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Entangled time-crystal phase in an open quantum light-matter system
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Time crystals are nonequilibrium many-body phases in which the state of the system dynamically approaches a
limit cycle. While these phases have recently been the focus of intensive research, it is still far from clear whether
they can host quantum correlations. In fact, mostly classical correlations have been observed so far, and time
crystals appear to be effectively classical high-entropy phases. Here, we consider the nonequilibrium behavior
of an open quantum light-matter system, realizable in current experiments, which maps to a paradigmatic
time-crystal model after an adiabatic elimination of the light field. The system displays a bistable regime with
coexistent time-crystal and stationary phases, terminating at a tricritical point from which a second-order phase
transition line departs. While light and matter are uncorrelated in the stationary phase, the time-crystal phase
features bipartite correlations of both quantum and classical nature. Our work unveils that time-crystal phases in
collective open quantum systems can sustain quantum correlations, including entanglement, and are thus more
than effectively classical many-body phases.
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I. INTRODUCTION

Interacting light-matter systems can feature intriguing col-
lective behavior and phase transitions. An example is given
by transitions into superradiant phases, i.e., phases with a
“macroscopically” excited light field [1–11]. In the presence
of Markovian dissipation, these systems generically approach,
at long times, a stationary state. However, under certain con-
ditions, genuine dynamical regimes may occur [12], which
happens, for instance, in the case of lasing [13] or coun-
terlasing regimes [14–18]. The emergence of nonstationary
many-body behavior [19–23], with the system undergoing
persistent oscillatory dynamics, witnesses the breaking of the
continuous time-translation symmetry of the dynamical gen-
erator and the concomitant formation of a crystalline structure
in time. For this reason, these nonequilibrium phases are re-
ferred to as time crystals (see, e.g., Refs. [23–37]).

A minimal Markovian open quantum system displaying
nonstationary behavior is the so-called boundary time crystal
[19], generalized in Refs. [38–41] and experimentally real-
ized in Ref. [42]. It consists of a collective many-body spin
model which allows for both efficient numerical simulations
[43–48] and exact analytical solutions [38,49–54]. This model
features quantum correlations between spins in its stationary
phase—witnessed by nonzero spin squeezing and two-qubit
entanglement—but only classical correlations in the time-
crystal regime [38,52,53,55–58], which is described by highly
mixed and effectively classical states [39,52,53,59]. It thus
remains an open question whether (boundary) time-crystal
phases can host quantum effects or whether these phases are
essentially purely classical dynamical regimes.

In this paper, we consider a paradigmatic model describing
atoms coupled to a light field via an excitation-exchange inter-
action [60–63] [see the sketch in Fig. 1(a)]. This system can

be realized in current cavity-atom experiments [64–72] and
realizes a boundary time crystal [62,73–75] when adiabati-
cally eliminating the light field. It features both a stationary
superradiant phase and a time-crystal phase [63]. Within the
parameter regime in which one may expect the adiabatic
elimination to hold, the nonequilibrium transition between
the two phases is a second-order one. However, in contrast
to the boundary time crystal, the system features a bistable
regime, characterized by the coexistence of a limit cycle and
a stationary phase. This signals that the phase transition even-
tually becomes first order [see Fig. 1(b)]. Explicitly taking
into account the light field further allows us to observe the
emergence of quantum correlations, including entanglement,
in a time-crystal regime. The existence of these correlations
may motivate the development of alternative strategies for ex-
ploiting these phases for enhanced metrological applications
[57,58].

II. THE MODEL

We consider a driven-dissipative version of the so-called
Tavis-Cummings spin-boson model [13,60,61,72]. For con-
creteness, we focus on a realization of the model in a cavity
setup, as depicted in Fig. 1(a). The spins describe N two-level
atoms with ground state |g〉, excited state |e〉, and energy
splitting ωat. The bosonic operators a and a† are associated
with the light field inside the cavity (frequency ωcav = ωat).
For later convenience, we define the quadrature operators
q = i(a − a†)/

√
2 and p = (a + a†)/

√
2, such that [q, p] = i.

The atoms are resonantly driven by a laser, and in the
rotating frame, the system Hamiltonian is given by

H = �(S+ + S−) + λ√
N

(a†S− + aS+), (1)
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FIG. 1. System and nonequilibrium phase diagram. (a) An en-
semble of two-level atoms, with ground state |g〉 and excited state |e〉,
is driven by a laser with Rabi frequency � and interacts via exchange
of excitations with the light field of a cavity (coupling constant λ).
The cavity is subject to photon loss at rate κ . (b) Phase diagram
in terms of the time-averaged magnetization m̄z as a function of �

and λ. It features a bistable regime terminating at a tricritical point,
(�/κ, λ/κ ) ≈ (0.17, 0.41). Here, the transition becomes second or-
der (see inset). Below the dashed line, the system does not possess
a well-defined stationary state. (c) In the stationary phase the mag-
netization mz(t ) approaches a constant value. (d) In the time-crystal
phase, mz(t ) undergoes persistent oscillations, and the atoms and the
light field are collectively entangled.

with � being the laser Rabi frequency and λ being the cou-
pling constant providing the “rate” of the coherent exchange
of excitations. The collective atom operators S± are defined as
S− = ∑N

k=1 σ
(k)
− , with σ− = |g〉〈e| and S+ = S†

−. The factor
of 1/

√
N in front of the coupling term ensures a well-defined

thermodynamic limit [13,76]. Photon losses, at rate κ , are
described by the dissipator [77,78]

L[X ] = κ
(
aXa† − 1

2 {a†a, X }). (2)

The full quantum state of the system ρ thus evolves according
to the quantum master equation ρ̇t = −i[H, ρt ] + L[ρt ] and
allows for the calculation of the expectation value of any
operator O as 〈O〉t := Tr(ρt O).

While the Tavis-Cummings model [60,61] was considered
in several works [65,68,79–92], the setting analyzed here does
not appear to be much explored [63] and is even less explored
in terms of what concerns the analysis of quantum correlations
(see related studies in Refs. [93–96] and related models in
Refs. [54,97,98]), which has mostly been investigated in the
few-atom case [99–111].

III. TIME-CRYSTAL PHASE TRANSITION

To demonstrate the emergence of a phase characterized by
nonstationary asymptotic dynamics, we analyze the long-time
behavior of our system in the thermodynamic limit (N → ∞).
To this end, we introduce the average “magnetization” op-
erators mN

r = ∑N
k=1 σ (k)

r /N for the atoms, with σr being the
Pauli matrices constructed from states |g〉 and |e〉. For the light
field, we consider the rescaled quadratures mN

q = q/
√

N and

mN
p = p/

√
N . In the thermodynamic limit, both the atom and

the light-field operators mr = limN→∞ mN
r describe average

properties of the system [53,76] and provide suitable order
parameters.

A. Mean-field equations and fixed points

Since we are interested in the long-time regime, we derive
the evolution equations for the average operators. We focus
on physically relevant initial states of the system [112], i.e.,
states with sufficiently short-range correlations. For such ini-
tial states, following the derivation put forward in Ref. [76],
it is possible to show that, in the thermodynamic limit, the
order-parameter dynamics is exactly captured by a set of non-
linear differential equations [76,113]. These equations are the
so-called mean-field equations, and for the model considered
they are given by

ṁx(t ) =
√

2λmq(t )mz(t ),

ṁy(t ) = −2�mz(t ) −
√

2λmp(t )mz(t ),

ṁz(t ) = 2�my(t ) +
√

2λmp(t )my(t ) −
√

2λmq(t )mx(t ),

ṁq(t ) = λ√
2

mx(t ) − κ

2
mq(t ),

ṁp(t ) = − λ√
2

my(t ) − κ

2
mp(t ).

These equations show that m2
x + m2

y + m2
z is a constant of mo-

tion, which we set to 1, and that assuming an initial state for
which mx(0) = mq(0) = 0 results in having mx(t ) = mq(t ) =
0 for all times t > 0. The remaining operators evolve via the
equations

ṁy(t ) = −2�mz(t ) −
√

2λmp(t )mz(t ),

ṁz(t ) = 2�my(t ) +
√

2λmp(t )my(t ),

ṁp(t ) = − λ√
2

my(t ) − κ

2
mp(t ). (3)

We note that adiabatically eliminating mp(t ) by setting the last
of the equations above to zero and substituting the result in the
other two equations leads to the equations of motion for the
boundary time-crystal model [19,53]. A similar mapping also
holds at an operatorial level [62]. By setting the derivatives in
the above equations to zero and using the constant of motion
(m2

x + m2
y + m2

z = 1), we find the stationary solutions to the
mean-field equations, given by

m∗
y = �κ

λ2
, m∗

z = ±
√

1 −
(

�κ

λ2

)2

, m∗
p = −

√
2�

λ
. (4)

The stability of the stationary solutions can be analyzed by
looking at the Jacobian matrix J , obtained by linearizing the
mean-field equations around the stationary values. This matrix
can be obtained by writing mc(t ) ≈ m∗

c + δmc, with δmc being
small, and considering perturbations only up to first order. The
linearized Jacobian matrix takes the form

J =

⎛
⎜⎜⎝

0 0 −√
2λm∗

z

0 0
√

2λm∗
y

− λ√
2

0 − κ
2

⎞
⎟⎟⎠.

062216-2



ENTANGLED TIME-CRYSTAL PHASE IN AN OPEN … PHYSICAL REVIEW A 108, 062216 (2023)

A stationary solution is stable if the real part of all the
eigenvalues of the matrix J is smaller than or, at most, equal
to zero. The eigenvalues μi of the matrix J are given by

μ1 = 0, μ2,3 = −κ

4

(
1 ±

√
1 + 4λ2m∗

z(
κ
2

)2

)
,

which immediately shows that the stationary state with pos-
itive m∗

z is unstable. The only stable stationary mean-field
solution is the one with negative m∗

z [see also Fig. 1(c)]. Such
a stationary solution is physical only when � � λ2/κ . Here,
the light field becomes macroscopically occupied, 〈a†a〉 ∝
N (m∗

p)2, denoting the superradiant character of the phase
[13]. For � > λ2/κ , no stationary solution exists (within the
sector identified by the choice of the conserved quantities),
and the system belongs to a time-crystal phase, as shown in
Figs. 1(b)–1(d).

B. Proof of the existence of the limit cycle

The nonstationary behavior of the system in the time-
crystal phase is, as we will show analytically by closely
following the derivation in Sec. 8.5 of Ref. [114], the result
of an emergent limit-cycle dynamics. To show the existence
of limit cycles for the mean-field equations [see Eq. (3)], we
first bring them into a more convenient form. We make use
of the fact that m2

y + m2
z = 1 is a conserved quantity and thus

that Eq. (3) describes an evolution taking place on the surface
of a cylinder. The dynamics of the system is then captured by

θ̇ (t ) = −2� −
√

2λmp(t ),

ṁp(t ) = − λ√
2

my(t ) − κ

2
mp(t ),

which can be obtained by exploiting the ansatz

my(t ) = cos θ (t )my(0) + sin θ (t )mz(0),
(5)

mz(t ) = cos θ (t )mz(0) − sin θ (t )my(0),

obeying ṁy(z)(t ) = +(−)θ̇ (t )mz(y)(t ). Second, we perform the
substitution Y = −2� − √

2λmp, yielding

θ̇ = Y, Ẏ = −κ� + λ2my − κ

2
Y. (6)

Equation (6) is closely related to the differential equations for
the dynamics of the phase difference across a Josephson junc-
tion (see Sec. 8.5 of Ref. [114]).

With the restriction |my| � 1, we find again that the sta-
tionary solutions of Eq. (6) exist only for �κ < λ2. Above
the critical value � = λ2/κ , we find persistent oscillations
of the system witnessing a stable limit cycle to which all
trajectories are attracted. To analyze the long-time behavior of
the system in this parameter regime, we consider the nullcline
Y = 2λ2

κ
my − 2�, with |my| � 1, which defines a regime with

vanishing derivative Ẏ = 0. For smaller (larger) values of Y ,
the derivative Ẏ is positive (negative), so that for long times
all trajectories end up in a regime restricted to the strip y1 �
Y � y2 for all y1 < − 2λ2

κ
− 2� and y2 > + 2λ2

κ
− 2� [114].

Given the periodicity of my [see Eq. (5)], it is sufficient to
consider values 0 � θ � 2π . For � > λ2/κ , we can fix y2 <

0 such that the derivative of the angle θ̇ = Y < 0 does not

change sign inside the strip. Thus, in the long-time limit a
periodic solution can exist only within this strip. A limit cycle
is a trajectory that starts at a point Y ∗ and ends after one period
at the same point P(Y ∗) = Y ∗, where P is called Poincaré map
[114]. In order to show the existence of such a point inside the
strip, we make use of the fact that P(y1) > y1 ∀ y1 < − 2λ2

κ
−

2�, which is due to the fact that the derivative Ẏ is strictly
positive for y1 < − 2λ2

κ
− 2� and thus Y cannot go back to the

value y1 [114]. Similarly, we have P(y2) < y2 ∀ y2 < + 2λ2

κ
−

2�. Since the Poincaré map P is continuous and monotonic, a
value Y ∗ must thus exist such that P(Y ∗) = Y ∗, implying the
existence of the limit cycle [114]. It is also possible to show
that the closed orbit is unique (for details we refer to Sec. 8.5
of Ref. [114]).

In Appendix A we further demonstrate that the emer-
gent limit-cycle dynamics is associated with the spontaneous
breaking of continuous time-translation symmetry. This
shows that the considered system features a proper time-
crystal phase [36].

C. Phase diagram and bistability

Having established the existence of a nonstationary regime,
we now analyze in detail the nonequilibrium phase diagram of
the system. We observe that, also within the parameter regime
in which the stable stationary state of Eq. (4) is well defined,
the system can approach a limit cycle. This implies the ex-
istence of a region where the stationary phase [see Eq. (4)]
and the time-crystal one coexist. Such bistable regimes usu-
ally occur for stationary phases (see, e.g., Refs. [115,116])
and are characterized through a stability analysis. However,
in our case one of the two asymptotic solutions is a limit
cycle. As such, to fully explore the bistable region we take
an approach which exploits the coexistence between the two
phases. To treat the latter on equal footing, we will focus
on the time-averaged order-parameter m̄z = 1

t

∫ t
0 du mz(u),

which converges to the stable value in Eq. (4) within the sta-
tionary regime, while it gives an average over the oscillations
in the time-crystal phase.

When � > λ2/κ , the system can be found only in the
time-crystal phase. The curve � = λ2/κ thus provides one
of the boundaries of the bistability region. To find the other
boundary, i.e., the line separating the bistable regime from
the stationary phase [see Fig. 1(b)], we probe the coexistence
behavior. The idea is as follows. We start at a point (�, λ)
in parameter space, with � � λ, where only the time-crystal
phase is stable [see Fig. 1(b)]. We initialize the system in the
state |ψ〉, with all atoms in the excited state |e〉 and the light
field in the vacuum, and let it relax towards the asymptotic
limit cycle. We then increase λ, in small discrete steps, in
an adiabatically slow fashion, i.e., always giving the system
sufficient time to accommodate the new limit cycle. In this
way, we can enter the bistable regime lying within the basin
of attraction of the time-crystal phase. For sufficiently large
λ, only the stationary phase is eventually stable. As shown in
Fig. 1(b), this makes the second (upper) spinodal line emerge
as the line where m̄z jumps from positive values, attained in
the time-crystal phase, to the negative ones given by Eq. (4).
A similar sweep through the phase diagram can be done by
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FIG. 2. Coexistence and critical behavior. (a) Time-averaged m̄z

as a function of � for λ/κ = 0.8 [upper dotted line in Fig. 1(b)].
The solid (dashed) curve is obtained by starting from the time-crystal
(stationary) phase and moving “adiabatically” � towards the station-
ary (time-crystal) one. (b) Time-averaged m̄z as a function of � for
λ/κ = 0.3 [lower dotted line in Fig. 1(b)]. Here, the phase transition
is second order [see also the inset in Fig. 1(b)]. (c) Critical behavior
of the spin squeezing and of the susceptibility in the stationary
regime as a function of (�κ/λ2)2. The coordinates x and y refer to the
frame in which the z axis is aligned with the direction of the vector
identified by the stable stationary values in Eq. (4).

fixing λ. This procedure also shows the coexistence of the
two phases, which is apparent from Fig. 2(a). The two spin-
odal lines meet at a tricritical point, highlighted in Fig. 1(b).
Beyond this point, the phase transition does not switch to a
crossover like what usually happens; it rather changes nature
and becomes a second-order one [see Fig. 2(b)]. Note that
the curve in Fig. 2(b) displays a proper phase transition since
(i) the stable stationary value m∗

z approaches the critical point
with an infinite derivative [see Eq. (4)] and (ii) as we calculate
below and anticipate in Fig. 2(c), by approaching the critical
point from the stationary regime the system features a diverg-
ing susceptibility.

D. Characterization of the phase transitions
in terms of bifurcations

The different phase-transition behaviors can be related to
the different types of bifurcations [114] occurring at the tran-
sition lines (see the animations provided in the Supplemental
Material [117]).

In the regime where the adiabatic elimination is valid
[lower left corner of the phase diagram in Fig. 1(b)] the system
undergoes a phase transition at the critical line � = λ2/κ .
Crossing the latter from the time-crystal phase, the periodic
solution is disrupted by the emergence of a pair of fixed points,
a saddle and a node [117]. Here, an infinite-period bifurcation
(see also Fig. 3) occurs, and the behavior of the system is
analogous to that of the boundary time crystal [118].

Above the tricritical point, the system can be found in a
bistable regime, in which the stable stationary solution and the
stable limit cycle coexist. When starting from the time-crystal
phase and moving adiabatically slowly inside and within the
bistable regime, it is possible to remain within the basin
of attraction of the time-crystal phase. In this case, when
approaching the upper spinodal line (the line separating the
bistable regime from the stationary one in Fig. 3) the limit
cycle eventually hits the unstable (saddle) stationary solution.
Here, a homoclinic bifurcation takes place, and the system

FIG. 3. Phase diagram and bifurcations. Sketch of the phase di-
agram of the model specifying the types of bifurcation occurring at
the critical and spinodal lines.

“jumps” into the stable stationary solution [117]. On the other
hand, coming from the stationary phase and increasing the
parameters adiabatically slowly, the system stays in the basin
of attraction of the stable stationary solution, even within
the coexistence regime. In this case, approaching the lower
spinodal line (the line separating the bistable regime and the
time-crystal phase in Fig. 3), stable and unstable stationary
solutions coalesce (saddle-node bifurcation). Beyond this line,
the only attractor is the limit cycle.

The presence of different types of bifurcations (infinite-
period bifurcation below the tricritical point [118] and
saddle-node and homoclinic ones above) explains the appear-
ance of different phase-transition behaviors [see Figs. 2(a)
and 2(b)]. Approaching the critical line below the tricritical
point, the limit cycle acquires an infinite period and spends
an infinite amount of time close to where the stable solution
emerges. In this way, when passing from the limit cycle to the
stationary solution, the time-averaged magnetizations change
continuously; that is, the system undergoes a second-order
phase transition. On the other hand, above the tricritical point,
when passing from one phase to the other, the system expe-
riences sudden jumps between two already existing solutions
which live in different regions of the “phase space.” This fact
gives rise to a first-order phase transition with the associated
jump of the order parameters.

IV. DYNAMICS OF QUANTUM FLUCTUATIONS

Average operators converge, in the thermodynamic limit,
to multiples of the identity [119] and thus cannot carry in-
formation about correlations. The natural next step is thus to
consider suitable susceptibility parameters. In analogy with
classical central-limit theorems, for the atoms we introduce
the quantum fluctuation operators [51,120–125]

F N
r = 1√

2N
(Sr − 〈Sr〉), (7)

whose variance χrr = 〈F 2
r 〉 provides the fluctuations of the

order parameter mN
r , that is, its susceptibility. The operators in

Eq. (7) retain a quantum character in the thermodynamic limit.
To understand this, let us consider the state with all atoms in
|e〉. The commutator [F N

x , F N
y ] = imN

z is proportional to an
average operator and thus converges in the thermodynamic
limit to the multiple of the identity imz, with mz = 1, due to
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our choice of the state. This commutation relation identifies
the limiting fluctuation operators, qA = limN→∞ F N

x and pA =
limN→∞ F N

y , as two (bosonic) quadrature operators such that
[qA, pA] = i. Together with these atom fluctuations, we con-
sider the light-field fluctuation operators qL = q − 〈q〉 and
pL = p − 〈p〉 [54]. The emergent two-mode bosonic descrip-
tion formed by the fluctuation operators R = (qA, pA, qL, pL )T

can be used to analyze correlations between the atoms and the
light field [54].

To this end, we introduce the covariance matrix uv =
〈{Ru, Rv}〉/2 and investigate its time evolution. Due to the
dynamics of average operators, the commutation relation be-
tween the fluctuation operators associated with the atoms
generically depends on time [51]. To “remove” this depen-
dence, we move to the frame rotating with the time-evolving
average operators. Here, we can derive the Lindblad generator
for the dynamics of the two-mode bosonic system related to
quantum fluctuations (see Appendix B). The time-dependent
Lindblad generator is of the form

W∗
A−L(t )[O] = i[HA−L(t ), O] + L∗

L[O],

with the Hamiltonian

HA−L(t ) =
4∑

i, j=1

hi j (t )RiRj,

where

h(t ) = λ

2

⎛
⎜⎜⎜⎜⎝

0 0 0 1

0 0 mz(t ) 0

0 mz(t ) 0 0

1 0 0 0

⎞
⎟⎟⎟⎟⎠.

In the generator above, the map L∗
L is the dual of the map

LL[X ] = κ
(
aLXa†

L − 1
2 {a†

LaL, X }), (8)

which is analogous to the one in Eq. (2) but with jump opera-
tor aL = (pL − iqL )/

√
2.

Under this dynamics the covariance matrix evolves accord-
ing to the differential equation

̇(t ) = [2sh(t ) + sb](t ) + (t )[2sh(t ) + sb]T + scsT ,

with s being the symplectic matrix of a two-mode bosonic
system [51],

s =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

⎞
⎟⎟⎟⎟⎠,

and the matrices

c = κ

2

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠, b = κ

2

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠

encoding the dissipative dynamics of the system.

The emergent two-mode Hamiltonian, which can also be
written as

HA−L (t ) = λ[qA pL + mz(t )qL pA], (9)

is time dependent as a consequence of the time dependence
of the instantaneous magnetization mz(t ) and encodes both an
excitation exchange and a two-mode squeezing process. To
show this, we represent the fluctuation operators qA, pA, qL,
and pL in terms of bosonic creation and annihilation operators.
Due to the definition of the original quadrature operators of
the light field, we write

qL = i√
2

(aL − a†
L ), pL = 1√

2
(aL + a†

L ). (10)

For the atoms, we instead recall that qA is the limit of F N
x , and

pA is that of F N
y . In order to associate the annihilation operator

with S−, we write

qA = 1√
2

(aA + a†
A), pA = i√

2
(a†

A − aA).

Substituting these definitions into the Hamiltonian in Eq. (9),
we find

HA−L(t ) = λ

2
[(aAaL + a†

Aa†
L )[1 + mz(t )]

+ (a†
LaA + a†

AaL )[1 − mz(t )]],

which makes apparent that the Hamiltonian can be decom-
posed into an excitation-exchange term, proportional to 1 −
mz(t ), and a two-mode squeezing term, proportional to 1 +
mz(t ). These contributions provide the only coupling between
the atoms and the light field and, as we show below, can gen-
erate quantum correlations between the two subsystems. In
contrast to the boundary time-crystal model [53], the dynam-
ics of fluctuations is not fully dissipative due to the collective
Hamiltonian in Eq. (1). Since the emergent dynamical genera-
tor is quadratic, quantum fluctuations remain Gaussian [126].

V. QUANTUM CORRELATIONS AND ENTANGLEMENT

From the time evolution of the covariance matrix , we can
calculate classical correlation, quantum discord [127–131],
and bipartite (collective) entanglement between the atoms and
the light field [132,133] in the thermodynamic limit. Within
the stationary phase, the asymptotic covariance matrix can be
computed exactly as

 = 1
2 diag(−m∗

z ,−(m∗
z )−1, 1, 1), (11)

with the stable m∗
z [see Eq. (4)]. This expression shows that

the light field (described by the operators qL and pL) is in the
vacuum state, while the collective atom operators qA and pA

are in a squeezed state. Equation (11) shows no correlations
between the atoms and the light field in the stationary phase.
Yet the atoms display spin squeezing, with a squeezing pa-
rameter, ξ = |m∗

z |, which diverges (to zero) on the spinodal
line separating the bistable regime from the pure time-crystal
phase. The divergence (to infinity) of 22 ∝ |1/m∗

z | is related
to the divergence of the susceptibility close to the second-
order phase transition [see Fig. 2(c)]. Since fluctuations are
in the frame aligned with the direction of the stable state in
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FIG. 4. Quantum and classical correlations. (a) Time-averaged classical correlation J̄ A←L as a function of λ and �. For each value of �,
the data are obtained by initializing the system in state |ψ〉, evolving it with the smallest value of λ, and then adiabatically increasing the
interaction parameter λ in discrete steps up to the largest values. The evolution time for each value of λ is κt = 5000 and coincides with the
averaging window for the correlation measure. (b) Same as (a), but for the quantum discord D̄A←L . The latter shows that the time-crystal phase
features quantum correlations. (c) Same as (a) and (b), but for the logarithmic negativity quantifying the amount of entanglement between
the atoms and the light field. (d) Coexistence of different bipartite entanglement behaviors, as measured by the time-averaged logarithmic
negativity Ē , for λ/κ = 0.8 [see the upper dotted line in Fig. 1(b)] and different values of � slowly varied in discrete steps starting from both
the stationary phase and the time-crystal phase.

Eq. (4), 22 in the stationary regime and close to the phase
transition line is essentially the susceptibility of the order
parameter mz.

We now turn to the time-crystal phase. Here, there is no
significant spin squeezing in the atom ensemble. Moreover, it
can be shown that the determinant of the covariance matrix
increases indefinitely with time, which indicates that the state
of the system becomes more and more mixed. Nonetheless,
in this regime the atoms and the light field are correlated.
This can be seen, for instance, through the one-way classical
correlation. This quantity is a measure of the maximal infor-
mation about one of the two subsystems, let us say the atoms,
that can be gained by performing measurements on the other
subsystem, in our case the light field. This one-way classi-
cal correlation, denoted as J A←L, is shown in Fig. 4(a) and
demonstrates the existence of correlations in the time-crystal
phase. Even more interesting, correlations of genuine quan-
tum nature can also be observed in this regime, as measured
by the (one-way) quantum discord DA←L = I − J A←L, with
I being the mutual information between the atoms and light
field. The quantum discord quantifies the correlations which
are not classical in nature. In Fig. 4(b), we show that in the
time-crystal phase the quantum discord is nonzero throughout.
(We report results for J A→L,DA→L in Appendix C.) Remark-
ably, a fraction of these quantum correlations is related to
bipartite entanglement between the atom ensemble and the
light field, which can be quantified through the logarithmic
negativity E shown in Fig. 4(c). Both classical and quan-
tum correlations display coexistence behavior, as shown in
Fig. 4(d), due to the coexistence of the uncorrelated stationary
phase and the correlated time crystal.

To conclude we note that Figs. 4(a)–4(c) clearly show that
increasing the coupling strength λ between the atoms and
the light field does not always lead to increased correlations.
Indeed, for fixed � and κ , a too large coupling strength λ

brings the system into the stationary uncorrelated phase.

VI. DISCUSSION

The system we have investigated is related to the well-
known boundary time-crystal model [19] through an adiabatic

elimination of the light field [62,63,73–75]. In regard to the
atoms, it has features which are similar to those of the bound-
ary time crystal. That is, we observe spin squeezing in the
stationary regime and an absence of quantum correlations
among the atoms in the oscillatory phase [38,52,53,55–58].
However, explicitly considering the light field allowed us to
uncover the existence of genuine quantum correlations in
the time-crystal regime, even though the latter is character-
ized by a mixed state, established between atoms and light
field. From a fundamental perspective our results demonstrate
that time-crystal phases can display quantum correlations and
are thus certainly not classical. Given the Gaussian charac-
ter of the quantum state of the atoms and the cavity mode,
the correlations we have investigated here may be accessed
experimentally via measurements of two-point correlation
functions. Our findings are valid in the thermodynamic limit.
For a finite system, they are accurate up to a timescale t∗
(diverging for N → ∞). Beyond this timescale, the oscilla-
tions in single realizations of the dynamics dephase [118].
The average state thus consists of the sum over all possible
dephased limit cycles and becomes asymptotically time in-
variant. This phenomenology is related, in the thermodynamic
limit, to mode softening and phase diffusion in time crystals
[37,134,135].

Finally, we note that the time-crystal phase appears to be
related to lasing since there is an inversion of population
signaled by positive magnetization m̄z > 0 [13], even though
the model does not possess U(1) symmetry. This is because
the “pumping” is not incoherent but rather is implemented
through external laser driving. However, the oscillations es-
tablished are not harmonic [see Fig. 1(c)], and deep in the
time-crystal phase, |�| � |λ|, the time-averaged magneti-
zation m̄z tends to zero; that is, there is no inversion of
population [13].
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APPENDIX A: TIME-TRANSLATION
SYMMETRY BREAKING

In this Appendix, we discuss the spontaneous breaking of
the continuous time-translation symmetry associated with the
observed time-crystal phase [36].

As discussed in Ref. [36], a continuous time-crystal is
characterized by emergent persistent oscillations of the system
and the spontaneous breaking of continuous time-translation
symmetry. After showing the former in Sec. III B through
the existence of the limit cycle we will now focus on the
latter. With our ansatz in Eq. (5) and an initial angle α, where
my(0) = sin α and mz(0) = cos α, we find my(t ) = sin �(t )
and mz(t ) = cos �(t ), with the phase angle �(t ) = θ (t ) + α.
For randomly sampled initial conditions the system can as-
sume all phases in the limit cycle (see Fig. 5). Similar to
the discussion in Ref. [36], this witnesses the breaking of
continuous symmetry in the time domain. Additionally, this
also shows that the system always approaches the time-crystal
phase, demonstrating its robustness against varying initial
conditions.

APPENDIX B: DYNAMICS OF QUANTUM FLUCTUATIONS

In this Appendix, we give the details of the derivation of the
evolution of the covariance matrix for fluctuation operators, as

FIG. 5. Continuous symmetry breaking in the time domain. Dis-
tribution of the phase angle � in the time-crystal phase for fixed
parameters (�/κ, λ/κ ) = (0.5, 0.5) and 200 random initial condi-
tions encoded in the angle α. The time at which � is evaluated is
fixed for all initial values. As shown in the plot, � can assume all
values between 0 and 2π , witnessing a continuous-time symmetry
breaking.

well as the transformation to the frame which rotates solidly
with the main direction of the atom average operators. We
then explicitly derive the dynamical generator for quantum
fluctuations in this rotating frame.

1. Time evolution of the covariance matrix
of quantum fluctuations

The derivation of the time evolution of the covariance
matrix for fluctuation operators closely follows the one
presented in Ref. [54]. We start by introducing the vec-
tor of fluctuation operators R̃N = (F N

x , F N
y , F N

z , qL, pL )T in
the time-independent frame. The covariance matrix of these
fluctuation operators can be written as ̃ = lim

N→∞
(KN +

(KN )T )/2, where we have defined KN
uv = 〈R̃N

u R̃N
v 〉. Here, the

expectation 〈·〉 denotes the expectation with respect to the
state at time t .

We now consider the time evolution of this correlation
function KN

uv . First, we note that

Ḟ N
u = − 1√

2N
˙〈Su〉, u = x, y, z,

q̇L = − ˙〈q〉, ṗL = − ˙〈p〉, and 〈R̃N
u 〉 = 0. Taking the time deriva-

tive of KN
uv then leads to

K̇N
uv = 〈

i
[
H, R̃N

u

]
R̃N

v

〉 + 〈
iR̃N

u

[
H, R̃N

v

]〉 + 〈
L∗[R̃N

u R̃N
v

]〉
,

where L∗ is the dissipator in the Heisenberg picture, i.e., the
map dual to L. To proceed, we compute the commutators in
the above equations, which can then be rewritten in terms of
fluctuation operators exploiting, again, the fact that 〈R̃N

u 〉 = 0.
A similar calculation also applies to the dissipative part in the
above equation. As in Ref. [54], this gives rise to products
of fluctuation operators and average operators. Making use of
the fact that, in the thermodynamic limit, lim

N→∞
〈R̃N

r mN
u R̃N

v 〉 =
mu(t )〈R̃rR̃v〉 and recalling the relation between KN and the
covariance matrix, we find that

˙̃(t ) = W̃ (t )̃(t ) + ̃(t )W̃ T (t ) + S̃(t )CS̃T (t ),

with W̃ (t ) = P̃(t ) + S̃(t )B. Here, we have defined the sym-
plectic matrix

S̃(t ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 mz(t ) −my(t ) 0 0

−mz(t ) 0 mx(t ) 0 0

my(t ) −mx(t ) 0 0 0

0 0 0 0 1

0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

encoding the commutation relation between fluctuation oper-
ators. We further have

D = κ

2

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 i
0 0 0 −i 1

⎞
⎟⎟⎟⎟⎠,
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through which we can define C = (D + DT )/2 and B = (D − DT )/(2i), and

P̃(t ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
√

2λmq(t ) λmz(t ) 0

0 0 −2� − √
2λmp(t ) 0 −λmz(t )

−√
2λmq(t ) 2� + √

2λmp(t ) 0 −λmx(t ) λmy(t )

λ 0 0 0 0

0 −λ 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The evolution for the case considered in the main text is
obtained by setting mx = mq = 0.

2. Covariance matrix in the rotating frame

We now focus on the case in which the system is initialized
in the state with all atoms in |e〉 and the light field in the vac-
uum. This gives mx(t ) = mq(t ) = 0 and m2

y (t ) + m2
z (t ) = 1.

This is the initial state considered for producing the plots
in the main text. Our task is now to find the time evolution
of the covariance matrix in the frame which rotates solidly
with the direction identified by the average operators. To
rotate the reference frame of the atom operators back to
the initial one, we need to find the rotation matrix which
maps the instantaneous vector of the average operators m =
[0, my(t ), mz(t ), mq(t ), 0]T into m = [0, 0, 1, mq(t ), 0]T . Ex-
ploiting the conservation law m2

y (t ) + m2
z (t ) = 1, this matrix

can be found to be the matrix

U (t ) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 mz(t ) −my(t ) 0 0
0 my(t ) mz(t ) 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠.

Under this transformation, the symplectic matrix becomes

S = U (t )S̃(t )U T (t ) =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 −1 0

⎞
⎟⎟⎟⎟⎠.

The time evolution of the covariance matrix in the rotating
frame can be calculated by taking the derivative of ̂ =
U (t )̃(t )U T (t ), which gives

˙̂(t ) = Q(t )̂(t ) + ̂(t )QT (t ) + SCST , (B1)

where

Q(t ) =

⎛
⎜⎜⎜⎜⎝

0 0 0 λmz(t ) 0
0 0 0 0 −λ

0 0 0 0 0
λ 0 0 − κ

2 0
0 −λmz(t ) −λmy(t ) 0 − κ

2

⎞
⎟⎟⎟⎟⎠.

For the considered initial state, the covariance matrix is given
by the diagonal matrix ̂(0) = 1/2 diag(1, 1, 0, 1, 1). Start-
ing from this covariance matrix, it is possible to see that the
third row and the third column of the covariance matrix are not
coupled to the remainder of the matrix. We thus define  to be

the covariance matrix of the fluctuation operators qA (which
is the limiting operator of the fluctuation F N

x in the rotating
frame) and pA (which is the limiting operator of the fluctuation
F N

y in the rotating frame) coupled to the fluctuations qL and pL

(see also main text).
For such a matrix, the time evolution is given by the

equation

̇(t ) = X (t )(t ) + (t )X T (t ) + scsT , (B2)

where X, s, and c are the 4 × 4 matrices obtained by removing
the third row and third column in Q, S, and C, respectively.

3. Dynamical generator for the quantum fluctuation
dynamics in the rotating frame

We now want to find the generator for the dynamics of the
two-mode bosonic system described by the vector of bosonic
operators R = (qA, pA, qL, pL )T . As done in Ref. [53], to this
end we consider a time-dependent Lindblad generator on
bosonic operators of the form

W∗
A−L(t )[O] = i[HA−L(t ), O] + L∗

L[O],

with an ansatz for the Hamiltonian given by

HA−L(t ) =
4∑

i, j=1

hi j (t )RiRj .

The dissipative part of the generator is essentially equivalent
to that of the original system, except that it now features the
“rescaled” fluctuation operators of the light [see Eq. (8) in the
main text]. Using the generator W∗

A−L(t ) to calculate the time
evolution of the covariance matrix, we find

̇(t ) = [2sh(t ) + sb](t ) + (t )[2sh(t ) + sb]T + scsT .

Here, we have that the 4 × 4 matrix b is obtained by removing
the third row and the third column from the matrix B intro-
duced above. Comparing the above equation with Eq. (B2)
shows that the generator correctly captures the dynamics of
the covariance matrix if the relation

2sh(t ) =

⎛
⎜⎜⎝

0 0 λmz(t ) 0
0 0 0 −λ

λ 0 0 0
0 −λmz(t ) 0 0

⎞
⎟⎟⎠

is satisfied. Exploiting the fact that s2 = −I, we can invert the
relation to find the Hamiltonian reported in the main text.
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FIG. 6. Additional results for quantum and classical correlations.
(a) Time-averaged classical correlation J̄ A→L as a function of λ and
�. For each value of �, the data are obtained by initializing the
system in state |ψ〉, evolving it with the smallest value of λ, and
then adiabatically increasing the interaction parameter λ in discrete
steps up to the largest values. The evolution time for each value of
λ is κt = 5000 and coincides with the averaging window for the
correlation measure. (b) Same as (a), but for the quantum discord
D̄A→L . The latter shows that the time-crystal phase features quantum
correlations.

APPENDIX C: QUANTUM AND CLASSICAL
CORRELATIONS

In this Appendix, we describe how to calculate the corre-
lation measures that we analyze in our work, and we further
present additional results for these (see Fig. 6). For details on
the derivation of these measures, we refer to Refs. [130–133].

Given the two-mode covariance matrix (t ), we now show
how to compute measures for the classical correlation, for the
quantum discord, and for the logarithmic negativity. To start,
we identify the relevant 2 × 2 minors of  as the matrices α,
β, and γ , such that

2(t ) =
(

α γ

γ β

)
.

Here, the matrix α contains the variances of the atom fluctu-
ations, β contains those of the light-field fluctuations, and γ

contains the covariances between the atoms and the light field.
We now define the quantities

cα = det(α), cβ = det(β ), cγ = det(γ ), cδ = det(2),

as well as the function

f (x) =
(

x + 1

2

)
ln

(
x + 1

2

)
−

(
x − 1

2

)
ln

(
x − 1

2

)
.

For a two-mode Gaussian state an expression for the one-
way classical correlation, quantifying the information on the
first mode obtained by measurements performed on the sec-
ond mode, is given by

J A←L = f (
√

cα ) − f (
√

Emin), (C1)

while the quantum discord is

DA←L = f (
√

cβ ) − f (ν−) − f (ν+) + f (
√

Emin), (C2)

where Emin is defined as

Emin =

⎧⎪⎨
⎪⎩

2c2
γ +(cβ−1)(cδ−cα )+2|cγ |

√
c2
γ +(cβ−1)(cδ−cα )

(cβ−1)2 for (cδ − cαcβ )2 � (1 + cβ )c2
γ (cα + cδ ),

cαcβ−c2
γ +cδ−

√
c4
γ +(cδ−cαcβ )2−2c2

γ (cαcβ+cδ )

2cβ
otherwise.

The quantities ν− and ν+ are the symplectic eigenvalues of
the matrix 2, with ν− < ν+. These are found as the positive
eigenvalues of the matrix 2is. To compute the correlations
J A→L and DA→L, quantifying the information about the light
field that can be obtained from a measurement on the atoms,
we can exploit the same definitions as above but exchange the
roles of α and β in all of the above relations.

In order to quantify the amount of bipartite entangle-
ment between the atoms and the light field, we compute the

logarithmic negativity. This is defined as

E = max(0,− ln (ν̃−)),

where ν̃− is the smallest symplectic eigenvalue of the
partially transposed covariance PT = ��, where � =
diag(1, 1, 1,−1). The latter is computed as the smallest posi-
tive eigenvalues of the matrix 2isPT .
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