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We discuss the role of nonideal measurements within the context of measurement engines by contrasting
examples of measurement engines which have the same work output but with varying amounts of entanglement.
Accounting for the cost of resetting, correlating the engine to a pointer state, and cooling the pointer state, we
show that for a given work output, thermally correlated engines can outperform corresponding entanglement
engines. We also show that the optimal efficiency of the thermally correlated measurement engine is achieved
with a higher-temperature pointer than the pointer temperature of the optimal entanglement engine.

DOI: 10.1103/PhysRevA.108.062214

I. INTRODUCTION

Quantum heat engines are composed of a system coupled
to one or more environments such that at least one party
exploits quantum energetic coherence. Quantum engines with
both thermal [1,2] and nonthermal [3–5] reservoirs, energetic
coherence [6–11], and entanglement [12–14] have been stud-
ied to understand how quantum engines differ from their
classical analogs. In this context, it is important to consider
carefully the role of quantum measurement, given its central
role in quantum theory. Along with a resource-theoretic char-
acterization of thermodynamic quantum operations [15–20],
a careful accounting of the energetic constraints on quan-
tum measurements is needed to understand their role in
nonequilibrium engines. Just as in the case of thermal baths,
measurements can result in an apparent change of both en-
tropy and energy with the working fluid. Such measurements
and feedback have been discussed in the context of ther-
mal engines [21–24]. Measurement and feedback have been
used in the classical and quantum context to elucidate the
role of information and correlations in the second law of
thermodynamics [25–31]. While engines have been shown
to exploit both thermal and nonclassical correlations, mea-
surement models have not considered the thermodynamic
infeasibility of projective measurements due to the inconsis-
tency of the third law of thermodynamics and preparation
of pure state pointers [32–34]. It was shown recently that
when thermodynamic feasibility is taken into account, ideal
measurements which correlate the system states to the pointer
states become impractical and two varieties of nonideal mea-
surements emerge as feasible measurement models [35,36].

This hence raises the natural question as to whether
nonideal measurements and the enhanced performance of

*sai@phy.iitb.ac.in

quantum thermal machines whose operation includes a mea-
surement stage are compatible. Here we consider two models
of quantum engines and show that indeed nonideal measure-
ments can still be used to construct engines which consume
either thermal or nonclassical correlations as fuel. Further-
more, we show that we can always construct a thermal engine
that outperforms the entanglement engine presented below in
terms of efficiency for the same value of average output work.
We begin the next section with a brief review of ideal and
nonideal measurements. In Sec. III we describe the working
of a generalized measurement engine. The findings of Sec. III
are exemplified in Sec. IV, where we consider a two-qubit
measurement engine and compare the performance with en-
tangled and classically correlated initial states. We discuss our
results in Sec. V.

II. NONIDEAL MEASUREMENTS AND WORK COST

It is well known that ideal projective measurements on
quantum systems using finite resources are incompatible with
thermodynamics [35,36]. Hence, it is necessary to take the
resource cost of measurement into account and consider a
description of measurements that is physical. This inclusion
of thermodynamics gives rise to the notion of nonideal mea-
surements, which was studied extensively in [35,37,38]. In
this paper we review the properties of ideal measurements and
recently proposed models of nonideal measurements [35].

Consider a generic quantum system ρS and a measuring
device (pointer) ρP. A measurement of the system is achieved
by coupling it to the pointer and allowing the joint quantum
state to undergo a correlating evolution from ρS ⊗ ρP to a
correlated state ρSP [39]. Three fundamental features define an
ideal projective measurement I ⊗ �i, which infers the system
state from the measured pointer state [35]. The first property
desired for ideal measurements is unbiasedness, defined as
the premeasurement probability statistics of the system being
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accurately reflected by the postmeasurement pointer statistics,
namely,

Tr(I ⊗ �iρSP ) = ρii ∀ i, (1)

where ρii = Tr(|i〉〈i|SρS ) are the diagonal elements of ρS .
Second, the measurement should be faithful, defined by the
property that the postmeasurement system state should corre-
spond to the outcome of the pointer, namely,

∑
i

Tr(|i〉〈i| ⊗ �iρSP ) = 1. (2)

Third, ideal measurement should be noninvasive, defined by
the property that the measurement interaction should not
change the measurement statistics for the system, i.e.,

Tr(|i〉〈i| ⊗ IρSP ) = ρii ∀ i. (3)

The measurement can be faithful only if the rank of the
pointer obeys rank(ρP) � nP/nS , where nP and nS are the
dimensions of the pointer and system, respectively (both are
assumed to be finite without loss of generality) [35]. Thus
an ideal measurement requires a non-full-rank pointer state,
but according to the third law of thermodynamics, prepara-
tion of such a state requires infinite resources [40], which
makes all practical measurements nonideal. This leads to the
conclusion that a practical measurement on a thermodynamic
system could be unbiased or noninvasive but not both, as
both properties together would also imply faithfulness [35].
In either of these cases, after imposing the condition, we can
quantify the faithfulness of the measurement by following
Eq. (2). This can be done by defining the correlation function
Cmax(ρSP ) = ∑

i Tr(|i〉〈i| ⊗ �iρSP ) < 1, which quantifies the
probability of joint measurement of the system and pointer in
the same state.

In summary, both ideal measurements and pure input
states are thermodynamically incompatible since they require
infinite resources [32,40–44]. Thus, quantum correlations
produced as a consequence of either pure initial states or non-
full-rank projective measurements do not sufficiently inform
us of the role of real measurements in quantum thermal ma-
chines. We address this by considering two different types of
measurement engines, an entanglement-based measurement
engine (EME) using entangled states as initial states and a
thermally correlated measurement engine (TCME) using ini-
tial states with classical correlations compliant with a thermal
distribution, both constructed from full-rank states and oper-
ated by nonideal measurements as shown in Fig. 1. In the next
section we will look at full-rank quantum engines driven by
unbiased and maximally faithful measurements. Likewise, we
also inspect the role of noninvasive and maximally faithful
measurements in quantum engines.

III. BIPARTITE MEASUREMENT ENGINES

To investigate the effect of quantum correlations on the
performance of quantum thermal machines, we consider a
generic bipartite quantum measurement engine which de-
scribes both EMEs and TCMEs. The working medium consist
of two nS-level systems A and B, with the joint Hamiltonian
H = Hloc + Hint. The term Hloc is the local Hamiltonian of

FIG. 1. The measurement engine cycle with (a) an entangled
state (EME) and (b) a thermally correlated state (TCME) includes the
creation of system state ρS , correlating it with the pointer system in
state ρP (via USP), measurement of the pointer followed by feedback,
and reset of the system to state ρcl. The energy-consuming steps are
indicated by red arrows and work extraction is indicated by green
arrows.

both qudits defined as

Hloc =
nS−1∑
i=0

EA
i (|i〉〈i| ⊗ I ) + EB

i (I ⊗ |i〉〈i|), (4)

where {EA
i } and {EB

i } are energy eigenvalues of subsystems A
and B, respectively. As discussed below, appropriate feedback
will extract the difference of energy eigenvalues as work;
hence without loss of generality we can choose

EB
i − EB

j > EA
i − EA

j � 0 ∀ i > j. (5)

The interaction term Hint generates entanglement between the
two qudits. It is generically defined as

Hint =
nS−1∑
i=0

nS−1∑
j=0

gi j

2
(|i j〉〈 ji| + | ji〉〈i j|), (6)

where gi j is the coupling strength. This interaction can be
switched on to prepare initial states in the EME. There is a
cost associated with switching Hint that needs to be taken into
account while running the EME. Both measurement engines
operate in four stages, which we briefly review [26,45–52].

(i) State preparation. The initial states for the measure-
ment engine are prepared from a reference product state ρcl

(assumed to be diagonal). In the EME case, the entangled
states are prepared by evolving the reference state with the
interaction Hamiltonian, which is then turned off after cre-
ating the desired entangled state ρS . For the TCME, on the
other hand, classical correlations are induced by a thermal
completely positive and trace-preserving map. The energy
cost associated with the preparation in both engines is given
by Eprep = Tr[Hloc(ρS − ρcl )].

(ii) Pointer correlation. A quantum system is measured
with the help of a pointer degree of freedom [53]. Since we
are measuring a bipartite system, for simplicity, we consider
the pointer system to be bipartite as well, governed by the
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Hamiltonian

HP =
nP−1∑
i=0

EPA
i (|i〉〈i| ⊗ I ) + EPB

i (I ⊗ |i〉〈i|). (7)

Here EPA
i and EPB

i are the energy gaps of the pointer subsys-
tems measuring systems A and B, respectively, and without
loss of generality nP is assumed to be an integer multiple of
nS . For thermodynamic consistency, we consider a full-rank
pointer τP(β ) = τP = e−βHP/Tr(e−βHP ), at inverse tempera-
ture β. In order to increase measurement accuracy, the pointer
is initially cooled from β to β ′ > β. This process consumes
the free-energy difference Ecool [42], which is the same for
both the TCME and EME. The pointer is then correlated with
the system, and the nature of the correlation matrix determines
if the measurement is unbiased or noninvasive [35]. The cost
associated with correlating the system to the pointer is given
by

Ecorr = Tr[(Hloc + HP )(ρSP − ρS ⊗ τP )]. (8)

Here ρSP = Ucorr(ρS ⊗ τP )U †
corr and Ucorr is the correlation

matrix. The choice of Ucorr is made such that the measurement
is maximally faithful, as described below.

(iii) Work extraction. The measurement of the primary sys-
tem is performed through the pointer. Based on the outcome
of this pointer measurement, we then apply feedback to the
system. If the pointer measurement implies that subsystem
B is in a higher-energy state than subsystem A, we apply a
SWAP operation and extract the work from the system. On
the other hand, if the pointer reads subsystem A to be in
higher-energy state than subsystem B, no feedback is applied.
After extracting work, the postselected state will be given by

�(ρSP ) =
nP−1∑
l=0

nP−1∑
k�l

I ⊗ |kl〉〈kl|ρSPI ⊗ |kl〉〈kl|

+
nP−1∑
l=0

nP−1∑
k<l

USWAP ⊗ |kl〉〈kl|ρSPU †
SWAP ⊗ |kl〉〈kl|.

(9)

Here the USWAP operator swaps the eigenstates of systems A and
B, i.e., USWAP|i j〉 = | ji〉 ∀ i, j. The extracted work amounts to

W = Tr{(Hloc + HP )[�(ρSP ) − ρSP]}. (10)

The unavailability of non-full-rank states translates to the fact
that measurements are never perfectly faithful. This results in
imperfect correlations where a single pointer state can point
to various system states. The imperfect correlation between
the system and pointer in turn results in incorrect feedback to
the system. Such incorrect feedback may correspond to either
a false positive or a false negative reading of the pointer. A
false positive outcome occurs when the pointer inaccurately
reads that qudit B is in a higher excited state than qudit A.
Thus applying a SWAP feedback results in energy consumption
instead of work extraction. On the other hand, a false negative
outcome occurs when qudit B is in a higher excited state
than qudit A. In this scenario, a SWAP operation can extract
work from the system, but the pointer detects otherwise. This
leads to a lack of SWAP feedback and loss of work extraction.
Thus the amount of work extracted [given by Eq. (10)] with a

nonideal measurement will be less than that obtained with an
ideal measurement.

(iv) Reset. After extracting work, we reset the pointer to
the thermal state, but as the free energy of such a process is
negative, we consider the cost of resetting the pointer to be
zero. To repeat the engine cycle again we reset the system to
the reference state ρcl. The minimum energy used to reset the
system is given by

Ereset = Tr(Hloc{ρcl − TrP[�(ρSP )]}). (11)

As the local Hamiltonian is diagonal in the measurement
basis, the work extraction and the cost associated will depend
on PSP(i jkl ), the joint system-pointer probability of the sys-
tem being in |i j〉 and the pointer reading |kl〉. A noninvasive
measurement can be realized if the correlation operation is
of the form Ucorr = ∑

nm |nm〉〈nm| ⊗ Ũ nm. For this case, we
obtain

PSP(i jkl ) = 〈i j|ρS|i j〉〈kl|(Ũ i jτPŨ †i j
)|kl〉. (12)

Similarly, a measurement will be unbiased if Ucorr =∑
nmop |nm〉〈op| ⊗ |op〉〈nm|Ũ op, which will give

PSP(i jkl ) = 〈kl|ρS|kl〉〈i j|(Ũ klτPŨ †kl
)|i j〉. (13)

The faithfulness of the measurement depends on the unitary
matrix Ũ i j . A maximally faithful measurement is achieved by
using Ũ i j = Ũ i ⊗ Ũ j , where

Ũ i = I −
ν−1∑
x=0

(|x〉 − |ν i + x〉)(〈x| − 〈νi + x|). (14)

Here ν = nP/nS is assumed to be an integer without loss of
generality [35]. For both types of measurement, we observe
that the performance only depends on diagonal elements of
the system density matrix. This indicates that while diagonal
distributions preserve the work output, the impact of off-
diagonal correlations on the engine performance is irrelevant.
In the next section we will explore the role of correlations in
the performance of quantum thermal machines by studying
two-qubit measurement engines powered by either quantum
or thermal correlations, respectively.

IV. TWO-QUBIT MEASUREMENT ENGINE

To compare and contrast varieties of correlations, we begin
our study with an EME driven by full-rank states. To do this,
we modify a recently proposed [54,55] two-qubit measure-
ment engine to use full-rank states. A pair of qubits (labeled
A and B) are taken as the working medium (system) whose
evolution is governed by a Hamiltonian H = Hloc + Hint given
in Eqs. (4) and (6). To extract work from the system we
consider a positive detuning δ = ωB − ωA. The initial state of
the system is taken as

ρ2qb(0) = (1 − q)|10〉〈10| + q
e−βHloc

Zloc
, 0 < q � 1, (15)

where Zloc = Tr[exp(−βHloc)]. The state ρ2qb(0) is a convex
mixture of the pure state and thermal state. The admixture
probability q > 0 in Eq. (15) guarantees that the state is full
rank, circumventing the aforementioned infinite cooling cost.
We let the system evolve from the initial state ρ2qb(0) for time
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FIG. 2. Efficiency η as a function of pointer ground-state probability r, for maximally faithful and (a) noninvasive measurement and
(b) unbiased measurement. The parameters of the simulation are ωA = 10, δ = 50, θ = π/4.5, βEP = 1/30, and q = 0.05. The crossover of
efficiency in (a), highlighted with the dotted circle, and the kink in (b), indicated by the dotted arrow, are both discussed in the text.

t1 = π/
√

g2 + δ2 such that the system state becomes as entan-
gled as possible given the constraints on its eigenspectrum

ρ2qb(t1) = (1 − q)[cos2 θ |10〉〈10| + sin2 θ |01〉〈01|
− sin θ cos θ (|10〉〈10| + |01〉〈01|)]

+ q
e−βH̃loc

Z̃loc
. (16)

Here H̃loc = UlHlocU
†
l , Ul = exp(−iH2qbt1), tan θ = g/δ, and

Z̃loc = Tr[exp(−βH̃loc)]. At this point we switch off the inter-
action potential, which costs energy

Eprep = −Tr[ρ2qb(t1)Hint]. (17)

As we are interested in single-excitation subspace, we can
use a single-qubit pointer in thermal state τ (β ′) to mea-
sure qubit B. The pointer is governed by the Hamiltonian
HP = EP|1〉〈1|. To make the measurement noninvasive (or
unbiased) we use Ucorr = I ⊗ UCNOT (or Ucorr = I ⊗ Uunb,
where Uunb = |00〉〈00| + |01〉〈11| + |11〉〈10| + |10〉〈01|) on
the system-pointer state to correlate the pointer with qubit B.
This process consumes energy given by Eq. (8). The work
is extracted by applying a SWAP operation on the system
qubits (USWAP = |00〉〈00| + |01〉〈10| + |10〉〈01| + |11〉〈11|) if
the pointer is observed in the excited state. The system is
then reset to ρ2qb(0) to repeat the cycle again. In order to
make the measurements more accurate the pointer needs to
be cooled from τ (β ) to τ (β ′), before correlating it with the
system. The free-energy difference associated with cooling
can be expressed as [40,42]

Ecool =
(

β ′

β
− 1

)(
EP

1 + e−β ′EP
− EP

1 + e−βEP

)
. (18)

To contrast this against thermal correlations, we now study
a thermodynamically consistent TCME and demonstrate that
such an engine can be designed to have better efficiency while
having the same work output as the entanglement engine.

Consider the initial state

ρ̃2qb = (1 − q)(cos2 θ |10〉〈10| + sin2 θ |01〉〈01|) + q
e−βHloc

Zloc
,

(19)

where tan2 θ = nth/(nth + 1) and nth is average population de-
fined below. The process of work extraction from the TCME
is the same as that of the EME, but a difference arises in the
reset step of both engines. The EME is reset to a reference
state (15) and the TCME is reset arbitrarily close to Eq. (19)
in finite time dissipatively [56],

dρ

dt
= − i[Hloc, ρ] + γ D[σ+

A |0〉〈0|B]ρ + γ D[|1〉〈1|Aσ−
B ]ρ

+ γ ′nthD[|01〉〈10|]ρ + γ ′(nth + 1)D[|10〉〈01|]ρ.

(20)

Here D[L]X ≡ LXL† − 1
2 {L†L, X } is the usual Lindblad dis-

sipator, {γ , γ ′} are transition rates, and nth = 1/(eβ(EB−EA ) −
1). We choose a different initial state for the TCME as the
state can be prepared and maintained using dissipators given
in Eq. (20). This consumes less energy in the preparation
and reset step than the EME. The energy spent in resetting
(preparing) classical correlations will consume an amount of
energy given by Eq. (11).

The work extracted by starting from states (16) and (19)
differs by an amount proportional to the thermal admixture q.
For q � 1 and β > 1, the difference in the work extracted
for the TCME and EME can be made arbitrarily small to
compare the efficiency of both engines directly. We plot the
efficiency of the engine versus the ground-state probability of
pointer r for two different types of measurement in Fig. 2.
Efficiency is evaluated as η = −W/Emeas, where Emeas is the
total energy used in the measurement, i.e., Emeas = Eprep +
Ecool + Ecorr + Ereset. We begin by noting that the graphs do
not start at the origin because work output in such settings
will be negative. It can be seen that the engine with the thermal
initial state outperforms the engine with the entangled initial
state everywhere, except for a small region near r = 0.6 for
noninvasive measurement. This is due to the fact that the
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energy required in resetting the thermal state is higher than
the energy required for resetting an entangled initial state for
low values of purity. This region of enhanced performance
by the engine with an initially entangled state decreases with
decreasing admixture probability q and vanishes in the limit
of q → 0. As the energy costs Ecorr and Ecool are similar in
both engines, the observed difference in efficiency arises due
to the difference in energy required to reset the states and
to prepare the entangled initial state. We also note the sharp
kink in the performance of the thermal engine with unbiased
measurement. This is because the reset cost is negative before
the kink and positive for larger r. The negative value indicates
that energy is released while resetting the system. This cost is
only accounted for in the efficiency if the value is positive and
considered zero if negative. If the reset cost is negative, one
can choose to extract the energy as work, thereby enhancing
the efficiency of the TCME. However, even without extracting
this additional energy as work, the TCME has better efficiency
than the EME, as shown in Fig. 2.

V. DISCUSSION

Previous approaches towards measurement engines as-
sumed idealized measurements [54,57–59]. As such measure-
ments are thermodynamically infeasible, one needs to model
measurement with full-rank pointer states. In this paper we
considered a more accurate measurement model involving
states of maximal rank for both the pointer and primary

system. We compared the performance of different initial
states, one with entanglement and another one with thermal
correlations. The realistic measurement model results in more
work extraction with increasing pointer purity, but the as-
sociated cost of increasing purity eventually decreases the
efficiency of the engine, which sets a trade-off between ex-
tracted work and efficiency. We found that the performance
of the engine using entangled states can be matched using
only classical correlations. We observed that the required
purity of the pointer to operate the engine most efficiently
is less in the case of thermal correlations than for entangled
correlations. Hence a lower temperature bath is needed for
optimal performance of the entangled engine than for the
corresponding thermally correlated engine. We note that our
results are consequences of the properties of measurement and
hence valid for any general measurement engine where work
is extracted by applying feedback (i.e., based on information
obtained from measurement).
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