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Quantum contextuality of complementary photon polarizations explored
by adaptive input state control
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We experimentally investigate nonlocal contextual relations between complementary photon polarizations
by adapting the entanglement and the local polarizations of a two-photon state to satisfy three deterministic
conditions demonstrating both quantum contextuality and nonlocality. The key component of this adaptive input
state control is the variable degree of entanglement of the photon-pair source. Local polarization rotations can
optimize two of the three correlations, and the variation of the entanglement optimizes the third correlation. Our
results demonstrate that quantum contextuality is based on a nontrivial trade-off between local complementarity
and quantum correlations.
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I. INTRODUCTION

Although it seems natural to assume that the values of
a physical property are independent of the way in which
they are measured, the Bell-Kochen-Specker theorem proves
that this assumption cannot be reconciled with the predic-
tions of quantum theory [1–14]. The theoretical predictions
of the Bell-Kochen-Specker theorem have been demonstrated
in many experiments, including the well-known experimen-
tal observation of Bell’s inequality violations [15–37]. It has
been argued that Bell’s inequalities are not optimal for the
demonstration of nonlocality and contextuality because they
involve a nontrivial statistical limit. Instead, it may be bet-
ter to define contextuality in terms of logically necessary
conclusions that are then violated with nonvanishing proba-
bility or even with certainty in specific quantum systems. The
most notable examples of such proofs of nonlocality with-
out inequalities are the Greenberger-Horne-Zeilinger (GHZ)
paradox [38,39] and Hardy’s paradox [40,41], both of which
have been confirmed in various experiments [39,42–45]. All
of these scenarios indicate that contextuality is a fundamental
feature of the nonclassical relation between different physical
properties. However, the initial quantum state used in these
experiments is not defined in terms of its physical properties.
Instead, the measurements made to verify the paradox are
adapted to the specific quantum coherence of the available
input state. Since the initial assumption of perfect quantum
coherence makes it difficult to understand how imperfections
in quantum-state preparation appear in the experimentally ob-
served statistics, it may be useful to introduce an operational
definition of state preparation that defines the intended state
in terms of a desired set of measurement outcomes. Such an
operational definition of the input state can be formulated as
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an optimization problem that is independent of experimen-
tal imperfections. The merits of this kind of approach have
already been recognized in the optimization of Bell’s inequal-
ity violations intended to close the various loopholes caused
by experimental imperfections [22,24–27,30]. In particular,
it was found that the experimentally observed violation of
a Bell’s inequality can be improved by using a source that
initially generates a pure state with nonmaximal entanglement
[46]. However, these methods of state adaption are usually
targeted at specific error syndromes that break the symmetry
of the original scenario, requiring an adjustment of the state
that would not be needed in the ideal limit. Here, we focus
on a scenario that has no intrinsic symmetry, so that the ideal
source already defines a specific set of preferred polarization
directions. It is then possible to formulate an operational pro-
cedure that optimizes the essential statistical features observed
in this scenario even in the limit of very small experimental
imperfections. This procedure thus highlights the essential
features of quantum contextuality, independent of the precise
nature of these imperfections. We can thus develop a better
practical understanding of the role of complementary photon
polarizations in the observation of quantum contextuality.

In the present paper, we explore the possibility of mod-
ifying the input state to fit a specific set of statements that
define a contextuality paradox. For this purpose, we first
identify the physical properties and their desired relations
and then modify the state preparation process until it opti-
mally satisfies the conditions set by these relations. We thus
define the initial state entirely in terms of its observable
properties, providing a complete operational definition of the
physics of state preparation. Our approach has been inspired
by the Gedankenexperiment of Frauchiger and Renner [47],
where an entangled state is defined in terms of an interac-
tion intended to provide information about a specific local
observable of one of the two systems, and the initial exper-
imental realization of the paradox was achieved by interacting
separate input photons using linear optics and postselection
[48]. This experimental work also showed that the expression
of the paradox as an inequality violation is equivalent to a
standard Bell’s inequality, where no special considerations
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need to be given to the precise conditions set forth in the
formulation of the paradox. As pointed out in the paper,
the essential difference between contextuality and nonlocal-
ity arise from the choice of conditions that are discussed
[48]. In the following, we formulate the paradox in the form
of contradictions between statements observed in separate
measurements without invoking any conditions of locality.
However, we replace the interactions in the original protocol
with a more efficient quantum-state preparation process that
can be adapted by varying the entanglement generated and the
local polarization directions. Different from Hardy’s paradox,
we require that the pairs of polarization orientations used to
formulate the paradox are always complementary, setting a
condition under which the statistics of the input state can be
optimized. As we have pointed out in previous work [49],
the characteristic correlations of the paradox discussed by
Frauchiger and Renner uniquely define the initial quantum
state in terms of measurement probabilities of zero observed
for specific combinations of local outcomes. It is therefore
possible to operationally define the state preparation process
as a simultaneous suppression of specific outcomes in differ-
ent measurement contexts. Here, we realize this adaptive state
preparation process for polarization entangled photon pairs
using a nonlinear crystal from both sides with two-separated
pump beams inside of a Sagnac interferometer [50–53]. This
setup allows us to control the degree of entanglement by
changing the pump beam polarization, completely preserving
the two-photon coherence in the output at all settings. In ad-
dition to the degree of entanglement, the local polarization of
each photon can be rotated, providing us with three adjustable
parameters in the state preparation process.

As shown in the following, it is possible to suppress two
of the three outcome probabilities by optimizing only the
local polarization rotations. Since the suppression of these
probabilities is due to the destructive interference between two
output components, the optimal suppression can be found by
identifying the local polarization rotation with equal measure-
ment probabilities for the two interfering components. Our
results show that this method of outcome suppression is highly
efficient, allowing us to optimize the local polarization rota-
tions for a fixed degree of entanglement. The third outcome
probability then depends on the initial degree of entangle-
ment. It is possible to achieve optimal suppression of this
probability by varying the degree of entanglement. It should
be emphasized that this method of adaptive state control op-
timizes the state preparation process based on the observed
measurement outcomes and requires no further assumptions
regarding the quality of the down-conversion source. This
approach has three distinct advantages, (a) the optimization of
parameters partially compensates the effects of experimental
imperfections, improving the performance of noisy sources,
(b) quantum state preparation is directly related to the specific
correlations relevant for the observation of the contextuality
paradox, and (c) the optimization of quantum interference
effects can be realized by observing the output probabilities
of the components that interfere with each other, providing
a practical illustration of complementarity in quantum state
preparation.

The goal of adaptive input state control is the optimiza-
tion of the contextuality paradox associated with the nonzero
probability of a specific measurement outcome observed after

the three state preparation conditions have been satisfied. We
can therefore evaluate the success of the procedure using a
contrast function K that relates the residual probabilities of
the three outcomes suppressed in adaptive input state control
to the nonzero probability that characterizes the paradox. In
the present experimental setup, we achieve a contrast of about
0.5 over a wide range of settings controlling the degree of
entanglement. The observation of quantum contextuality is
thus found to be very robust against changes in the avail-
able amount of entanglement. Another interesting aspect of
the results is that the maximal contrast K is observed for a
degree of entanglement corresponding to an equal balance of
local polarization and entanglement. The conditions for the
observation of quantum contextuality involve both local and
nonlocal aspects of quantum statistics, possibly revealing new
aspects of the relation between local complementarity and
entanglement that are hidden by the abstract representation of
the initial state as a superposition of specific basis states.

The rest of the paper is organized as follows: Section II
describes the contextuality paradox and the manner in which
it defines adaptive state control. Section III describes the ex-
perimental setup and its characteristic properties. Section IV
describes the adaptive state control and the experimental re-
sults obtained from it. Section V evaluates the successful
observation of quantum contextuality in terms of the contrast
K . Section VI concludes the paper.

II. OPTIMIZATION OF QUANTUM CONTEXTUALITY
BY ADAPTIVE INPUT STATE CONTROL

The Gedankenexperiment proposed by Frauchiger and
Renner is intended to show that the predictions of quantum
mechanics are not consistent with each other [47]. In the
original Gedankenexperiment, two observers make statements
about the outcomes observed by the other party based on
their own results. It is then shown that a set of statements
that seemingly contradict each other can all be valid with a
certainty of one hundred percent. As we pointed out in our
previous paper [49], the requirement of maximal certainty
uniquely determines a specific initial state. It is therefore natu-
ral to conclude that the paradox itself provides an operational
definition of a quantum state.

We are considering a situation where two separate phys-
ical systems satisfy three statements that can be represented
by probabilities of zero for three measurement outcomes
obtained in different contexts represented by the local mea-
surements of F1, F2 and W1, W2, respectively [49],

P(F1 = 0,W2 = a) = 0, (1)

P(W1 = a, F2 = 0) = 0, (2)

P(F1 = 1, F2 = 1) = 0, (3)

where the property F1, F2 is either 0 or 1 and the property
W1, W2 is either a or b. Equations (1) and (2) ensure that
if the outcome for one system is Wi = a, the other system
will always show an outcome of Fj = 1. It would thus be
natural to conclude that the outcome W1 = W2 = a requires
that F1 = F2 = 1, even if no data on F1, F2 are available.
Since Eq. (3) states that a simultaneous detection of Fj = 1
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in both systems is impossible, noncontextual logic suggests
that an outcome of W1 = W2 = a for the two systems should
also be impossible. Since it appears that W1 = W2 = a is only
possible if at least one of the outcomes in Eqs. (1)–(3) can
be observed as well, P(W1 = a,W2 = a) should not be greater
than the sum of the probabilities in Eqs. (1)–(3). This relation
among the four probabilities is given by

P(a, a) � P(0, a) + P(a, 0) + P(1, 1), (4)

where P(x, y) represents a joint probability with x as the
outcome of F1 or W1 and y as the outcome of F2 or W2. It
may be worth noting that this inequality is mathematically
equivalent to a Bell’s inequality [48], although here we use
it to probe the consistency of different measurement contexts.

As pointed out in Ref. [49], the three conditions given
above correspond to orthogonality relations in the Hilbert-
space formalism. To satisfy all three conditions, a quantum
state |ψ〉 must be orthogonal to the quantum states represent-
ing the measurement outcomes of Ŵi and F̂i,

〈0, a|ψ〉 = 0, (5)

〈a, 0|ψ〉 = 0, (6)

〈1, 1|ψ〉 = 0. (7)

In the following, the operators Ŵi and F̂i represent com-
plementary polarization components. This means that the
measurement outcomes 0,1 and a, b are mutually unbiased,

|a〉 = 1√
2

(|0〉 − |1〉), (8)

|b〉 = 1√
2

(|0〉 + |1〉). (9)

Equations (5)–(7) uniquely determine the quantum state |ψ〉,
resulting in a probability of P(a, a) = 1/12 [47,49]. This is a
specific version of Hardy’s paradox [40,41], confirming both
quantum contextuality and quantum nonlocality. However,
the present formulation emphasizes the fact that the initial
quantum state is fully defined by experimentally observable
conditions given by Eqs. (1)–(3). As shown in Ref. [49],
realizing these conditions will necessarily result in a nonzero
probability for the outcome W1 = W2 = a. We can there-
fore develop a method of state preparation that optimizes
these conditions in the presence of arbitrary experimental
imperfections.

Since the state defined by the conditions in Eqs. (5)–(7) is
a partially entangled state, it is necessary to vary the available
degree of entanglement. In quantum optics, photon pairs with
variable degrees of polarization entanglement can be gener-
ated efficiently by parametric down-conversion in a Sagnac
interferometer [50–53]. Since the polarizations of the photons
generated in the down-conversion are initially aligned with the
optical axes of the nonlinear crystal, the initial quantum state
is given by

|ψ0〉 = cos φS|H, H〉 − sin φS|V,V 〉, (10)

where the φS is an experimentally adjustable parameter that
controls the degree of entanglement. Any pure state with this
degree of entanglement can now be obtained by local polar-
ization rotations. Due to the symmetry of the conditions, we

can apply the same polarization rotation φM to both photons,
defining the states |0〉 and |1〉 as

|0〉 = Û (φM )|H〉, |1〉 = Û (φM )|V 〉. (11)

Adaptive input state control requires that the rotation angle
φM is adjusted to optimally satisfy the conditions (5) and (6)
given by P(0, a) = 0 and P(a, 0) = 0. Experimentally, this
procedure can be simplified by making use of Eq. (8). The
conditions for the quantum state then read

〈0, 1|ψ〉 = 〈0, 0|ψ〉, (12)

〈1, 0|ψ〉 = 〈0, 0|ψ〉. (13)

Experimentally, the coherence is supplied by the initial state
|ψ0〉, so the optimal rotation angle φM can be found by satis-
fying the conditions P(0, 0) = P(0, 1) and P(0, 0) = P(1, 0).
These conditions can always be satisfied exactly, independent
of experimental imperfections. Once the local polarization
rotations are determined, it is possible to evaluate the actual
suppression of the probabilities P(0, a) and P(a, 0) by the
corresponding measurements. In addition, the value of P(1, 1)
can be obtained for these local polarization rotations. The
optimal suppression of P(0, a) and P(a, 0) results in a value
of P(1, 1) that depends on the parameter φS which is used to
control the degree of entanglement. A suppression of P(1, 1)
thus requires an optimization of φS to adjust the amount of
entanglement in the initial state.

It is interesting to note that only measurements in the
{0, 1} basis are needed for adaptive state control, even though
the contextual statistics characterizes the relations between
different combinations of {0, 1} measurements and {a, b} mea-
surements. Adaptive state control thus highlights the manner
in which the relations between different measurement con-
texts are defined by quantum coherence in the measurement
outcomes [54].

III. EXPERIMENT

A. Experimental setup

As shown in Fig. 1, the experimental setup consists of a
Sagnac-type interferometer used as the source of polarization
entanglement, two polarization filters, and two single-photon
detectors and electronics for signal processing. The pump
laser (semiconductor laser, wavelength 405 nm) emits light
through a fiber coupler (FC0). The polarization of the pump
light can be controlled by the combination of a Glan-Taylor
prism (GT0) and a half-wave plate (HWP0) to obtain po-
larizations from vertical (V) polarization to diagonal linear
polarization (D). The pump beam enters the Sagnac inter-
ferometer indicated by a block-dotted box and is separated
at a double polarization beam splitter (DPBS). The DPBS is
custom made and works equally well at both 405 and 810 nm.
It should be noted that this feature is not available in typical
off-the-shelf products because the wavelength dependence of
antireflection coatings limit the performance of most devices
to a bandwidth that is much narrower than this wavelength
difference.

In the clockwise path, the pump beam is converted from V
polarization to H polarization by the double half-wave plate
(DHWP). Both pump beams interact with the periodically
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FIG. 1. Experimental setup for the adaptive input state control.
The pump beam is a laser diode (LD) with a wavelength of 405 nm
and its output power is 26 mW. A fiber coupler (FC0) emits the pump
beam with power of 11 mW. The pump beam is separated at the
double polarization beam splitter (DPBS) into two paths, pumping
the periodically poled KTP crystal (1 mm × 1 mm × 10 mm) from
both edges and creating photon pairs. A double half wave plate
(DHWP) exchanges horizontal and vertical polarizations. The two
paths then overlap at the DPBS and the photon pairs are separated
there. The two photons are then detected separately by two single-
photon counting modules (SPCM) after passing through polarization
filters, bandpass filters (BPF) (λ = 810 nm, δλ = 10 nm), and long-
pass filters (LPF) (transmission: λ > 700 nm). The detection setup
for photon is shown inside the red-dotted box and the blue-dotted
box. The output pulses were converted to NIM logic pulses of 30 ns
and processed using a NIM logic circuit composed of logic level
adapter, discriminator, and coincident counting module. The coin-
cidence counts were recorded by a connected PC.

poled KTP (PPKTP) crystal to generate photon pairs with
opposite HV polarizations. In the anticlockwise path, the
DPBS separates the photons so that the V-polarized photons
go leftward and the H-polarized photons go downward. In the
clockwise path, the H-polarized photons go leftward and the
V-polarized photons go downward. Since the photons from the
clockwise path and the anticlockwise path are indistinguish-
able, the photon pairs in the output are polarization entangled.
The leftward-directed photons are reflected by the dichroic
mirror (DM) and measured in system 1 (indicated by the red-
dotted box). The HV-polarization of the downward-directed
photons is flipped from V to H and from H to V by HWP3
to prepare the symmetric quantum state given by Eq. (10).
The downward-directed photons are then measured in system
2 (surrounded by the blue-dotted box). The photon pairs
are measured using combinations of GT1, GT2 and HWP1,
HWP2. Two bandpass filters (BPFs) and two long-pass
filters (LPFs) inside two fiber couplers (FC1 and FC2)
eliminate background photons and select photon pairs
with λ = 810 nm. The photon pairs are detected by two
single-photon counting modules (SPCMs), PerkinElmer
(SPCM-AQR- 14-FC13237-1) and EXCELITAS (SPCM-
AQRH-14-FC24360), and their coincidence counts are
recorded in a computer.

In the present setup, the setting of HWP0 determined the
control parameter φS . If the angle of the HWP0 is set so that

the pump beam is V polarized, corresponding to φS = 0◦,
the pump beam passes through the clockwise path only, so
that the output photon pairs results in the product state. If
the angle of the HWP0 is set so that the pump beam is D-
polarized, corresponding to φS = 45◦, the photon pairs are
in the maximally entangled state because the pump beam is
divided with the almost same intensity into the clockwise and
the anticlockwise paths. Continuously rotating the angle of
the HWP0 should therefore provide us with full control over
the degree of entanglement generated in the setup. The HWP1
and the HWP2 combine two distinct roles. One is to adjust
the local polarization rotation φM , which is strictly speaking
part of the state preparation, and the other is to switch the
measured polarizations between {0, 1} and {a, b}. Controlling
both settings with only one HWP helps to reduce systematic
errors. If the setup is modified for different applications, it
may be necessary to perform these two functions using sepa-
rate HWPs.

To characterize the performance of the entangled photon-
pair source, we have evaluated the two-photon visibilities at
φS = 45◦. These visibilities can be given by the correlations

Ci ≡
∣∣∣∣
N++ + N−− − N+− − N−+
N++ + N−− + N+− + N−+

∣∣∣∣, (14)

where + and − are the two possible outcomes for the respec-
tive polarization, N++ and N−− are the count rates for the same
polarization, and N+− and N−+ are the count rates for opposite
polarizations. Evaluating each visibility for the HV and DA
polarizations, the experimental results for our entanglement
source are

CHV = 0.968 ± 0.013, (15)

CDA = 0.935 ± 0.011. (16)

Here, DA polarization refers to the diagonal and antidiagonal
polarization directions. The visibility of the HV polarization is
limited by imperfection of the wave plates and the polarizers.
The main causes of limited visibility seem to be the HWP3,
which is used to convert the positive correlation of the gen-
erated photon pairs into a negative correlation, and the DPBS
with its extinction ratio of 102. In addition, the visibility of
DA polarization is limited by the visibility of interference in
the Sagnac interferometer. These experimental imperfections
explain the reduced visibilities observed in the setup and given
in Eqs. (15) and (16).

B. Entanglement witness and local polarizations

To evaluate the control of entanglement in our setup, we
characterize the visibilities CHV and CDA for different settings
of φS . The entanglement generated in the setup can then be
evaluated by the entanglement witness given by

WE ≡ CHV + CDA − 1. (17)

Ideally, the reduction of entanglement results in an increase of
the local polarization described by the visibility VHV:

VHV = NH − NV

NH + NV
, (18)
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FIG. 2. Trade-off relation between the local polarization VHV

(yellow dots) and the entanglement witness WE (green dots) con-
trolled by the parameter φS . The blue dots show the correlation CHV

of HV polarization. As expected, φS controls the degree of entangle-
ment without changing the correlation CHV. See the Appendix for the
raw data obtained in the experiment.

where NH and NV are the count rates of H polarization and
V polarization for a single photon. Since the count rates can
be different for the two photons, we obtained the average
visibility VHV for both outputs. The relation between the local
polarization visibility VHV and the entanglement witness WE

is given by the inequality
√

V 2
HV + W 2

E � 1. (19)

The limit of 1 is obtained by the ideal state given in Eq. (10). It
is therefore possible to quantify errors in the state preparation
process by evaluating the length of the vector (VHV,WE ).
Similarly, the two photon visibility CHV of the ideal state is
always one. We can thus define two measures that evaluate
the performance of our entanglement source.

Figure 2 shows the experimental results obtained for VHV,
CHV, and WE . The values of CHV are consistent with the result
obtained at φS = 45◦. At φS = 0◦, the local polarization is
maximally defined and VHV is approximately equal to CHV.
On the other hand, WE is limited by the visibility of DA
correlations, and these depend on quality of interference at
the output of the Sagnac interferometer. Therefore, WE stays
below the value of CHV at φS = 45◦, corresponding to the
difference between the HV and the DA visibilities in Eqs. (15)

and (16). For intermediate values of φS , Fig. 2 shows the
trade-off relation between the local polarization VHV and the
entanglement witness WE , where φS controls the degree of en-
tanglement as theoretically predicted. The precise numerical
values obtained in the experiment are shown in Table I. In
addition, the values of (V 2

HV + W 2
E )1/2 are shown to indicate

how close the experimental result is to the ideal state. Varying
φS changes the balance between the HH and VV components
in Eq. (10), resulting in an increase of entanglement as the
balance approaches equality at φS = 45◦. The total amount
of coherence in the emitted state is given by (V 2

HV + W 2
E )1/2,

indicating the trade-off between local polarization VHV and
entanglement WE . The reason why (V 2

HV + W 2
E )1/2 shows a

slight but significant reduction as φS increases is that the
entanglement described by WE is generated by the interference
effects at the output of the Sagnac interferometer, making WE

sensitive to mode matching errors at the DBPS. As expected,
(V 2

HV + W 2
E )1/2 is equal to VHV at φS = 0◦ and equal to WE

at φS = 45◦. The value of (V 2
HV + W 2

E )1/2 thus drops as the
relative contribution of WE increases.

IV. OPTIMIZATION OF CONTEXTUAL STATISTICS BY
ADAPTIVE INPUT STATE CONTROL

A. Suppression of probabilities by local polarization rotations

As explained in Sec. II, the probabilities P(0, a) [P(a, 0)]
can be suppressed by destructive quantum interferences be-
tween the components |00〉 and |01〉 (|10〉). Making use of
the initial quantum coherence provided by the entanglement
source, the suppression can thus be optimized by searching
for the polarization rotation angles φM with equal probabilities
for the outcomes (0,0) and (0,1). Due to the symmetry of the
state generated by the entanglement source, we can assume
that P(0, 1) ≈ P(1, 0), so that the same rotation angle φM

can be used for both photons. A single rotation angle φM

simultaneously minimizes both P(0, a) and P(a, 0), as can be
verified after the determination of φM by directly measuring
the residual probabilities of these outcomes.

To determine the optimal value of φM for a specific value
of φS , we measured the coincidence counts of the outcome
(0,0) or (0,1) at three different values of φM close to the
theoretically expected value for that setting of φS . Since the
dependence of the coincidence counts on φM is approximately
linear in that region, three settings of φM are sufficient to
identify the optimal value of φM , where the probabilities of

TABLE I. Experimental values of CHV,VHV,WE , and (V 2
HV + W 2

E )1/2 for different settings of the parameter φS , including statistical error
margins. The results characterize the control of entanglement by the experimental parameter φS .

φS [deg] CHV VHV WE

√
V 2

HV + W 2
E

0 0.975 ± 0.013 0.979 ± 0.013 −0.049 ± 0.016 0.980 ± 0.013
10 0.974 ± 0.013 0.918 ± 0.013 0.294 ± 0.017 0.963 ± 0.014
17.5 0.976 ± 0.013 0.793 ± 0.013 0.503 ± 0.017 0.938 ± 0.014
20 0.973 ± 0.013 0.751 ± 0.012 0.569 ± 0.017 0.943 ± 0.014
22.5 0.971 ± 0.013 0.689 ± 0.012 0.610 ± 0.017 0.920 ± 0.015
25 0.973 ± 0.013 0.642 ± 0.012 0.656 ± 0.017 0.918 ± 0.015
27.5 0.975 ± 0.013 0.594 ± 0.012 0.720 ± 0.017 0.933 ± 0.015
35 0.971 ± 0.013 0.359 ± 0.011 0.825 ± 0.018 0.900 ± 0.017
45 0.968 ± 0.013 0.025 ± 0.011 0.903 ± 0.018 0.903 ± 0.018
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FIG. 3. Determination of the optimal value of φM for φS = 22.5◦.
Count rates are obtained for the outcomes (0,0) and (0,1) at three
different settings of φM . The optimal value of φM is found at the
intersection of the lines representing the linear dependence of the
count rates on φM . For φS = 22.5◦, the optimal value is found at
φM = 31.4◦. Data were taken for three different angles φM , with one
count rate for the (0,0) setting [(0,0) Expt] and one count rate for the
(0,1) setting [(0,1) Expt]. The optimal value of φM for the subsequent
experiments (optimal φM ) is found by taking the intersection of the
linear fits of the two sets of data points.

P(0, 0) and P(0, 1) are approximately equal. Figure 3 illus-
trates this method of finding the optimal values of φM for the
case of φS = 22.5◦. The procedure is relatively simple and
can be used to quickly identify the optimal local polarization
rotation φM for several different degrees of entanglement.
Table II shows the results we obtained for nine different values
between φS = 0◦ and φS = 45◦.

The success of the suppression of probabilities for P(a, 0)
and P(0, a) can be confirmed by measuring the correspond-
ing detection probabilities at the optimal settings of φM . The
results are shown in Table III. The probabilities given in
the table are determined directly from the number of counts
observed in a specific time interval, where the total count rate
is determined by adding the four settings that correspond to a
complete measurement basis. For example, the probability of
(a, 0) is given by

P(0, a) = N (0, a)

N (0, a) + N (0, b) + N (1, a) + N (1, b)
. (20)

TABLE II. Values of the optimal polarization rotation φM deter-
mined for different settings of the parameter φS . The numbers given
are the settings used in the actual experiments, so they represent
experimental parameters rather than experimental results.

φS [deg] φM [deg]

0 46.3
10 38.8
17.5 33.7
20 32.7
22.5 31.4
25 30.5
27.5 29.5
35 26.7
45 22.2

TABLE III. Values of P(0, a) and P(a, 0) achieved by using the
optimized values of φM . The value of 1

4 (1 − CHV) is also given since
it may be the main source of the errors that limit the suppression of
P(0, a) and P(a, 0) by the optimization of φM .

φS [deg] P(0, a) P(a, 0) 1
4 (1 − CHV)

0 0.0072 ± 0.0008 0.0030 ± 0.0005 0.0063 ± 0.0033
10 0.0078 ± 0.0008 0.0088 ± 0.0009 0.0065 ± 0.0033
17.5 0.0110 ± 0.0010 0.0070 ± 0.0008 0.0060 ± 0.0033
20 0.0100 ± 0.0009 0.0071 ± 0.0008 0.0067 ± 0.0033
22.5 0.0104 ± 0.0010 0.0062 ± 0.0007 0.0071 ± 0.0033
25 0.0125 ± 0.0010 0.0086 ± 0.0009 0.0068 ± 0.0033
27.5 0.0111 ± 0.0010 0.0080 ± 0.0008 0.0062 ± 0.0032
35 0.0137 ± 0.0011 0.0088 ± 0.0009 0.0071 ± 0.0032
45 0.0104 ± 0.0009 0.0097 ± 0.0009 0.0081 ± 0.0032

The statistical average of P(0, a) and P(a, 0) for the nine val-
ues of φS is 0.010 ± 0.002 and 0.007 ± 0.002, respectively,
where the errors give the standard deviations for the distri-
bution of values in the nine data points. Since the errors do
not depend much on φS , we assume that they mostly originate
from the errors in the correlation of the HV polarizations,
CHV. For a completely random state, CHV = 0 and P(a, 0) =
P(0, a) = 1/4. Since the relations between probabilities and
density-matrix elements are linear, we conclude that the er-
ror in P(a, 0) and P(0, a) caused by values of CHV smaller
than one is given by (1 − CHV)/4. These values are shown
in Table III alongside the values of P(a, 0) and P(0, a). The
similarity in the magnitude of errors suggests that the resid-
ual probabilities of P(a, 0) and P(0, a) are an unavoidable
consequence of the experimental imperfections that are also
responsible for the errors in the correlations between the HV
polarizations of the emitted photon pairs.

B. Evaluation of quantum contextuality

The purpose of adaptive state control is the observation of
quantum contextuality. By suppressing the probabilities of the
outcomes (0, a), (a, 0), and (1,1), we should obtain a much
higher probability of the outcome (a, a), resulting in a clear
violation of the inequality given in Eq. (4). This violation of
noncontextual logic can be observed directly in the count rates
of each of the outcomes. The raw data we obtained for the

TABLE IV. Experimentally observed counts obtained for the
four outcomes (0, a), (a, 0), (1, 1), and (a, a) in a ten second interval.
Contextuality is confirmed when N (a, a) is larger than the sum of the
first three count rates.

φS [deg] N (0, a) N (a, 0) N (1, 1) N (a, a)

0 88 36 3354 40
10 88 95 954 304
17.5 125 79 231 752
20 113 79 155 959
22.5 118 71 172 1148
25 145 98 240 1357
27.5 136 97 285 1586
35 163 106 1002 2153
45 136 123 3513 3430
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FIG. 4. Experimental results for the outcome probabilities
P(0, a), P(a, 0), P(1, 1), and P(a, a) as a function of the parame-
ter φS that determines the degree of entanglement. φS = 0◦ is the
separable case and φS = 45◦ is the maximally entangled state. Panel
(a) shows the results for the suppression of P(0, a) and P(a, 0),
panel (b) shows the results for the suppression of P(1, 1) in com-
parison with P(0, 0), and panel (c) shows the results for P(a, a)
and P(0, a) + P(a, 0) + P(1, 1). Quantum contextuality is observed
when P(a, a) is larger than the sum of the three suppressed probabil-
ities. See the Appendix for the raw data obtained in the experiment.

different settings are shown in Table IV. The number of counts
N (a, a) is higher than the sum of the other three counts for all
settings from φS = 17.5◦ to φS = 35◦. The variation of the
degree of entanglement results in low counts in the outcome
(1,1) with a minimum between φS = 20◦ and φS = 22.5◦.
Figure 4 shows the corresponding probabilities. Figure 4(a)
shows the suppression of P(0, a) and P(a, 0) discussed pre-
viously. Values are close to 0.01 or one percent throughout,
confirming the successful optimization of φM . The symmetry
breaking of the quantum state creates a difference between
P(0, a) and P(a, 0). Figure 4(b) shows the suppression of
P(1, 1) by intermediate values of φS . Note the parabolic pro-
file of P(1, 1) around the minimum between φS = 20◦ and
φS = 22.5◦. The probability P(0, 0) is shown for comparison.
Since the optimization of φM required that P(0, 0), P(0, 1),
and P(1, 0) are approximately equal, the increase of P(0, 0) is
equal to about one third of the decrease in P(1, 1). Figure 5

FIG. 5. Details of the results for P(1, 1) close to the minimum
with a quadratic fit of the five points closest to the minimum. “Expt”
indicates the experimental values, “Fit” indicates the quadratic fit,
and “Optimal φS” indicates the value of φS at which the quadratic
function of the fit is minimal. The minimum value of the fit is
P(1, 1) = 0.0151 ± 0.0016 at φS = 21.4◦.

shows the details of the minimum of P(1, 1) in Fig. 4(b),
together with a quadratic fit of the data based on the five points
closest to the minimum. Note that the minimum of the fit is
slightly higher than the minimal experimentally determined
value at φS = 20◦, indicating that any setting of φS in the inter-
val between 20◦ and 22.5◦ produces nearly indistinguishable
results. The theoretical optimum obtained from the fit would
be at φS = 21.4◦, with a value of P(1, 1) = 0.0151 ± 0.0016
for the minimum. This result is consistent with the visibility in
DA basis, as shown in Eq. (16). Finally, Fig. 4(c) illustrates the
observation of quantum contextuality by comparing the prob-
ability P(a, a) with the sum of the suppressed probabilities,
P(0, a) + P(a, 0) + P(1, 1). Due to the dependence of the
suppression of P(1, 1) on φS , the sum of the suppressed prob-
abilities has a minimum between φS = 20◦ and φS = 22.5◦.
On the other hand, P(a, a) increases monotonically with φS .
As a result, quantum contextuality can be observed clearly at
higher values of φS . Contextuality only disappears close to the
maximally entangled state at φS = 45◦.

FIG. 6. Contrast function K determined from the experimental
results using Eq. (21). A high value of the contrast function indi-
cates the successful suppression of probabilities P(0, a), P(a, 0), and
P(1, 1), confirming the validity of the logical conditions set by the
paradox. Negative values indicate that the inequality in Eq. (4) is not
violated. The contrast K achieves a maximal value of about 0.5 in
a wide region between φS = 20◦ and φS = 27.5◦, where the input
state is defined by a nearly equal balance of local polarization and
entanglement.
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It may be interesting to consider the role of entanglement
in the simultaneous suppression of the probabilities P(0, a),
P(a, 0), and P(1, 1), and in the subsequent observation of
a nonzero value of P(a, a). Figure 4(c) clearly shows that
P(a, a) increases together with the amount of entanglement
characterized by the witness WE . Since the maximal value
of P(a, a) is 0.25, this increase represents an increase in the
randomness of the relation between the outcomes of {a, b}
measurements for the two photons. Local polarizations al-
ways prefer outcomes of b and therefore limit the probability
P(a, a). On the other hand, maximal entanglement makes
it impossible to suppress P(1, 1) together with P(0, a) and
P(a, 0), since correlations between the outcomes of {0, 1}
measurements necessarily weaken the correlations between
{0, 1} and {a, b}. Optimal quantum contextuality is obtained
when the suppression of P(0, a) and P(a, 0) is achieved
by a combination of local polarization suppressing all a re-
sults and entanglement correlations suppressing the outcome
combinations (0, a) and (1, b). This combination can apply
simultaneously to a local suppression of 1 results and the
combinations (1,1) and (0,0). Simultaneous suppression of all
three outcomes P(0, a), P(a, 0), and P(1, 1) can be achieved
by both local polarization and entanglement, but only a bal-
anced combination of both can achieve an optimal suppression
effect. At the same time, suppression of a results by the local
polarization will also limit the probability P(a, a), adding an
additional cost to the use of local polarization in the suppres-
sion of probabilities.

V. CONTRAST BETWEEN PROBABILITIES

The probability P(1, 1) can only be suppressed by vary-
ing the entanglement of the input state. The lowest value of
P(1, 1) determined from the experimental data was obtained
at φS = 20◦ with P(1, 1) = 0.0140 ± 0.0011. The data show
a relatively flat minimum with very similar values of P(1, 1)
between φS = 20◦ and φS = 22.5◦. Moreover, the error rate
is consistent with the two-photon visibilities CHV and CDA

of the source. The sum of the suppressed probabilities at
φS = 20◦ is P(0, a) + P(a, 0) + P(1, 1) = 0.0311 ± 0.0016.
Experimental errors thus make it impossible to observe a
probability of less than three percent in the suppressed prob-
abilities. To observe quantum contextuality, it is therefore
necessary to obtain a sufficiently high value of P(a, a). At
φS = 20◦, this value is at P(a, a) = 0.0854 ± 0.0028. How-
ever, higher values are obtained as φS increases. It is therefore
desirable to evaluate the contrast between the low value
of the probability sum P(0, a) + P(a, 0) + P(1, 1) and the
high value of the probability P(a, a). This contrast can be
defined as

K ≡ P(a, a) − P(0, a) − P(a, 0) − P(1, 1)

P(a, a) + P(0, a) + P(a, 0) + P(1, 1)
. (21)

By definition, the contrast K is one if and only if P(0, a),
P(a, 0), and P(1, 1) are all zero. If the probabilities do not vio-
late the inequality in Eq. (4), K has a negative value. The value
of K at φS = 20◦ is K = 0.467 ± 0.032, a clear violation of
the inequality and a sufficiently clear contrast between the
suppressed probabilities and the probability P(a, a). However,
the increase in P(a, a) now results in slightly larger values

TABLE V. Contrast K achieved at different settings of φS . Due
to the low values of the probabilities compared by K , the errors are
rather large. Values close to 0.5 are obtained for 20◦, 22.5◦, 25◦,
and 27.5◦, indicating that the probability P(a, a) is approximately
three times as high as the sum of the three probabilities indicating a
violation of the conditions required of the input state.

φS [deg] K

0 −0.975 ± 0.026
10 −0.575 ± 0.031
17.5 0.269 ± 0.031
20 0.467 ± 0.032
22.5 0.518 ± 0.030
25 0.475 ± 0.027
27.5 0.506 ± 0.026
35 0.265 ± 0.019
45 −0.040 ± 0.013

of K for φS = 22.5◦, φS = 25◦, and even φS = 27.5◦. The
different values of K are shown in Fig. 6 and in Table V.
The result clearly indicates that the observation of quantum
contextuality is easier when the entanglement is larger than
the entanglement of the ideal state defined by Eqs. (5)–(7).

As discussed before, the maximal value of the contrast K is
obtained as the result of a trade-off between the contributions
of local polarization and entanglement to the suppression of
P(1, 1) and the increase of P(a, a). The condition imposed by
the simultaneous suppression of P(a, 0) and P(0, a) limits the
contribution of entanglement to the suppression of P(1, 1),
requiring a local suppression of the outcomes a. However,
this local suppression of a also limits the probability P(a, a).
Adaptive input state control optimizes these relations in the
presence of experimental imperfections, making optimal
use of the available local polarization and the available
entanglement. Although the contrasts that can be achieved
are limited by the experimental imperfections, the range of
parameters for which contrasts close to the maximum value
can be obtained is much larger than the ideal case would
seem to suggest. Adaptive input state control thus optimizes
the robustness of quantum contextuality against experimental
errors and decoherence.

VI. CONCLUSIONS

Quantum state preparation can be optimized to achieve
maximal quantum contextuality in the presence of exper-
imental imperfections. We achieve this by defining state
preparation in terms of output probabilities that need to be
minimized in order to observe quantum contextuality. In the
present scenario, it was necessary to first determine the degree
of entanglement of a two-photon state by setting a control
parameter φS , followed by an optimization of local polariza-
tion rotations φM . Significantly, we were able to achieve a
highly efficient optimization of φM by making use of the fact
that quantum interference is maximal when the amplitudes of
the interfering components are equal. Using this optimization
method, we were then able to optimize the trade-off between
entanglement and local polarization described by φS . The
results show that the same contrast K between the probability
of the paradoxical outcome (a, a) and the suppressed proba-
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TABLE VI. Absolute counts in {H, V} or {D, A} basis for each φS . All counts were obtained in a 10-s interval.

φS [deg] N (H, H ) N (H,V ) N (V, H ) N (V,V ) N (D, D) N (D, A) N (A, D) N (A, A)

0 11326 119 27 47 3013 2926 2836 3033
10 10379 115 26 379 1895 3657 3611 1853
17.5 10030 107 28 1101 1369 4353 4387 1342
20 9860 111 40 1336 1152 4711 4506 1182
22.5 9391 109 51 1666 1082 4655 4640 969
25 9218 108 45 1947 946 4854 4935 895
27.5 9695 105 46 2415 767 5327 5464 812
35 7923 114 54 3689 459 5651 5611 430
45 5902 109 81 5611 207 5629 5795 175

bilities can be obtained for a wide range of different degrees of
entanglement. This indicates that entanglement can partially
compensate the effects of errors by increasing the probability
of the outcomes (a, a). Importantly, adaptive state control
allows us to directly optimize the statistics that characterize
the actual input state, without any theoretical assumptions
about the quantum coherence of the source.

As mentioned in the introduction, adaptive input state
control has three distinct advantages: (a) It allows us to par-
tially compensate the effects of experimental imperfections by
optimizing the parameters that control the state preparation
process, improving the performance of noisy sources. (b) It al-
lows us to directly relate quantum state preparation to specific
correlations relevant for the observation of contextuality para-
doxes or similar purposes. (c) The optimization of quantum
interference effects can be realized by observing the output
probabilities of the components that interfere with each other,
providing a particularly simple method of optimizing quantum
coherent effects.

In conclusion, adaptive input state control allows us to
optimize the nonclassical properties of quantum states in the

presence of experimental imperfections by directly imple-
menting specific statistical correlations that are relevant for
the intended effects. Adaptive input state control thus makes
fundamental aspects of quantum systems more accessible and
may facilitate their application in future quantum information
technologies.
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APPENDIX: COMPLETE SET OF RAW DATA OBTAINED
IN THE EXPERIMENT

In the following, we present the raw data obtained in the
experiment. Table VI shows the counts obtained within a 10-s
interval for the measurement results used in the calculation of
CHV, VHV, and WE as shown in Fig. 2; Table VII shows the
counts obtained in a 10-s interval for all combinations of a/b
and 0/1.

TABLE VII. Absolute counts with respect to (F, F ), (F,W ), (W, F ), and (W,W ) for each φS . All counts were obtained in a 10-s interval.

φS [deg] N (0, 0) N (0, 1) N (1, 0) N (1, 1) N (0, a) N (0, b) N (1, a) N (1, b)

0 3431 2989 3484 3354 88 5933 81 6119
10 3201 3377 3556 954 88 6510 564 4120
17.5 3527 3560 3979 231 125 7071 1442 2727
20 3496 3465 3993 155 113 7114 1782 2299
22.5 3688 3638 3661 172 118 7240 2159 1862
25 3624 3573 3967 240 145 7293 2492 1635
27.5 3952 3917 3977 285 136 7723 2990 1440
35 3631 3609 3803 1002 163 7020 4105 584
45 3565 3394 3408 3513 136 6444 6401 114

φS [deg] N (a, 0) N (a, 1) N (b, 0) N (b, 1) N (a, a) N (a, b) N (b, a) N (b, b)

0 36 38 6223 5824 40 38 95 12072
10 95 417 6453 3788 304 144 292 10224
17.5 79 1353 7323 2519 752 608 774 9123
20 79 1616 7264 2237 959 756 870 8649
22.5 71 2086 7501 1748 1148 959 1098 8196
25 98 2380 7434 1511 1357 1112 1210 7791
27.5 97 2850 7842 1359 1586 1357 1579 7697
35 106 4083 7199 671 2153 1964 2037 5691
45 123 6317 6107 144 3430 3370 3318 3483
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