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Quantum state transfer on square lattices with topology
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The topological properties of a Heisenberg XY spin model on the square lattice in the form of a two-
dimensional Su-Schrieffer-Heeger model is investigated through the quench dynamics. Based on the topological
edge states or the higher-order topological corner states of the square lattice, we propose a scheme to transmit
quantum states with high quality, including single-excitation state and entangled state, on square lattices. For
the transmission of the single-excitation state, when the square lattice is in the topological phase, the maximum
fidelity at the corner sites of the lattice is much larger than that of bulk sites. In addition, it has been found that,
due to the different symmetries of the spin ladder and the square lattice, the maximally entangled state can be
generated between two qubits when a qubit at the edge of the spin ladder is excited initially, while it cannot be
generated between two qubits at the corners of the square lattice. However, the maximally entangled state of two
qubits at the edge of the spin ladder or the corners of the lattice can both be transmitted to the two qubits at the
other side of the lattices with high quality.
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I. INTRODUCTION

An important task in quantum information processing is
the transmission of quantum states from one location to an-
other, or the short distance quantum communications. Spin
systems have been proved to be one of the most promising
candidates for this task in small solid-state devices due to their
long decoherence and relaxation time [1–8]. A lot of effort has
been devoted to explore efficient schemes to transfer quantum
states based on the spin systems [9–14].

On the other hand, the novel topological states, includ-
ing edge states and higher-order topological corner states,
of topological insulators (TIs) [15–20] have attracted lots of
attention. These topological states have been theoretically in-
vestigated and experimentally found in many other systems
including photonic [21–28], acoustic [29–33], mechanical
[34–37], and electric circuit [38–42] systems, resulting in
the vigorous development of topological physics. Recently,
the topological phenomena in spin chains [43] and frustrated
skyrmion strings [44] have been explored. It has been found
spin chains are equivalent to interacting fermionic chains by
Jordan-Wigner transformation [45]. For example, the Heisen-
berg model with spins interacting with their nearest neighbors
by a staggered XXZ and ZZ coupling can be transformed into
a fermionic Su-Schrieffer-Heeger (SSH) model [46]. Based
on the edge state of the topological spin systems, the quantum
state transfer (QST) has also been investigated [47–53].

However, most of the results of quantum states transfer
having been reported are based on one-dimensional
(1D) topological chain. Entanglement properties in a
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two-dimensional (2D) triangular [54,55] and square [56]
lattices without topology have been investigated, with Ising
and XY -type interactions considered. In this work, we inves-
tigate the topological properties of Heisenberg spin models
with XY -type interactions on a 2D square lattices in the form
of a 2D SSH model. Based on the higher-order topological
corner states of the 2D SSH model, we investigate the QST on
the square lattice. Actually, for the single-excitation subspace
considered in this work, the dynamics of the spin model on
the lattice has the similar form of a single particle being
transferred in the corresponding TI. The difference between
these two cases is that, for the transfer of a single particle,
the particle is transmitted through the lattice described by the
“empty” and “filled” states of the sites, whereas for the QST
on the spin model, the excited state (or called the spin-up
state) of a qubit is transmitted to other qubits. Also, the QST
based on the edge states protected by TIs has been investigated
on both 1D [47–50,57–60] and 2D [51–53] lattices. Moreover,
the generation and transfer of entangled state measured by
Wootters’ concurrence [61] are investigated. It has been
found, for a finite structure of 2D SSH model in the form of
a spin ladder, the entanglement between two qubits can be
generated with a high concurrence approach to the maximally
entangled state and the initially maximally entangled state
can be transmitted through the spin ladder from one side to
another with high quality. For a homogeneous square lattice,
it has been reported [56] that the entangled state can hardly
be transferred on the lattice with a high concurrence when
its size increases. In our work, the entangled state can be
transmitted between the qubits at corner sites through the
square lattice in the form of a 2D SSH model. Our results
indicate that the spin model on the lattice in the form of a 2D
SSH model with topological properties is a great candidate for
quantum entanglement transfer in small solid-state devices.
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FIG. 1. The XY spin model on a square lattice with the size
L = M = 5. The parameter JA(JB ) is the strength of the intracell
(intercell) coupling.

The remainder of this paper is organized as follows. In
Sec. II, we describe the topological properties of the spin
model on the square lattice and explore the phase transition
through the quench dynamics. In Sec. III, we explore the QST
on a spin ladder in the topological phase. In Sec. IV, the QST
on a square lattice in the form of a 2D SSH model is also
discussed. Conclusions are presented in Sec. V.

II. SPIN MODEL ON THE SQUARE LATTICE

In this section, we consider a transverse field XY spin
model on a square lattice shown in Fig. 1. The size of the
square lattice is L × M, indicating that the square lattice has
L unit cells along one direction and has M unit cells along
the other direction and the total number of the sites is N =
4(L × M ). The site numbers are marked as Fig. 1 shows with
a, b, c, and d representing the four spins on the corner sites.
The Hamiltonian of the system is given by

H =
∑
〈i j〉

Ji j
(
sx

i sx
j + sy

i sy
j

) + μ
∑

i

sz
i . (1)

The parameter Ji j is the coupling strength between nearest-
neighbor spins, μ is the strength of the transverse field, and
�si = (sx

i , sy
i , sz

i ) is the spin-1/2 operators of the ith spin. The
spin model can be experimentally realized by some platforms,
including ultracold atoms in optical lattices [62], trapped ions
[63], and quantum dots [64]. The couplings Ji can be created
in these systems. Taking the ultracold atoms in optical lattices
as an example [65], the couplings can be tuned by additional
laser beams or the spatial light modulator technology, which,
in principle, can create arbitrary potentials and couplings for
ultracold atoms.

With the relations

�s = h̄

2
�σ , σ±

i = 1

2

(
σ x

i ± iσ y
i

)
, (2)

the Hamiltonian can be written in terms of Pauli operators as
(taking h̄ = 1)

H =
∑
〈i j〉

Ji j

2
(σ+

i σ−
j + σ−

i σ+
j ) + μ

∑
i

(
σ+

i σ−
i − 1

2

)
. (3)

In the following, considering the strengths of the interactions
as

JA = 2κ (1 + λ), JB = 2κ (1 − λ), (0 � λ � 1), (4)

we have

H =
∑
〈i j〉

κi j (σ
+
i σ−

j + σ−
i σ+

j ) + μ
∑

i

σ+
i σ−

i , (5)

where κi j take two kinds of value

κA = κ (1 + λ), κB = κ (1 − λ). (6)

We consider the specific form for the couplings JA and JB here
to obtain a lattice in the form of a 2D SSH model, which
consists of four sites per unit cell with dimerized nearest-
neighbor hoppings. Then, JA is the intracell hopping, and JB

is the intercell hopping. The constant −μ/2 is dropped here
because it has no effect on the evolution of the system. This
Hamiltonian is in the form of a 2D SSH model with the first
term being the hopping part and the second term being the
on-site potential.

We consider a normalized single-excitation state for the
spin model on the square lattice

|ψ〉 =
N∑

n=1

ψn|n〉, (7)

where

|n〉 = |0〉1 ⊗ |0〉2 ⊗ · · · |1〉n ⊗ · · · (8)

represents that the nth spin is excited while others are at
ground state. In the single-excitation subspace, the Hamilto-
nian H can be written as a N × N matrix {Hmn}N×N :

H =
∑
mn

Hmn|m〉〈n|. (9)

For the single-excitation subspace considered here, the matrix
{Hmn} in Eq. (9) is equivalent to that of a standard tight-
binding Hamiltonian for a single particle moving on a square
lattice.

It is known the 2D SSH model has chiral symmetry as well
as C4v symmetry and the band structure in the lattice is in a
topological phase for −1 < λ < 0 and in a trivial phase for
0 < λ < 1. In the following, we take a square lattice with the
size L = M = 5. The energy eigenvalues Ej ( j = 1, 2, . . . , N)
of such a finite structure, in units of κ , are shown in Fig. 2(a).
The second-order topological corner states corresponding to
the zero-energy modes (red lines) as well as the edge modes
(cyan lines) emerge for −1 < λ < 0. Figure 2(b) shows the
energy eigenvalues of the system with λ = −0.5.

The density of several eigenstates of the system in the
topological phase with λ = −0.5 are shown in Fig. 3. A bulk
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FIG. 2. (a) The energy spectrum of a finite lattice with the size L = M = 5. (b) The energy eigenvalues (in units of κ) of the spin model
on the lattice with λ = −0.5.

state is shown in Fig. 3(a), where the probability amplitude
of the state is mainly distributed on the bulk sites. One of the
edge state is shown in Fig. 3(b), and the probability amplitude
of the state is mainly distributed on the edge sites. Figure 3(c)
is one of the corner states, and the probability amplitude of
the state becomes small except for the four corners. These
corner states are bound states in the continuum due to these
zero-energy modes existing in the continuous band structure.
The edge states and corner states vanish when the system is in
the trivial phase.

The system evolves under the equation

i
d

dt
ψn(t ) =

N∑
m=1

Hnmψm(t ) + μψn(t ), (10)

then the time-dependent single-excitation state is

|ψ (t )〉 =
N∑

n=1

ψn(t )|n〉. (11)

The time evolution equation (10) can be solved by

|ψ (t )〉 =
N∑

i=1

Cie
−iEit |φi〉, (12)

where Ei and |φi〉 are the ith eigenvalue and the ith eigenstate
of the Hamiltonian H and Ci = 〈φi|ψ (0)〉.

The topological property of a topological system can be
expressed by the quench dynamics [66,67], where a pulse is
given to one site and its time evolution described by Eq. (10)

FIG. 3. Density of (a) a bulk state, (b) an edge state, and (c) a
corner state. The lattice is in the topological phase with λ = −0.5.

is explored. During the process of the quench dynamics, the
initial state is prepared in an eigenstate of a Hamiltonian H1,
and then this state evolves under another Hamiltonian H2,
which is a new Hamiltonian carried out by suddenly changing
some parameters of H1. Here, we prepare the initial state
as |ψ (0)〉 = |1〉, which is an eigenstate of the Hamiltonian
H in Eq. (9) with λ = −1. Then, the system evolves under
the Hamiltonian H by suddenly changing the parameter λ.
With the initial condition ψ1(0) = 1, i.e., the spin on the
first site of a square lattice of a finite size L = M = 5 is
on the excited state at the beginning, we plot the amplitude
|ψ1| varies with λ at the time κt = 10 in Fig. 4. It is shown
that the amplitude |ψ1| is a finite value when the system
is in the topological phase, while it is almost zero in the
trivial phase. The finite value near λ = 1 corresponding to the
tetramer phase, where the system is decomposed into a set
of tetramers with the tetramer limit λ = 1, and the energy is
transmitted only in the first cell. When it is expanded with
the eigenstates of the Hamiltonian H , the components of
the initial state |ψ (0)〉 = |1〉 considered here are mainly the
corner states in the topological phase. The evolution speed is
mainly dependent on the narrow gap between the eigenvalues

FIG. 4. The probability amplitude of the first spin staying at the
excited state when the system evolves to the state at the time κt = 10.
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FIG. 5. A spin ladder with the size L × M = 5 × 1.

corresponding to the corner states, so the presence of the
higher-order corner states makes the particle tend to spend
time at this corner site. Moreover, a much stronger indicator
of a nontrivial topology is the topological invariant. For the
2D SSH model, the topological invariant Zak phase has been
calculated in some works [68,69], where the Zak phases along
the x and y directions are Px = Py = 1/2 for the topological
phase and Px = Py = 0 for the trivial phase.

III. QUANTUM STATE TRANSFER ON A SPIN LADDER

We first discuss the dynamics of qubits on a square lattice
with the size 5 × 1 in the form of a so-called spin ladder
shown in Fig. 5. This spin ladder can be regarded as parallel
spin-chain channels with the couplings between the spins on
the two parallel spin chains and the entanglement transfer on
the channels with homogeneous spin chains has been investi-
gated. The two coupled spin chains discussed here are in the
form of the SSH model.

Figure 6 is the time evolution of the spin ladder with
the initial state |ψ (0)〉 = |1〉1 ⊗ ∏

n �=1 |0〉n, meaning that only
the first spin (qubit a) is excited initially. Figures 6(a1) to
6(a5) present the evolution of the system in the topological
phase (λ = −0.5). The corner states of a square lattice will
degenerate to the edge states like that of the 1D SSH model
when the lattice is of such a size. Due to the existences of the
edge states, the exchange of energy is mainly concentrated on
the edge sites, and less energy will flow into the bulk sites.
Figures 6(b1) to 6(b5) describe the system evolving in the

FIG. 6. Time evolution of the spin ladder with the first spin
being excited initially. The parameters are set as (a1)–(a5) λ = −0.5
(topological) and (b1)–(b5) λ = 0.5 (trivial).

FIG. 7. The maximum fidelity Fmax on each site of the spin ladder
in a time interval 0 � κt � 1000, with the initial state |ψ (0)〉 =
|1〉1 ⊗ ∏

n �=1 |0〉n. The parameters are set as λ = −0.5 for the topo-
logical phase and λ = 0.5 for the trivial phase.

topological phase (λ = 0.5). In this case, the energy flows into
the bulk sites irregularly due to the absence of the edge state.

The time evolution of the system shown in Fig. 6 can be
treated as a problem of QST with a single excitation on the
first spin qubit. To describe the quality of the QST on the
lattice, we employ the wildly used fidelity defined as

F (t ) =
√

〈ψ1(0)|ρi(t )|ψ1(0)〉, (13)

where |ψ1(0)〉 is the initial state of the first spin (sender) and
ρi(t ) is the reduced density matrix of the ith spin (receiver)
at time t . The fidelity F = 1 indicates a perfect QST from
one site to another. In this way, we discuss the quality of the
QST from the first qubit to other qubits on the lattice through
the maximum fidelity Fmax at each site. In Fig. 7, we plot
the maximum fidelity Fmax at each site of the spin ladder,
where the maximum fidelity Fmax is obtained in a time interval
0 � κt � 1000. Due to the existence of the edge states in the
topological phase with λ = −0.5, the values of Fmax at the
edge sites are much larger than that at the bulk sites. While in
the trivial phase with λ = 0.5, Fmax has an increase on each
bulk site, but it becomes lower at the edge sites.

Next, we discuss the dynamics of the entanglement of a
two-qubit system. The density matrix of the whole system is
ρ(t ) = |ψ (t )〉〈ψ (t )|. We focus on the evolution of the entan-
glement of two qubits, for example, spins a and b (or c and d),
and the others spins are treated as the environment E . These
spins are marked in Fig. 5. So we derive the reduced density
matrix ρS (t ) of the two qubits through a partial trace operation
to ρ(t ),

ρS (t ) = TrE [ρ(t )], (14)

which trace out the degrees of freedom of all the other spins.
In the basis {|00〉, |01〉, |10〉, |11〉}, the reduced density ma-
trix ρS (t ) is a 4 × 4 matrix. For two spin-1/2 qubits, the
entanglement can be measured by Wootters’ concurrence de-
fined as [61]

C(ρS ) = max{
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4, 0}, (15)

where λ1 � λ2 � λ3 � λ4 are the eigenvalues of the ma-
trix ρS (σ y ⊗ σ y)ρ∗

S (σ y ⊗ σ y). The two qubits are maximally
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FIG. 8. (a) Evolution of the entanglement between qubits a and
b (c and d) on a spin ladder. (b) Entanglement transfer from qubits
a and b to qubits c and d on a spin ladder, described by the con-
currence C as a function of κt . The initial states are (a) |ψ (0)〉 =
|1〉1 ⊗ ∏

n �=1 |0〉n and (b) |ψ (0)〉 = 1√
2
(|1〉a|0〉b + |0〉a|1〉b) and the

parameter is set as λ = −0.5.

entangled for concurrence C = 1 and there exists no entangle-
ment between the two qubits when concurrence C = 0.

With the topological edge states and higher-order corner
states, we would like to realize the entanglement transfer
from one side (or corner) to another side in the topological
phase. In Fig. 8(a), we plot the concurrence C as a function
of κt to express the evolution of the entanglement between
two qubits with the initial state |ψ (0)〉 = |1〉1 ⊗ ∏

n �=1 |0〉n.
At the beginning, only the qubit a is excited. With the system
evolving, the qubit a will interact with its closest site, qubit b,
resulting in the generation of the entanglement between qubits
a and b. Then, the energy is transmitted as Fig. 6 shows, and
finally, the entanglement between c and d is generated. Since
the initial state of the system is |ψ (0)〉 = |1〉, and there is
no entanglement between qubits at the beginning. However,
when the system is in the topological phase, the entanglement
between two qubits can be generated through the interaction
between spins with less energy flowing into the environment.

In Fig. 8(b), the concurrence C as a function of κt with
the initial state |ψ (0)〉 = 1√

2
(|1〉a|0〉b + |0〉a|1〉b) is plotted. In

this case, qubits a and b are prepared as a maximally entangled
state initially with concurrence Cab = 1, and we are concerned
with the transfer of the entanglement from qubits a and b to
qubits c and d . As is shown in Fig. 8(b), with the concurrence
of qubits a and b decaying, the concurrence of qubits c and
d rises gradually. Due to the tiny values of the probability
amplitudes of bulk sites for the topological edge or corner
states, the energy of qubits a and b may not be transmitted
to c and d completely. For this reason, the state obtained at
the edge with qubits c and d will be a state approaching to a
maximally entangled one. So the entanglement can be trans-
mitted through the topological spin ladder with high quality.
One may hope to obtain a the maximally entangled state after
the transmission of the state, so the stop of the transmission
should be considered when needed. In addition, one way to
control the start and stop of the transmission is switching on
and off the weak couplings, which has been applied in many
works [48,49,58].

In Fig. 9, we explore the influence of the size of the spin
ladder on the maximum value of the entanglement between
qubits c and d during the evolution of the system. For a
topological structure, the size of the lattice has a huge impact
on the QST time, so we evaluate the maximum concurrence

FIG. 9. The maximum concurrence Cmax of the qubits c and d
on the spin ladder for different sizes L (M = 1) in a time interval
0 � κt � 10 000, with the initial state |ϕ1〉 = |1〉1 ⊗ ∏

n �=1 |0〉n and
|ϕ2〉 = 1√

2
(|1〉a|0〉b + |0〉a|1〉b). The parameter is set as λ = −0.5.

Cmax in a large time interval 0 � κt � 10 000. On the spin
ladder, when the initial state is |ϕ1〉 = |1〉1 ⊗ ∏

n �=1 |0〉n, Cmax

has an evident improvement with the size L increasing from 1
to 2. When the size is L = 1, the lattice contains only one cell
with four spins, and the transfer time of the energy from a to
d is longer than that of from a to c, resulting in a small Cmax.
For the initial state |ϕ2〉 = 1√

2
(|1〉a|0〉b + |0〉a|1〉b), Cmax has a

slight decrease with the size L increasing, which is caused by
the increase of the amount of environmental spins.

IV. QUANTUM STATE TRANSFER ON A SQUARE LATTICE

In this section, we analyze the dynamics of spin qubits on a
square lattice with size 5 × 5, in the form of a 2D SSH model,
shown in Fig. 1.

In Fig. 10, we initially prepare the first spin at the ex-
cited state and plot the time evolution of the square lattice.
Figures 10(a1) to 10(a5) describe the evolution of the lattice
in the topological phase, and in this case, the system will
evolve mainly in the form of the superposition of the corner
states according to Eq. (12). The energy of the first spin is
transmitted through the lattice in the form of the propagation
of a weak wave and is mainly distributed on the corner sites
and the sites near the four corners. The transmission of the
energy is in a symmetrical form due to the symmetry of the
square lattice with the axis ad , with spins a, b, c, and d marked
in Fig. 1. Figures 10(b1) to 10(b5) show the evolution of the
lattice in the trivial phase. The symmetry of the transmission
of the energy also exists in the trivial phase. However, due to
the absence of the topological corner state, the distribution of
the density of the state is mainly on the bulk sites.

The maximum fidelity Fmax at each site of the square lattice
is shown in Fig. 11, with maximum fidelity Fmax obtained in
a time interval 0 � κt � 1000. The QST on a square lattice
with λ = 0 (JA = JB) was studied in Ref. [56]. It was reported
that the maximum fidelity Fmax on the square lattice is in the
form of the central symmetry. As is shown in Fig. 11(a), in the
topological phase, when qubit a is stimulated at the beginning,
the maximum fidelity Fmax of qubit d has the highest value,
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FIG. 10. Time evolution of the XY model on the square lattice with the first spin being excited initially. The parameters are set as (a1)–(a5)
λ = −0.5 (topological) and (b1)–(b5) λ = 0.5 (trivial).

while Fmax at other sites are much lower. In Fig. 11(b), when
the system is in the trivial phase, Fmax of other qubits is in-
creased, also in a form of the central symmetry. Although the
maximum fidelity Fmax of on the trivial lattice has an overall
improvement, the QST on the lattice is disordered as shown
Figs. 10(b1) to 10(b5).

The time evolution of the entanglement between qubits
measured by the concurrence C is shown in Fig. 12(a), where
the initial state of the system is |ψ (0)〉 = |1〉1 ⊗ ∏

n �=1 |0〉n.
Like the case of the spin ladder, although there is no entan-
glement between qubits at the beginning, the entanglement
between qubits a and b can also be generated through the
environment spin qubits on the lattice, and then, the entan-
glement between qubits a and b is transmitted to qubits c and
d through the lattice. Different from that in the spin ladder,
the entanglement will not reach to the maximum even the
time is long enough. It can be explained by the evolution in
Figs. 10(a1) to 10(a5), the energy of spin a propagates through
a longer path to qubit d than it propagates to qubit c. So the
energy is almost impossible to mainly and equally distribute
on qubits c and d and the entanglement can not reach to the
maximum for this reason.

FIG. 11. The maximum fidelity Fmax on each site of the lattice in
a time interval 0 � κt � 1000, with the initial state |ψ (0)〉 = |1〉1 ⊗∏

n �=1 |0〉n. The parameters are set as (a) λ = −0.5 and (b) λ = 0.5.

The concurrence C as a function of κt with qubits a and
b initially prepared in a maximally entangled state |ψ (0)〉 =

1√
2
(|1〉a|0〉b + |0〉a|1〉b) is also plotted in Fig. 12(b). Similar

to the time evolution of the spin ladder shown in Fig. 8, the
entanglement between qubits c and d is gradually generated
and reaches to the maximum (about 0.95) with the decay of
the entanglement between qubits a and b. The oscillations
on the curve, which also exist in Fig. 8(b), represent the
interactions between the environmental spins, and the larger
amplitudes of oscillations in Fig. 12(b) indicate more envi-
ronmental spins in the square lattice than in the spin ladder.
When the energy is distributed to qubits a and b equally at the
beginning, the transmission of the energy from qubits a and b
to qubits c and d is symmetrical along the horizontal direction
so the maximally entangled state can be transmitted through
the lattice with a high maximum concurrence, although not
perfectly. This is different from the results of the case of the
product state shown in Fig. 12(a).

The influence of the size of the square lattice on the
maximum value of the entanglement between qubits c and
d during the evolution of the system is shown in Fig. 13.

FIG. 12. (a) Evolution of the entanglement between qubits a and
b (c and d) and (b) entanglement transfer from qubits a and b to
qubits c and d on a square lattice, described by the concurrence C as
a function of κt . The initial states are (a) |ψ (0)〉 = |1〉1 ⊗ ∏

n �=1 |0〉n

and (b) |ψ (0)〉 = 1√
2
(|1〉a|0〉b + |0〉a|1〉b), and the parameter is set as

λ = −0.5.
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FIG. 13. The maximum concurrence Cmax of the qubits c and d
on the square lattice for different sizes L (M = L) in a time interval
0 � κt � 10 000, with the initial state |ϕ1〉 = |1〉1 ⊗ ∏

n �=1 |0〉n and
|ϕ2〉 = 1√

2
(|1〉a|0〉b + |0〉a|1〉b). The parameter is set as λ = −0.5.

For the initial state |ϕ1〉 = |1〉1 ⊗ ∏
n �=1 |0〉n, Cmax remains a

small value. Because, on the square lattice, the difference
between the paths of transmission from a to c and from a to
c keeps huge with the increase of size L. For the initial state
|ϕ2〉 = 1√

2
(|1〉a|0〉b + |0〉a|1〉b), Cmax also has a slight decrease

with the size L increasing, which is similar with that shows in
Fig. 9.

V. CONCLUSION

In conclusion, through the quench dynamics, we inves-
tigated the topological properties of a Heisenberg XY spin

model on the square lattice, in the form of a 2D SSH model.
Based on the topological edge states of the spin ladder and
the higher-order topological corner states of the square lattice,
we explored the time evolution and transfer of quantum states
including single-excitation state and entangled state on the
lattices. For the transmission of a single-excitation state, the
first spin at the corner site of the spin ladder and square lattice
is stimulated initially. It has been found that, at the edge sites
of the spin ladder or the corner sites the square lattice, the
maximum fidelity is much larger than that at the bulk sites
when the systems are in the topological phase. Specifically,
on the square lattice, the distribution of the maximum fidelity
is in the form of the central symmetry. In addition, the state
approaching to a maximally entangled state can be generated
between two qubits when a qubit on the edge of the spin ladder
is excited initially, and the maximally entangled state between
two qubits at one edge of the spin ladder can be transmitted
to the two qubits at the other edge with high quality. While
for the square lattice, the maximally entangled state cannot
be generated when only one qubit at a corner of the lattice is
excited initially due to the different paths of the propagation
of the energy. However, due to the symmetry of the square lat-
tice, when two qubits at the corners of the lattice is maximally
entangled at the beginning, the maximally entangled state can
also be transmitted to the two qubits at the other two corners
with high quality. Our results provide an effective scheme to
transmit quantum entanglement in small solid-state devices.
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