von
Neumann entropy of the reduced density matrix of batteries,

S(t ) = −Tr{ρTLS(t ) log2[ρTLS(t )]}, (25)

where ρTLS(t ) is the reduced density matrix of the TLS and

ρTLS(t ) =
(

cos2(λ
√

nmt ) 0
0 sin2(λ

√
nmt )

)
, (26)

where cos2(λ
√

nmt ) and sin2(λ
√

nmt ) represent the popu-
lations in the low-energy state and high-energy state, re-
spectively. So we define r(t ) = cos2(λ

√
nmt ) − sin2(λ

√
nmt )

to represent the difference between populations in the low-
energy state and high-energy state, that is, the occupation
numbers for the battery part.

Inserting r(t ) into Eqs. (22) and (25), respectively, we have

ε(t ) =
{

0 r(t ) � 0,

−ωar(t ) r(t ) < 0,
(27)

S(t ) = −1 + r(t )

2
log2

1 + r(t )

2
− 1 − r(t )

2
log2

1 − r(t )

2
.

(28)

Figure 6 shows the occupation numbers for battery part
r(t ), stored energy �E (t ), ergotropy ε(t ), and entanglement
S(t ) evolution over time when the cavity is in the F-F state.
We find that the entanglement of the battery and charger is
increased during the energy-storage stage. And at this stage,
the excitation of the TLS from the low-energy states to high-
energy states continues, until the population of the battery part
displays a nearly balanced distribution. Further excitation will
induce the population inversion and lead to a decrease in en-
tanglement. Therefore, at the end of the charging process, the
vanishing entanglement indicates that the battery is located
in a high-energy state and thus leads to optimal ergotropy. In
addition, we believe that entanglement is a key resource in the
energy-extraction stage. That is to say, the more entanglement
is consumed, the more energy can be extracted. In order to
measure the quantitative relationship between entanglement
and ergotropy in the above stage, we introduce the average
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FIG. 6. Behavior of the occupation numbers for the battery
part r(t ) (black solid line), stored energy �E (t ) (blue solid line),
ergotropy ε(t ) (green dot-dashed line), and entanglement S(t ) (red
dashed line) over time when the initial state of the two-mode cavity
is in the F-F state; the average photon number is N = M = 8. The
illustration consisting of black horizontal lines and black balls is a
schematic diagram of the proportions of the TLS. The black horizon-
tal lines represent the two levels of the TLS, with the lower horizontal
line being the low-energy state and the upper horizontal line being the
high-energy state. The black balls indicate the proportions of the TLS
in the high-energy state and low-energy state. The more balls there
are, the larger the proportion is and vice versa. If the numbers of balls
are equal, the proportions of high-energy and low-energy states are
equal.

resource utilization efficiency,

k(t ) =
∣∣∣∣�ε(t )

�S(t )

∣∣∣∣
= − ωar(t )

1+r(t )
2 log2

1+r(t )
2 + 1−r(t )

2 log2
1−r(t )

2 + 1
. (29)

Figure 7 shows the k(t ) and kins(t ) evolution over time.
In the initial stage of ergotropy increasing, �S(t ) tends to
zero, and k(t ) tends to infinity. We can also observe that k
rapidly approaches 1 over time. This confirms that there is
a nearly linear relationship between ergotropy and entangle-
ment; namely, consuming unit entanglement generates unit
ergotropy.

To further investigate the utilization efficiency of entangle-
ment at each moment, we introduce the instantaneous resource
utilization efficiency,

kins(t ) =
∣∣∣∣ dε(t )

dS(t )

∣∣∣∣. (30)

From Fig. 7, we can also observe that throughout the entire
stage of energy extraction, kins(t ) and k(t ) have the same
trend, and they both tend to infinity in the initial stage. More-
over, kins(t ) is less than k(t ) at any time. From Fig. 7, we can
also see that in the initial stage of ergotropy increasing, kins(t )
is relatively large. It quickly approaches zero over time. This
indicates that in the initial stage, the utilization efficiency of

FIG. 7. Behavior of k(t ) and kins(t ) over time when the initial
state of the two-mode cavity is in the F-F state; the average photon
number is N = M = 8.

entanglement is very high. Consuming unit entanglement can
extract a large amount of energy. However, resource utiliza-
tion efficiency rapidly decreases over time. kins(t ) and k(t )
provide us with a complete description of resource utilization
efficiency.

To better quantify the actual proportion of extractable en-
ergy, we now evaluate the ratio between ergotropy and stored
energy,

η(t ) = ε(t )

�E (t )
= 1 − ωa

2�E (t )
[1 −

√
1 − 4 det ρTLS(t )].

(31)

In Fig. 8, we compare the evolution of η(t ) over time for three
different initial states. It can be observed that the stored energy
can be almost completely extracted and used as usable energy
in a relatively short time for the two-mode cavity in the C-C
state. However, the amount of energy stored in the system is
very small during this time (see Fig. 2). For the two-mode

FIG. 8. Behavior of η(t ) over time. The initial state of the two-
mode cavity is in the F-F state (blue solid line), in the F-C state (green
dot-dashed line), or in the C-C state (red dashed line); the average
photon number is N = M = 8.
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TABLE I. Expressions for the stored energy �E (t ), average power P(t ), and ergotropy ε(t ) over time for the two-mode QB, the two-mode
QB dependent on coupling strength, the two-mode Raman QB, and the two-mode Raman QB dependent on coupling strength.

Parameter

Model Stored energy �E (t ) Average power P(t ) Ergotropy ε(t )

Two-mode QB ωa sin2(λ
√

nmt ) ωa sin2(λ
√

nmt )
t −2ωa cos(2λ

√
nmt )

Two-mode QB dependent on coupling
strength

ωa sin2[λ
√

nmn(m − 1)t] ωa sin2[λ
√

nmn(m−1)t]
t −2ωa cos[2λ

√
nmn(m − 1)t]

Two-mode Raman QB ωa sin2[λ
√

n(m + 1)t] ωa sin2[λ
√

n(m+1)t]
t −2ωa cos[2λ

√
n(m + 1)t]

Two-mode Raman QB dependent on
coupling strength

ωa sin2[λ
√

n(m + 1)n(m + 1)t] ωa sin2[λ
√

n(m+1)n(m+1)t]
t −2ωa cos[2λ

√
n(m + 1)n(m + 1)t]

cavity in the F-F state, the stored energy can be fully extracted
only within a corresponding short period of time tF-F

E . The
advantage is that the stored energy is close or equal to the
maximum value (�EF-F

max = ωa).

IV. THE TWO-MODE RAMAN QB

When the coupling intensity between the TLS and cavity
depends on the intensity of the cavity, we choose a special
model which was first introduced in Ref. [46]. In particular,
this type of model is interesting because of its inherent con-
nection to an SU(1,1) Jaynes-Cummings (JC) model and can
be written as a combination of generators of SU(1,1) algebra
[47]. The Hamiltonian of the two-mode QB dependent on
coupling strength (TMD) can be expressed as (ωa = 2ωc; see
Appendix A for the reason why we choose the special form)
[31]

ĤTMD = 1
2ωaσ̂z + ωcâ†â + ωcb̂†b̂ + θ (t )λ(L̂− + L̂+),

L̂− =
√

â†ââ†b̂†
√

b̂†b̂σ̂−, L̂+ =
√

b̂†b̂b̂â
√

â†âσ̂+. (32)

The base vector is |g〉 ⊗ |n〉 ⊗ |m〉 and |e〉 ⊗ |n − 1〉 ⊗
|m − 1〉 (n > 1, m > 1).

Raman scattering is an important nonlinear process of the
interaction between the atoms and cavity. Since the study of
Raman scattering can reveal many nonclassical characteris-
tics of the interaction between the atoms and cavity, we also
consider the two-mode Raman model under the conditions of
the QB and describe the performance of this kind of model.
The atom in the high-Q cavity has two nondegenerate energy
levels, |e〉 and |g〉, which interacts with the two-mode cavity
through the virtual energy level | j〉, and in the RWA, the
Hamiltonian of the two-mode Raman QB (TMR) in the above
process is expressed as (ωa = ωb − ωc) [29]

ĤTMR = 1
2ωaσ̂z + ωbâ†â + ωcb̂†b̂ + θ (t )λ(â†b̂σ̂− + b̂†âσ̂+).

(33)
The base vector is |g〉 ⊗ |n〉 ⊗ |m〉 and |e〉 ⊗ |n − 1〉 ⊗
|m + 1〉 (n > 1, m > 1).

The Hamiltonian of the two-mode Raman QB dependent
on coupling strength (TMRD) is (ωa = ωb − ωc) [29,31]

ĤTMRD = 1
2ωaσ̂z + ωbâ†â + ωcb̂†b̂ + θ (t )λ(L̂− + L̂+),

L̂− =
√

â†ââ†b̂
√

b̂†b̂σ−, L̂+ =
√

b̂†b̂b̂†â
√

â†âσ+. (34)

The base vector is |g〉 ⊗ |n〉 ⊗ |m〉 and |e〉 ⊗ |n − 1〉 ⊗
|m + 1〉 (n > 1, m > 1).

The performance of QBs in the above three models is
shown in Table I. From Table I, we can see that the ratio of
time required for the two-mode QB to reach the maximum
energy is 1/

√
nm, and for the two-mode Raman QB, the

ratio is 1/
√

(n + 1)m. Under the same conditions, the charg-
ing time of the two-mode Raman QB is faster. Table I also
shows that the model related to coupling strength has shorter
charging time and higher charging efficiency than the original
model. Among these derived models, the two-mode Raman
QB dependent on coupling strength has the best performance.

In Fig. 9, we show the behavior of stored energy, average
power, and ergotropy for the above four models. Figure 9
shows that all four models can reach a fully charged state.
At the moment tE the energy fluctuation is zero. Since the
Raman scattering and coupling strength can both improve the
performance of batteries, the two-mode Raman QB dependent
on coupling strength exhibits the optimal performance.

To quantify the utilization efficiency of entanglement in the
energy-extraction stage of QBs in the four different models
mentioned above, we calculate k(t ) and kins(t ) separately.
From Eqs. (29) and (30), we can see that k(t ) and kins(t ) are
functions of r(t ). The r(t ) functions corresponding to QBs in
the four different models mentioned above are

rTM(t ) = cos2(λ
√

nmt ) − sin2(λ
√

nmt ),

rTMD(t ) = cos2[λ
√

nmn(m − 1)t] − sin2[λ
√

nmn(m − 1)t],

rTMR(t ) = cos2[λ
√

n(m + 1)t] − sin2[λ
√

n(m + 1)t],

rTMRD(t ) = cos2[λ
√

n(m + 1)n(m + 1)t]

− sin2[λ
√

n(m + 1)n(m + 1)t]. (35)

Figure 10 shows the evolution of k(t ) and kins(t ) over time
for the above four models. We can see that the properties of
k(t ) and kins(t ) in the other three QBs in the different models
are consistent with those of the two-mode QB. We can also
see that the resource utilization efficiency of the two-mode
Raman QB dependent on coupling strength is the highest,
which means that the most energy can be extracted using
entanglement in the shortest time. This can also be explained
by Eq. (35) because, with all parameters determined, the ratio
of time required for the maximum energy is the shortest.
Again, this confirms that the performance of the two-mode
Raman QB dependent on coupling strength is the best.
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FIG. 9. Behavior of the stored energy �E (t ), average power P(t ), and ergotropy ε(t ) with time for the two-mode QB (black dotted line),
the two-mode QB dependent on coupling strength (blue solid line), the two-mode Raman QB (green dot-dashed line), and the two-mode
Raman QB dependent on coupling strength (red dashed line); the average photon number is N = M = 8.

V. TWO-MODE DICKE QB

We consider a QB modeled as a finite set of N , with
identical and independent TLSs coupled to a two-mode cavity.
The counterrotating terms are also considered. The system
can be described using the so-called Dicke model [48]. In
particular, we want to consider N TLSs coupled to a two-mode
cavity via a two-photon coupling (TM-Dicke), for which the
Hamiltonian is [49,50]

ĤTM-Dicke = ωaĴz + ωcâ†â + ωcb̂†b̂ + θ (t )λ(â†b̂† + âb̂)Ĵx.

(36)
The notation

Ĵα = 1

2

N∑
i=1

σ̂ α
i , (37)

with α = x, y, z, represents the components of a pseudospin
operator expressed in terms of the Pauli matrix of the ith TLS.

FIG. 10. Behavior of k(t ) and kins(t ) with time for the two-mode
QB (green line with diamonds), the two-mode QB dependent on
coupling strength (black line with squares), the two-mode Raman
QB (blue line with stars), and the two-mode Raman QB dependent
on coupling strength (red line with stars); the average photon number
is N = M = 8.

Next, we consider initial states of the form

|ψ (0)〉 = |g, . . . , g〉︸ ︷︷ ︸
N

⊗ |2N〉 ⊗ |2N〉 . (38)

The N TLSs are prepared in the ground state |g〉, and the cavity
modes are both in the 2N Fock states.

Next, we will analyze what happens to the performance of
a two-mode Dicke QB in the weak-coupling regime and the
ultrastrong-coupling (USC) regime [51,52]. We will also com-
pare our results with those obtained with the Tavis-Cummings
(TC) model (TM-TC) and the two-photon Dicke model (TP-
Dicke). The corresponding Hamiltonians are (ωa = 2ωc)

ĤTM-TC = ωaĴz + ωcâ†â + ωcb̂†b̂ + θ (t )λ(â†b̂†σ̂− + âb̂σ̂+),

ĤTP-Dicke = ωaĴz + ωcâ†â + θ (t )λĴx[(â†)2 + (â)2]. (39)

In the first case, considering weak coupling λ � ωa, we
consider λ = 0.005ωa as a representative value; other cou-
pling constants in this regime lead to similar results. In
Fig. 11(a) we report the stored energy �E (t ) for a given
number of TLSs, N = 10, for two-mode Dicke, two-mode
TC, and two-photon Dicke coupling, respectively. From
Fig. 11(a), we can see that the maximum stored energy
in the two-mode Dicke case (�E (TM-Dicke)

max /Nωa ∼ 0.950) is
higher than the two-photon one (�E (TP-Dicke)

max /Nωa ∼ 0.710).
In addition, the charging time in the two-mode Dicke case
is ωat (TM-Dicke)

E = 20.4, and in the two-photon Dicke case it
is way faster (ωat (TP-Dicke)

E = 19.4). From Fig. 11(d), we can
see an enhancement of the maximum of the averaged charg-
ing power in the two-mode Dicke case P(TM-Dicke)

max /N2ω2
a ∼

0.006 compared to the one in the two-photon Dicke case,
where P(TP-Dicke)

max /N2ω2
a ∼ 0.005, which proves the better per-

formance of the two-mode Dicke model. In Figs. 11(a) and
11(d), we can also see smooth oscillations for the two-mode
Dicke model (red solid line), which are in full agreement with
the result obtained for the two-mode TC model (black dotted
line). This analysis allows us to understand that the counterro-
tating terms do not provide an advantage for the performance
of the two-mode QB in the weak-coupling regime.

We now discuss coupling strengths in the USC regime,
namely, with higher values of λ up to λ � ωa [51,52], and
compare the results with those for the weak-coupling case. In
Figs. 11(b) and 11(e), we report the behavior of �E (t ) and

062402-8



TWO-MODE RAMAN QUANTUM BATTERY DEPENDENT ON … PHYSICAL REVIEW A 108, 062402 (2023)

FIG. 11. Evolution of energy �E (t ) and average power P(t ) with time for the TM-Dicke QB (red solid line), the two-mode TC QB (black
dashed line), and the TP-Dicke QB (blue solid line) at (a) and (d) λ = 0.005ωa, (b) and (e) λ = 0.1ωa, and (c) and (f) λ = 0.5ωa.

P(t ) for the two-mode Dicke model (λ = 0.1ωa) in compar-
ison with the two-photon one and the two-mode TC model.
The main result shows that the performances of the two-mode
Dicke model and two-photon Dicke model are similar. It is
worth noting that the maximum stored energy of the two-
mode TC model (�E (TM-TC)

max /Nωa ∼ 0.959) is much higher
than those of the two-mode (�E (TM-Dicke)

max /Nωa ∼ 0.685) and
two-photon (�E (TP-Dicke)

max /Nωa ∼ 0.681) cases. We can see
that the absence of counterrotating terms can lead to a higher
stored energy in the USC regime.

We now consider the average charging power P(t ) as
reported in Fig. 11(e). The maxima of the charging power
and the corresponding time are better in the two-mode
Dicke and two-photon Dicke models (P[TM(TP)-Dicke]

max /N2ω2
a ∼

0.170) compared to the two-mode TC case (P(TM-TC)
max /N2ω2

a ∼
0.121). It obvious that the counterrotating terms can lead to a
greater average charging power with respect to the TC model.
That is to say, the counterrotating terms have a negative impact
on the stored energy but improve the average charging power
in the USC regime. Furthermore, the case with λ = 0.5ωa is
also studied; we obtain similar results and observe an im-
proved charging power for higher coupling [see Figs. 11(c)
and 11(f)].

VI. CONCLUSIONS

We investigated the performance of a series of two-mode
QBs in this paper. Considering the possible initial states of a
quantum radiation cavity, we studied three different scenar-
ios, with the initial state of the two-mode cavity in the F-F
state, in the F-C state, and in the C-C state. According to

the analysis, the initial state of the two-mode cavity in the
F-F state is the ideal candidate initial state for optimizing the
performance of the QB. It is the only state that can achieve full
charging of the QB in a short time, and all the energy stored
in it can also be extracted. In addition, we investigated the
competitive relationship between entanglement and ergotropy
analytically, presented the relationship between the ergotropy
and battery-charger entanglement of the incoherent QB, and
defined the resource utilization efficiency k(t ) and kins(t ). We
showed that the entanglement can be seen as a key resource in
the energy-extraction stage. We also provided a quantitative
relationship between them. Interesting properties can also be
found by studying the two cases with the two-mode cavity
in the F-C state and in the C-C state with the same average
number of photons.

Furthermore, we also investigated some derived QBs of
the above model. Our results show that all four models can
reach a fully charged state and at the moment tE the energy
fluctuation is zero. We observed that the charging time of
the two-mode Raman QB is shorter and the efficiency is
higher than that of the two-mode QB. Moreover, the model
related to coupling strength can also improve the performance
of batteries, including faster charging speed and higher ef-
ficiency. Among the derived models we have investigated,
the two-mode Raman QB dependent on coupling strength
showed the best performance. In addition, in the last section,
we extended the above model to multiple TLSs and a cavity
with counterrotating terms. We showed that counterrotating
terms can improve the stored energy in the USC regime. Our
analysis can also be extended to three-level systems. Since the
two-mode QB can be realized in experiment, we believe that
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our research will have a positive effect on promoting future
study.
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APPENDIX A

In this Appendix, we derive the Hamiltonian which de-
scribes the more general nonlinear JC model. For this reason,
we suppose the electric field E (r, t ) can be expanded in terms
of normal modes,

E (r, t ) = i
∑

k

êk

√
ωk

k
[âk (t )Uk (r) − â†

k (t )Uk (r)]

=
∑

k

êk[E (−)
k (r, t ) + E (+)

k (r, t )]. (A1)

The term E (+)
k (r, t ) represents a signal mode of the electro-

magnetic field with frequency ωk (in a cavity, say), while
the operators âk (â†

k) are the annihilation (creation) opera-
tors of the kth mode which satisfy the commutation relations
given by

[âk, â†
k′ ] = δkk′ , [âk, âk′ ] = 0. (A2)

The mode functions Uk (r) are taken to satisfy the wave equa-
tion (∇2 + ω2

k

)
Uk (r) = 0, (A3)

with the orthonormality condition∫
d3rUk (r)Uk′ (r) = δkk′ . (A4)

Therefore, the Hamiltonian describing the field Ĥf can be
written in the form

Ĥf =
∑

k

ωk

(
â†

k âk + 1

2

)
. (A5)

Next, we write the expression for the interaction Hamiltonian
Ĥin which represents the interaction between the atom and the
field. A general interaction Hamiltonian describing an (m +

n)-photon process may be written as

Ĥin = ε
(n+m)
αβ Ĉ†

βĈα

∏m

j=1
E (−)

j (r0)
∏n

k=1
E (+)

k (r0) + H.c.,

(A6)
where ε

(n+m)
αβ is the matrix element for an (n + m)-photon

transition consisting of m emissions and n absorptions and an
atomic transition from state α to state β of an atom situated
at position r0 occurs, while Ĉ†

β (Ĉβ) represents the creation
(annihilation) operator for atomic state β (Fermion operators).

Thus, Ĥin can be written in the form

Ĥin ∼ μ
(n+m)
αβ Ĉ†

βĈα

∏m

j=1
â j

∏n

k=1
â†

k + H.c., (A7)

where the coupling constant μ
(n+m)
αβ stands for the expression

μ
(n+m)
αβ = ε

(n+m)
αβ

( ∏m+n

j=1
i

√
1

2
ω j

)( ∏n

j=1
Ui(r0)

)

×
( ∏n

k=1
U ∗

k (r0)

)
. (A8)

The Hamiltonian representing the atom ĤA is given by

ĤA =
2∑

i=1

�iĈ
†
i Ĉi. (A9)

Thus, if we use the Schwinger representation,

σ̂+ = Ĉ†
1Ĉ2, σ̂− = Ĉ†

2Ĉ1, σ̂z = Ĉ†
1Ĉ1 − Ĉ†

2Ĉ2,

Î = Ĉ†
1Ĉ1 = Ĉ†

2Ĉ2, (A10)

and take ω0 = �1 − �2 and a linear combination of
Eqs. (A5), (A7), and (A9) under the restriction of two modes,
we have, except for an energy shift, Eq. (2).

Adding two terms related to coupling strength to Eq. (2)
changes the equation to Eq. (32). The coupling strength terms
have many forms, and the previously recognized forms are

R̂− =
√

â†ââ†b̂†
√

b̂†b̂σ̂−, R̂+ =
√

b̂†b̂b̂â
√

â†âσ̂+, (A11)

where N = â†â and M = b̂†b̂. In order to compare the per-
formance of the two-mode QB and previous research results,
we choose this special form and write the Hamiltonian of the
two-mode QB dependent on coupling strength as Eq. (32).

APPENDIX B

The state function and the reduced density matrix of the
TLS from calculating the partial trace of the cavity part at any
time can be expressed as follows:

|ψ (t )〉 = e−iĤt |ψ (0)〉 =
∑
n,m

αaαme−i ωa
2 (n+m−1)t

(
e+iλ

√
nmt |ψ (n,m)

− 〉 + e−iλ
√

nmt |ψ (n,m)
+ 〉√

2

)

=
∑
n,m

αnαme−i ωa
2 (n+m−1)t

(
e+iλ

√
nmt (|g, n, m〉 − |e, n − 1, m − 1〉) + e−iλ

√
nmt (|g, n, m〉 + |e, n − 1, m − 1〉)

2

)

=
∑
n,m

αnαme−i ωa
2 (n+m−1)t [cos(λ

√
nmt ) |g, n, m〉 − i sin(λ

√
nmt ) |e, n − 1, m − 1〉], (B1)
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ρTLS(t ) =
∑
n,m

〈n, m| ρ(t ) |n, m〉 =
∑
n,m

([PnPm sin2(λ
√

nmt ) |e〉 〈e| + PnPm cos2(λ
√

nmt ) |g〉 〈g|]

+ eiωat {i√PnPmPn+1Pm+1 sin[λ
√

(n + 1)(m + 1)t] cos(λ
√

nmt )} |g〉 〈e|
− e−iωat {i√PnPmPn+1Pm+1 sin[λ

√
(n + 1)(m + 1)t] cos(λ

√
nmt )}) |e〉 〈g| . (B2)

In the following, we will introduce the state function and the reduced density matrix of the TLS when the two-mode cavity is in
the F-F state, F-C state, and C-C state at time t . For the case of the two-mode cavity in the F-F state, the state function and the
density matrix of the whole system at time t are

|ψF-F(t )〉 = e−i(n+m−1)ωct cos (λ
√

nmt ) |g, m, n〉 − e−i(n+m−1)ωct i sin(λ
√

nmt ) |e, n − 1, m − 1〉 , (B3)

ρF-F
TLS(t ) = TrC[ρ(t )] = TrC[|ψ (t )〉 〈ψ (t )|] = cos2(λ

√
nmt ) |g〉 〈g| + sin2(λ

√
nmt ) |e〉 〈e| . (B4)

For the case of the two-mode cavity in the F-C state, the state function and the density matrix of the whole system at
time t are

|ψF-C(t )〉 = ane−i(n+m−1)ωct cos (λ
√

mnt ) |g, n, m〉 − an+1e−i(n+m+1)ωct i sin [λ
√

(n + 1)(m + 1)t] |e, n, m〉 , (B5)

ρF-C
TLS(t ) = TrC[ρ(t )] = TrC[|ψ (t )〉 〈ψ (t )|] =

∑
n

|an+1|2 sin2[λ
√

(n + 1)(m + 1)t] |e〉 〈e|

+
∑

n

−ia∗
nan+1e−iωct cos(λ

√
nmt ) sin[λ

√
(n + 1)(m + 1)t] |e〉 〈g|

+
∑

n

iana∗
n+1eiωct cos(λ

√
nmt ) sin[λ

√
(n + 1)(m + 1)t] |g〉 〈e| +

∑
n

|an|2 cos2(λ
√

nmt ) |g〉 〈g| . (B6)

For the case of the two-mode cavity in the C-C state, the state function and density matrix of the whole system at time t are

|ψC-C(t )〉 = aname−i(n+m−1)ωct cos (λ
√

mnt ) |g, n, m〉 − an+1am+1e−i(n+m+1)ωct i sin [λ
√

(n + 1)(m + 1)t] |e, n, m〉 , (B7)

ρC-C
TLS(t ) = TrC[ρ(t )] = TrC[|ψ (t )〉 〈ψ (t )|] =

∑
n,m

|an+1|2|am+1|2 sin2[λ
√

(n + 1)(m + 1)t] |e〉 〈e|

+
∑
n,m

−ia∗
na∗

man+1am+1e−iωct cos(λ
√

nmt ) sin[λ
√

(n + 1)(m + 1)t] |e〉 〈g|

+
∑
n,m

ianama∗
n+1a∗

m+1eiωct cos(λ
√

nmt ) sin[λ
√

(n + 1)(m + 1)t] |g〉 〈e| +
∑
n,m

|an|2|am|2 cos2(λ
√

nmt ) |g〉 〈g| . (B8)
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