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Quantum dynamics of non-Hermitian many-body Landau-Zener systems
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We develop a framework to solve a large class of linearly driven non-Hermitian quantum systems. Such
a class of models in the Hermitian scenario is commonly known as multistate Landau-Zener models. The
non-Hermiticity is due to the anti-Hermitian couplings between the diabatic levels. We find that there exists
a conservation law, unique to this class of models, that describes the simultaneous growth of the unnormalized
wave functions. These models have practical applications in Bose-Einstein condensates, and they can describe
the dynamics of multispecies bosonic systems. The conservation law relates to a pair-production mechanism that
explains the dissociation of diatomic molecules into atoms. We provide a general framework for both solvable
and semiclassically solvable non-Hermitian Landau-Zener models. Our findings will open alternative avenues
for a number of diverse emergent phenomena in explicitly time-dependent non-Hermitian quantum systems.
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I. INTRODUCTION

Non-Hermiticity has long been used to understand the dy-
namics of open quantum systems that cannot be explained
by standard Hermitian physics [1,2]. They have gained a
great deal of attention over the years for their unusual phe-
nomena, such as exceptional points [3–9], non-Hermitian
skin effects [10–13], and the non-Bloch bulk-boundary cor-
respondence [12,14–18]. A special class of non-Hermitian
systems is also known to exhibit a purely real-valued energy
eigenspectrum provided they satisfy an antilinear symmetry;
a seminal example is joint parity-time symmetry [19,20]. A
consistent quantum-mechanical framework may also be con-
structed for these systems [21–23]. Parity-time symmetry has
been observed across various areas in physical science, in-
cluding in optics [24–27], electronics [28,29], mechanics [30],
and acoustics [31]. This class of non-Hermiticity has been
demonstrated to have a transformational impact in nonrecip-
rocal photonic devices [32,33] and implications for improving
decoherence, entanglement entropy, and Fisher information
[34–36] in quantum information. Despite all these impor-
tant works in non-Hermitian physics, the key mechanisms
driving the dynamics of various explicitly time-dependent
non-Hermitian systems outside the Schrödinger picture are
poorly understood, and their practical applications remain to
be unraveled.

In general, the Schrödinger equation with a non-Hermitian
Hamiltonian does not enforce energy conservation and there-
fore is not applicable in closed quantum systems. However,
in some scenarios, the typically untrackable physics of many-
body Hermitian systems can be fully extracted from a simpler
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single-particle non-Hermitian Hamiltonian. This is possible
due to a one-to-one mapping of the Schrödinger equation to
the Heisenberg equation of motion for bosonic operators via
the Bogoliubov–de Gennes transformation [37] applied to
quadratic Hamiltonians. These many-body Hamiltonians can
be made time dependent by varying the chemical potential of
the bosonic modes. The resulting one-particle non-Hermitian
time-dependent Hamiltonian predicts the dissociation dynam-
ics of diatomic bosonic molecules (with bosonic atoms) in a
mean-field approximation [38,39]. Interestingly, a many-body
generalization of such a non-Hermitian model can be used to
investigate the dissociation of a mixture of molecules, given
by quadratic many-body Hamiltonians, where the reactions
are triggered due to the crossing of chemical potentials [40]. In
photonic platforms, such dynamic models can be used to tune
anti-Hermitian couplings in photonic waveguides to generate
a coherent amplification of light [41].

Despite growing interest in many-body non-Hermitian
dynamics, finding exactly solvable models that enable a
comprehensive understanding of the physical mechanisms
governing the temporal evolution in these systems remains
a challenge to overcome. Even in Hermitian physics, where
quantum integrability has been used as an effective tool to
produce a variety of solvable time-dependent models [42]
with anticipated applications [43–47], there is still no general
recipe for identifying solvable models with a combinatori-
ally large phase space. Remarkably, the analog of quantum
integrability in non-Hermitian time-dependent Hamiltonians
is still nonexistent. If and how quantum integrability leads to
additional solvable non-Hermitian models remains unclear to
date.

In this paper we present a method for constructing ex-
actly solvable, time-dependent many-body non-Hermitian
Hamiltonians from known multistate Landau-Zener (MLZ)
models [48–59] via anti-Hermitian couplings. Recently, other
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non-Hermitian variants of the Landau-Zener (LZ) model
have been explored [60–63]. We revisit the three key phe-
nomena relevant to MLZ models, now explicitly including
non-Hermiticity: the independent crossing approximation,
quantum integrability, and the conservation of probability.
We observe that there exists a conservation law that puts a
constraint on unnormalized amplitudes. The solutions of the
non-Hermitian multistate Landau-Zener (NMLZ) models are
intertwined with their corresponding MLZ models and can be
exactly predicted from the solution of the Hermitian solvable
models.

II. TRANSITION PROBABILITIES IN THE
NON-HERMITIAN MULTISTATE LANDAU-ZENER MODEL

The NMLZ Hamiltonians have the form

H(t ) = Bt + A, (1)

where B and A are constant N × N matrices and B is diag-
onal. The matrix A can be further divided into A = E + G,
where E is diagonal and describes the static part of the diabatic
eigenvalues of H(t ), and the level couplings are included in
the matrix G. Non-Hermiticity is introduced into H(t ) via the
anti-Hermitian condition G† = −G.

Our goal is to find solutions for the class of Hamiltonian
models described by Eq. (1), i.e., to calculate the transition
probabilities at t → +∞, when the system evolves from an
initial condition at t → −∞. Let the wave function |ψ (t )〉,
with N amplitudes φi(t ), be the solution of the time-dependent
Schrödinger equation associated with the Hamiltonian in
Eq. (1). The spreading of the wave function from one diabatic
level to N diabatic levels involves many level crossings be-
tween diabatic levels. The solution at t → ∞ requires finding
a matrix S, which satisfies |ψ (t → ∞)〉 = S|ψ (t → −∞)〉,
where S ≡ U (T,−T )T →∞ is a nonunitary matrix of dimen-
sion N and U is the time-evolution operator. For a completely
solvable model, all the matrix elements in the matrix can be
evaluated analytically up to a phase factor.

The concept of probability is inherent in Hermitian
quantum mechanics where the conservation of the norm
〈ψ (t )|ψ (t )〉 = 1 ensures that the probability of finding a
particle in each level is given by |φn(t )|2, which is smaller
than or equal to one. In non-Hermitian systems, the norm
〈ψ (t )|ψ (t )〉 �= 1, since |φn(t )|2 grows in time due to nonuni-
tary evolution. Therefore, we redefine transition probabilities
for non-Hermitian wave functions. Let us denote the true
transition probability from the nth state to the mth state by Pmn,
where

∑
m Pmn = 1. The transition probabilities Pmn relate to

the unnormalized probabilities, P̃mn = |φm(∞)|2/|φn(−∞)|2
with φn(−∞) = 1, and are given by

Pmn = P̃mn∑
k P̃kn

. (2)

In this paper we only consider the initial conditions when
one of the amplitudes is one and all others are zero,
φm(−∞) = δmn, in which case P̃mn coincides with |Smn|2.

FIG. 1. Schematic diagrams of the time-dependent eigenvalues
of (a) a Hermitian LZ model and (b) a non-Hermitian LZ model
Hamiltonian matrix as a function of time. The dashed lines corre-
spond to zero coupling between the two levels. The blue (red) color
corresponds to the real (imaginary) part of the eigenvalues

III. TWO-LEVEL SYSTEM

Let us review the results for the simple case of the N = 2
NMLZ model, also called the non-Hermitian Landau-Zener
(NLZ) model. The Hamiltonian corresponding to the equa-
tion of motion i d

dt |ψ (t )〉 = H2(t )|ψ (t )〉 has the form

H2(t ) =
(−vt g

−g vt

)
(3)

and represents a two-level system with an anti-Hermitian level
coupling, where parameters v and g are real and σz,± are the
usual Pauli matrices. The instantaneous eigenvalues of H2(t )
are E2,± = ±

√
(vt )2 − |g|2, which are imaginary in the time

interval |t | < |g|/v, shown in Fig. 1(b). The unnormalized
probability to remain in the same diabatic level is given by
P̃11 = e2π |g|2/v and the unnormalized probability of transition
is P̃21 = e2π |g|2/v − 1 (see Appendix A). This leads to the
relation

P̃11 − P̃21 = 1. (4)

The true probabilities are then given by P11 = P̃11/(P̃11 + P̃21)
and P21 = P̃21/(P̃11 + P̃21). Similar results have been recently
shown in the simplest time-dependent non-Hermitian parity-
time-symmetric variants of the LZ model [61].

Equation (4) describes the conservation of unnormalized
transition probabilities, i.e., the rate of growth of the two
amplitudes is equal, and the rate is determined by the area
under the curve of the imaginary part of the two eigenvalues.
The conservation law (4) is of non-Hermitian origin and has
a one-to-one mapping with the pair-production mechanism
present in the process of dynamical dissociation, due to Fesh-
bach resonance, of diatomic molecular condensates, in which
two atoms are coherently produced [38,39] (see Appendix B).
Note that this mapping only holds in the mean-field approx-
imation when the molecular field operator is replaced by a
complex number [38]. The Hamiltonian H2(t ) can also de-
scribe the spontaneous production of bosonic particles when
the corresponding field parameters become time dependent
and the evolution passes through a resonance. When the num-
ber of atomic modes in the system becomes high (N > 2) to
accommodate many degrees of freedom, i.e., spin angular mo-
mentum and rotational and vibrational modes, the dynamics
can be mapped to the class of Hamiltonians in Eq. (1) [40].
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IV. N-LEVEL SYSTEM

The NMLZ models consisting of N levels can have a
maximum N (N − 1)/2 level couplings. A complete solution
requires finding all N2 transition probabilities. Such a solu-
tion, for a generic NMLZ model of class (1), does not exist.
However, a complete solution may be possible when addi-
tional constraints are present within the system. Below we
outline three key phenomena that are relevant to MLZ mod-
els, now including non-Hermiticity: the independent crossing
approximation, quantum integrability, and the conservation of
probability.

A. Independent crossing approximation

According to the independent crossing approximation,
in the Hermitian MLZ model, when a transition probabil-
ity Pmn involves only a single path, Pmn can be expressed
by a simple application of the two-state LZ formula at
every intersection of diabatic energies [64,65]. For exam-
ple, certain elements of the S matrix can be found by
the Brundobler-Elser (BE) formula for any Hermitian MLZ
model (G† = G), as well as Bnm = bnδmn, and is given by
Snn = exp[−π

∑
m �=n |Gnm|2/(|bn − bm|)], where |bn| is maxi-

mum, i.e., a diabatic level with maximum slope. By following
the methodology introduced in Ref. [66], we find an alter-
native BE formula for the scattering matrix element Snn that
holds for the class of non-Hermitian Hamiltonians of Eq. (1),
namely,

Snn = exp

⎛
⎝+π

∑
m �=n

|Gnm|2
|bn − bm|

⎞
⎠. (5)

The sign in the exponent of Snn is negative in the MLZ model,
while in the NMLZ model it is positive (see Appendix C).
In the Hermitian model, the transition probability P̃nn =∏

n �=m p̃nm, where p̃nm = exp(−2π |Gnm|2/|bn − bm|), while in
the non-Hermitian model the unnormalized transition prob-
ability P̃nn = ∏

n �=m p̃nm, where p̃nm = exp(+2π |Gnm|2/|bn −
bm|). However, finding partial elements P̃mn is not enough to
know about the true transition probabilities. Unlike Hermitian
models, we need to evaluate all the elements P̃mn to find the
true transition probabilities.

B. Integrability of the NMLZ model

The theory of integrability of explicitly time-dependent
quantum systems has played a key role in finding so-
lutions of MLZ models [42], predicting dynamical phase
transitions in molecular and atomic conversion processes
[50,67]. The integrability condition can be understood as
follows. Let us consider a time-dependent Hamiltonian
H (t ) and the corresponding time-evolution operator U =
T̂P exp[−i

∫ t f

t0
H (t )dt], where T̂P is the time-ordering oper-

ator. Integrability of a Hamiltonian H (t ) in time-dependent
systems is defined as the possibility of finding a nontrivial
Hamiltonian H ′(τ ) such that

∂H

∂τ
− ∂H ′

∂t
− i[H, H ′] = 0. (6)

FIG. 2. The true time-evolution path P (red) with τ = 1 and
t ∈ (−∞, +∞) can be deformed into the path Pτ such that the
horizontal part of Pτ has τ = const �= 1 (black dashed arrows).

Time evolution corresponding to H ′ is along τ . Both H and H ′
are dependent on t and τ . When H and H ′ satisfy condition
(6), one can deform the integration path of the evolution
without changing the amplitudes of the wave functions, and
the evolution operator [42]

U = T̂P exp

(
−i

∫
P

H (t, τ )dt + H ′(t, τ )dτ

)
, (7)

where T̂P is the path-ordering operator along P in the two-
time space (t, τ ), is path independent. One can then transform
the physical evolution of the original problem from t = −∞
to t = ∞ at a fixed τ , to an evolution along any path in the
(t, τ ) plane, and still achieve the same result for the transition
probabilities. One such path is to start at t = −∞ and τ = 1,
evolve along τ , then at fixed τ evolve along t to t = ∞,
and finally return to τ = 1 at t = −∞. The unnormalized
transition probability will only depend on the horizontal path;
the vertical paths only alter the phase of the wave function
(see Fig. 2).

The condition in Eq. (6) further splits into two conditions
if the matrices H and H ′ are purely real, ∂H

∂τ
− ∂H ′

∂t = 0 and
[H, H ′] = 0. The condition in Eq. (6) is not restricted to
Hermitian models and can be utilized to search for exactly
solvable non-Hermitian models. We will demonstrate that
if an MLZ model H satisfies the condition in Eq. (6) with
another Hamiltonian H ′, then the corresponding class of
NMLZ models in Eq. (1) constructed from the MLZ model
H is also integrable. Note that the difference between
the Hermitian and non-Hermitian models is that in the
non-Hermitian models, the off-diagonal elements satisfy the
anti-Hermiticity condition. So by making the off-diagonal
terms anti-Hermitian, one can construct NMLZ models from
known MLZ models H and H ′.

C. Conservation of unnormalized probabilities

In MLZ models, the amplitudes φi satisfy the conservation
of probabilities

∑
i |φi|2 = 1. In the NMLZ model, the true

probabilities are calculated only after all the unnormalized
probabilities are known. The sum of unnormalized proba-
bilities is not constant and can grow with the system size.
We find that there exists a conservation law that describes a
pair-production mechanism or a simultaneous growth of wave
functions. The conservation law is not universal and depends
on the parameters of the NMLZ Hamiltonian as well as the
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initial conditions. Hence, we will demonstrate the con-
servation law via different representative examples. This
conservation law has a mapping to the unpairing dynamics
of the bosonic molecule into atoms, where the conserved
quantity is the number of atoms at the start of the reaction [38].

V. FULLY SOLVABLE MODELS

Let Hsol be an exactly solvable MLZ Hamiltonian. All
the transition probabilities can be obtained analytically and
typically can be expressed as a function of p̄, q̄, Pmn =
f ( p̄, q̄), where p̄ and q̄ are two vectors containing param-
eters corresponding to individual LZ transitions along the
path from level n at t → −∞ to level m at t → ∞, and the
parameters are pi j = exp(−2π |Gi j |2/|bi − b j |) and qi j = 1 −
exp(−2π |Gi j |2/|bi − b j |), respectively. The functional form
of f depends on specific problems and the levels considered.

Now let us construct an NMLZ model HN
sol from Hsol.

We claim that HN
sol is also exactly solvable and the unnor-

malized transition probabilities P̃mn = f ( ¯̃p, ¯̃q) have the same
functional form as their Hermitian counterparts and the vec-
tors ¯̃p and ¯̃q, where p̃i j = exp(2π |Gi j |2/|bi − b j |) and q̃i j =
exp(2π |Gi j |2/|bi − b j |) − 1. It is straightforward to see that
the modified BE formula (5) keeps the same functional form
as the standard BE formula. This claim is indeed general and
applies to all the elements of matrix P̃. We illustrate this via
two examples below.

A. Example of an N = 4 NMLZ model

Let us consider an exactly solvable N = 4 NMLZ model
constructed from an exactly solvable MLZ Hamiltonian that
describes electron tunneling in a double quantum dot [68],

which has the form

Ĥ4 =

⎛
⎜⎜⎝

b1t + E1 0 g∗ −γ ∗
0 −b1t + E1 γ ∗ g∗

−g −γ b2t + E2 0
γ −g 0 −b2t + E2

⎞
⎟⎟⎠.

(8)
This example is carried out in the context of molecular disso-
ciation in Ref. [40] and the solution for transition probabilities
has the form

P̃ =

⎛
⎜⎜⎜⎝

p̃g p̃γ 0 p̃γ q̃g q̃γ

0 p̃g p̃γ q̃γ p̃γ q̃g

p̃γ q̃g q̃γ p̃g p̃γ 0
q̃γ p̃γ q̃g 0 p̃g p̃γ

⎞
⎟⎟⎟⎠, (9)

where p̃g = eπ |g|2/2|β2|, p̃γ = eπ |γ |2/2|β1|, 2β1 = b1 + b2, and
2β2 = b1 − b2. Here p̃g and p̃γ correspond to the NLZ transi-
tions at diabatic level crossings.

The matrix elements P̃mn in Eq. (9) have the same func-
tional form as Pmn of the corresponding Hermitian model [68].
Moreover, we find that there exists a conservation law

[P̃11 + P̃21] − [P̃31 + P̃41] = 1 (10)

=10 if the initial state φ1(−∞) = 1. This conservation law
connects the first column of the matrix P̃; a different initial
condition will produce a different conservation law.

B. Example of an N = 6 NMLZ model

Here we consider another example of an exactly solvable
model of class (1) for N = 6. The Hamiltonian matrix has the
form

H6(t ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1t − E 0 0 0 −γ g

0 b1t + E 0 0 γ g

0 0 −b1t − E 0 g γ

0 0 0 −b1t + E g −γ

γ −γ −g −g −b2t 0

−g −g −γ γ 0 b2t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

This is an extension of the Hermitian model given in [69], which has been shown to be solvable and all the transition probabilities
can be obtained analytically. Here we show that we can find the transition probabilities for our model (11) with the same protocol
used for the N = 4 case. The eigenvalues of H6(t ) are shown as a function of time in Fig. 3(a). There are four antilinear broken
regimes where the eigenvalues are complex. However, there are only two coupling parameters g and γ . All the individual NLZ
transitions can be characterized by two terms p̃1 and p̃2, and they are given by

p̃1 = e2π |g|2/|b1−b2|, p̃2 = e2π |γ |2/|b1+b2|, (12)

and q̃1 = p̃1 − 1 and q̃2 = p̃2 − 1. The unnormalized transition probabilities of the model (11) for b2 > b1 are then given by

P̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

p̃1 p̃2 q̃2
2 0 p̃2q̃1q̃2 p̃1 p̃2q̃2 p̃2q̃1

( p̃2q̃1)2 p̃1 p̃2 p̃2q̃2q̃1 0 q̃2 p̃2
2 p̃1q̃1

0 p̃2q̃2q̃1 p̃1 p̃2 ( p̃2q̃1)2 p̃2
2 p̃1q̃1 q̃2

p̃2q̃2q̃1 0 q̃2
2 p̃1 p̃2 q̃1 p̃2 p̃1 p̃2q̃2

q̃2 p̃1 p̃2q̃2 p̃2q̃1 p̃2
2 p̃1q̃1 ( p̃1 p̃2)2 0

p̃2
2 p̃1q̃1 p̃2q̃1 q̃2 p̃2 p̃1 q̃2 0 ( p̃1 p̃2)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)
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FIG. 3. Dynamics for the N = 6 NMLZ model (11). (a) The real
(blue) and imaginary (red) parts of the eigenvalues of the matrix (11)
are shown for E = 2, b1 = 0.1, and b2 = 0.2, with couplings g = 0.2
and γ = 0.3. The parameters E and g have the dimension of 1/t ,
while b has the dimension of 1/t2. (b) Transition probabilities from
the first state to states n = 1 (black circles), n = 2 (green up trian-
gles), n = 3 (red diamonds), n = 4 (blue squares), n = 5 (magenta
down triangles), and n = 6 (cyan stars), where E = 2.2, b1 = 0.3,
and b2 = 1.6, with couplings g = 0.3 and γ = 0.3.

This matrix has been obtained from [68], where pi and qi are
replaced by p̃i and q̃i. Now we must obtain the true transition
probabilities. However, we notice that the sum of elements
in each of the columns in P̃ is not the same. Therefore, we
must define a normalization for each column and denote it by
Ni, where i is the column index of matrix P̃. The analytical
result agrees well with the numerical evolution as shown in
Fig. 3(b).

VI. NOT-FULLY-SOLVABLE MODEL

Next we solve an example NMLZ model constructed from
an MLZ model whose exact solution is not known. Such
systems typically host a finite amount of path interference
and some of the transition probabilities depend on the path
interference. The Hamiltonian we consider is of the form

HS
4 (t ) =

⎛
⎜⎜⎝

E1 0 g g
0 −E1 g g

−g −g bt + E2 0
−g −g 0 bt − E2

⎞
⎟⎟⎠, (14)

which includes two parallel levels crossing another two par-
allel levels, and the strength of level couplings is considered
to be symmetric, as shown in Fig. 4(a). The corresponding
MLZ model describes the physics of shuttling electrons in
a double-quantum-dot system [70–72]. We identify the two
unnormalized transition probabilities P̃12 = P̃43 that are non-
trivial [see Fig. 4(c)]. The remaining unnormalized transition
probabilities can be computed using the methods prescribed
in the solution of the exactly solvable model. The six unnor-
malized transition probabilities are P̃21 = P̃34 = 0 [73], and
P̃nn = e4π |g|2/b.

To find a solution for P̃43 we rely on the symmetry of
quantum integrability. Our model (14) belongs to a class of
matrices

H (t, τ ) = B(τ )t + E (τ )I + A(τ ). (15)

FIG. 4. (a) Eigenvalues of the N = 4 NMLZ model in Eq. (14)
as a function of time with E1 = E2 = 0.25, g = 0.05, and b = 1.
The blue (red) color corresponds to the real (imaginary) part of
the eigenvalues. (b) Varying the distances between parallel levels
does not change the state-to-state transition probabilities if the blue
area enclosed by the diabatic levels is conserved. (c) Numerical nor-
malized transition probabilities for b = 2, g = 2, and E1 = 1 (blue
lines) and for E2 = 2 and E2 = 3 (red lines). (d) The unnormalized
transition probabilities P̃3→4 are shown for the numerical simulations
(plot markers) and compared to the analytical approximations (solid
lines), where E1 = E2 = 2, with couplings g2 = 1 (black circles),
g2 = 2

√
2 (green up triangles), g2 = 4 (red diamonds), g2 = 9 (blue

squares), and g2 = 16 (magenta down triangles).

Matrices B(τ ) and A(τ ) are obtained from the original B and
A by setting

B(τ ) ≡ Bτ, E1(τ ) ≡ τE1, G(τ ) ≡ G
√

τ (16)

and keeping E2 intact. The corresponding H ′(t, τ ) then has
the form [74]

H ′(t, τ ) = ∂τ B(τ )t2

2
+ ∂τ A(τ )t − 1

2(b2 − b1)τ 2
A2(τ ).

(17)
Another trivial symmetry that appears in all MLZ models is
the scaling of time in the Schrödinger equation. For example,
if we rescale the time t → t/

√
τ , the transition probabilities

in the MLZ model remain unchanged. This rescaling corre-
sponds to the changes in parameters in the model (14),

b1,2 → b1,2/τ, E1,2 → E1,2/
√

τ , G → G/
√

τ . (18)

Under simple inspection, one can see that these transforma-
tions should also hold for NMLZ models of the class (1).
The simultaneous transformation of (16) and (18) leads to an
effective transformation

E1 → E1
√

τ , E2 → E2/
√

τ . (19)

The physical interpretation of the transformation is shown
in Fig. 4(b), where a fixed τ transforms the level separation
between two parallel levels whereas the area under the curve
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(shown in blue shade) is constant. So the unnormalized tran-
sition probabilities will be invariant as long as the area under
the curve is constant. Note that at τ = 1 we recover our model
(14) from HS

4 (t, τ ). The advantage of quantum integrability
lies in the tunability of the parameter τ , i.e., the transition
probabilities are independent of τ , as presented in Fig. 4(b).

Next let us express the Schrödinger equation for the matrix
(14) as

iȧ1 = E1a1 + g(a3 + a4), (20)

iȧ2 = −E1a2 + g(a3 + a4), (21)

iȧ3 = bt + E2a3 − g(a1 + a2), (22)

iȧ4 = bt − E2a4 − g(a1 + a2), (23)

where a1, a2, a3, and a4 are the amplitudes of levels 1, 2, 3,
and 4, respectively. To compute the nontrivial unnormalized
transition probability P̃43, we assume that level 3 is initially
occupied. Then we introduce symmetric and antisymmetric
modes a± = (a1 ± a2)/

√
2 and Eqs. (20), (21), (22), and (23)

transform to

iȧ+ = E1a− +
√

2g(a3 + a4), (24)

iȧ− = −E1a+, (25)

iȧ3 = (bt + E2)a3 −
√

2g(a+), (26)

iȧ4 = (bt − E2)a4 −
√

2g(a+), (27)

respectively. Now we can take advantage of integrability and
transform the parameters according to (16) and set τ → ∞.
In this limit, levels 3 and 4 cross the symmetric and antisym-
metric modes at t± = ±E2/b instantly, where + corresponds
to the crossing of level 4 and − corresponds to the crossing of
level 3.

The transition from 3 to 4 can now be understood as a
combination of three processes: transition from level 3 to level
+ near the vicinity of t−, then the dynamics between level
+ and level −, and then at t+ the transition from level +
to level 4. The transitions from and to the symmetric level
are individual NLZ transitions where the slope is given by
bτ and the coupling is given by |√2g

√
τ |. The transitions at

t− and t+ are simple NLZ transitions and the expression for
unnormalized transition probabilities P̃3→+ and P̃+→− reads

P̃3→+ = P̃+→4 = e4πg2/b − 1, (28)

with the result independent of τ . Now the unnormalized tran-
sition probability P̃3→4 can be expressed as

P̃3→4 = P̃3→+P̃+→+P̃+→4, (29)

where P̃+→+ is the unnormalized probability to remain in
level + after the dynamics with a 2 × 2 effective Hamiltonian,
which acts in the subspace of |±〉 during the time interval
t ∈ {t−, t+} (for details see [75]). Away from t±, the virtual
transitions between + and − can be obtained perturbatively
[75], and the effective Hamiltonian is given by

Hs
eff (t ) = 1

b

(
4g2t
t2−1 e1e2

e1e2 0

)
. (30)

Equation (30) describes the Hermitian dynamics and the un-
normalized transition probability P̃++ = P++ can be obtained
by a semiclassical approach [74].

The transition probability P++ depends on the parameter
r = E1E2/|g|2. There are two phases r < 1 and r > 1, which
represent two different behaviors and are given by

P++ = exp

[
−

(
2

b

)
Im

(∫ t1

0
�E (t )dt

)]
, r < 1, (31)

and

P++ =
∣∣∣∣ exp

(
− i

b

∫ t1

0
�E (t )dt + iφg

)

+ exp

(
− i

b

∫ t2

0
�E (t )dt

)∣∣∣∣
2

, r > 1, (32)

where �E (t ) is the difference in the eigenvalues of matrix
(30) and t1,2 are the solutions of equation �E (t ) = 0 close
to the real time axis. For r < 1, the branching points t1,2 are
purely imaginary, and the expression for the transition prob-
ability P++ is estimated with the standard Dykhne formula
[76]. For r > 1, both the branching points have real as well
as imaginary parts, and the imaginary parts are equal to each
other. The transition probability (32) is a generalized form of
the standard Dykhne formula [74].

The unnormalized transition probability P̃43 is shown in
Fig. 4(d) as a function of 1/b for five values of r, which agrees
well with our analytical formula. The unnormalized transition
probability P̃13 can be obtained if one knows P̃33, P̃43, and P̃23.
The unnormalized probabilities satisfy the conservation law

P̃33 + P̃43 − P̃23 − P̃13 = 1. (33)

This conservation law is similar to that in Eq. (10) and de-
pends on the initial condition. The solution to the model in
Eq. (14) is not trivial like the exactly solvable models. A com-
plete solution here requires a combination of Hermitian and
non-Hermitian dynamics to fully incorporate all the relevant
features. The Hermitian dynamics for the model (14) captures
the effect of the interference, which is absent in the exactly
solvable models.

VII. CONCLUSION

We have developed a framework to solve a large class of
linearly driven non-Hermitian quantum systems. We distin-
guished between the solution for an exactly solvable model
and a not-fully-solvable model. We found that an exactly
solvable model has a one-to-one mapping with the respec-
tive Hermitian model and demonstrated it via two example
models. For a not-fully-solvable model the solution becomes
highly nontrivial. A path to an analytical solution involves
a combination of Hermitian and non-Hermitian dynamics.
Concerning applications, the pair-production mechanism in
our model naturally emerges in the chemical reaction when
diatomic molecules undergo a dissociation process in the
presence of an external drive. Moreover, such NMLZ models
could potentially be exploited in photonic systems since they
provide robust platforms to implement non-Hermiticity.
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APPENDIX A: THE NON-HERMITIAN LANDAU-ZENER
MODEL

Both Hermitian and Non-Hermitian Landau-Zener models
are described by 2 × 2 matrices of the form

H(±)
2 (t ) =

(−vt g
±g∗ vt

)
, (A1)

where + refers to the Hermitian model and − refers to the
non-Hermitian model. The eigenvalues of the non-Hermitian
matrix are given in Fig. 1(b) and are presented alongside the
eigenvalues for the standard Hermitian LZ model.

The solution of the Schrödinger equation with the matrix
(A1) has the form of a 2 × 1 column vector

|φ(t )〉 =
(

a(t )
b(t )

)
,

where a(t ) satisfies a second-order differential equation

ä(t ) + (v2t2 ± |g|2 + iv)a(t ) = 0, (A2)

whose solutions are given by the parabolic cylinder functions
[77,78]. With this, the solution of the Schrödinger equa-
tion can be expressed as

|φ(t )〉 = φ1

(
Dν (z)

−i
√

νDν−1(z)

)
+ φ2

(
Dν (−z)

−i
√

νDν−1(−z)

)
,

(A3)
where Dν (z) is the parabolic cylinder function, with ν =
∓i|g|2/2β and z = √

2βeiπ/4t . The difference between the
Hermitian and the non-Hermitian dynamics comes from the
phase of ν, which is −π/2 for the Hermitian case and π/2
for the non-Hermitian case. We are only interested in the
asymptotic solution at large times. Assuming the system starts
in the upper state |a(t → −∞)|2 = 1, the asymptotic solution
of a(t ) at large positive times is given by |a(t → ∞)|2 =
e−π |g|2/β for the Hermitian model and |a(t → ∞)|2 = eπ |g|2/β
for the non-Hermitian model. Similarly, the solution b(t ) at
large positive times is given by |b(t → ∞)|2 = 1 − e−π |g|2/β

for the Hermitian model and |b(t → ∞)|2 = eπ |g|2/β − 1 for
the non-Hermitian model.

APPENDIX B: RELATION OF THE NLZ MODEL TO
MOLECULAR DISSOCIATION IN THE MEAN-FIELD

APPROXIMATION

The simple dissociation process of a molecular Bose-
Einstein condensate into a two-mode atomic condensate is
AB → A + B. The Hamiltonian describing such a chemical
process is given by [38,39]

Ĥ2 = μ1(t )â†â + μ2(t )b̂†b̂ + Jψ̂†âb̂ + J∗ψ̂ â†b̂†, (B1)

Re (t)

Im (t)

-∞ +∞

FIG. 5. Time contour for the evolution from large negative to
large positive times with t = R exp(iφ), R → ∞, and 0 < φ < π .

where μi(t ) are the time-dependent chemical potentials of
atomic modes, and the chemical potential of molecular mode
can be rescaled to zero. In the nonadiabatic limit, only a small
fraction of molecules get converted into atoms [51]. One can
then replace the molecular field operator with the expectation
value 〈ψ̂〉 and we obtain a system of two interacting atomic
modes

Ĥeff(t ) = μ1(t )â†â + μ2(t )b̂†b̂ + gâb̂ + g∗â†b̂†. (B2)

The model (B2) can be solved in the Heisenberg picture where
the operators â(t ) and b̂(t ) satisfy

i
d

dt

(
â(t )
b̂†(t )

)
=

(
μ1(t ) g∗
−g μ2(t )

)(
â(t )
b̂†(t )

)
. (B3)

The molecular dissociation occurs near the crossing of two
chemical potentials. When the chemical potentials are driven
linearly, the matrix in (B3) resembles the Hamiltonian in
Eq. (3).

APPENDIX C: DERIVATION OF THE MODIFIED
BRUNDOBLER-ELSER FORMULA

The goal of our article is to find the solution of the
Schrödinger equation corresponding to the class of non-
Hermitian matrices (1) at asymptotically large times |t | → ∞.
We follow the prescription detailed for Hermitian systems
in [66], extending the evolution into the complex plane and
choosing the evolution path to |t | → ∞ (see Fig. 5). For small
couplings |Bii − Bj j |t  |Gi j |, the instantaneous eigenvalues
of the matrix remain large for i �= j and therefore we can use
the adiabatic approximation

ψi(t f ) ∼ exp

(
−i

∫ t f

ti

εi(t )dt

)
ψi(ti), (C1)

where the state ψi has the leading asymptotic form ψi(t ) ∼
exp(−iBiit2/2) at t → −∞.

Let us consider the state |0〉 having the highest slope and
crossing many states |i〉. Equation (C1) becomes exact at large
times. The energy of the state |0〉 can be expressed up to the
first order of 1/|t | and is given by

ε0(t ) ∼ E00 −
∑

i

|Gi0|2
|B00 − Bii|t . (C2)

Substituting (C2) into Eq. (C1), we arrive at Eq. (5).
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