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We study nonclassical effects in the dynamics of an open quantum system. The model involves a harmonic os-
cillator coupled to a reservoir of noninteracting harmonic oscillators. Different system-bath interaction schemes
as well as reservoir states are considered. Particularly, the squeezed reservoirs coupled to the system through
single and two quanta exchange processes are put in the spotlight. We investigate the quantumness conveyed to
the system through the bath by computing a nonclassicality measure for different bath properties. The measure
of nonclassicality is calculated for projective measurements both in the number state basis and in a basis formed
by a set of coherent states. Our results show that in both bases the measure exhibits characteristic features for
each bath state and the form of its interaction with the system. Some of those features are independent from the
measurement scheme (number or coherent) and, thus, emergent from the reservoir. This allows for fingerprinting
and identifying the environmental effects by tracking a given probe with appropriate measurements. Hence, it
may prove useful for distinguishing different sources of decoherence.
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I. INTRODUCTION

The quantumness of environmental effects in an open
quantum system is a fundamental question in physics that
is increasingly attracting the attention of quantum physicists
[1–4]. One of the main questions in this concept is whether the
environmental noise imposed on a quantum system is neces-
sarily a quantum effect. That is, the long trusted open quantum
system belief that the decoherence stems from the entangle-
ment of the bath degrees of freedom to the system is being
challenged, as in some cases it can be modeled by purely
classical effects [5,6]. Therefore, the answer to the question
of when a system-reservoir interaction is nonclassical and
how one can trace it seems crucial. Meanwhile, the effect
of bath memory and its effect on the quantum behavior of
the system of interest still need some theoretical clarification
and experimental confirmation. Hence, the nonclassicality of
Markov and non-Markovian reservoirs has been discussed and
investigated in several recent works [7,8], mostly bringing
up the conclusion that a non-Markovian bath behaves more
quantum mechanically [9].

A common and widely accepted scheme for understanding
and quantifying the physical systems and their properties is
determining the correlations among its components. Among
them are the multitime correlations which can reveal various
aspects of a system and because of that have been widely
exploited in the experiments [10]. Indeed when nonclassical
effects are concerned, multitime measurements are believed
to be the only reliable probe for revealing the quantum cor-
relations formed in a system as the classical fluctuations can
also create quantum coherence; see, e.g., Ref. [11]. Hence,
the multitime correlations have been used in various schemes
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to evade such misunderstandings. This includes the famous
Leggett-Garg inequality that targets macrorealism of quan-
tum measurements [12]. The inequality has been applied and
proposed for the study of quantum features in a variety of
systems, from harmonic oscillators [13,14] to two-level sys-
tems [9,15]. The reliability of the multitime measurements
has even gone beyond the dichotomic variables and resulted in
introducing witnesses and measures for revealing the quantum
essence of dynamics when multiple measurement outcomes
are possible [16]. Measures of this type take violation of the
Kolmogorov conditions as the test for nonclassical behaviors,
which in turn tests invasiveness of the measurements. Despite
its complications in the non-Markovian processes, defining
such a measure is possible [17].

Some reservoirs are believed to present enhanced quantum-
ness when the same type of interaction with the surrounding
environment comes into the study [1,9,18,19]. However, one
could also ask about the effects that emerge due to the differ-
ent forms of the system-bath interaction. More specifically,
the single- and multi-quanta interactions between a system
and its reservoir have been envisaged through different sys-
tems [20] or even engineered in the laboratory [21]. Hence,
highlighting their differences and putting forth a method for
their identification can be useful for revealing the linearity and
nonlinearity of the system-reservoir interactions in open quan-
tum processes. Along the same path one may ask for intensity
of the nonclassical traces that either of these processes leave
in the system. Furthermore, the impact of the reservoir state
and its specifications on the quantum dynamics of the system
interacting with it need to be addressed. It is the main goal of
the current paper to address these questions to some extent.

Here, we study the nonclassicality buildup in a simple
quantum system, a harmonic oscillator, coupled to a reservoir
of bosonic modes. We investigate the effect of bath prop-
erties, states of its modes, as well as the way they couple
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to the system, and compute the quantumness measure orig-
inally introduced by Li et al. [16] and later formalized and
generalized to non-Markovian processes in Ref. [17]. The
measure depends on the chosen projective measurement basis.
Therefore, given the continuous-variable nature of the system
of our paper, we consider measurements in both the Fock
basis and the phase space. For the latter, to elude divergencies
in the measure—resulting from the overcompleteness of the
coherent states—we propose to granulate the phase space
and consider a finite set of coherent states as the basis that
optimally cover the area of interest in the phase space.

The system dynamics is modeled and studied through the
time-local quantum optical master equation. By considering
dynamics through both time-dependent and time-independent
relaxation rates we observe that when the relaxation rates are
constant—either with bilinear or with nonlinear coupling—
the reservoir leaves negligibly small traces of nonclassicality
as long as its components assume separable states. That is,
when the bath modes are not in a steady-state bipartite or mul-
tipartite entangled state [22,23] the nonclassicality measure
remains vanishing. Meanwhile, time-dependent relaxations
only give rise to probe nonclassicality when the reservoir is
in a squeezed state. Indeed, we deduce that the witness is
only significant when the reservoir exhibits nonstationary cor-
relations, which in its simplest form happens for a squeezed
bath. We also reason that the dissipators associated with a
squeezed bath can evolve an initially diagonal density matrix
into a state with off-diagonal elements and, thus, build up
a time-correlated quantum coherence in the system. More-
over, by investigating different frequency dependencies for the
squeezing parameter of the bath, it is found that the measure
can be employed for characterizing a bath through the inter-
acting probe system. With a cross-check of the coherent basis
measurement results as well as the various initial states of the
system one may fingerprint the bath for revealing its micro-
scopic properties. More specifically, the microscopic form of
the interaction can be tracked.

The rest of this paper is organized as follows: In the next
section we discuss the detection schemes and the nonclassical-
ity measure employed in this paper. In Sec. III the formulation
of the microscopic model is provided. Then we present our
numerical results for the bilinear (Sec. IV) and the nonlinear
(Sec. V) system-bath interactions. The concluding remarks
are given in Sec. VI.

II. NONCLASSICALITY

We first discuss the detection schemes. Correlation func-
tions are key features in characterizing the nature of physical
systems and the noises affecting them. Even though single-
time measurements can reveal the presence of decoherence,
they cannot determine its deeper nature or, specifically,
whether it is a classical process. Therefore, performing mul-
titime measurements are proposed to find out the underlying
essence, among which two-time measurements are the most
convenient ones. A scheme based on such measurements can
give a measure for testing the nonclassicality of an evolution.
In this scheme the system, as the probe, is initially prepared
in a diagonal state in the computational basis of interest.
For simplicity we assume that the system is prepared in the

eigenstate |x0〉 at time t = t0. A projective measurement is
then performed at t = t1 and the outcome x1 is obtained
with the probability P(x1, t1). The system is then left to
evolve until time t = t2 when the second measurement is
performed. The outcome x2 and the probability of finding it
may depend on the first measurement outcome and probabil-
ity. Hence, the joint probability distribution P(x2, t2; x1, t1) =
P(x2, t2|x1, t1)P(x1, t1) plays a pivotal role in describing dy-
namics of a system. Given the noninvasiveness essence of
the measurements in classical physics P(x2, t2; x1, t1) satisfies
the Kolmogorov consistency condition:

∑
x1

P(x2, t2; x1, t1) =
P(x2, t2), where the sum on the left-hand side is over all possi-
ble measurement outcomes. With these, the following witness
can be employed to find out and measure the nonclassical
nature of a process:

WQ =
∑

x2

∣∣∣∣∣∣P(x2) −
∑

x1

P(x2; x1)

∣∣∣∣∣∣, (1)

where we have removed the explicit indication of the time
arguments, implying that the outcome xk refers to the mea-
surement time tk . The quantity in Eq. (1) was primarily
introduced and pointed out in Ref. [16] as a witness and later
formalized as a measure and generalized to non-Markovian
reservoirs in Ref. [17].

Here, we choose both the number and the coherent states
as the computational basis and investigate the possibilities
for achieving WQ > 0 for varieties of system and bath states
and interactions. Therefore, the trivial initial state depend-
ing on the employed scenario is either a number state |n0〉
or a coherent state |α0〉. Note that one must consider the
overcompleteness of the coherent states. Measurement in the
coherent basis can be performed via heterodyne detection
which gives two outcomes, the real and imaginary parts of the
coherent amplitude with the probability given by the Husimi
Q function [24,25]. And, in principle, it gives a continuum of
outcomes. This calls for modifying the witness into WQ =∫

d2α2|P(α2, α
∗
2 , t2) − ∫

d2α1P(α2, α
∗
2 , t2; α1, α

∗
1 , t1)|, where

now P is a probability distribution function. Nevertheless,
to cover the continuum of the phase space one is required
to perform an infinite number of heterodyne measurements,
which is not practical. One, thus, granulates the phase space
such that the overlaps are manageable. In the following we
have considered different granulations and choose an optimal
set of coherent states that cover the phase space properly and
yet they have little overlap.

III. MODEL

The model considered in this paper is a harmonic oscillator
coupled to a reservoir of harmonic oscillators. This limits
the nonlinearity down to the interaction between the reservoir
modes and the system, and thus allows for an easier tracking
of the nonlinear effects. We first derive a master equation that
describes the effective dynamics of the system by tracing out
the reservoir degrees of freedom. The general form of the
Hamiltonian reads (h̄ = 1)

H = ω̃a†a +
∑

k

�kb†
kbk + q

∑
k

gkQk, (2)
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where the system bare frequency is ω̃, and �k are the fre-
quencies of the reservoir. The system and bath annihilation
and creation operators follow the bosonic commutation rela-
tions [a, a†] = 1, [bk′ , b†

k] = δkk′ , and all other commutators
are vanishing. Here, q (Qk) is the system (bath) interaction
operator that we shall take in the form of q ∝ an + a†n (Qk ∝
bm

k + b†m
k ) to include the nonlinear interactions. We put our

focus on the most relevant cases where one deals with n = 1, 2
and m = 1, 2. gk is the coupling rate of the reservoir modes to
the system. These coupling strengths are usually cast into the
spectral density J (ν) = 1

2

∑
k g2

kδ(ν − �k ). In the continuum
limit the spectral density reads J (ν) ∝ νs, where the exponent
s crucially determines the way a reservoir affects the sys-
tem [26–28]. For concreteness, in this paper we only study
the ohmic bath (s = 1) which is relevant in most physical
systems.

We follow the standard procedure for deriving the master
equation by assuming a separable total initial state χ (t0) =
ρ(t0) ⊗ R(t0). In the rotating wave approximation which is
valid when gk � ω̃,�k the dynamics of the system in the
case of single- and two-photon processes is described by
the time-convolutionless master equation ρ̇ = L̂nm(t )ρ. The
Liouvillian superoperator is given by

L̂nm(t )ρ ≡ − i[ωa†a, ρ] + 	nm(t )

2n
D̂anρ + γnm(t )

2n
D̂a†nρ

+ κnm(t )

2n
(D̂′

anρ + D̂′
a†nρ), (3)

where D̂o• ≡ 2o • o† − o†o • − • o†o is the standard
Lindblad dissipator, while D̂′

o• ≡ 2o • o − oo • − • oo
is of a generalized one. Here, we have introduced the
renormalized frequency ω, which indeed is the frequency that
one observes in the laboratory. The time-dependent damping
rates γnm(t ), 	nm(t ), κnm(t ) vary with the bath correlation
functions; see Appendix B for the detailed derivation and the
explicit form of these parameters.

For computing these decay rates one needs to perform a
frequency integration over the bath correlators and the spectral
density function. To avoid the divergences, one introduces
ultraviolet (UV) and in some cases infrared (IR) cutoff fre-
quencies. Here, we need to consider both as it becomes clear
shortly, and introduce the cutoffs in a soft way by multiplying
the spectral density function with the exponential tails such
that the spectral density reads J (ν) = Aν exp{−( �IR

ν
+ ν

�UV
)},

where A is a dimensionless parameter that determines the
system-reservoir interaction strength. From a physical point of
view the UV cutoff frequency is inversely related to the bath
relaxation time, and thus governs the bath dynamic influence
on the system relaxation. In other words, when �UV 	 ω

the bath correlation functions have a characteristic time much
shorter than that of the system. Therefore, the reservoir ap-
proaches its steady state too fast for the system to “feel” its
dynamics. In contrast, when �UV ∼ ω one expects to have
visible effects resulting from the information back-flow from
the environment to the system. In Fig. 1 the variations of the
decay rates with time are shown for a squeezed reservoir when
the bath operator in the interaction Hamiltonian is bilinear,
i.e., n = m = 1.

FIG. 1. The variations of bilinear (n = m = 1) decay rates γ

(left) and κ (right) with time when the environment is in a locally
squeezed state with r(�) = 1 (black solid line), r(�) = (ω/�)−1/3

(red dashed line), and r(�) = (ω/�)−1/2 (blue dotted line). Here,
we have set A = 0.1 and �UV = 4�IR = 2ω; see the text for more
information.

Bath states

As mentioned above and detailed in Appendix B the state
of the bath appears in the decay rates through its correlation
functions. These rates, in turn, determine the form and
strength of the system-bath interactions, consequently causing
evolution of the system coherence. In the number basis
measurement the squeezing decay rate κ is the only source
of coherence buildup in the system through its interaction
with the bath. Indeed, the witness (1) signals time-correlated
occurrence of any coherence in the system, which for the
Fock basis measurement means any event that coherently and
partially migrates the system from its initial state should result
in a nonzero WQ, provided the measurements are invasive. By
looking at the explicit form of the dissipators D̂ and D̂′ one
notices that unlike the standard Lindblad dissipators, the D̂′
ones may create superpositions in the number of bosons. This
may become clear by an example. Assume that the system is
initially in a given number state ρ0 = |n0〉〈n0|. The first quan-
tum stochastic modification imposed only by the dissipator D̂a

is proportional to dρD̂a
∝ 2n0(|n0 − 2〉〈n0 − 2| − |n0〉〈n0|),

which is an incoherent redistribution of the system into
the number states. In contrast, for D̂′

a contribution to the
dynamics one finds dρD̂′

a
∝ 2

√
n0(n0 + 1)|n0 − 1〉〈n0 + 1| −√

n0(n0 − 1)|n0 − 2〉〈n0| − √
(n0 + 1)(n0 + 2)|n0〉〈n0 + 2|.

This comprehensibly indicates accumulation of coherency in
the system.

Hence, for a thermal bath where only the standard dissi-
pators D̂ are effective the quantumness buildup in the system
when preparing and measuring it in the Fock basis is vanish-
ing. This statement generally holds for any bath with κ (t ) = 0,
i.e., reservoirs that give a Liouvillian in the Lindblad form.
For a squeezed bath κ (t ) = 0 and depending on the micro-
scopic properties of the bath modes one may even have a
time-independent Markovian squeezed bath [29]. However,
this becomes the case only when the bath modes are inter-
acting or in an entangled state. For individually squeezed bath
modes κ (t → ∞) → 0 because of the nonstationary nature
of the bath correlator, and thus, the nonclassicality creation
is a transient effect whose timescale is mainly set by �UV

(see Fig. 1 and the parameters in Sec. IV A). The focus of
this paper is put on such bath states. Hence, only squeezed
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baths with time-dependent relaxation rates are studied, among
which one may assume a uniformly squeezed bath where the
modes are equally squeezed, i.e., the squeezing parameter is
a constant r(�) = const. In general, r(�) is a function of
mode frequency. To take into account the effect of frequency
dependence of the squeezing we consider r(�) ∝ �α with
α = 0,− 1

3 ,− 1
2 . These choices of α allow us to easily regulate

the frequency integrals in computing the decay rates and yet
they are close to the relevant natural cases such as the relic
gravitons [30,31], whose quantum effect has recently become
of increasing interest; see, e.g., Refs. [32,33].

IV. BILINEAR INTERACTION

We now present our numerical results for WQ computed
in both number basis and a set of coherent states. To better
understand the effect of bath state and its memory we first in-
vestigate the simplest case of interaction where the system and
reservoir modes interchange single particles. Later and in the
next section, we report the results for nonlinear interactions
stemming from either the system or the reservoir operators.

A. Parameters and numerical methods

For the number state basis we numerically solve for the
master equation. To do this we use the QUTIP package [34]. For
having a rather fair comparison between different baths we
choose the parameters such that their decay rates are compara-
ble. To this end, the parameters are adjusted for having a fixed
value for the occupation number 〈b†(�)b(�)〉 at � = ω in all
cases. By setting r(�) = 1 for the uniformly squeezed bath
this corresponds to r(�) = (�/ω)α for the other two baths
studied in this paper. To ensure a weak system-bath coupling
we set A = 0.1 in our numerical analyses. Given the above-
mentioned bath parameters, our investigations show that with
a Hilbert space truncated at d = 20 a relative error less than
1% is guaranteed as long as initial states with n0 � 5 are em-
ployed in the numerics. Finally, we set �UV = 2ω (and �IR =
0.5ω) to make the transient effects appreciable and employ
the time-dependent decay rates to solve the time-local master
equation (3). Then the quantum regression formula allows us
to plug the solutions into Eq. (1) to compute the measure
of nonclassicality for a given measurement basis [17]. For
stationary baths we instead use extreme cutoff frequencies
�UV = 10ω (and �IR = 0.1ω). These give relaxation rates
that quickly approach a constant value, which are employed
for solving a time-independent version of Eq. (3).

B. Number state basis

First we study the witness in the number state basis. For
this we consider different initial number states |n0〉 with
n0 � 5 and various measurement times. The optimal results
for different system and bath states are found around equal
time interval measurements. Therefore, here we only report
the results for t1 = τ . The overall behavior of WQ depends on
the bath properties. The computed measure is negligibly small
and comparable to the numerical errors for the thermal bath
as well as any bath with constant relaxation rates. This stems
from the vanishing value of κ in these cases as mentioned
and discussed above. That is, the quantumness buildup from

FIG. 2. Time variations of WQ for two evenly performed consec-
utive measurements (t1 = τ ) in the number state basis. Left panels
show the behavior for different squeezed baths when the system is
initialized at the number state |5〉. In right panels the variations are
shown for different system initial states. The gray (solid, dashed, and
dotted) lines in the left panels indicate zeros of the damping rate κ at
three different timescales shown in the legend.

the standard dissipators D̂ as we have observed in the system
is vanishing, when the system is prepared and measured in
the Fock basis. It is expected, however, that the quantum
coherence be conveyed to the system from a squeezed bath
since κ (t ) = 0 for a finite time interval.

In Fig. 2 the witness is plotted against τ = t1 for squeezed
bath states with different properties discussed above, and for
various initial system states. Particularly, in the left panels the
witness is plotted for the system initialized at |5〉. Its absolute
value is small, which stems from our weak-coupling assump-
tion, yet it retains some interesting features. In the curves one
notices several minima with vanishing WQ which obviously
correspond to P(n2, t2) = ∑

n1
P(n2, t2; n1, t1) for all n2 val-

ues. The location of these minima and the following maxima
depends on the time dependence of the squeezing decay rate
κ , which gives an intuitive picture about effect of the bath state
properties and its nonstationary nature. Indeed, the maxima
correspond to the critical points of κ , where the squeezed
damping rate switches sign. As a consequence, the minima
stem from the change in the course of the coherence transfer
at the times interrupted by the measurements t = t1, t2. Hence,
the probability P(n2, t2) changes towards

∑
n1

P(n2, t2; n1, t1)
until they become equals. In the figures we have indicated
the relevant sign switch times with the gray lines. Eventually,
for long enough measurement times the measure approaches
zero, which in turn stems from the overtaking of D̂ imposed
dynamics, and thus, removing any coherence in the system.

The above discussion applies to all of the initial states stud-
ied in this paper, i.e., for |n0 � 5〉. Nonetheless, depending
on the number of photons and the frequency dependence of
the squeezing parameter each initial state has a different WQ

profile. In the right panels of Fig. 2 we use density plots to
present the value of WQ with τ = t1 for different initial states.
One clearly notices that the local minima with vanishing WQ

occur exactly at the same time regardless of the initial state.
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FIG. 3. Time variations of |WQ| for two evenly performed
consecutive measurements (t1 = τ ) in the granulated coherent-state
basis with the initial state |α0 = 0〉 (a) and |α0 = 1〉 (b) for squeezed
baths with different squeezing parameters: r(�) = 1 (solid black
line), r(�) = (ω/�)−1/3 (dashed red line), and r(�) = (ω/�)−1/2

(dotted blue line). The WQ values for the stationary bath are shown
in the insets. In the bottom panels the time evolution of the Husimi
Q function for the uniformly squeezed nonstationary bath is shown
for the initial state |α0 = 1〉 in the background of the chosen coherent
basis. The contours indicate the half of the maximum of the Q func-
tion corresponding to the system state (blue) and the measurement
basis (gray).

This further supports the effect of κ sign switching and the
measurement time interruptions.

C. Phase-space measurement

Next we granulate the phase space and consider a set of
coherent states distributed in the form of a square lattice
as the basis for evaluating the quantum witness. Given the
computational resources at hand we only cover the phase
space with 25 evenly spaced coherent states from |−2 − 2i〉
to |2 + 2i〉. These basis states are shown by gray circles and
shades in the lower panels of Fig. 3. The contours (circles)
refer to the half-maximum probability of the corresponding
coherent-state Q-function representation. This choice of the
spacing between the basis ensures that no poorly covered
regions remain in the phase space and yet the overlaps re-
main reasonably small. Moreover, we consider coherent initial
states |α0〉 with |α0| � 1 because of the limited phase-space
coverage. As one would expect the initial value of the measure
of nonclassicality is nonzero, stemming from the probability
overlap among the basis.

And its value decreases monotonically and approaches a
finite asymptotic value. The nonvanishing asymptotic value
is a consequence of limiting the phase-space coverage to the
the above-mentioned range. In other words, the information
is gradually leaked into the phase-space area which is not
covered by the measurement basis and, thus, remains unac-
cessible. This indeed is the general behavior observed for any
bath state. However, there are slight differences given the bath
state properties, which may prove useful for tracking the non-
classicality and nonstationary features of a bath. Therefore,
we introduce the “deviation” quantity WQ ≡ WNS

Q − WS
Q,

FIG. 4. The variations of decay rates with time when the
environment is in a locally squeezed state with three different squeez-
ing parameter dependencies r(�) = 1 (black solid lines), r(�) =
(ω/�)1/3 (red dashed lines), and r(�) = (ω/�)1/2 (blue dotted
lines).

where the superscripts “NS” and “S” indicate the nonstation-
ary and stationary nature of the interacting bath, respectively.

The variations of |WQ| with τ = t1 are shown in
Figs. 3(a) and 3(b) for |α0 = 0〉 and |α0 = 1〉, respectively.
One notices that a nonstationary bath can have a different
effect on the system compared to the stationary counterpart
depending on its properties. This is particularly more visible
for the short-time measurements and before the system ap-
proaching its asymptotic coherence. In contrast to the number
basis measurement scheme the squeezed bath with constant
squeezing shows smaller deviation from the stationary bath
compared to the baths with frequency varying squeezing pa-
rameters. In the case of |α0 = 1〉 we notice oscillations with
τ (see the inset) which are believed to be an artifact of the
partial coverage of the phase space. But the general behavior
is similar to the vacuum state. The oscillations can be better
understood by tracking the time evolution of the coherent state
in the phase space, which is visualized in the lower panels of
Fig. 3: The minima happen as the system state approaches the
edges, either at t = t1 or t = t2 = 2t1, and a smaller number
of measurement basis states are present.

V. NONLINEAR INTERACTIONS

In this section we turn our focus to the case of nonlinear
interactions where the nonlinearity can have origins in either
the system (n = 2 but m = 1) or the bath (n = 1 but m = 2).
To distinguish these cases we adopt the notation Wn,m for
the quantum witness. Similar to the bilinear case we consider
both number basis and coherent-state measurements as well as
the baths considered above. Moreover, to ensure a rather fair
comparison between various cases the bath states are charac-
terized by their squeezing parameter at the systems frequency;
see Sec. IV A. The corresponding decay rates are plotted in
Fig. 4. One notices the effect of interaction type, whether it
is single- or two-excitation exchange, and the squeezed bath
properties, whether it is constant or a function of frequency, in
the dissipation rates.
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FIG. 5. The quantumness of a system with different initial states
in nonlinear interaction with a squeezed bath. The left (right)
columns present the value of W2,1 (W1,2). In (a) and (b) the squeez-
ing parameter is constant r(�) = 1, in (c) and (d) it is r(�) =
(ω/�)

1
3 , and in (e) and (f) it is r(�) = (ω/�)

1
2 . We have set τ = t1

and the decay rates drawn in Fig. 4 are used in the numerics.

By contrasting the decay rates of nonlinear interactions
with the linear case one may envision the general behavior
of the quantum witness Wn,m from the previously studied
bilinear case. Even though this could give a generally accept-
able deduction, the microscopic form of the interaction also
plays an important role in the measurable quantumness. The
two-excitation absorption or emission process on the bath side
is only reflected in the decay rate values, while the dissipa-
tors retain their form of the bilinear interaction. Nonetheless,
when nonlinearity of the interaction returns to the system and
double excitations in the system are created or annihilated
the dissipators become nonlinear. This nonlinearity reflects in
the behavior of the witness and its dramatic dependence on
the bath properties and the system initial state; see below.

A. Number state basis

We first turn to the case where two excitations of the system
are exchanged with a single excitation in the bath. Again,
we consider a squeezed bath with different frequency depen-
dence of their squeezing parameters r(�). However, note that
unlike the bilinear case the asymptotic decay rate values of
these baths are not the same anymore (see Appendix B).
Despite the nonlinear nature of the D̂ dissipators in this case
our numerical results show that no appreciable quantumness
is conveyed to a system initialized in the number basis. And
similar to the bilinear case it is the squeezing decay rates’
(κ) responsibility to create a coherence in the system, even
though the way they affect the system is different. We observe
the same correspondence between the local maxima of W2,1

and the times at which κ (t ) changes sign. But the height of
the peaks at different system initial states behaves differently
when compared to the bilinear case. The results are summa-
rized in Fig. 5.

In the bilinear case one observes a monotonic increase
in the witness W1,1 = WQ as the number of excitations in
the initial state increases (see the right panels in Fig. 2).
This behavior holds for all three local maxima occur-
ring at the measurement time period corresponding to τ ∈
[0, 0.2(2π/ω)] and t1 = τ . In contrast, such a monotonic
manner does not hold for the nonlinear dissipators that emerge
in the n = 2, m = 1 case. This is such that while W2,1 is a
rapidly increasing function of n0 at the shorter-time measure-
ments, it becomes a decreasing function when the outcomes of
the measurements at longer times are inserted into the calcu-
lations. The explicit form of the dissipators give an intuitive
picture about the nature of this behavior. Indeed the dissi-
pators have larger effects on the system when its excitation
number is larger. That is, in the language of the quantum tra-
jectories method for the system initialized at ρ0 = |n0〉〈n0| the
quantum jump due to the dissipators is |dρ| ∝ n2

0. Therefore,
in the longer-time evolution and measurements one expects
larger effect on the system with higher initial excitation num-
bers. Nevertheless, this holds for both D̂ that tend to decohere
the system and D̂′ that create coherence. On the other hand,
the larger values for γ and 	 overtake the constructive effect
of κ , and thus the witness trend reduces faster for higher initial
excitations.

When the reservoir modes exchange two excitations with
one from the system the created quantumness experiences a
dramatic enhancement compared to the bilinear (n = m = 1)
and the opposite (n = 2, m = 1) cases. The smaller value of
the decoherence rates γ and 	 and the persistent and larger
values for κ explain this larger value as well as the general be-
havior of W1,2 with the measurement time τ . The witness for
the bath with squeezing parameter r(�) = (ω/�)1/2 retains
an appreciable value even for measurement times as long as
t1 = τ = π/ω despite rather large values of the decoherence
rates.

B. Phase-space measurement

For the measurements performed in the coherent-state ba-
sis at the granulated phase space, we again consider the
deviations of witness from the stationary bath. Note that in the
case of nonlinear system-reservoir interaction the relaxation
rates vary for the baths with different state properties which
here are the squeezing parameters’ dependences on frequency.
Consequently, when computing W for each case we take
into account their corresponding stationary reservoirs as the
reference.

In Fig. 6 we plot the variations of the “pure witness”
|Wn,m| with respect to the measurement time when the
system is initially in the vacuum state. Interestingly, these
two nonlinear interaction cases impart quantum effects in
a way similar to those observed in the number basis mea-
surement. This includes short-time and comparable effects
for W2,1 as well as long-time oscillations of W1,2 when
r(�) = (ω/�)1/2. But one also notices differences between
the number and coherent basis measurement schemes such
as the amplitude of the measure [compare Fig. 6(b) with
the right panels in Fig. 5]. Such similarities and differences
resulting from the measurement basis can be exploited for
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FIG. 6. Time variations of |Wn,m| for two evenly performed
consecutive measurements (t1 = τ ) in the granulated coherent-state
basis with the initial state |α0 = 0〉 for squeezed baths with different
squeezing parameters (see the legend). In the middle (bottom) panels
the time evolution of the Husimi Q function under L̂21 (L̂12) dynamics
for the uniformly squeezed nonstationary bath is shown with the
system initially in the |α0 = 1〉 coherent state.

better identifying the nature of a reservoir and its interaction
with the probe.

VI. SUMMARY AND OUTLOOK

We have studied the possibility of tracking the quantum
features impinged into a system through its interaction with
a squeezed reservoir with non-negligible memory effects. We
have considered three different interaction schemes between
the system and bath modes, that is, a bilinear and two nonlin-
ear excitation exchange schemes between the system and bath
modes. We also take into account the possibility of having
squeezed baths with squeezing parameters that is a function
of frequency. We employ the well-defined coherence witness
for investigating the probability of a system in this scheme be-
having quantum mechanically. For doing so we consider two
measurement bases, the Fock basis and phase-space measure-
ment. To avoid divergencies in the latter which stem from the
overcompleteness of the coherent state, we propose to gran-
ulate the interested phase-space area. Our findings suggest
that either of the interaction schemes (bilinear or nonlinear)
as well as the bath properties [in this paper the squeezing
parameter r(�)] have a different fingerprint. Those features
can be partially revealed by performing measurements in the
number basis or in the phase space. And in the case of number
basis measurements the initial state of the system plays an im-
portant role in revealing the nature of the interaction, whether
it is bilinear, nonlinear with double-excitation exchanges at
the system side, or nonlinear with the double-excitation ex-
changes in the reservoir modes.

In this paper we have only studied the case of an en-
vironment with Ohmic spectral density, which is the most

convenient one in the theory of open quantum systems. One
could go beyond this particular case and investigate the
fingerprints of various spectral densities in the measure of
nonclassicality. Moreover, one could also envisage having
system-bath interactions in the form of scattering, that is,
interactions where in the Hamiltonian Eq. (2) one has q ∝
(a†a)n and/or Qk ∝ (b†

kbk )m. In the former case where the
system quanta are scattered, one expects to have a nonclas-
sicality buildup in the number basis measurement. This can
be seen from the number preserving form of the system op-
erator in the interaction Hamiltonian. In other words, one has
[a†a, q

∑
k gkQk] = 0 if q ∝ (a†a)n. Therefore, the resulting

dissipator does not redistribute the system quanta and thus a
vanishing WQ. When the scattering occurs for the reservoir
modes and q ∝ an + a†n we expect to have nonzero values
for the measure for all bath states. Nevertheless, a detailed
understanding of these cases invokes a dedicated study.

APPENDIX A: TIME-CONVOLUTIONLESS
MASTER EQUATION

A general master equation is derived by the method of
projection operators. In the following analysis we assume the
following.

(i) The initial system-reservoir state is separable: χ (t0) =
ρ(t0) ⊗ R(t0).

(ii) The state of the reservoir is not appreciably affected:
R(t ) ≈ R(t0).

(iii) The reservoir has a zero-mean Gaussian state.
The projection to the “relevant” part of the density matrix,

the system, is provided by the operator P̂χ = TrB{χ} ⊗ R ≡
ρ. Its complementary is thus Q̂ = 1 − P̂, where 1 is the iden-
tity operator. Our aim is to find a time-convolutionless master
equation for the relevant part of the master equation in the
form of

d

dt
P̂χ (t ) = K(t )P̂χ (t ). (A1)

To this end, we first note that in the interaction picture the
dynamics is given by

χ̇ = −i[Hint (t ), χ ] = L̂(t )χ, (A2)

where Hint (t ) = exp{iH0t}Hint exp{−iH0t} with H0 = ωa†a +∑
k �kb†

kbk and Hint = q
∑

k gkQk is the Hamiltonian in the
interaction picture and we have introduced the Liouvillian
superoperator L̂. It is straightforward, though tedious, to show
that the kernel in (A1) has the following form [35]:

K(t ) = P̂L̂(t )

{
1 −

∫ t

0
ds

[
T̂−e

∫ t
s dτ Q̂L̂(τ )

]
Q̂L̂(s)

× P̂
[
T̂+e− ∫ t

s dτ L̂(τ )]}−1

P̂, (A3)

where T̂+(T̂−) is the time ordering (antitime ordering) op-
erator. Under the given assumptions Eq. (A1) is an exact
equation which gives the non-Markovian evolution of the
system density matrix. Nonetheless, its complexity is not less
than the von Neumann equation (A2). To make it tractable,
one thus turns into a perturbative treatment, where the kernel
K(t ) is perturbatively expanded in terms of different orders of
L̂(t ) based on the weak coupling of the system and reservoir.
In terms of the spectral density function this holds for A � 1.
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We note that (1 − x)−1 = ∑∞
n=0 xn and P̂2 = P̂. Hence,

K(t ) =
∞∑

n=0

P̂L̂(t )

{∫ t

0
ds

[
T̂−e

∫ t
s dτ Q̂L̂(τ )

]
Q̂L̂(s)P̂

[
T̂+e− ∫ t

s dτ L̂(τ )
]}n

. (A4)

Within the above equation one can have the following expansions:

T̂+ exp

{∫ t

s
dτ L̂(τ )

}
=

∞∑
k=0

∫ t

s
dτ1

∫ t

τ1

dτ2 · · ·
∫ t

τk−1

dτk L̂(τ1)L̂(τ2) · · · L̂(τk ),

T̂− exp

{∫ t

s
dτ L̂(τ )

}
=

∞∑
k=0

∫ t

s
dτ1

∫ τ1

s
dτ2 · · ·

∫ τk−1

s
dτk L̂(τ1)L̂(τ2) · · · L̂(τk ). (A5)

By exploiting the fact that the reservoir is in a zero-mean Gaussian state one has P̂L̂(t )P̂ = 0 and for all odd multitime moments.
Moreover, any even multitime moment can be expressed as a sum over products of second moments. Therefore, to the second
order the kernel reads

K2(t ) =
∫ t

0
ds P̂L̂(t )L̂(s)P̂. (A6)

We now use the explicit form of the Liouvillian to derive the master equation. For this, we recall that

Hint =
∑

k

gkqQk. (A7)

The interaction picture Liouvillian then reads

L̂(t )χ = −i

[∑
k

gkq(t )Qk(t ), χ

]
. (A8)

Therefore, for the second-order kernel we find

K2(t )χ (t ) = −
∫ t

t0

ds {CRe(t, s)[q(t ), [q(s), ρ(t )]] + i CIm(t, s)[q(t ), {q(s), ρ(t )}]} ⊗ R(t0). (A9)

Here, we have introduced the bath correlation function

C(t, t ′) =
∑

k

∑
k′

gkgk′TrB{R(t0)Qk(t )Qk′ (t ′)} (A10)

with Re and Im representing its real and imaginary parts, respectively. Since the bath operators in the interaction are taken as
Qk = (bm

k + b†m
k )/

√
2m with m = 1, 2 we arrive at

C(t, t ′) ≡ Cm(t, t ′) = 1

2m

∑
k

∑
k′

gkgk′TrB
{
R(t0)

(
bm

k e−im�kt + b†m
k eim�kt

)(
bm

k′e−im�k′ t ′ + b†m
k′ eim�k′ t ′)}

. (A11)

In the following we consider specific bath states and calculate the correlators for m = 1, 2.

1. Thermal bath

a. m = 1

For a thermal bath, when the bath operators are linear one finds

C1(t, t ′) = 1

2

∑
k

g2
k{n(�k )ei�k (t−t ′ ) + [n(�k ) + 1]e−i�k (t−t ′ )}.

Since we have n(ω) = (eβ h̄ω − 1)−1 the above expression is rewritten as

C1(t, t ′) = 1

2

∑
k

g2
k

{
coth

(
1

2
β h̄�k

)
cos[�k(t − t ′)] − i sin[�k(t − t ′)]

}
. (A12)

In the continuous limit one does the substitution 1
2

∑
k g2

k → ∫
d�J (�), where we have introduced the spectral density J (�)

and dropped the subscript k from the frequencies. The thermal bath correlator thus reads

C1(t, t ′) =
∫ ∞

0
d� J (�)

{
coth

(
1

2
β h̄�

)
cos[�(t − t ′)] − i sin[�(t − t ′)]

}
. (A13)
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b. m = 2

In the case of two-photon excitations in the bath we instead arrive at

C2(t, t ′) = 1

4

∑
k

g2
k{n(�k )[n(�k ) − 1]e2i�k (t−t ′ ) + [n(�k )[n(�k ) + 3] + 2]e−2i�k (t−t ′ )}.

After a rearrangement and for a continuum of bath modes we have

C2(t, t ′) =
∫ ∞

0
d� J (�)

{
1

4
csch2

(
1

2
β h̄�

)
(2 cosh(β h̄�) − 1) cos[2�(t − t ′)] − i coth

(
1

2
β h̄�

)
sin[2�(t − t ′)]

}
. (A14)

2. Squeezed vacuum bath

a. m = 1

We now consider the reservoir in a locally squeezed vacuum state R(t0) = |ξ 〉〈ξ | with |ξ 〉 = ⊗
k Sk(ξk )|0〉k where the

squeezing operator of each mode is Sk(ξk ) = exp{ 1
2 (ξ ∗

k b2
k − ξkb†2

k )} with the squeezing amplitude rk and angle θk encoded
in ξk = rkeiθk . Hence, one arrives at

C1(t, t ′) = 1

2

∑
k

g2
k

{
1

2
sinh 2rk

[
e−i�k (t+t ′ )eiθk + ei�k (t+t ′ )e−iθk

] + (1 + sinh2 rk )e−i�k (t−t ′ ) + sinh2 rkei�k (t−t ′ )
}
. (A15)

This can be reorganized into the following form:

C1(t, t ′) = 1

2

∑
k

g2
k{cos[�k(t − t ′)] cosh[2r(�k )] + cos[�k(t + t ′) − θ (�k )] sinh[2r(�k )] − i sin[�k(t − t ′)]}. (A16)

In the continuum limit this reads

C1(t, t ′) =
∫ ∞

0
d� J (�){cos[�(t − t ′)] cosh[2r(�)] − cos[�(t + t ′) − θ (�)] sinh[2r(�)] − i sin[�(t − t ′)]}. (A17)

Note that by assuming a local squeezing we rule out the existence of two-mode squeezed states that could give rise to stationary
squeezing noise; see, e.g., Ref. [29]. However, the nonstationary effects still lead to nonclassicality of the system.

b. m = 2

The two-photon counterpart gives

C2(t, t ′) =
∫ ∞

0
d� J (�)

{
1

8
cos[2�(t − t ′)](7 + cosh[4r(�)])

− 3

4
cos[2�(t + t ′) − 2θ (�)] sinh2[2r(�)] − i sin[2�(t − t ′)] cosh[2r(�)]

}
. (A18)

3. The master equation

Having the bath correlators settled, we now turn to the master equation. We choose the system operator such that q =√
2−n(an + a†n) ≡ qn with n = 1, 2. This allows for a fair comparison of the cases considered in our paper. Therefore, one

has qn(t ) = √
2−n(ane−inωt + a†neinωt ) = √

2−n(an + a†n) cos nωt − √
2−ni(an − a†n) sin nωt ≡ qn cos nωt + pn sin nωt , where

we have introduced pn ≡ −√
2−ni(an − a†n). After some tedious calculations one arrives at the following master equation in the

Schrödinger picture:

ρ̇(t ) =−i[Hs, ρ] − i�̃n,m(t )
[
q2

n, ρ
] − i	̃n,m(t )[qn, {pn, ρ}] − γ̃n,m(t )[qn, [qn, ρ]] + λ̃n,m(t )[qn, {pn, ρ}], (A19)

where we have introduced the following time-dependent parameters (t0 = 0):

�̃n,m(t ) ≡
∫ t

0
ds CIm

m (t, s) cos[nω(t − s)], (A20a)

	̃n,m(t ) ≡
∫ t

0
ds CIm

m (t, s) sin[nω(t − s)], (A20b)

γ̃n,m(t ) ≡
∫ t

0
ds CRe

m (t, s) cos[nω(t − s)], (A20c)

λ̃n,m(t ) ≡
∫ t

0
ds CRe

m (t, s) sin[nω(t − s)]. (A20d)
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APPENDIX B: ROTATING WAVE APPROXIMATION

In the weak interaction regime that we are interested in, one applies the rotating wave approximation and arrives at a master
equation in terms of the creation and annihilation operators. Hence, we simplify the second-order kernel (A9) by applying the
rotating wave approximation.

The system-reservoir interaction Hamiltonian now reads Hint ≈ ∑
k

gk√
2n+m

(anb†m
k + a†nbm

k ). This can be written as Hint =∑
i=1,2 xiXi, with x1 ≡ √

2−nan, x2 ≡ √
2−na†n, X1 ≡ ∑

k gk
√

2−mb†m
k , and X2 ≡ ∑

k gk
√

2−mbm
k . Since the bath and system

operators are no longer Hermitian, one thus ends up with the following kernel:

K2(t )χ (t ) = −
∑

j,k

∫ t

0
ds{C j,k (t, s)[x j (t ), xk (s)ρ(t )] + H.c.} ⊗ R(t0). (B1)

The reservoir correlators are

C1,1(t, t ′) = TrB{R(t0)X1(t )X1(t ′)} = 1

2m

∑
k

∑
k′

gkgk′TrB
{
R(t0)b†m

k b†m
k′ eim(�kt+�k′ t ′ )} =

∫ ∞

0
d� J (�)M∗

m(�)eim�(t+t ′ ), (B2a)

C1,2(t, t ′) = TrB{R(t0)X1(t )X2(t ′)} = 1

2m

∑
k

∑
k′

gkgk′TrB
{
R(t0)b†m

k bm
k′eim(�kt−�k′ t ′ )} =

∫ ∞

0
d� J (�)Nm(�)eim�(t−t ′ ), (B2b)

C2,1(t, t ′) = TrB{R(t0)X2(t )X1(t ′)} = 1

2m

∑
k

∑
k′

gkgk′TrB
{
R(t0)bm

k b†m
k′ e−im(�kt−�k′ t ′ )} =

∫ ∞

0
d� J (�)N ′

m(�)e−im�(t−t ′ ),

(B2c)

C2,2(t, t ′) = TrB{R(t0)X2(t )X2(t ′)} = 1

2m

∑
k

∑
k′

gkgk′TrB
{
R(t0)bm

k bm
k′e−im(�kt+�k′ t ′ )} =

∫ ∞

0
d� J (�)Mm(�)e−im�(t+t ′ ).

(B2d)

For a thermal reservoir one has Mm = 0, N1 = n, N ′
1 = n + 1, N2 = 1

2 n(n − 1), and N ′
2 = 1

2 (n(n + 3) + 2). Meanwhile, for a
squeezed bath M1 = − 1

2 sinh 2r eiθ , N1 = sinh2 r, N ′
1 = sinh2 r + 1, M2 = 3

8 sinh2 2r e2iθ , N2 = 1
2 sinh2 r (sinh2 r − 1), N ′

2 =
1
2 ( sinh2 r (sinh2 r + 3) + 2). By plugging these back in Eq. (B1) and moving back to the Schrödinger picture we arrive at the
following rotating wave approximation master equation in terms of creation and annihilation operators:

ρ̇(t ) = −i[Hs, ρ] + γn,m(t )D̂a†nρ + 	n,m(t )D̂anρ + κn,m(t )(D̂′
anρ + D̂′

a†nρ), (B3)

where we have assumed that M∗
m = Mm (θ = 0 for a squeezed bath) and have introduced the dissipators D̂o• ≡ 2o • o† − o†o •

− • o†o and D̂′
o• ≡ 2o • o − oo • − • oo. In the above equation we have also introduced the following time-dependent relaxation

rates:

γn,m(t ) ≡ 1

2n

∫ ∞

0
d�J (�)Nm(�)

sin[(nω − m�)t]

nω − m�
, (B4a)

	n,m(t ) ≡ 1

2n

∫ ∞

0
d�J (�)N ′

m(�)
sin[(nω − m�)t]

nω − m�
, (B4b)

κn,m(t ) ≡ 1

2n

∫ ∞

0
d�J (�)Mm(�)

sin[(nω + m�)t] − sin(2m�t )

nω − m�
. (B4c)

The first term on the right-hand side of the master equation gives the coherent evolution of the system with its renormalized
frequency. Note that in the two-photon interaction case (n = 2) a Kerr nonlinearity is added to the Hamiltonian whose effect is
negligibly small in the weak-coupling regime that we are interested in.
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