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We consider a closed quantum system subjected to stochastic Poissonian resetting with rate r to its initial
state. Resetting drives the system to a nonequilibrium stationary state (NESS) with a mixed density matrix
which has both classical and quantum correlations. We provide a general framework to study these NESS
correlations for a closed quantum system with a general Hamiltonian H . We then apply this framework to a
simple model of a pair of ferromagnetically coupled spins, starting from state |↓↓〉 and resetting to the same
state with rate r. We compute exactly the NESS density matrix of the full system. This then provides access
to three basic observables, namely, (i) the von Neumann entropy of a subsystem, (ii) the fidelity between the
NESS and the initial density matrix, and (iii) the concurrence in the NESS (that provides a measure of the
quantum entanglement in a mixed state), as a function of the two parameters: the resetting rate and the interaction
strength. One of our main conclusions is that a nonzero resetting rate and a nonzero interaction strength generate
quantum entanglement in the NESS (quantified by a nonzero concurrence) and moreover this concurrence can
be maximized by appropriately choosing the two parameters. Our results show that quantum resetting provides a
simple and effective mechanism to enhance entanglement between two parts of an interacting quantum system.
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I. INTRODUCTION

Entanglement is a fundamental property of a quantum sys-
tem which has no classical counterpart [1–3]. A pure state
of a bipartite quantum system is called entangled if is not
factorizable into the states of the subsystems. The simplest
example of such an entangled state is a singlet state of a
pair of spin-1/2 particles: |ψ〉 = (|↑↓〉− |↓↑〉)/

√
2. For a

pure state, a simple measure of the degree of entanglement,
i.e., the lack of factorization, is provided by the von Neu-
mann entanglement entropy [1–3] of a subsystem with the
rest. This entropy has been studied extensively for many
quantum systems with applications ranging from quantum
information theory and quantum cryptography to many-body
quantum condensed-matter systems [3–20]. Recently, there
has been enormous interest in studying the entanglement in
quantum systems driven out of equilibrium, either by a sudden
quench of a parameter of the Hamiltonian [7,21–24] or by
repeated projective measurements [19,25–29]. Furthermore,
developing and designing protocols that enhance quantum
entanglement is central to quantum information theory and
has been of enormous interest in recent years [30–38].

If however the quantum system is in a mixed state, it is not
easy to distinguish the quantum correlations from classical
correlations between two subsystems. In this case, the von
Neumann entropy is not well suited to characterize the ‘purely
quantum nature’ of the correlations between two subsystems
since it contains information about quantum correlations as
well as of classical probabilities. Several measures have been
proposed in the literature to characterize the “quantumness” of
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the correlations. This includes concurrence [20,39,40], quan-
tum discord [41–44], etc. Amongst these, concurrence is one
of the most widely used measures of entanglement in a mixed
state and has been extensively investigated [20,39,40,45,46].
It is worth emphasizing that even though von Neumann en-
tropy of a subsystem is not a suitable measure to compute
entanglement (or more generally quantum correlations) for
a mixed state, it is however a crucial ingredient to compute
some of these other measures of quantum correlations such
as the quantum discord [41–44]. Finally, another interesting
quantity is fidelity [1,2] which measures the “distance” be-
tween two states (mixed or pure)—in particular, it can be used
to measure the closeness of a mixed state to a reference pure
state. The main purpose of this paper is to characterize the
nonequilibrium steady state (NESS) induced by resetting and
in particular, to compute the quantum entanglement present
in the NESS. As discussed above, the NESS is a mixed
state that carries both quantum and classical correlations. The
purely quantum part of the correlations in the NESS can be
characterized by the concurrence, However, there are other
aspects of the NESS, beyond quantum entanglement, that are
also interesting to characterize, e.g., how far is the resetting
induced NESS from the initial density matrix? This question
can be answered by computing the fidelity as we show in
this paper. Similarly, the von Neumann entropy also provides
interesting information about the NESS, though not directly
about the quantum entanglement since the NESS is mixed, as
discussed above.

Recently, “quantum resetting” has been proposed [47,48]
as a simple protocol to drive a quantum system out of equilib-
rium. Under this protocol, the unitary evolution of a quantum
system starting from its initial state |ψ (0)〉 is interrupted
at random Poissonian times with rate r and the system is
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instantaneously reset to its initial state |ψ (0)〉. Between two
successive resets the system evolves unitarily. It has been
shown that this repeated resetting at random times drives the
system to a NESS where the density matrix acquires nonzero
off-diagonal elements [47]. In addition, the density matrix
typically becomes mixed in the NESS, due to the fact that re-
setting induces “classical” probabilities in the density matrix.
Over the last decade, the effect of resetting has been studied
extensively in a wide variety of classical systems evolving via
stochastic dynamics [49,50] (for reviews, see Refs. [51–53]).
Poissonian resetting to the initial condition in such systems
manifestly breaks detailed balance and typically drives the
system to a NESS. The resulting classical NESS has been
characterized in a variety of theoretical models [49,50,54–
68], as well as in experiments [69–71] involving diffusing
colloids in an optical trap. While there have been few recent
studies on quantum resetting [47,48,72–79], there are only
few recent studies on the effect of resetting on correlations
in quantum systems [75,80]. For example, does resetting in-
crease or decrease the quantum entanglement between two
subsystems? Can one characterize the entanglement between
two subsystems in the resetting induced NESS in a quantum
system?

In this paper, we investigate three quantities, namely, (i)
von Neumann entropy of a subsystem, (ii) fidelity, and (iii)
concurrence in the resetting induced NESS of an isolated
quantum system with a generic Hamiltonian. We then apply
this framework in a very simple model consisting of a pair
of ferromagnetically interacting spins (qubits) with coupling
strength J in the presence of a transverse magnetic field and
subjected to Poissonian resetting with rate r to its initial state
(which for simplicity is assumed to be a pure state |↓↓〉).
We show that all the three quantities (i), (ii), and (iii) can
be computed exactly in the resetting induced NESS where
the density matrix is mixed. Our results show rather rich and
interesting dependence of these quantities on the resetting rate
r and the coupling J between the spins. One of our main
conclusions is that a nonzero resetting rate r and a nonzero
interaction strength J generate quantum entanglement in the
NESS (quantified by a nonzero concurrence) and moreover
this concurrence can be optimized by appropriately choosing
the two parameters R and α.

The rest of the paper is organized as follows. In Sec. II, we
introduce the general framework to study quantum correla-
tions between two subsystems in an isolated quantum system
with a generic Hamiltonian H subject to Poissonian resetting.
In Sec. III, we present a simple model of a ferromagnetically
coupled spin pair and calculate explicitly the von Neumann
entropy of the first spin (Sec. III A), the fidelity between the
NESS and the initial pure state (Sec. III B), and the concur-
rence (Sec. III C) that measures the quantum entanglement
between the two spins in the NESS. Finally we conclude in
Sec. IV. Some details of the calculations are relegated to the
Appendix.

II. GENERAL FRAMEWORK

Consider any isolated quantum system with a time inde-
pendent Hamiltonian H whose eigenstates are denoted by

|E〉 with associated eigenvalue E . The system is prepared
initially in a pure state |ψ (0)〉 (which is not an eigen-
state of H). Consequently the density matrix is given by
ρ̂(0) = |ψ (0)〉〈ψ (0)| with tr[ρ̂(0)] = 1. In a closed quan-
tum system the state evolves unitarily via the Schrödinger
equation |ψ (t )〉 = e−iHt |ψ (0)〉. Consequently the density ma-
trix ρ̂(t ) = |ψ (t )〉〈ψ (t )| evolves via ρ̂(t ) = e−iHt ρ̂(0)eiHt .
This unitary evolution preserves the trace, i.e., tr[ρ̂(t )] = 1
for any t . In Ref. [47], the protocol of quantum resetting
was introduced where the state of the system evolves in
time by a mixture of deterministic unitary dynamics and
stochastic classical resetting moves. More precisely, the sys-
tem evolves in continuous time t according to the stochastic
rule

|ψ (t + dt )〉

=
{

(1 − iHdt )|ψ (t )〉, with probability 1 − r dt

|ψ (0)〉, with probability r dt,
(1)

where r represents the resetting rate. Under this resetting
dynamics, it was shown that the density matrix evolves as [47]

ρ̂r (t ) = e−rt ρ̂(t ) + r
∫ t

0
dτe−rτ ρ̂(τ ), (2)

where the subscript r in ρ̂r (t ) indicates a finite resetting rate
and ρ̂(t ) = e−iHt ρ̂(0)eiHt is the time evolved density matrix
in the absence of resetting. Note that for any finite t > 0, even
though ρ̂(t ) (in the absence of resetting) represents a pure
density matrix, the resetting induced density matrix ρ̂r (t ) on
the left-hand side of Eq. (2) is generically mixed for r > 0.
As time t → ∞, the density matrix ρ̂r (t ) approaches a NESS
given by

ρ̂r (∞) = r
∫ ∞

0
dτe−rτ ρ̂(τ ). (3)

Thus the NESS density matrix ρ̂r (∞) is mixed and can be
viewed as r times the Laplace transform (with respect to τ )
of the density matrix ρ̂(τ ) without resetting. Computing the
NESS density matrix with resetting in Eq. (3) thus requires
the full knowledge of the density matrix ρ̂(τ ) of the system
without resetting at all times τ , and this is typically nontrivial.
It turns out that the NESS density matrix with resetting can be
written explicitly in the energy basis as [47]

ρ̂r (∞) =
{
ρE ,E (0), if E = E ′
ρE ,E ′ (0) r

r+i(E ′−E ) , if E 
= E ′. (4)

In Eq. (4), the subscript (E , E ′) denotes the elements of
the initial density matrix ρ̂(0) in the energy basis. Thus, in
the presence of resetting, the density matrix ρ̂r (∞) acquires
nonzero off-diagonal elements. Note that if one takes the
r → 0+ limit, the off-diagonal elements in Eq. (4) vanish and
the system approaches a stationary density matrix with only
diagonal elements in the energy basis. However, we note that
this is not the same if one keeps t finite and takes the r → 0
limit. In that case, the system does not reach a stationary
state as the off-diagonal elements keep oscillating in time.
Thus, the two limits limt→∞ limr→0 and limr→0 limt→∞ do
not commute.

Given the exact density matrix at time t in Eq. (2) in the
presence of resetting, one can, in principle, compute various
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observables of interest at any finite time t and in particular,
in the steady state. The goal of this paper is to investigate (i)
von Neumann entropy of a subsystem in the NESS, (ii) fidelity
between the density matrix in the NESS (t → ∞) and the ini-
tial density matrix (t = 0), and (iii) concurrence in the NESS
that quantifies the entanglement between two subsystems in a
mixed state. The definitions of these quantities are provided
below.

A. Von Neumann entropy

In order to compute the von Neumann entropy of a subsys-
tem A of the full system, we need to first compute the reduced
density matrix of the subsystem A by tracing out the degrees
of freedom belonging to Ā which is the complement of A, i.e.,

ρ̂A,r (t ) = trĀ[ρ̂r (t )], (5)

where ρ̂r (t ) is given in Eq. (2). The von Neumann entropy is
then defined as

Sr (t ) = −tr{ρ̂A,r (t ) ln[ρ̂A,r (t )]} = −
NA∑
i=1

λi(t ) ln[λi(t )], (6)

where λi(t ) are the eigenvalues of ρ̂A,r (t ) and NA is the size
of the subsystem A. As mentioned in the Introduction, even
though the von Neumann entropy is not a suitable measure
of quantum entanglement in a mixed state [such as in the
resetting induced NESS in Eq. (3)], it is nevertheless useful
to compute this entropy as this is a crucial ingredient to build
other measures of quantum correlations such as the quantum
discord. By performing the partial tracing over Ā directly in
Eq. (2), one obtains the evolution equation for the reduced
density matrix ρ̂A,r :

ρ̂A,r (t ) = e−rt ρ̂A(t ) + r
∫ t

0
dτe−rτ ρ̂A(τ ). (7)

Hence, one sees that as t → ∞, the reduced density matrix
also approaches a stationary limit as t → ∞:

ρ̂A,r (∞) = r
∫ ∞

0
dτe−rτ ρ̂A(τ ). (8)

Consequently, the von Neumann entropy also approaches a
stationary limit as t → ∞:

Sr (∞) = −tr{ρ̂A,r (∞) ln[ρ̂A,r (∞)]}, (9)

where ρ̂A,r (∞) is given in Eq. (8). While the full NESS den-
sity matrix has a simple explicit form in the energy basis in
Eq. (4), it turns out that performing the partial trace in Eq. (9)
in the energy basis is rather hard and it becomes easier if one
changes to the local basis involving local degrees of freedom
(e.g., the site basis on a lattice). This is shown explicitly in the
two spin model discussed in Sec. III A.

B. Fidelity

The fidelity between two density matrices ρ̂ and σ̂ (pure or
mixed) provides a measure of the closeness between them. It
is defined as [1,2]

F (ρ̂, σ̂ ) = (tr[
√√

ρ̂ σ̂
√

σ̂ ])2. (10)

If one of the matrices, say σ̂ , is pure, i.e., σ̂ = |ψσ 〉〈ψσ |, then
the definition in Eq. (10) reduces to a simpler expression:

F (ρ̂, σ̂ ) = 〈ψσ |ρ̂|ψσ 〉. (11)

In our case, we assume that the system starts from a pure state
|ψ (0)〉. Hence the initial density matrix corresponds to a pure
state ρ̂r (0) = ρ̂(0) = |ψ (0)〉〈ψ (0)|. It is then natural to ask
how close is the NESS to the initial state. This is measured by
the fidelity between the density matrix in the NESS ρ̂r (∞) in
Eq. (3) and the initial density matrix ρ̂(0). Hence, we can use
the simplified expression in Eq. (11) by identifying σ̂ = ρ̂r (0)
(since this is pure) and ρ̂ = ρ̂r (∞) leading to

F (ρ̂r (∞), ρ̂r (0)) = 〈ψ (0)|ρ̂r (∞)|ψ (0)〉. (12)

Equation (12) holds for a quantum system with arbitrary
Hamiltonian H . We will compute this explicitly in the two
spin model discussed in Sec. III B.

C. Concurrence

Concurrence is a well-known measure to characterize the
quantum entanglement between two subsystems in a mixed
state [20,39,40,45]. However, it is extremely hard to compute
this quantity for a closed quantum system with a generic
Hamiltonian H , since it involves a complex optimization
problem in high dimensions [20,39,40,46]. However, for a
pair of qubits with a mixed density matrix ρ̂, there is an
explicit expression for the concurrence [20,39,40]:

C(ρ̂) = max(0, μ1 − μ2 − μ3 − μ4), (13)

where μi’s are the eigenvalues in decreasing order of the
matrix

R =
√√

ρ̂ ρ̃
√

ρ̂, (14)

with ρ̃ defined by

ρ̃ = (σy ⊗ σy) ρ̂∗ (σy ⊗ σy). (15)

Here, σy = (0 −i
i 0 ) is the y component of the Pauli spin matrix

and ρ̂∗ is the complex conjugate of ρ̂. The concurrence C can
take values in C ∈ [0, 1]. It achieves its maximal value for a
fully entangled state. In contrast, it vanishes for any mixed
state which can be expressed as a convex combination of
product states, i.e., when the density matrix can be expressed
as a convex roof of separable density matrices [46]:

ρ̂ =
∑

i

pi ρ̂
A
i ⊗ ρ̂B

i where 0 � pi � 1 and
∑

i

pi = 1.

(16)
Such a mixed state contains classical correlations, but no
quantum entanglement as demonstrated by the vanishing of
the concurrence. For a pure state ρ̂ = |ψ〉〈ψ |, the formula for
the concurrence in Eq. (13) further reduces to [20]

C(ρ̂) =
√

2
(
1 − trρ̂2

A

)
, (17)

where ρ̂A is the reduced density matrix given by ρ̂A = trĀ[ρ̂]
and Ā is the complement of A. In Sec. III C, we will compute
the concurrence for the two spin model subject to resetting
with rate r where the density matrix ρ̂ in Eq. (13) is replaced
by the NESS density matrix ρ̂r (∞) in Eq. (3).
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III. TWO SPIN MODEL

We consider a pair of spins with the Hamiltonian [81–84]

H = −Jσ z
1σ z

2 + �

2

(
σ x

1 + σ x
2

)
, (18)

where σ ’s in Eq. (18) are the Pauli matrices, J > 0 is the
ferromagnetic coupling between the spins, and � > 0 is the
transverse magnetic field associated with each spin. This
is simply the transverse field Ising model with two spins.
Here, our local basis is the Hilbert space composed of the
eigenstates of σ z

i where i = 1, 2 label the two spins. This
Hilbert space has a dimension 4 consisting of the basis vectors
|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉. In this basis, the Hamiltonian is repre-
sented by a 4 × 4 matrix:

H =

⎛
⎜⎜⎝

−J �/2 �/2 0
�/2 J 0 �/2
�/2 0 J �/2

0 �/2 �/2 −J

⎞
⎟⎟⎠. (19)

We prepare the system initially in the state |ψ (0)〉 =|↓↓〉 and
also reset it to |ψ (0)〉 with rate r. We choose this initial state
and the reset state to be a pure state |↓↓〉 for simplicity, but
our framework can be easily extended to the case when the
initial state and the rest state are mixed states, such as a singlet
(|↑↓〉− |↓↑〉)/

√
2 or a Bell state (|↑↑〉+ |↓↓〉)/

√
2. With our

choice of the initial state, the initial density matrix is thus

ρ̂(0) = |ψ (0)〉〈ψ (0)| =|↓↓〉〈↓↓| . (20)

In the local basis, this initial density matrix
is then represented by a 4 × 4 matrix, ρ̂(0) =
[{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 1}]. We want
to calculate the quantum entanglement of spin 1 with that of
spin 2. Thus, in this case, the spin 1 represents the subsystem
A, while the spin 2 represents its complement Ā.

We note that very recently Magoni et al. studied [75] a
system of N noninteracting spins with a Hamiltonian

H = �

N∑
i=1

σ x
i + 	

N∑
i=1

σ x
i , (21)

starting from the initially all up state and resetting to this
state with rate r. Interestingly, they showed that even though
the spins are noninteracting, the simultaneous resetting of
all spins together induces a correlation between the spins in
the NESS. A similar mechanism for generating strong corre-
lations via simultaneous resetting in a classical system was
demonstrated in Ref. [68] where the authors studied a system
of N independent Brownian motions on a line, starting and
resetting simultaneously with rate r to the same position.

However, the nature of the correlations generated by simul-
taneous resetting in a quantum system with a noninteracting
Hamiltonian such as in Eq. (21) still remains classical and
does not generate quantum entanglement between the spins.
This is seen from the fact that the density matrix at any time
t for the noninteracting Hamiltonian can be expressed as a
convex linear combination of separable density matrices as
in Eq. (16) leading to a vanishing concurrence at all times
t , including in the NESS. Our main motivation in this paper
is to investigate the effect of resetting on the quantum en-
tanglement, and for that it is crucial to have an interaction

term in the Hamiltonian as in Eq. (18). Indeed, we will show
that in our model, the concurrence has a nonzero value in
the NESS and moreover, it gets maximal in certain regions
of the parameter space. We have three parameters (J,�, r).
However, one can express all physical quantities in terms of
only two dimensionless parameters:

R = r

�
, α = J

�
. (22)

We will see that the concurrence in the NESS has nontrivial
behavior in the (R, α) plane. One of our main conclusions is
thus that a nonzero resetting rate R and a nonzero interaction
strength α are both crucial to generate and enhance quantum
entanglement in the NESS.

A. Von Neumann entropy

In the presence of resetting, the reduced density matrix of a
spin, say the spin 1 at time t , is given by Eq. (7). Thus, we need
to first evaluate the reduced density matrix ρ̂A(t ) of the subsys-
tem A, i.e., the spin 1 without resetting. This can be evaluated
as follows. Without resetting the full density matrix evolves
by ρ̂(t ) = e−iHt ρ̂(0)eiHt . In the local basis this can be rep-
resented as ρ̂(t ) = ∑

iα jβ ρiα, jβ (t )|iα〉〈 jβ| where the indices
i and j refer to the states of spin 1, while α and β label the
states of spin 2. Hence, ρ̂A(t ) = trĀ[ρ̂r (t )] = ∑

α〈α|ρ̂(t )|α〉.
Using the matrix representation of ρ̂(t ) one then gets ρ̂A(t ) =∑

i j [
∑

α ρiα, jα (t )]|i〉〈 j|. Thus ρ̂A(t ) is a 2 × 2 matrix given
by

ρ̂A(t ) =
(

ρ↑↑,↑↑(t ) + ρ↑↓,↑↓(t ) ρ↑↑,↓↑(t ) + ρ↑↓,↓↓(t )
ρ↓↑,↑↑(t ) + ρ↓↓,↑↓(t ) ρ↓↑,↓↑(t ) + ρ↓↓,↓↓(t )

)
.

(23)
Using the matrix representation of ρ̂(0) and H , one can
evaluate the matrix elements of ρ̂(t ) = e−iHt ρ̂(0)eiHt using
MATHEMATICA. Consequently, the elements of the reduced
density matrix in Eq. (23) can be obtained explicitly. In terms
of the two dimensionless parameters R = r/� and α = J/�
defined in Eq. (22) and the rescaled time � t → t , the matrix
elements in Eq. (23) read

ρ̂A(t ) =
(

V (t ) W (t )
W ∗(t ) 1 − V (t )

)
(24)

where V (t ) and W (t ) are given by

V (t ) = 1

2

[
1 − cos(αt ) cos (γ t ) − α

γ
sin(αt ) sin (γ t )

]
,

W (t ) = − sin (γ t )[α sin (γ t ) + i γ cos(αt )]

2γ 2
, (25)

with γ = √
α2 + 1. We substitute Eq. (24) in Eq. (7) and

obtain

ρ̂A,r (t ) =
(

Vr (t ) Wr (t )
W ∗

r (t ) 1 − Vr (t )

)
, (26)

where

Vr (t ) = e−RtV (t ) + R
∫ t

0
dτ e−RτV (τ ),

Wr (t ) = e−RtW (t ) + R
∫ t

0
dτ e−RτW (τ ), (27)
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with V (t ) and W (t ) given in Eq. (25). Evaluating the integrals
in Eq. (27) one gets Vr (t ) and Wr (t ). These expressions are a
bit too long and hence they are provided in the Appendix. We
now need to compute the two eigenvalues λ1(t ) and λ2(t ) of
ρ̂A,r (t ) in Eq. (26). Clearly λ2(t ) = 1 − λ1(t ). Moreover, their
product

λ1(t )λ2(t ) = det[ρ̂A,r (t )] = Vr (t )[1 − Vr (t )] − |Wr (t )|2.
(28)

Hence, the eigenvalues are given by

λ1,2(t ) = 1 ± √
1 − 4 det[ρ̂A,r (t )

2
. (29)

Consequently, the von Neumann entropy in Eq. (6) can be
expressed as

Sr (t ) = ln(2) − (1 + y)

2
ln(1 + y) − (1 − y)

2
ln(1 − y) (30)

where y = √
1 − 4 det[ρ̂A,r (t )]. Using the explicit expressions

of Vr (t ) and Wr (t ) in the Appendix, Eq. (30) gives us the von
Neumann entropy exactly for all t .

In the steady state (t → ∞ limit), the matrix elements
Vr (t ) → Vr (∞) and Wr (t ) → Wr (∞) and their expressions
are given by

Vr (∞) = 1 + R2

2 + 2R2(2 + R2 + 4α2)
, (31)

Wr (∞) = − α

R2 + 4 + 4α2
− i

R + R3

2 + 2R2(2 + R2 + 4α2)
.

(32)

In this case, the reduced density matrix in the NESS ρ̂A,r (∞)
is given by the 2 × 2 matrix

ρ̂A,r (∞) =
(

Vr (∞) Wr (∞)
W ∗

r (∞) 1 − Vr (∞)

)
, (33)

where Vr (∞) and Wr (∞) are given respectively in Eqs. (31)
and (32). Consequently, the von Neumann entropy in the
NESS Sr (∞) ≡ Sst (R, α) can be determined explicitly by tak-
ing the t → ∞ limit in Eq. (30), i.e.,

Sst (R, α) = ln(2) − (1 + y∞)

2
ln(1 + y∞)

− (1 − y∞)

2
ln(1 − y∞) (34)

with

y∞ = √
1 − 4 det[ρ̂A,r (∞)]. (35)

We next analyze this NESS entropy S(R, α) in various regions
of the (R, α) plane.

1. Noninteracting limit (α → 0)

For the noninteracting spins in the absence of resetting
(R = 0), the von Neumann entropy at any finite time t is
strictly zero, since the state of the full system remains fac-
torized at all times t . However, if one switches on a finite
resetting rate R to the |↓↓〉 state, it has two consequences:
(a) it induces strong classical correlations between the spins
at any finite time t even though there is no direct interaction
between them in the Hamiltonian, similar to the results in

FIG. 1. The steady state von Neumann entropy Sst (R, 0) in
Eq. (36) is plotted vs R. It has the maximal value ln 2 at R → 0+.
The inset shows the time dependent entropy Sr (t ) in Eq. (30) vs R for
three values of time t . For a finite t , the entropy Sr (t ) rises sharply
from zero as R → 0+ to a maximum at R = R∗(t ), before decreasing
monotonically with R for R > R∗(t ). As t increases, R∗(t ) decreases
to zero. Eventually in the steady state (t → ∞), the early time
growing regime disappears, leading to a monotonically decreasing
entropy as a function of R. The horizontal dashed line in the inset
denotes the maximal value ln 2 of the entropy.

Ref. [75], and (b) it drives the system into a NESS with strong
classical correlations. In this NESS, the von Neumann entropy
Sst (R, 0) is given by a compact expression (see the Appendix):

Sst (R, 0) = ln(2) + 1

2
ln(1 + R2)

+ R

2
√

R2 + 1
ln

(√
R2 + 1 − R√
R2 + 1 + R

)
. (36)

As discussed earlier, the von Neumann entropy in the
NESS in Eq. (36) is not a useful measure of the quantum
entanglement since the NESS density matrix is mixed. This
is evident in this noninteracting limit where the quantum
entanglement measured by concurrence is identically zero,
while the von Neumann entropy in Eq. (36) is clearly nonzero.
Thus, in the noninteracting limit, the von Neumann entropy
Sst (R, 0) contains information only about classical correla-
tions between the spins induced by resetting. The entropy
Sst (R, 0) in Eq. (36) decreases monotonically with increasing
R with a maximum Sst (0, 0) = ln(2) at R → 0+, as seen in
Fig. 1. Note that ln(2) is the maximum possible von Neumann
entropy achievable in a two spin system. Thus, even in the
noninteracting case, the resetting induces finite classical cor-
relations between the spins for any finite R and in particular
even in the R → 0+ limit where the von Neumann entropy
takes the maximal allowed value ln 2. This result may look a
bit surprising at first sight because one expects that the entropy
in a noninteracting system should vanish when R → 0+. This
is of course true at any finite time t . However, if one takes
the t → ∞ limit first keeping R finite, the system is driven to
a NESS with nontrivial resetting-induced correlations. Subse-
quently, if one takes the R → 0+ limit, the entropy remains
finite in the R → 0+ limit. This is a direct consequence of the
fact that the two limits limt→∞ limr→0 and limr→0 limt→∞ do
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not commute. In fact, this is clearly seen in the time dependent
behavior of the entropy Sr (t ) in Eq. (30). At any finite time
t , as one increases R, the entropy Sr (t ) rises sharply from
its value zero at R → 0+, achieves a maximum at R = R∗(t ),
and then decreases with increasing R. As time increases, the
location of the maximum R∗(t ) approaches zero, i.e., the max-
imum gets shifted towards R = 0. Finally in the steady state,
the small R regime where the entropy increases sharply with R
shrinks to zero. This is shown in the inset of Fig. 1 where we
plot Sr (t ) vs R for three different times. One may also wonder
why the two noninteracting spins get maximally correlated in
the NESS in the R → 0+ limit. This is due to the fact that
in the zero resetting limit (after the system reaches the NESS),
the reduced density matrix of spin 1 becomes diagonal with
equal probability 1/2 to be in the up or in the down state,
as shown in the Appendix. In the noninteracting case, the
spin 1 has an up-down symmetry in the absence of resetting.
Thus, the role of the R → 0+ limit is just to ensure that the
system reaches a NESS, but a vanishing resetting rate does
not break the up down symmetry of spin 1, thus leading to
equal probability for the up and down state for spin 1 in the
NESS.

2. Vanishing resetting limit in the interacting case (α > 0)

We have seen above that a vanishing resetting rate R → 0+
drives a pair of noninteracting spins to a NESS where the von
Neumann entropy saturates to its maximally allowed value
ln 2. A natural question is what the interaction does to this
von Neumann entropy in the NESS when R → 0+. For a
nonzero interaction strength α > 0, taking the R → 0+ limit
in the general expression of the reduced density matrix [see
Eq. (A15)], one finds

ρ̂A,r (∞)|R→0+ =
(

1/2 − α
4(α2+1)

− α
4(α2+1) 1/2

)
. (37)

Thus, the presence of the interaction makes the off-diagonal
elements nonzero in the NESS. Consequently, the von Neu-
mann entropy from Eq. (34) is given by

Sst (0, α) = ln(2) − 1

2

(
1 + α

2(1 + α2)

)
ln

(
1 + α

2(1 + α2)

)

− 1

2

(
1 − α

2(1 + α2)

)
ln

(
1 − α

2(1 + α2)

)
. (38)

A plot of Eq. (38) is shown in Fig. 2 where one sees that
the entropy is a nonmonotonic function of α. It achieves the
maximum value ln 2 in the two limits α → 0 and ∞, with a
dip at α = αc. It approaches the limiting values as

Sst (0, α) →
{

ln 2 − α2

8 as α → 0

ln 2 − 1
8α2 as α → ∞.

(39)

Indeed, from Eq. (37), one sees that the off-diagonal ele-
ments vanish in both limits α → 0 and ∞, leading to the
maximum entropy. The maximal entropy in the noninteracting
limit (α → 0) has been discussed earlier in the paper. In the
strongly interacting limit (α → ∞) the pair of spins behave
as a single “dimer” and in the R → 0+ limit one arrives at a
NESS where the spin 1 in the dimer still has equal probability

FIG. 2. The von Neumann entropy Sst (R, α) in Eq. (34) is plotted
as a function of α for different values of R. In the limit R → 0, the
entropy achieves its maximum value ln 2 in both limits α → 0 and
∞ with a dip in between. For small R, this curve has a minimum
followed by a maximum beyond which the entropy decreases mono-
tonically to zero as α → ∞. Finally, at a critical value Rc ≈ 0.12,
the maximum and the minimum coincide, giving rise to an inflection
point at αc ≈ 1.27. For R > Rc, the entropy becomes a monotonically
decreasing function of α. The transition at R = Rc is reminiscent of
a spinodal transition.

to be in the up or in the down state. This also then leads to
maximum von Neumann entropy.

One can ask what happens to the von Neumann entropy
as a function of α as one increases the resetting rate R. For
general R, the exact steady-state von Neumann entropy is
given in Eq. (34). In Fig. 2, we plot Sst (R, α) vs α for various
values of R. As seen in the figure, for any finite R, the entropy
vanishes as α → ∞. This is expected because in the strongly
interacting case, finite R drives the system into a NESS where
the |↓↓〉 state occurs with probability 1 since the reduced
density matrix in Eq. (33) approaches to {{0, 0}, {0, 1}}. Since
the |↓↓〉 state is fully factorized (i.e., completely unentangled)
the von Neumann entropy vanishes. As R increases from zero
to a small value, the entropy Sst (R, α), as a function of α

displays a nonmonotonic behavior: it decreases to a mini-
mum, then increases to a maximum, and finally decreases
monotonically to zero (algebraically) as α → ∞ (see Fig. 2).
With increasing R, the height of the maximum decreases and
finally at a critical value Rc the minimum and the maximum
merge forming an inflection point, reminiscent of a spinodal
phase transition [85]. This inflection point (Rc, αc) can be ob-
tained by setting dSst (R, α)/dα = 0 and d2Sst (R, α)/dα2 = 0
which gives (Rc, αc) ≈ (0.12, 1.27). For R > Rc, the entropy
decreases monotonically with increasing α. Finally, in the
strongly interacting limit α � 1, as one increases R infinitesi-
mally, the entropy crosses over from the maximal value ln 2
to zero. This crossover, in the limit α → ∞ and R → 0+,
is captured nicely via the scaling form Sst (R, α) ≈ F (αR).
The scaling function F (z) can be computed explicitly (see the
Appendix) with asymptotic behaviors:

F (z) →
{

ln 2 − 8z4 as z → 0
1

4z2 ln z as z → ∞.
(40)
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FIG. 3. The temporal growth of the von Neumann entropy Sr (t )
vs t for different values of R in the noninteracting case α = 0. For
finite R, the entropy approaches its stationary value Sst (R, 0), given in
Eq. (36), exponentially fast with pronounced oscillations (for small
R). Similar behavior is also observed for the interacting case (α > 0).

Thus the entropy decreases extremely slowly as a power law
(with logarithmic correction) as the interaction strength α

increases.
Let us point out that unlike in the noninteracting limit

where a nonzero von Neumann entropy in the NESS is solely
due to the classical correlations, the situation is different in the
interacting case. Here a nonzero von Neumann entropy in the
NESS has its origin in both classical and quantum correlations
and it is hard to separate their contributions. Thus to detect the
purely quantum correlations, i.e., the entanglement, one needs
to go beyond the von Neumann entropy and study, for in-
stance, the concurrence, which will be computed in Sec. III C.

3. Approach to the steady state

So far we have discussed the von Neumann entropy in the
NESS. However, our exact result gives access to the entropy
explicitly at all times and not just in the stationary limit. For
simplicity, we focus on the noninteracting case (α = 0) where
the time dependent entropy Sr (t ) takes a simpler form (see
the Appendix) and is plotted vs t for various values of R in
Fig. 3. We see that as t → ∞, the entropy Sr (t ) approaches
its steady-state value Sst (R, 0) given in Eq. (36) exponentially
fast (with oscillations that are prominent for small R). Thus
one sees that a finite resetting induces a rich temporal dynam-
ics of the von Neumann entropy.

B. Fidelity

In this two spin model, it is also natural to ask: How far
is the steady state (represented by a mixed density matrix)
from the initial state represented by a pure density matrix
|↓↓〉〈↓↓|? This can be measured via the fidelity
F (ρ̂r (∞), ρ̂r (0)) defined in Eq. (12). Using ψ (0) = |↓↓〉
in Eq. (12), the fidelity is given by the diagonal matrix
element of the 4 × 4 NESS density matrix:

F (ρ̂r (∞), ρ̂r (0)) ≡ Fst (R, α) = 〈↓↓ |ρ̂r (∞)| ↓↓〉, (41)

0

0.2

0.4

0.6

0.8

1.0

FIG. 4. Heat map of the fidelity Fst (R, α) in Eq. (42) shown in
the (R, α) plane. As seen clearly in this figure, the fidelity increases
monotonically with increasing R or increasing α. The colorbar on
the right indicates the magnitude of the fidelity Fst (R, α), increasing
from blue to red.

where ρ̂r (∞) is given in Eq. (3). Evaluating this matrix ele-
ment yields an explicit expression for the fidelity:

Fst (R, α) = 1 − 1

2

R2 + 1

[1 + R4 + R2(4α2 + 2)]

− 1

2

1

(4α2 + R2 + 4)
. (42)

It is easy to check that the fidelity in Eq. (42) lies between 0
and 1 everywhere in the (R, α) plane. When its value is close
to 1 it indicates that the final density matrix is close to the
initial one, while when the fidelity vanishes the steady-state
density matrix is farthest from the initial one.

In Fig. 4, we provide a heat map of the fidelity in the (R, α)
plane. We see that the fidelity increases monotonically when
either α or R increases and approaches to 1 when α → ∞ or
R → ∞. This is easy to understand since in either of these
limits the system is driven to the |↓↓〉 state and consequently
the NESS density matrix has full fidelity in the initial state.
Let us further discuss the two limiting cases.

1. The noninteracting limit α → 0

In this case Eq. (42) reduces to

Fst (R, 0) = 1 − 1

2 (4 + R2)
− 1

2(1 + R2)
. (43)

It has the following limiting behaviors for small and large R:

Fst (R, 0)

{
3
8 + 17

32 R2 + O(R4) as R → 0+

1 − 1
R2 + O(R−4) as R → ∞.

(44)

Interestingly, in the R → 0+ limit, the fidelity approaches the
value 3/8 which is less than unity, implying that the steady-
state density matrix is far from the initial density.
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2. Vanishing resetting limit R → 0+

In this case, Eq. (42) reduces to

Fst (0
+, α) = 3 + 4α2

8(1 + α2)
. (45)

The asymptotic behaviors are given by

Fst (0
+, α) =

{
3
8 + α2

8 + O(α4) as α → 0+

1 − 1
8α2 + O(α−4) as α → ∞.

(46)

In the strongly interacting limit, α → ∞, the system has equal
probability to be in the |↑↑〉 and |↓↓〉 state—as reflected by
the limiting value 1/2 of the fidelity.

We also computed the purity of the NESS density matrix
tr[ρ̂r (∞)2] where ρ̂r (∞) is given in Eq. (3). Interestingly, we
found that it is identical to the fidelity Fst (R, α) for all R and
α. There is a priori no reason that the fidelity coincides with
the purity in this resetting NESS, proving this relationship
remains interesting.

C. Concurrence

We now would like to compute the quantum entanglement
in the NESS density matrix given in Eq. (3) as a function of
the two parameters R and α. This clearly represents a mixed
state and we recall that the quantum entanglement in a mixed
state is not captured by the von Neumann entropy. To isolate
the entanglement from classical correlations induced by reset-
ting one should instead investigate the concurrence as defined
in Eq. (13). Thus, for the two spin system, we need to first
compute the entries of the 4 × 4 matrix:

Rr =
√√

ρ̂r (∞) ρ̃r (∞)
√

ρ̂r (∞), (47)

where ρ̃r (∞) is given by

ρ̃r (∞) = (σy ⊗ σy) ρ̂∗
r (∞) (σy ⊗ σy). (48)

We recall that ρ̂∗
r (∞) is the complex conjugate of ρ̂r (∞).

Next, we need to compute the eigenvalues μ1, μ2, μ3, and μ4

of the matrix Rr in decreasing order and finally use Eq. (13)
to compute the concurrence, i.e.,

Cst (R, α) = max (0, μ1 − μ2 − μ3 − μ4). (49)

Knowing the elements of the 4 × 4 density matrix ρ̂r (∞)
explicitly, all these steps above can be carried out using MATH-
EMATICA. However, the entries of the matrix Rr in Eq. (47),
though explicit, are too cumbersome to display. Consequently
the eigenvalues μi’s are rather complicated also. Hence, we
evaluate them numerically and plot the concurrence for dif-
ferent choices of the parameters R and α. In Fig. 5, we plot
Cst (R, α) vs R for four different values of α. Interestingly,
the concurrence has a nonmonotonic behavior as a function
of R for fixed α. As R increases, it first increases, achieves a
maximum, and then eventually decreases to zero as R → ∞.
The existence of a maximum indicates that the quantum en-
tanglement can be maximized by choosing an optimal value
of the resetting rate R, for every fixed α. The value of this
maximum concurrence for a fixed α increases as α increases
and saturates to 0.5 as α → ∞. A similar nonmonotonic

FIG. 5. The concurrence Cst (R, α) defined in Eq. (49) as a func-
tion of R, for different values of the interaction strength α. For
any given α, the concurrence as a function of R increases from a
nonzero value at R → 0+, achieves a maximum, and then decreases
monotonically to zero as R → ∞. The peak value of the concurrence
saturates to 0.5 as α increases.

behavior of Cst (R, α) is also seen as a function of α for fixed
values of R as shown in Fig. 6. Thus for fixed R, there is also
an optimal value of α at which the concurrence and hence
the entanglement get maximized. It is then interesting to see
how the concurrence behaves in the (R, α) plane. We show a
heat map of the concurrence in Fig. 7 which clearly shows the
existence of a high concurrence region where the concurrence
value is close to 0.5. Moreover, the high concurrence region
seems to be concentrated close to small resetting rate R. Thus,
in summary, a small nonzero resetting rate R and a nonzero
interaction strength α are both crucial to drive the pair of spins
to a NESS with maximal entanglement. It is worth noting that
a strictly zero resetting rate will not yield a NESS. Hence, a
nonzero resetting rate is crucial to first ensure the presence of
a NESS.

FIG. 6. The concurrence Cst (R, α) defined in Eq. (49) as a func-
tion of α, for different values of the resetting rate R. For any given
R, the concurrence as a function of α first increases, achieves a
maximum, and then decays rather slowly to zero as α → ∞. The
value of concurrence at the peak decreases with increasing R.

062210-8



GENERATING ENTANGLEMENT BY QUANTUM RESETTING PHYSICAL REVIEW A 108, 062210 (2023)

FIG. 7. Heat map of the concurrence Cst (R, α) in Eq. (49) shown
in the (R, α) plane. One sees that the concurrence vanishes for large
R for any interaction strength α and seems to have higher values for
small R. The colorbar on the right indicates the magnitude of the
concurrence Cst (R, α), increasing from blue to red.

IV. CONCLUSIONS AND OUTLOOK

In summary, we have provided a general framework to
compute the von Neumann entropy, the fidelity, and the con-
currence in the NESS induced by stochastic resetting of a
closed quantum system. The density matrix in the resetting
induced NESS corresponds to a mixed state with both clas-
sical and quantum correlations. The purely quantum part of
the correlations, i.e., the entanglement, is captured by the
concurrence and not by the von Neumann entropy, which is a
standard measure for pure states. We then applied this general
framework to compute these three observables in a simple
quantum system of two ferromagnetically interacting spins,
subjected to stochastic resetting with rate r. In this paper, we
focused on the situation where the initial state is a pure state
|↓↓〉 and the system resets also to the |↓↓〉 state. However,
our framework can be easily extended to other starting and
resetting states. We computed exactly the density matrix of the
full system in the NESS and from this the three observables,
namely, (i) the von Neumann entropy of spin 1, (ii) the fidelity
between the NESS and the initial density matrix, and (iii) the
concurrence in the NESS, as a function of two dimensionless
parameters R = r/� (the rescaled resetting rate) and α = J/�
(the rescaled interaction strength). One of our main conclu-
sions is that a nonzero resetting rate R, together with a nonzero
interaction strength α, generates quantum entanglement in the
NESS (quantified by a nonzero concurrence) and moreover
this concurrence can be optimized by appropriately choosing
the two parameters R and α.

There are several future directions in which our paper can
be extended. Here, we focused on small systems. It is natural
to extend these studies to large systems and ask how the
entanglement behaves with the system size in the presence
of resetting. It is also interesting to ask if the dependence of
entanglement on the system size undergoes a phase transition

as R increases. If that indeed happens, then this is somewhat
similar in spirit to the measurement induced phase transition
in quantum systems subjected to random projective measure-
ments [25–29]. Using the general framework provided in our
paper, this interesting question can be investigated, at least
numerically.
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APPENDIX: THE REDUCED DENSITY MATRIX
AND THE VON NEUMANN ENTROPY

In this Appendix, we provide some details of the com-
putation of the reduced density matrix ρ̂A,r (t ) and the von
Neumann entropy Sr (t ). We start by providing the explicit
expressions of the matrix elements in Eq. (26) of the main
text:

ρ̂A,r (t ) =
(

Vr (t ) Wr (t )
W ∗

r (t ) 1 − Vr (t )

)
, (A1)

where

Vr (t ) = e−RtV (t ) + R
∫ t

0
dτ e−RτV (τ ),

Wr (t ) = e−RtW (t ) + R
∫ t

0
dτ e−RτW (τ ), (A2)

with V (t ) and W (t ) given by

V (t ) = 1

2

[
1 − cos(αt ) cos (γ t ) − α

γ
sin(αt ) sin (γ t )

]
,

W (t ) = − sin (γ t )[α sin (γ t ) + i γ cos(αt )]

2γ 2
. (A3)

We recall that

γ =
√

α2 + 1, (A4)
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and we are working in the rescaled time � t → t . Furthermore
R and α are the dimensionless resetting rate and the interaction
strength defined in Eq. (22) of the main text. Substituting

Eq. (A3) in Eq. (A2) and performing the integrals we obtain

Vr (t ) = Vr (∞) + e−Rtvr (t ) (A5)

where

Vr (∞) = 1 + R2

2 + 2R2(2 + R2 + 4α2)
, (A6)

vr (t ) = − cos(α t )[γ (R2 + 1) cos(γ t ) + R(2γ 2 + R2 − 1) sin(γ t )] + α sin(α t )[(R2 − 1) sin(γ t ) + 2γ R cos(γ t )]

8γ 3R2 + 2γ (R2 − 1)2
. (A7)

Similarly,

Wr (t ) = Wr (∞) + e−Rtwr (t ) (A8)

where

Wr (∞) = − α

R2 + 4 + 4α2
− i

R + R3

2 + 2R2(2 + R2 + 4α2)
, (A9)

wr (t ) = 1

4γ

[
2 α R sin(2γ t )

4γ 2 + R2
+ 4 α γ cos(2γ t )

4γ 2 + R2
+ i(α − γ )2 sin[t (α − γ )]

(α − γ )2 + R2
− i(α + γ )2 sin[t (α + γ )]

(α + γ )2 + R2

− iR(α − γ ) cos[t (α − γ )]

(α − γ )2 + R2
+ iR(α + γ ) cos[t (α + γ )]

(α + γ )2 + R2

]
. (A10)

Next, we compute the two eigenvalues λ1(t ) and λ2(t ) of ρ̂A,r (t ) in Eq. (A1). Clearly λ2(t ) = 1 − λ1(t ). Moreover, their
product

λ1(t )λ2(t ) = det[ρ̂A,r (t )] = Vr (t )[1 − Vr (t )] − |Wr (t )|2. (A11)

Hence, the eigenvalues λ1,2(t ) are given by

λ1,2(t ) = 1 ± √
1 − 4det[ρ̂A,r (t )

2
. (A12)

Consequently, the von Neumann entropy can be expressed as

Sr (t ) = −tr{ρ̂A,r (t ) ln[ρ̂A,r (t )]} = −
NA∑
i=1

λi(t ) ln[λi(t )] = ln(2) − 1

2
(1 + y) ln(1 + y) − 1

2
(1 − y) ln(1 − y), (A13)

where

y = √
1 − 4 det[ρ̂A,r (t )] =

√
1 + 4 |Wr (t )|2 − 4Vr (t )[1 − Vr (t )], (A14)

where Vr (t ) and Wr (t ) are given respectively in Eqs. (A5) and (A8). This then gives us the exact von Neumann entropy Sr (t ) at
all times t and for arbitrary R and α. Below, we consider different limiting cases of this entropy.

1. Steady state

In the long-time limit, t → ∞, the system approaches a NESS and the entropy Sr (t ) approaches its stationary value Sst (R, α).
To compute this stationary value, we take the limit t → ∞ in Eq. (A1). This gives

ρ̂A,r (∞) =
(

Vr (∞) Wr (∞)

W ∗
r (∞) 1 − Vr (∞)

)
=

(
1+R2

2+2R2(2+R2+4α2 ) − α
R2+4+4α2 − i R+R3

2+2R2(2+R2+4α2 )

− α
R2+4+4α2 + i R+R3

2+2R2(2+R2+4α2 ) 1 − 1+R2

2+2R2(2+R2+4α2 )

)
. (A15)

Consequently, the von Neumann entropy in the steady state is given by

Sst (R, α) = ln(2) − 1
2 (1 + y∞) ln(1 + y∞) − 1

2 (1 − y∞) ln(1 − y∞), (A16)

where

y∞ = √
1 − 4 det[ρ̂A,r (∞)] =

√
1 + 4 |Wr (∞)|2 − 4Vr (∞)[1 − Vr (∞)] (A17)
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where Vr (∞) and Wr (∞) are given respectively in Eqs. (A6) and (A9). This gives

y∞ =
√

1 + 4α2

(4α2 + R2 + 4)2 − (R2 + 1)[(8α2 + 2)R2 + R4 + 1]

[(4α2 + 2)R2 + R4 + 1]2 . (A18)

Substituting this expression of y∞ in Eq. (A16) gives the the NESS entropy Sst (R, α) for arbitrary α and R.

2. Noninteracting limit in the steady state

In the noninteracting case, setting α = 0 in Eq. (A18) one
gets y∞ = R/

√
1 + R2. Substituting this in Eq. (A16) one gets

Eq. (36) of the main text, i.e.,

Sst (R, 0) = ln(2) + 1

2
ln(1 + R2)

+ R

2
√

R2 + 1
ln

(√
R2 + 1 − R√
R2 + 1 + R

)
. (A19)

By further taking the R → 0+ limit one gets Sst (0, 0) = ln 2
which is the maximal allowed entropy. To understand why one
obtains the maximal entropy in this noninteracting limit, it is
useful to investigate the reduced density matrix in Eq. (A15)
which, for α = 0, reads

ρ̂A,r (∞)|α=0 =
(

1+R2

2+2R2(2+R2 ) −i R+R3

2+2R2(2+R2 )

+i R+R3

2+2R2(2+R2 ) 1 − 1+R2

2+2R2(2+R2 )

)
. (A20)

As discussed in the main text, in the noninteracting case (α =
0), the pair of spins remains factorized at all times t in the
absence of resetting. If one switches on a finite resetting rate
R (to the |↓↓〉 state), it has two effects.

(a) A finite rate of resetting induces strong classical cor-
relations between the pair of spins even though they are
noninteracting at the level of the Hamiltonian.

(b) It drives the pair of spins to a NESS where the reduced
density matrix of spin 1 becomes time independent and is
given by Eq. (A20).

If one now takes the R → 0+ limit, the reduced density
matrix of spin 1 becomes

ρ̂A,r (∞)|α=0,R=0 =
(

1/2 0
0 1/2

)
, (A21)

indicating that in the NESS the up and down states for spin
1 are equally likely. Consequently, the von Neumann entropy
takes the maximum value ln 2 in the R → 0+ limit after the
spins have reached the NESS.

3. Interacting case (α > 0) in the steady state

In this case, the reduced density matrix is given in
Eq. (A15) for arbitrary R and the von Neumann entropy in
the steady state is given by Eqs. (A16)–(A18). In the limit
R → 0+ the von Neumann entropy Sst (0, α) approaches the
maximum value log 2 as α → ∞ and 0 with a dip in between
(see Fig. 2 in the main text). When R is small but finite, the
entropy vanishes as α → ∞ because a finite resetting rate
and strong interaction drive the system into the dimer state
|↓↓〉 which is factorizable and hence is unentangled. It is
then natural to ask how the entropy crosses over from its
maximum value ln 2 to zero as R increases slightly from zero

in the α → ∞ limit. To investigate this crossover, we con-
sider the entropy Sst (R, α) given in Eqs. (A16)–(A18) in the
limits R → 0 and α → ∞. It turns out that if one takes these
two limits simultaneously, keeping the scaling combination
z = α R fixed, the entropy admits a scaling form

Sst (R, α) → F (αR), (A22)

where the scaling function F (z) is given explicitly by

F (z) = ln 2 − 1

2

1 + 8z2

1 + 4z2
ln

(
1 + 8z2

1 + 4z2

)

+ 1

2

1

1 + 4z2
ln(1 + 4z2). (A23)

This scaling function has the asymptotic behavior [as men-
tioned in Eq. (40) of the main text]

F (z) =
{

ln 2 − 8z4 as z → 0
1

4z2 ln z as z → ∞.
(A24)

Thus, for a fixed small R, as α � 1/R, i.e., z � 1, the entropy
decreases algebraically (with a logarithmic correction) as the
interaction α increases.

4. Approach to the steady state

As mentioned before, Eq. (30) provides the entropy at all
times t and one can easily work out how it approaches its
stationary value as t → ∞. Here, for simplicity, we focus on
the noninteracting limit (α = 0) where the time dependent en-
tropy takes a simpler form. Putting α = 0, in Eqs. (A5)–(A7),
we get

Vr (t )|α=0 = 1 − e−Rt [cos(t ) + R sin(t )]

2(1 + R2)
. (A25)

Similarly,

Wr (t )|α=0 = − i{R − e−Rt [R cos(t ) − sin(t )]}
2(1 + R2)

. (A26)

Therefore, from Eq. (A14), we get

y =
√

R2 + e−2Rt + 2 Re−Rt sin(t )

R2 + 1
. (A27)

Consequently, the time dependent entropy Sr (t ) at α = 0 is
given by Eq. (30) with y in Eq. (A27). In Fig. 3 of the main
text, we plot Sr (t ) at α = 0 vs t for various values of R. We see
that as t → ∞, the entropy Sr (t ) approaches its steady-state
value Sst (R, 0) given in Eq. (A19) exponentially fast (with
oscillations that are prominent for small R). Thus one sees
that a finite resetting induces a nontrivial temporal growth of
the von Neumann entropy.
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