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Based on time-dependent variational-principle algorithms, we investigate the dynamical critical behavior of
quantum three-state Potts chains with chiral interactions. Using the Loschmidt echo, dynamical order parameter,
and entanglement entropy as an indicator, we show that as the chiral interaction θ increases, the first critical time
t∗
1 shifts towards lower values, indicating a chirality-related dynamical phase transition. Moreover, we perform

dynamical scaling for the Loschmidt echo and obtain the critical exponent ν at the nonconformal critical point.
The results show that as the chiral interaction θ increases, the correlation-length exponent ν decreases, which
is similar to the long-range interaction case. Finally, we give a simple physical argument to understand the
above numerical results. This work provides a useful reference for further research on many-body physics out of
equilibrium with chiral interaction.
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I. INTRODUCTION

Understanding exotic phases and phase transitions in
many-body systems is a fundamental challenge in the field
of condensed-matter and statistical physics [1–4]. While ex-
tensive studies have been focused on equilibrium phase tran-
sitions [5–9], less attention has been paid to the behavior of
quantum many-body systems out of equilibrium [10,11]. The
dynamical quantum phase transition (DQPT) [12–18] is a type
of nonequilibrium phase transition that occurs at critical times
t∗ during real-time evolution, characterized by nonanalytici-
ties of the rate function after a sudden quench of the system
[17]. Analogous to equilibrium phase transitions that arise
from singularities in parameter space, the DQPT originates
from singularities in time [12,16,17]. Recently, there has been
a surge of interest in the study of the DQPT, including inves-
tigations into critical behavior [15,19–35], order parameters
[36–41], spontaneously broken symmetries [14], and experi-
mental realizations across a variety of platforms [42–49].

On the one hand, quantum phase transitions were pre-
viously investigated and found to possess relativistic and
conformal invariance, allowing for significant analytical
progress [50–52]. However, there has long been debate sur-
rounding the commensurate-incommensurate phase transition
[53–63] regarding whether there is an intermediate float-
ing phase between the commensurate-incommensurate phases
studied in the 1980s or, if it is a continuous phase transition,
what universality class this phase transition belongs to. This
debate has to be revisited due to the potential of a neutral
long-range interacting Rydberg-atom array confined in optical
tweezers to serve as a tunable platform for observing a variety
of quantum phenomena [64,65]. Similarly, the Z3 clock model
with chiral interaction also exhibits such nonconformal chiral
transition [53,66–71]. An intriguing question within the chiral
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clock model therefore arises: What is the relationship between
the chiral and long-range interactions in quantum critical be-
havior [53,56,72]?

On the other hand, previous studies on the DQPT across
different quantum critical points were carried out in many
systems, such as the symmetry-breaking critical point [12,14],
topological phase transitions [36,73,74], an exotic deconfined
quantum critical point [41], and even a non-Hermitian critical
point [21,75,76]. Although the link between the DQPT and
many physical observables has been established [16–18], a
thorough understanding of this transition still calls for more
studies. To the best of our knowledge, whether the DQPT
can occur in a system after a quench across a nonconformal
critical point and its dynamical scaling behavior have been
less studied so far; therefore, it is very worthwhile to study and
demonstrate the possible existence of a DQPT in the system
with a nonconformal critical point.

To answer the two questions above, in this work, we ex-
plore the dynamical behavior of a Z3-symmetric quantum spin
chain with chiral interaction. Our investigation utilizes a time-
dependent variational-principle (TDVP) simulation [77–80]
to examine the effect of chiral interaction; we show that the
introduction of chiral interaction can advance the first critical
time of the DQPT. Furthermore, our analysis of the Loschmidt
echo reveals that the correlation-length critical exponent de-
creases as the chiral interaction increases, which agrees with
previous studies of long-range interacting Rydberg-atom ar-
rays. The results imply chiral interaction and long-range
interaction have similar effects on quantum critical behavior.

This paper is organized as follows: Sec. II presents the
lattice model of the quantum Potts chain with chiral interac-
tion, the numerical method used, and the physical quantities
that display a DQPT. In Sec. III, we provide benchmark
results for DQPT in nearest-neighbor quantum Potts chains
and chirality-related dynamical phase transitions. Section IV
presents the dynamical scaling for the Loschmidt echo to
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FIG. 1. (a) Schematic chiral interaction θ and φ and (b) ground
phase diagram with respect to the chiral interaction θ and external
transverse field f of the quantum chiral clock Potts chain with φ = 0
[53,71]. With a nonzero chiral interaction phase (θ �= 0), the effective
interaction can induce incommensurate floating phases with respect
to the periodicity of the underlying lattice, and the transition between
the Z3 order phase and disorder phase belongs to the nonconformal
chiral universality class.

obtain critical behavior in the chiral transition, as well as a
simple physical explanation for our numerical observations.
Finally, our conclusion is presented in Sec. V. Appendixes
provide additional data for our numerical calculations.

II. MODEL AND METHOD

The system we study is a quantum chiral Potts chain of
L spins (see Fig. 1), described by the following Hamiltonian
[53,66,71,81–85]:

HCCM = −J
N∑

j=1

σ
†
j σ j+1e−iθ − f

N∑
j

τ
†
j e−iφ + H.c., (1)

where φ and θ define two types of chiral interactions (tem-
poral and spatial, respectively). The main text focuses on the
φ = 0 case, where time- reversal and spatial-parity symmetry
are both preserved but the chirality is still present as a purely
spatial one (for the temporal case see Appendix C). J is the
interaction strength, and f represents the external transverse
field. The Hilbert space is (C3)⊗N . τ dictates the direction
of the watch hand, and σ rotates the watch hand clockwise
through a discrete angle 2π/3, as shown in Fig. 1(a). σ and
τ satisfy σ 3

i = I , τ 3
i = I , and σiτ j = ωδi jτ jσi, where ω =

e2π i/3. A global Z3 transformation represented by G = ∏
i τi

makes the Hamiltonian invariant. The operators are defined by

σ =
⎛
⎝

0 1 0
0 0 1
1 0 0

⎞
⎠, τ =

⎛
⎝

1 0 0
0 ω 0
0 0 ω2

⎞
⎠. (2)

The introduction of chiral interaction has a significant im-
pact on the phase diagram [as shown in Fig. 1(b)] and has

been extensively studied in the literature [53,71]. Specifically,
in the absence of chiral interaction (θ = φ = 0), the model
reduces to the standard nearest-neighbor quantum three-state
Potts chain. In this case, for f � J , the system is in an ordered
phase that breaks the Z3 symmetry, while for f � J , it is in
a disordered paramagnetic phase. Fradkin-Kadanoff’s trans-
formation demonstrates that the system exhibits a continuous
phase transition from the Potts-ordered topological phase to
a trivial disordered phase, with a correlation-length exponent
of ν = 5/6 [66,67,70,71]. In the presence of a nonzero chiral
interaction, the effective interaction can be induced incom-
mensurate floating phases relative to the lattice periodicity,
and the transition between gapped states belongs to a non-
conformal chiral universality class. Furthermore, the model
is known to be integrable for a two-parameter family of
couplings along the line f cos(3φ) = Jcos(3θ ) and is exactly
solvable.

To exhibit a DQPT, we first consider the Loschmidt ampli-
tude (return amplitude), which was been introduced by Heyl
et al. [12],

L(t ) = 〈ψi|ψ (t )〉 = 〈ψi|e−iHf t |ψi〉, (3)

where |ψi〉 denotes the ground state that pertains to the Hamil-
tonian before quench Hi (or, more generally, an arbitrary
initial state) and evolves under quenched Hamiltonian Hf in
time. The structure of the Loschmidt amplitude resembles the
boundary partition function defined in statistical mechanics,
except the time-evolution operator makes it a complex quan-
tity instead of real. This analogy suggests the introduction of
the effective free energy (return rate)

r(t ) = − 1

N
lim

N→∞
ln|L|2; (4)

similar to the equilibrium statistical physics, where phase
transitions are identified by singularities in the free energy
at certain values of the control parameter, the DQPT is char-
acterized by nonanalytic cusps in the return rate r(t ) at the
time t∗. However, a specific nonequilibrium protocol, such as
a quantum quench, can be employed to observe a DQPT by
driving the system out of equilibrium. In the case of a quantum
quench, the initial state is prepared as the ground state of an
initial Hamiltonian H0, and then the control parameter of the
Hamiltonian is suddenly switched to a different value, leading
to the final Hamiltonian Hf .

The relationship between the dynamical order parame-
ter and the DQPT is an intriguing topic that has recently
attracted considerable interest. The dynamical order param-
eter accurately characterizes the behavior of the Loschmidt
echo; specifically, the periodic behavior exhibited by the
dynamical order parameters should be the same as the pe-
riod of the Loschmidt echo [41]. This definition does not
necessitate conformity with the characteristics of order pa-
rameters in equilibrium quantum phase transitions. To explore
this relation in the nonconformal quantum critical point, we
introduce a dynamical order parameter defined as Q(t ) =
1
L 〈ψ (t )| ∑ j (τ j + τ

†
j )|ψ (t )〉.

Additionally, the relationship between the DQPT and en-
tanglement structures has also been investigated. The DQPT
may correspond to regions of rapid growth or peaks in en-
tanglement entropy [44,86]. To further probe the DQPT,
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FIG. 2. Time evolution of (a) the return rate, (b) dynamical order parameter, and (c) entanglement entropy. Purple and cyan dashed lines
represent exact analytic results from the transfer matrix. All the plots correspond to quenches with f0/J = ∞ (PM) → f1/J = 0.0 (Potts FM),
θ = φ = 0, and N = 30. tc = 2π/9 is the first critical time for the three-state Potts chain as the system size N tends to ∞.

we define the entanglement entropy as S(t ) = −Tr(ρAlnρA),
where ρA = TrB|ψ (t )〉〈ψ (t )| is the reduced density matrix
about half chain A: 1, 2, . . . , N/2 (for B, N/2 + 1, . . . , N).

Except for specific integrable lines, the quantum chi-
ral clock Potts chain does not have exact solutions. In
the parameter region of interest, we employ a state-of-
the-art, time-dependent density-matrix renormalization-group
(DMRG) method (more precisely, the TDVP method) [77–80]
based on matrix product states (MPSs), which is a powerful
numerical method for one-dimensional strongly correlated
many-body systems. We set the bond dimension to 60, en-
suring good convergence of the dynamical physical quantities
(see Appendix G) by requiring relative energy errors to be
less than 10−5. The time step during the evolution is set to
dt = 0.001 (ensuring good convergence; see Appendix A). To
minimize edge effects, we impose periodic boundary condi-
tions and use J = 1 as the energy unit. It is worth emphasizing
that, in our cases, the finite-size TDVP algorithm is more
efficient than the infinite density matrix renormalization group
(iDMRG) algorithm for computing other physical quantities,
such as entanglement entropy.

III. DYNAMICAL PHASE TRANSITION

As a benchmark, we first study the DQPT of the
nearest-neighbor quantum three-state Potts chain (θ = φ = 0)
[87–89]. More precisely, we study the time evolution of the
return rate after sudden quenches between the paramagnetic
(PM) and Potts ferromagnetic (Potts FM) phases.

We first consider a special limit in which the return rate can
be obtained analytically, starting from the perfect PM phase
( f0 = ∞) and quenched to the classical Potts FM phase ( f1 =
0). The initial state is given by

|ψ0〉 = 1

3N/2

∏
i

(|A〉i + |B〉i + |C〉i ), (5)

where |A〉i, |B〉i, and |C〉i are three degenerate Potts FM
ground states. Since the final Hamiltonian is purely classical,
the return amplitude can be written in the simple form

L(t ) = trMN , M =
⎛
⎝

e2iJt/3 e−iJt/3 e−iJt/3
e−iJt/3 e2iJt/3 e−iJt/3
e−iJt/3 e−iJt/3 e2iJt/3

⎞
⎠, (6)

where periodic boundary conditions on a chain with N lattice
sites have been considered. The eigenvalues of the transfer
matrix M are given by

λ1 = e−iJt

3
(e3iJt + 2), λ2 = λ3 = e−iJt

3
(e3iJt − 1), (7)

and we obtain the return amplitude L(t ) = λ1(t )N + 2λ2(t )N ,
which yields the return rate

l (t ) = − 1

N
ln|(9cos2t̃ + sin2t̃ )N

+ 4N+1sin2t̃ + 2(2i)N (3cost̃ + isint̃ )N sinNt̃

+ 2(2i)N (−3cost̃ + isint̃ )N sinNt̃ | + 2ln3, (8)

where t̃ = 3Jt/2. The return rate is periodic, l (t ) = l (t +
2π/3J ), l (0) = 0, and shows nonanalytic behavior at the crit-
ical times Jt∗ = 2π/9 + 2πn/3, n ∈ N0, as shown in Fig. 2.

A. Warm-up: Quantum Potts chains

In this section, we numerically investigate the DQPT after
quenches from the PM phase to the Potts FM phase. The
quench protocol is implemented by suddenly switching the
ratio between the transverse field f and ferromagnetic inter-
action J from its initial value f0/J to its final value f1/J .
We start from the PM state, which is obtained from the ini-
tial Hamiltonian H0 with f0 = 1.0, J = 0.0, and f0/J = ∞,
quenched to a final state with parameters f1 = 0.0, J = 1.0,
and f1/J = 0.0, located in the Potts FM order phase. The
general relation between the DQPT and the underlying equi-
librium quantum critical point is unclear, but as argued in
previous works [16,17], the DQPT usually occurs when the
quenching process is ramped through an equilibrium critical
point. Indeed, as shown in Fig. 2(a), the return rate exhibits
nonanalytical behavior with respect to time, implying the
DQPT occurs (see Appendix A for the finite-size scaling),
and the time evolution behavior of the return rate is the same
as that for the iDMRG results [87]. Moreover, to explore
the relationship between the return rate and the zeros of a
dynamical order parameter, we also calculate the dynamical
order parameter. During the time evolution, the dynamical
order parameter exhibits periodic changes with time, with its
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FIG. 3. Time evolution of (a) the return rate, (b) dynamical order
parameter, and (c) entanglement entropy. (d) The first critical time
as a function of the spatial chiral interaction θ . The plots corre-
spond to quenches with f0/J = ∞ (PM) → f1/J = 0.0 (Potts FM),
θ = 0.12π, φ = 0, and N = 30.

valleys corresponding to the peaks in the return rate, as shown
in Fig. 2(b). Our numerical observation is fully consistent with
previous studies [87].

Moreover, we can explore the entanglement structures and
possible connections to the above observations. The entan-
glement entropy is an efficient physical quantity to uncover
entanglement structures of the model. To be more precise,
the half-chain entanglement entropy is a singular value of the
Schmidt decomposition across a bond and is easily accessed
through the finite-size DMRG calculation. In Fig. 2(c), sudden
changes in the entanglement entropy are seen in the vicinity
of the serval critical times, which is similar to the dynamical
behavior of the return rate. The reason for this currently re-
mains unclear but suggests some deeper relationship between
the entanglement structure and DQPT. It is important to note
that while the dynamical order parameters and entanglement
entropy exhibit peaks, these peaks do not increase with sys-
tem size (up to N = 30; see Appendix A). This suggests
that the dynamical order parameter or entanglement entropy
alone cannot be used as an indicator of whether a DQPT has
occurred at this time. However, it is noteworthy that the period
of change in the dynamical order parameter and entanglement
entropy coincides with the period of the DQPT.

B. Chirality-related dynamical phase transition

We note that the asymmetry in the Hamiltonian has im-
portant consequences: The spatial chirality (θ �= 0) induces
incommensurate floating phases with respect to the periodic-
ity of the underlying lattice. To study whether chirality will
affect the DQPT of the system, we numerically investigate the
quantum chiral Potts chain with θ = 0.12π , quenched from

the PM to the Potts FM phase. On the one hand, we start from
the PM state, which is obtained from the initial Hamiltonian
H0 with f0 = 1.0, J = 0.0, and f0/J = ∞, quenched to a final
state with parameters f1 = 0.0, J = 1.0, and f1/J = 0.0, lo-
cated in Potts FM order phase. As shown in Fig. 3(a), we find
that the return rate exhibits a series of nonanalytic behaviors
with time, implying that the introduction of chirality is stable
for observing a DQPT. On the other hand, we also calculate
the dynamical order parameter and entanglement entropy, as
shown in Figs. 3(b) and 3(c), and find that the valley (peak) of
the dynamical order parameter (entanglement entropy) corre-
sponds to the peak of the return rate, demonstrating that they
have the same periodicity of the DQPT. Moreover, as shown
in Fig. 3(d), we found that the first critical time t∗

1 for the
DQPT decreases with the increase of the chiral interaction
(see Appendix B for the calculation of the DQPT of another
chiral interaction). This means that the increase in chiral in-
teraction will make it easier for a DQPT to occur; we call
this the “chirality-related dynamical phase transition.” This
adjustment allows for the observation of DQPTs in a shorter
time, thereby reducing the experimental detection complexity
associated with these transitions. In Sec. IV C, we will give
a simple physical argument to explain this phenomenon. Fi-
nally, we also calculate the DQPT from the Potts FM to the
PM phase with the temporal chiral interaction φ. The results
are shown in Appendix C.

IV. DYNAMICAL SCALING FOR A CHIRAL CLOCK
POTTS CHAIN

A. Fidelity susceptibility and the quantum critical point

The system undergoes a continuous phase transition from
an ordered to a disordered phase when tuning the external field
f , after which the structure of the ground-state wave func-
tion changes significantly. The quantum ground-state fidelity
F ( f , f + δ f ) is defined as the wave-function overlap of two
neighboring ground states with respect to an external field f ,
and its value is almost zero near the quantum critical point
f ∗
c . In practice, the more convenient quantity to characterize

quantum phase transitions is the fidelity susceptibility, defined
by the leading term of the fidelity [56,90–94],

χF ( f ) = limδ f →0
2[1 − F ( f , f + δ f )]

(δ f )2
. (9)

The fidelity susceptibility is a geometric property of quan-
tum states in the realm of quantum information that offers a
distinct advantage in that it requires no a priori knowledge
of order parameters or symmetry breaking. It has been ap-
plied to detect a wide range of quantum phase transitions
[41,55,95–98] induced by a sudden change in the structure
of the wave function. Experimental detection of quantum
phase transitions using fidelity susceptibility can be achieved
via neutron scattering or angle-resolved photoemission spec-
troscopy techniques [90]. Here we employ the fidelity
susceptibility [99] to identify the critical point in the quantum
Potts chain with chiral interaction and perform dynamical
scaling in the obtained quantum critical point.

Figure 4(a) illustrates the scaling behavior of fidelity sus-
ceptibility per site χN = χF /N as a function of system size
N for θ = 0.12π in the quantum Potts chain with chiral
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FIG. 4. (a) Fidelity susceptibility per site χN of the quantum Potts chain with chiral interaction for θ = 0.12π and N = 8, 12, 16, 20, 24
sites as a function of external transverse field f ; symbols denote finite-size DMRG results. (b) The Loschmidt echo L(N, f , g, t ) at the peak
position f of χN in (a) with g = 0.01 as a function of time t for lattice sizes N = 8 (red), 12 (blue), 16 (yellow), 20 (green), and 24 (purple; from
top to bottom along the first minimum). (c) Finite-size scaling of 1 − Lmin(N, g) obtained from (b) as a function of lattice sizes N , where the
black squares are numerical values and the black solid line denotes the fitting curve. The correlation-length critical exponent ν = 0.780 ± 0.001
is obtained from the fitting curve.

interaction. As the system size increases from N = 8 to 24,
we observe that the peak position of the fidelity susceptibility
curve gradually approaches the exact critical point f ∗

c . Our
results indicate that the peak of the fidelity susceptibility con-
verges at N = 24 (see Appendix A for the finite-size effect
of the DQPT), providing an effective means of obtaining
the quantum critical point. (See Appendix E for details on
the calculation of the fidelity susceptibility for another chiral
interaction.)

B. Dynamical scaling law for the Loschmidt echo

As a next step, we aim to examine the dynamical property
of the system following a small quench and carry out dynami-
cal scaling of the Loschmidt echo to obtain critical exponents
in the nonconformal chiral universality class. Recent studies
[20] demonstrated that the decay of the Loschmidt echo can
be enhanced by the equilibrium quantum criticality. The first
minimum of the Loschmidt echo at t∗

1 can be scaled as

1 − Lmin(N, g) ∝ g2N2/ν (10)

at the equilibrium chiral transition point. Here ν is the
correlation-length exponent, and g is a small constant step,
defined as g = f1 − f0, where f0 and f1 are the external field
before and after quench protocols. The exact definition of
the first minimum of the Loschmidt echo is Lmin(N, g) =
mint |〈ψ0( f0)|e−iHf t |ψ0( f0)〉|2. The dynamical scaling law in
Eq. (10) that governs the critically enhanced decay behavior
of the Loschmidt echo with respect to N can be utilized to
extract the correlation-length exponent ν. In order to perform
the scaling law in Eq. (10) for the Loschmidt echo Lmin(N, g),
it should be computed at or close to the equilibrium critical
point f ∗

c , which is obtained from fidelity susceptibility.
To this end, we first obtain the ground state ψ0 from Eq. (1)

at the external field f0 and then compute the Loschmidt echo
from Eq. (3) by quenching the chiral clock Potts chain from
the initial f0 to the final f1 with a small constant step g =
0.01. The time-evolved wave function ψ (t ) is obtained from
the TDVP with a step dt = 0.02 under periodic boundary
conditions, where we set J = 1 during the numerical sim-
ulations. We perform numerical simulations upon a quench

with the TDVP from this critical point f0 to f1 = f0 + g for
N = 8, 12, 16, 20, 24 sites. The results of the Loschmidt echo
L(N, h, g, t ) for θ = 0.12π shown in Fig. 4(b) exhibit a decay
and revival dynamics. The first minimum of the Loschmidt
echoes Lmin(N, g) is plotted in Fig. 4(c) with respect to the
lattice size N . According to the scaling law in Eq. (10), we
obtain the correlation-length exponent ν = 0.780 ± 0.001 for
a nonconformal chiral transition. Details on the dynamical
scaling of the Loschmidt echo for another chiral interaction
can be found in Appendix D, and the results for all θ are
summarized in Table I. The results show that the correlation-
length exponent ν decreases with increasing chiral interaction
θ , which is consistent with previous studies [53,55,56]. More-
over, we want to remark that when θ = π , the model is
simplified to a quantum antiferromagnetic Potts chain. Under
this condition, the Kosterlitz–Thouless transition (KT)-like
phase transition from the massive trivial phase to the massless
phase will occur. The critical point is located at f /J ≈ 0.2
[100,101] (due to the symmetry of the three-state chiral Potts
model, θ = θ + π/3, θ = π is equivalent to π/3; therefore,
the phase transition from a massive trivial phase to a mass-
less incommensurate phase occurs [71]). In the context of
the KT transition, the correlation length exhibits divergence
characterized by ξ ∝ exp(C f −ν ) ∝ exp(C/

√
f ), where the

TABLE I. Critical exponents of the Potts chain with different
chiral interactions θ . Critical exponents are obtained by dynamical
scaling for the Loschmidt echoes.

θ ν

0.0π 0.838(4)
0.02π 0.832(4)
0.04π 0.829(3)
0.06π 0.824(3)
0.08π 0.813(1)
0.10π 0.7978(5)
0.12π 0.780(1)
0.14π 0.754(2)
0.16π 0.724(3)

062215-5



XUE-JIA YU PHYSICAL REVIEW A 108, 062215 (2023)

“correlation-length exponent” ν is known to be 0.5 [58,102].
However, comprehensive understanding of DQPTs resulting
from a quench across a KT transition, as well as the associated
dynamical scaling laws, remains an open issue. We defer this
intriguing topic to future work.

C. Discussion

In this section, we present a brief discussion on the physical
reason for the emergence of the chirality-related dynamical
phase transition. First, the introduction of the spatial chiral
interaction θ can be considered an equivalent of introduc-
ing power-law long-range interactions. To be precise, when
the spatial chiral interaction is increased (i.e., larger θ ), the
interaction becomes longer range. Recent studies [53] on
Rydberg-atom arrays demonstrated that the van der Waals
long-range interaction has an effect on the critical behavior
similar to the chiral interaction. In particular, the longer the
power-law interaction is, the smaller the critical exponent
of the correlation length ν is, which is consistent with the
results obtained by dynamical scaling (see Table I). This is
because the long-range interactions enhance the inequivalence
between the two types of domain walls, leading to a faster
deviation from the Potts exponent [55].

On the other hand, previous reports [103–111] studied the
dynamical phase transitions in the transverse field Ising model
with power-law long-range interactions 1/rα . According to
Fig. 1 of Ref. [103], when α < 2.0 (where the physics is
essentially analogous to that of a short-range Ising model for
large α), a smaller power-law long-range interaction exponent
α implies a stronger long-range interaction and, consequently,
effectively enhances chirality, as discussed previously. This
results in a lower critical transverse field required for the
appearance of kinks in the Loschmidt echo under identical
quenching conditions, which means that the DQPT will occur
earlier; that is, the first critical time will decrease (advance).

By combining the two aspects above, we provide a sim-
ple physical explanation for chirality-related dynamical phase
transition: The effect of the spatial chiral interaction is akin
to that of long-range interaction, and the introduction of long-
range interaction enhances the propensity for a DQPT in the
system. Therefore, spatial chiral interaction can effectively
advance the dynamical phase transition. Finally, we observe
that the inclusion of temporal chiral interaction leads to dif-
ferent results (see Appendix C), which merits further detailed
investigation in the future.

V. CONCLUSION AND OUTLOOK

To summarize, we investigated the quench dynamics in the
Z3-symmetric spin chain with chiral interaction. To establish
a baseline, we first considered the standard nearest-neighbor
quantum three-state Potts chain and derived analytical results
of the Loschmidt echo for the quench from the PM to the
Potts FM phase. Our results showed that the Loschmidt echo,
dynamical order parameter, and entanglement entropy exhibit
DQPT signatures. We then investigated more general cases
with a chiral interaction θ using TDVP algorithms. The results
revealed that the introduction of the chiral interaction will
advance the critical time of the DQPT, which we refer to as

a chirality-related dynamical phase transition. Additionally,
we performed dynamical scaling for the Loschmidt echo and
obtained the correlation-length critical exponent ν under dif-
ferent chiral interactions. The numerical results indicated that
as the chiral interaction increases, the correlation-length ex-
ponent ν decreases, which has an effect similar to long-range
interaction. Finally, we provided a simple physical argument
to understand the chirality-related dynamical phase transition.

Future work may explore the physical reason for the dy-
namical phase transition due to temporal chiral interaction and
investigate the fate of quench dynamics in two-dimensional
systems with different types of quantum critical points. Our
work may provide insights into many-body physics out of
equilibrium with chiral interaction.
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APPENDIX A: FINITE SIZE AND RIME STEP
EFFECT OF THE DQPT

In this Appendix, we investigate the effect of the finite
system sizes on the extraction of the dynamical properties,
namely, the associated return rate r(t ), dynamical order pa-
rameter Q(t ), and entanglement entropy S(t ). To this end, we
perform TDVP calculations for different system sizes N from
9 to 30 sites with periodic boundary conditions and consider
a quench originating in the PM phase with φ = θ = 0, f0 =
1.0, J = 0.0, and f0/J = ∞ and, subsequently, a quench to
the Potts FM phase with f1 = 0.0, J = 1.0, and f1/J = 0.0,
as shown in Fig. 5. It is clear that the return rate r(t ) of the
largest four system sizes is quite good, with only a slight
deviation of the smallest two sizes, which indicates that the
system size N = 30 is sufficient to detect the DQPT, and we
notice that the dynamical order parameter and entanglement
entropy do not appear as a shape peak but exhibit the time
evolution of the same period as the return rate. This does
not change with system size. Therefore, we can expect that
Figs. 1–4 in the main text reliably represent the results in the
thermodynamic limit. In addition, we also calculate the return
rate under different time steps dt = 0.01, 0.005, 0.0025, and
0.001, and the results show that the result of dt = 0.001
basically converges, as shown in Fig. 5(d).

APPENDIX B: EVOLUTION OF THE DYNAMICAL PHASE
TRANSITION WITH THE CHIRAL INTERACTION

In this Appendix, we provide additional data to show the
dynamical phase transition evolves with the chiral interaction.

Figure 6 shows the return rate r(t ) of the Potts
chain with chiral interaction for θ = 0.02π, 0.04π, 0.06π,

0.08π, 0.1π, 0.14π , and 0.16π and N = 30 sites as a function
of time t . We found that no matter the return rate, dynamical
order parameter, and entanglement entropy, the time when the
kink (that is, the DQPT) appears for the first time decreases
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FIG. 5. (a) The return rate as a function of time for system size N from 9 to 30 sites across the critical point. (b) Dynamical order parameter
and (c) entanglement entropy. It is clear that the return rate r(t ) of the largest four system sizes is quite good, with only a slight deviation of
the smallest two sizes. (a)–(c) correspond to the PM state and quench to the final Potts FM state. (d) The return rate as a function of time for
different time steps dt from 0.01 to 0.001 across the critical point for φ = 0.12π, θ = 0.0, and N = 30. (d) corresponds to the quenches from
the Potts FM state and quench to the final PM phase.

with the increase of θ , which is a chirality-related dynamical
phase transition in the main text.

APPENDIX C: QUENCH FROM POTTS TO PM
WITH TEMPORAL CHIRAL INTERACTION

We briefly discuss the DQPT of the Potts model
with temporal chiral interaction. To this end, we start
from the Potts FM state ( f0 = 0.0, J = 1.0, f0/J = 0.0)
and quench to the PM state ( f1 = 1.0, J = 0.0, f1/J = ∞)
with the temporal chiral interaction phase φ. The return
rate of the Potts chain with chiral interaction for φ =
0.02π, 0.04π, 0.06π, 0.08π, 0.1π, 0.14π , and 0.16π and
N = 30 sites as a function of time t exhibits singular behavior,

as shown in Fig. 7. We give the first critical time t∗
1 as a

function of the temporal chiral interaction phase φ for φ =
0.12π and N = 30 combined with the return rate in Fig. 8.
The results show that t∗

1 increases with the increase of φ, in
contrast to the spatial chiral interaction case.

APPENDIX D: DYNAMICAL SCALING FOR OTHER
CHIRAL INTERACTION PHASES

In this Appendix, we provide additional data to show dy-
namical scaling for other chiral interaction phases.

Figures 9(a)–9(h) show the dynamical scaling for 1 −
Lmin(N, g) in the Potts chain with chiral interaction for
θ = 0.0π , θ = 0.02π , θ = 0.04π , θ = 0.06π , θ = 0.08π ,
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FIG. 6. Time evolution of (a) the return rate, (b) dynamical
order parameter, and (c) entanglement entropy of the quantum
Potts chain with spatial chiral interaction (φ = 0.0) for θ =
0.02π, 0.04π, 0.06π, 0.08π, 0.1π, 0.14π , and 0.16π and N = 30.
All the plots correspond to quenches with f0/J = ∞ (PM) →
f1/J = 0.0 (Potts FM).

θ = 0.1π , θ = 0.14π , and θ = 0.16π and N = 8, 12, 16,

20, 24 sites as a function of lattice size N , respectively. The
extrapolated correlation-length exponents are summarized in
Table I; we find that with the enhancement of chiral interaction
θ , the correlation-length exponent ν of the system gradually
decreases, which is consistent with the effect of long-range
interaction.

APPENDIX E: FIDELITY SUSCEPTIBILITY FOR OTHER
CHIRAL INTERACTION PHASES

In this Appendix, we provide additional data to show the
fidelity susceptibility for other chiral interaction phases.

FIG. 7. Time evolution of the return rate of the quantum
Potts chain with temporal chiral interaction (θ = 0.0) for φ =
0.02π, 0.04π, 0.06π, 0.08π, 0.1π, 0.14π , and 0.16π and N = 30.
The plot corresponds to quenches with f0/J = 0.0 (Potts FM) →
f1/J = ∞ (PM).

Figures 10(a)–10(h) show the fidelity susceptibility per site
χN = χF /N of the Potts chain with chiral interaction for θ =
0.0π , θ = 0.02π , θ = 0.04π , θ = 0.06π , θ = 0.08π , θ =
0.1π , θ = 0.14π , and θ = 0.16π and N = 8, 12, 16, 20, 24
sites as a function of the external transverse field f , respec-
tively. We find that quantum critical points are shifted to lower
values of f as chiral interaction increases.

APPENDIX F: LOSCHMIDT ECHO AT THE PEAK
POSITION FOR OTHER CHIRAL INTERACTION PHASES

In this Appendix, we provide additional data to show the
Loschmidt echo at the peak position for other chiral interac-
tion phases.

Figures 11(a)–11(h) show the Loschmidt echo at the
peak position of the Potts chain with chiral interaction for
θ = 0.0π , θ = 0.02π , θ = 0.04π , θ = 0.06π , θ = 0.08π ,

FIG. 8. (a) Time evolution of the return rate. The plot corre-
sponds to quenches with f0/J = 0.0 (Potts FM) → f1/J = ∞ (PM),
θ = 0.0, φ = 0.12π , and N = 30. (b) The first critical time is a
function of the temporal chiral interaction phase φ.
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FIG. 9. Finite-size scaling of 1 − Lmin(N, g) of the quantum Potts chain with spatial chiral interaction (φ = 0.0) for (a) θ = 0.0π , (b) θ =
0.02π , (c) θ = 0.04π , (d) θ = 0.06π , (e) θ = 0.08π , (f) θ = 0.1π , (g) θ = 0.14π , and (h) θ = 0.16π and N = 8, 12, 16, 20, 24 sites as a
function of lattice size N ; symbols denote finite-size DMRG results.

θ = 0.1π , θ = 0.14π , and θ = 0.16π and N = 8, 12, 16,

20, 24 sites as a function of time t , respectively. We find that
the time to the first appearance of the kink increases with
increasing chiral interaction.

APPENDIX G: QUENCH FROM THE FM POTTS ORDER
TO THE PM PHASE WITH SPATIAL CHIRAL

INTERACTION AND BOND DIMENSION DEPENDENCE

In this Appendix, we conduct TDVP simulations across
various chiral interaction strengths (θ = 0.0π, 0.2π , and

FIG. 10. Fidelity susceptibility per site χN of the quantum Potts chain with spatial chiral interaction (φ = 0.0) for (a) θ = 0.0π , (b) θ =
0.02π , (c) θ = 0.04π , (d) θ = 0.06π , (e) θ = 0.08π , (f) θ = 0.1π , (g) θ = 0.14π , and (h) θ = 0.16π and N = 8, 12, 16, 20, 24 sites as a
function of external transverse field f ; symbols denote finite-size DMRG results.
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FIG. 11. The Loschmidt echo L(N, f , g, t ) at the peak position f of χL with g = 0.01 of the quantum Potts chain with spatial chiral
interaction (φ = 0.0) for (a) θ = 0.0π , (b) θ = 0.02π , (c) θ = 0.04π , (d) θ = 0.06π , (e) θ = 0.08π , (f) θ = 0.1π , (h) θ = 0.16π , and (g)
θ = 0.14π and N = 8 (red), 12 (blue), 16 (yellow), 20 (green), and 24 (purple) sites as a function of time t ; symbols denote finite-size TDVP
results.

1.0π ) while utilizing periodic boundary conditions. To be
more precise, we consider a quench starting from the Potts
FM phase with φ = 0, f0 = 0.0, J = 1.0, and f0/J = 0.0,
subsequently quenching to the PM phase with f1 = 1.0, J =
0.0, and f1/J = ∞, as depicted in Fig. 12(a). Notably, when
θ = 0, as previously established, there is no occurrence of
the DQPT in this case [87]. As we introduce the chiral in-
teraction, we observe a gradual smoothing of the peak value

of the return rate, and yet the system still does not undergo
a DQPT.

Furthermore, we vary the MPS bond dimension χ to in-
vestigate its impact on the return rate, as the return rate is
directly related to the observation of a DQPT, as shown in
Fig. 12(b). The results reveal that the return rate converges
when χ exceeds 32. Therefore, utilizing χ = 60 in the main
text for the dynamical calculations is sufficient to ensure result
convergence.

FIG. 12. The return rate as a function of time (a) for chiral interaction θ for 0.0π , 0.2π , and 1.0π and (b) for different bond dimensions
χ = 16, 24, 32 for θ = 0.12π across the critical point. Starting from the Potts FM phase and quenching to the final PM phase for N = 30.
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(2021).

[66] P. Fendley, J. Stat. Mech. (2012) P11020.
[67] P. Fendley, J. Phys. A 47, 075001 (2014).

062215-11

https://doi.org/10.1142/S0217979212300071
https://doi.org/10.1103/RevModPhys.69.315
https://doi.org/10.1103/PhysRevLett.28.1516
https://doi.org/10.1103/RevModPhys.46.597
https://doi.org/10.1103/PhysRevB.105.205140
https://doi.org/10.1103/PhysRevA.105.053311
https://doi.org/10.1103/RevModPhys.76.663
https://doi.org/10.1103/RevModPhys.93.015008
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1103/PhysRevLett.115.140602
https://doi.org/10.1103/PhysRevB.96.134313
https://doi.org/10.1103/PhysRevB.107.134303
https://doi.org/10.1209/0295-5075/125/26001
https://doi.org/10.1088/1361-6633/aaaf9a
https://doi.org/10.1063/1.4969869
https://doi.org/10.1103/PhysRevLett.96.140604
http://arxiv.org/abs/arXiv:1904.09937
https://doi.org/10.1209/0295-5075/ac53c4
https://doi.org/10.1103/PhysRevB.102.060409
https://doi.org/10.1103/PhysRevB.108.014303
https://doi.org/10.1103/PhysRevB.106.094314
https://doi.org/10.1103/PhysRevB.105.094311
https://doi.org/10.1103/PhysRevA.105.022220
https://doi.org/10.1103/PhysRevB.103.144305
https://doi.org/10.1103/PhysRevB.102.144306
https://doi.org/10.1103/PhysRevA.103.012204
https://doi.org/10.1088/1751-8121/ab97de
https://doi.org/10.1103/PhysRevB.101.245148
https://doi.org/10.1103/PhysRevB.99.054302
https://doi.org/10.1103/PhysRevLett.118.015701
https://doi.org/10.1038/s41598-023-36564-9
https://doi.org/10.1016/j.physleta.2023.128880
https://doi.org/10.1103/PhysRevB.95.060504
https://doi.org/10.1103/PhysRevLett.122.250401
https://doi.org/10.1103/PhysRevB.107.094304
https://doi.org/10.1103/PhysRevLett.112.217204
https://doi.org/10.1103/PhysRevLett.122.250601
https://doi.org/10.1103/PhysRevB.102.094302
https://doi.org/10.1103/PhysRevLett.124.043001
https://doi.org/10.1103/PhysRevApplied.11.044080
https://doi.org/10.1103/PhysRevLett.119.080501
https://doi.org/10.1038/s41567-017-0013-8
https://doi.org/10.1103/PhysRevLett.122.020501
https://doi.org/10.1103/PhysRevB.100.024310
https://doi.org/10.1103/PhysRevLett.124.250601
http://arxiv.org/abs/arXiv:2208.05164
http://arxiv.org/abs/arXiv:hep-th/9108028
https://doi.org/10.1103/PhysRevLett.129.210601
https://doi.org/10.1103/PhysRevA.98.023614
https://doi.org/10.1103/PhysRevB.98.205118
https://doi.org/10.1103/PhysRevB.106.165124
https://doi.org/10.1103/PhysRevE.107.054122
https://doi.org/10.1103/PhysRevB.107.094302
https://doi.org/10.1103/PhysRevLett.122.017205
https://doi.org/10.1103/PhysRevResearch.4.043102
https://doi.org/10.1103/PhysRevResearch.4.013093
https://doi.org/10.1103/PhysRevResearch.3.023049
https://doi.org/10.1016/j.nuclphysb.2021.115365
https://doi.org/10.1038/s41467-020-20641-y
https://doi.org/10.1038/s41586-019-1070-1
https://doi.org/10.1038/s41567-021-01230-2
https://doi.org/10.1088/1742-5468/2012/11/P11020
https://doi.org/10.1088/1751-8113/47/7/075001


XUE-JIA YU PHYSICAL REVIEW A 108, 062215 (2023)

[68] R. S. K. Mong, D. J. Clarke, J. Alicea, N. H. Lindner, and P.
Fendley, J. Phys. A 47, 452001 (2014).

[69] A. S. Jermyn, R. S. K. Mong, J. Alicea, and P. Fendley,
Phys. Rev. B 90, 165106 (2014).

[70] J. Alicea and P. Fendley, Annu. Rev. Condens. Matter Phys. 7,
119 (2016).

[71] Y. Zhuang, H. J. Changlani, N. M. Tubman, and T. L. Hughes,
Phys. Rev. B 92, 035154 (2015).

[72] R.-Z. Huang and S. Yin, Phys. Rev. B 99, 184104 (2019).
[73] J. C. Budich and M. Heyl, Phys. Rev. B 93, 085416 (2016).
[74] C. Yang, L. Li, and S. Chen, Phys. Rev. B 97, 060304(R)

(2018).
[75] L. Zhou, Q.-H. Wang, H. Wang, and J. Gong, Phys. Rev. A 98,

022129 (2018).
[76] T. Hayata, Y. Hidaka, and A. Yamamoto, Prog. Theor. Exp.

Phys. 2023, 023I02 (2023).
[77] U. Schollwöck, Ann. Phys. (NY) 326, 96 (2011).
[78] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[79] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401

(2004).
[80] M. Yang and S. R. White, Phys. Rev. B 102, 094315 (2020).
[81] S. Ostlund, Phys. Rev. B 24, 398 (1981).
[82] D. A. Huse, Phys. Rev. B 24, 5180 (1981).
[83] J. H. H. Perk, J. Phys. A: Math. Theor. 49, 153001 (2016).
[84] R. Baxter, J. Perk, and H. Au-Yang, Phys. Lett. A 128, 138

(1988).
[85] H. Au-Yang, B. M. McCoy, J. H. Perk, S. Tang, and M.-L.

Yan, Phys. Lett. A 123, 219 (1987).
[86] M. Schmitt and M. Heyl, SciPost Phys. 4, 013 (2018).
[87] C. Karrasch and D. Schuricht, Phys. Rev. B 95, 075143 (2017).
[88] Y. Wu, arXiv:1908.04476.
[89] Y. Wu, Phys. Rev. B 101, 014305 (2020).
[90] S.-J. Gu and W. C. Yu, Europhys. Lett. 108, 20002 (2014).
[91] S.-J. Gu, Int. J. Mod. Phys. B 24, 4371 (2010).
[92] S.-J. Gu, Phys. Rev. E 79, 061125 (2009).
[93] S.-J. Gu and H.-Q. Lin, Europhys. Lett. 87, 10003 (2009).

[94] W.-L. You and L. He, J. Phys.: Condens. Matter 27, 205601
(2015).

[95] W. C. Yu, S.-J. Gu, and H.-Q. Lin, arXiv:1408.2642.
[96] G. Sun, A. K. Kolezhuk, and T. Vekua, Phys. Rev. B 91,

014418 (2015).
[97] E. J. König, A. Levchenko, and N. Sedlmayr, Phys. Rev. B 93,

235160 (2016).
[98] Y.-T. Tu, I. Jang, P.-Y. Chang, and Y.-C. Tzeng, Quantum 7,

960 (2023).
[99] A. F. Albuquerque, F. Alet, C. Sire, and S. Capponi, Phys. Rev.

B 81, 064418 (2010).
[100] R. Verresen, arXiv:2301.11917.
[101] Y.-W. Dai, S. Y. Cho, M. T. Batchelor, and H.-Q. Zhou,

Phys. Rev. B 95, 014419 (2017).
[102] Z. Zuo, S. Yin, X. Cao, and F. Zhong, Phys. Rev. B 104,

214108 (2021).
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