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Electrodynamic Aharonov-Bohm effect
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We propose an electrodynamic Aharonov-Bohm (AB) scheme where a nonzero AB phase difference appears
even if the interferometer paths do not enclose a magnetic flux and are subjected to negligible scalar potential
differences during the propagation of the quantum charged particle. In the proposal, the current in a solenoid
outside the interferometer varies in time while the quantum particle is in a superposition state inside two Faraday
cages, such that it is always subjected to negligible electromagnetic fields. At first glance, this result could
challenge the topological nature of the AB effect. However, by considering the topology of the electromagnetic
field configuration and the possible particle trajectories in spacetime, we demonstrate the topological nature of
this situation.
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In the magnetic Aharonov-Bohm (AB) effect, the inter-
ference pattern of quantum charged particles depends on the
magnetic flux enclosed by the interferometer paths even if the
particles only propagate in regions with null electromagnetic
fields [1,2]. This effect was experimentally observed with
many different systems [3–12] and has a profound fundamen-
tal significance in physics, since it contradicts the notion that
an electric charge is only affected by the local electromagnetic
fields.

The magnetic AB effect has a topological nature [13,14],
as discussed in textbooks [15–17], since it is not possible to
deform one of the interferometer paths into the other, while
keeping its initial and final positions, without crossing a re-
gion with nonzero magnetic fields. The region with a null
field is not simply connected. Also, the AB phase difference
depends only on the magnetic flux enclosed by the two inter-
ferometer paths, not on the specific paths geometry.

But here we predict nonzero AB phase differences when
the electric current in a solenoid outside the interferometer
varies in time while the quantum particle is in a superposition
state inside two Faraday cages, with the particle paths enclos-
ing no magnetic flux and being subjected to a negligible scalar
potential difference. This result could challenge the topolog-
ical nature of the AB effect. However, by considering the
topology of the spacetime region with a null electromagnetic
field and the possible particles trajectories also in spacetime,
not only in space, we demonstrate the topological nature of
this situation.

Consider that we have an interferometer for a quantum
nonrelativistic charged particle, which may propagate through
two paths a and b. If the particle is subjected to nonzero
vector and scalar potentials A and V , but always propagates
in regions with null electromagnetic fields, it suffers no elec-
tromagnetic force. However, the term HI = qV − (q/m)p · A
in the system Hamiltonian, where q, m, and p are the particle
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charge, mass, and momentum, respectively, couples the quan-
tum particle charge to the electromagnetic potentials. This
coupling may result in a nonzero phase difference between
the two particle paths in the interferometer, in the so-called
AB effect [1,2]. Consider that the particle wave packets are
reasonably well localized along positions xi(t ) in each path
during their propagation, with i = {a, b}. In this case, the AB
phase accumulated in each path can be written as

φi = −
∫ t

t0

HI

h̄
dt ′ = −q

h̄

∫ t

t0

V dt ′ + q

h̄

∫ xi

x0

A · dx, (1)

where p/m was substituted by the average wave-packet ve-
locity dxi/dt , we have xa(t0) = xb(t0) = x0 before the wave
function splitting in the interferometer, and the spatial integral
is performed through the particle path. In all situations to be
treated here, we assume that the interferometer lengths are
small and the timescales are large, such that the fields prop-
agation times within the interferometer can be disregarded.

Figure 1 illustrates a scheme that demonstrates the mag-
netic AB effect [1,2]. An infinite solenoid with magnetic
flux �0 produces null electromagnetic fields in the particle
paths. However, the particle is subjected to a nonzero vector
potential. Using Eq. (1), Stokes’ theorem, and the relation
B = ∇ × A for the solenoid magnetic field, the AB phase
difference between the paths is given by

φ
(1)
AB = q

h̄

∮
A · dx = q

h̄

∫
S

B · da = q�0

h̄
, (2)

with the surface S of the area integral having the particle paths
as its boundary. The result is the same for a very long solenoid,
with the particle propagating in regions with negligible fields.
Experiments were done with a toroidal magnetic covered by a
superconductor [4], guaranteeing that the particles only propa-
gate in regions with negligible fields, confirming the predicted
AB phase difference.

Figure 2(a) illustrates the electric AB effect [2]. A quantum
particle is sent to the interferometer. The scalar potentials Va

and Vb of the Faraday cages are always zero while the quantum
particle is outside them. But while the quantum particle is in a
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FIG. 1. Magnetic AB effect. A quantum charged particle has two
possible paths in an interferometer that encloses an infinite solenoid.
The AB phase difference between the paths depends on the solenoid
magnetic flux, with the particle only propagating in regions with
negligible electromagnetic fields.

superposition state inside both cages, the potentials Va and Vb

vary and come back to zero before the particle wave function
leaves them. So, the quantum particle is always subjected to
null electromagnetic fields. Using Eq. (1), we conclude that
the AB phase difference between the paths is given by

φ
(2)
AB = −q

h̄

∫
(Va − Vb)dt . (3)

This electric AB effect is also a topological effect [18,19].
To see that, we must consider the topology of the electric
field configuration and the particle possible trajectories in
spacetime, not only in space. Figure 2(b) shows the possible
spatiotemporal trajectories of the particle in the interferometer
and the relevant behavior of the electric field in spacetime.
The spacetime region with a nonzero electric field is repre-
sented in green, such that the region with a null field is not
simply connected. By deforming one of the spatiotemporal
trajectories into the other in Fig. 2(b), while keeping the initial
and final points of these trajectories, we define a spacetime
surface S , for instance the blue one in this figure. The general

construction of these spacetime surfaces is described in
Fig. 2(c). We can write the potential difference between the
Faraday cages a and b at time t as Va(t ) − Vb(t ) = ∫ xb

xa
E(r, t ) ·

dr(t ), E(r, t ) being the electric field generated by the elec-
tric charges in the cages. Note that this integral is the same
irrespective of the curve that goes from any point xa inside
Faraday cage a to any point xb inside Faraday cage b. So,
according to Eq. (3) the AB phase difference is given by the
following integral at the spacetime surface defined by the cited
path deformation [18],

φ
(2)
AB = −q

h̄

∫∫
S

dt dr(t ) · E(r, t ). (4)

This AB phase difference does not depend on the specific ge-
ometry of the possible particle trajectories in spacetime nor on
the specific spacetime surface S that is formed with the cited
path deformation, as long as the spacetime surface has the
possible particle trajectories as its boundary. It depends only
on the topology of the spacetime region with a null electric
field and on general features the particle possible trajectories
in spacetime. If one possible trajectory crosses one of the
“holes” in spacetime with no electromagnetic field in Fig. 2(b)
and the other possible trajectory crosses the other “hole,”
the above AB phase difference appears. For this reason, the
electric AB effect is also a topological effect.

Now let us introduce the situation depicted in Fig. 3(a),
which corresponds to an electrodynamic AB effect. The elec-
tric current in the infinite solenoid outside the interferometer
linearly changes while the quantum particle is in a superpo-
sition state inside the Faraday cages, generating an electric
field in the interferometer region. Charges are induced in the
cages to cancel the total electric field inside them, such that
the quantum particle is always subjected to negligible electro-
magnetic fields. Consider that the wave packets in each path
are close to the positions Ra and Rb inside the Faraday cages
while the solenoid current changes, not moving much. The
total AB phase difference can then be computed from three
terms, according to Eq. (1). Let us consider the Lorenz gauge
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FIG. 2. Electric AB effect. (a) A quantum charged particle has two possible paths in an interferometer, each one with a Faraday cage.
When the particle is in a superposition state inside both cages, their potentials Va and Vb vary and come back to zero before each component
of the wave function leaves the corresponding cage. The AB phase difference depends on the potential difference between the paths during the
particle propagation. (b) Possible spatiotemporal trajectories xa(t ) and xb(t ) of the particle in the interferometer, in black. We are only showing
the spatial xy plane in the figure, assuming that the particle trajectories are in this plane. The time coordinate is represented in the vertical
direction. The spacetime region with a nonzero electric field is represented in green. One of the possible spacetime surfaces whose boundaries
are the trajectories xa(t ) and xb(t ) is represented in blue. (c) Construction of the spacetime surface S, whose boundaries are the trajectories
xa(t ) and xb(t ). This figure is in three-dimensional (3D) spatial coordinates. For each time t , we define a continuous curve Ct in space that
goes from the position xa(t ) to the position xb(t ) through infinitesimal displacements dr(t ). The spacetime surface S is formed by connecting
consecutive curves, as illustrated here between times t and t + dt . The spatial component of the formed infinitesimal spacetime surface is also
defined in the figure.
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FIG. 3. Proposed electrodynamic AB scheme. (a) A charged particle propagates through the interferometer, with two possible paths. While
it is in a superposition state inside both Faraday cages, the solenoid current linearly changes. The AB phase difference between the paths in
general is nonzero. (b) Possible spatiotemporal trajectories xa(t ) and xb(t ) of the particle in the interferometer, with the same representation
as in Fig. 2(b). The spacetime region with a nonzero electric field is represented in green and the regions with nonzero magnetic field are in
yellow and orange. One of the possible spacetime surfaces whose boundaries are the trajectories xa(t ) and xb(t ) is represented in blue. (c) The
same as in (b), but with a different spacetime surface formed by a different deformation of one trajectory into the other.

to compute it. The first term results from the interaction of
the quantum particle with the initial vector potential Ai while
its wave function propagates from the start to the superposed
positions Ra and Rb, being given by (q/h̄)[

∫ Ra

Rb
Ai · dx]st.,

with the integral performed from the path that goes from Rb

to Ra passing through the start position in Fig. 3(a). A second
term results from the interaction of the particle with the scalar
potential resultant from the electric charges that are induced in
the Faraday cages, being given by (−q/h̄)

∫
dt (Va − Vb). The

final contribution comes from the interaction of the particle
with the final vector potential A f while its wave function
propagates from the superposed positions Ra and Rb to the
end position, being given by (q/h̄)[

∫ Rb

Ra
A f · dx]end, with the

integral performed from the path that goes from Ra to Rb

passing through the end position in Fig. 3(a). By writing
A f = Ai + �A, we can write the total AB phase difference as

φ
(3)
AB = q

h̄

∫
(Vb − Va)dt + q

h̄

∮
Ai · dx

+ q

h̄

[∫ Rb

Ra

�A · dx

]
end

. (5)

The total AB phase difference given by Eq. (5) in general
is nonzero. The second term on the right-hand side of the
above equation is zero, since no magnetic flux is enclosed
by the paths. For very small Faraday cages, the first term on
the right-hand side should be negligible. But even for cages
that are not so small, the first term on the right-hand side may
be negligible depending on the system symmetry. The total
charge induced on the surface of each Faraday cage is zero, so
in general there will be regions inside one cage with the same
scalar potential in Lorenz gauge as regions inside the other
cage (note that the scalar potential is not uniform inside the
cages in this situation, since the electric field derived from it
should cancel the electric field generated by the varying vector
potential). The positions Ra and Rb can be chosen in these
regions. On the other hand, the last term on the right-hand
side of Eq. (5) in general is nonzero. The fact that the vector
potential changes during the particle propagation through the
interferometer makes the circulation of the vector potential to
be nonzero from the wave packets’ point of view, generating
this phase term. This proposed electrodynamic AB effect is

thus distinct from the usual electric AB effect, since in the
electric AB effect of Fig. 2 the origin of the AB phase (and
of the system electric field) is a scalar potential, while in the
electrodynamic AB effect of Fig. 3 the AB phase (and the
system relevant electric field) is generated by a varying vector
potential.

In Ref. [18], the authors consider an AB scheme where
the possible particle paths enclose an infinite solenoid whose
electric current varies in time. But since there were no
Faraday cages in this situation, the quantum particle suffers a
path-dependent force due to the induced electric field, whose
contribution cancels the AB phase generated by the current
variation [18]. In our case, the absence of force due to the
presence of the Faraday cages may result in a nonzero con-
tribution from the electric current variation for the AB phase
difference.

It is worth mentioning that, with multiparticle interference,
there may be a nonzero AB phase even if no particle encloses
a magnetic flux [20,21]. However, in these situations a com-
bination of the different particles paths do enclose a magnetic
flux [20,21]. So, we are dealing with a different situation in
the electrodynamic AB effect proposed here.

A nonzero AB phase difference in the scheme of Fig. 3(a)
indicates that the AB phase is continuously acquired by the
quantum particle during its propagation, as predicted in quan-
tum electrodynamics treatments [22–25].

A topological description for the AB phase difference of
Eq. (5) in the scheme of Fig. 3(a) is also possible by con-
sidering the fields in spacetime, as shown in Fig. 3(b). The
spacetime region corresponding to nonzero magnetic fields
are represented in yellow and orange, with these two colors
corresponding to different values for the field. The spacetime
region corresponding to a nonzero electric field is represented
in green. We can see that the region with a null electromag-
netic field is not simply connected in spacetime. As before, we
consider deformations of one of the possible particle trajecto-
ries into the other in spacetime, showing that the AB phase
depends on the topology of the spacetime region where the
electromagnetic fields are null. If it is not possible to deform
one of the possible particle trajectories in spacetime into the
other without crossing a region where the electromagnetic
fields are nonzero, we may have a nonzero AB phase dif-
ference that depends on the flux of the electric and magnetic
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fields on the spacetime surface formed by this deformation. In
the general case, the AB phase can be written as a combination
of Eqs. (2) and (4) [18],

φAB = q

h̄

[∫
S

da(t ) · B(r, t ) −
∫∫

S
dt dr(t ) · E(r, t )

]
, (6)

with the integrals performed on the spacetime surface defined
by the cited deformation of the interferometer possible trajec-
tories. It is clear that the situations of Figs. 1 and 2, with the
AB phase differences given by Eqs. (2) and (4), are particular
situations that are accounted by the general form of Eq. (6).
Being written in terms of the electromagnetic fields, the AB
phase of Eq. (6) is clearly gauge invariant.

In Eq. (5), by writing Vb − Va = − ∫ Rb

Ra
EV (r, t ) · dr(t ),

where EV is the electric field generated by the scalar potential
associated to the induced charges in the Faraday cages, and
�A = − ∫

dtEA, where EA is the electric field generated by
the varying vector potential, we can write

φ
(3)
AB = −q

h̄

[∫
dt

∫ Rb

Ra

E(r, t ) · dr

]
end

, (7)

E = EV + EA being the total electric field. In all regions out-
side the solenoid in Fig. 3(a), we have ∇ × A = 0 during all
times, such that we can write A = ∇F with F being a scalar
function. Since we have EV = −∇V and EA = −∂/∂t[∇F ],
the spatial integral in Eq. (7) is the same for any two paths
that do not enclose the solenoid. In this way, for the spacetime
surface in blue in Fig. 3(b) constructed from the deformation
of one of the possible particle trajectories into the other as
described in Fig. 2(c), the AB phase computed by Eq. (6)
agrees with the one from Eq. (7) [note that the second integral
of Eq. (6) is performed in the spacetime surface formed by
the superposition of the blue surface with the green solid in
Fig. 3(b)]. This AB phase does not depend on the specific
spacetime geometry of the possible particle trajectories. But
to conclude that it is indeed topological, it is important to
confirm that it does not depend on the specific spacetime
surface that is formed with the cited trajectories deformation,
as we do in the following.

As mentioned above, the spatial integral in Eq. (7) is the
same for any two paths that do not enclose the solenoid.
But this is not true for two paths that, together, enclose the
solenoid. Consider the spacetime surface in blue in Fig. 3(c),
constructed from a different deformation of one of the pos-
sible particle trajectories into the other. For each fixed time,
the spatial integral of the second term of Eq. (6) from Ra to
Rb in the spacetime surface of Fig. 3(c), when combined with
the spatial integral from Rb to Ra in the spacetime surface of
Fig. 3(b), form a closed curve that encloses the solenoid. This
means that the contribution of the second term of Eq. (6) for
the AB phase difference differs for the spacetime surfaces of
Figs. 3(c) and 3(b) by an amount

q

h̄

∫ t f

ti

dt
∮

dr · ∂A
∂t

= q

h̄

[∮
dr · A

]t f

ti

= q

h̄
(� f − �i ), (8)

where we have used EA = −∂A/∂t , ∇ × A = B, and Stokes’
theorem, with �i and � f being the initial and final magnetic
fluxes in the solenoid (at times ti and t f ). But note that in
the spacetime surface of Fig. 3(c) the first term of Eq. (6)

also contributes for the AB phase, since we have two dif-
ferent magnetic fluxes crossing it. This contribution is given
by q(�i − � f )/h̄, canceling the difference of Eq. (8), such
that we conclude that the AB phase difference of Eq. (6) is
the same for the spacetime surfaces indicated in Figs. 3(b)
and 3(c). It should be clear that this AB phase difference
does not depend on the specific spacetime surface that is
formed with the trajectories’ deformation in the scheme of
Fig. 3(a). It depends only on the topology of the region with
null electromagnetic field and on general properties of the
possible particle trajectories in spacetime [such as if each
possible trajectory crosses one of the “holes” in the green
solid of Figs. 3(b) and 3(c)]. For this reason, the proposed
electrodynamic AB effect of Fig. 3 is a topological effect.

The extension of the presented calculations for situations
where the potentials of the Faraday cages in Fig. 3(a) are
controlled as in Fig. 2(a), or where the particle paths enclose
a magnetic flux, is straightforward. In any case the general
AB phase is given by Eq. (6), written in terms of magnetic
and electric fluxes in a surface in spacetime which has the
particle possible trajectories as its boundary, in an explicitly
gauge-invariant form.

Electronic Mach-Zehnder interferometers exist for elec-
trons propagating in free space [26,27] and in material media
[7]. If it is possible to include Faraday cages in the interfer-
ometer paths for one of these implementations, the solenoid
current variation in the scheme of Fig. 3(a) could be time
correlated with the electrons’ incidence or with the elec-
trons’ detections, in order to select the situations where the
electrons only propagate in regions with negligible electro-
magnetic fields. It is worth mentioning that, since we have
time-dependent fields in the scheme of Fig. 3(a), the Faraday
cages in general cannot completely cancel the electric fields
inside them. But for a sufficiently slow time variation of the
solenoid current and for Faraday cages constructed with suf-
ficiently good conductors, the resultant fields inside the cages
should have a negligible influence in the particle dynamics,
such that the AB phase difference in principle could be mea-
sured. But even if the fields are not completely canceled inside
the Faraday cages, what happens is that extra effects would
appear, and if they are properly taken into account, in principle
the AB phase difference could still be inferred.

To summarize, we have presented the electrodynamic AB
effect depicted in Fig. 3, where a nonzero AB phase difference
may be present even if the interferometer paths enclose no
magnetic flux and are subjected to a negligible scalar potential
difference during the quantum charged particle propagation.
The topological description of the effect was also presented,
considering the possible particle trajectories in the interferom-
eter and the electromagnetic field configuration in spacetime.
It is clear that to understand the basic features of the AB
effect, including the details of its topological nature, is essen-
tial for our fundamental understanding of the electromagnetic
interactions in general. The experimental demonstration of the
proposed AB effect of Fig. 3 would certainly be an important
step in this direction.
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