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Quantum stochastic thermodynamics: A semiclassical theory in phase space
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A formalism for quantum many-body systems is proposed through a semiclassical treatment in phase space,
allowing us to establish stochastic thermodynamics incorporating quantum statistics. Specifically, we utilize a
stochastic Fokker-Planck equation as the dynamics at the mesoscopic level. Here, the noise term characterizing
the fluctuation of the flux density accounts for the finite-N effects arising from random collisions between the
system and the reservoir. Accordingly, the stationary solution is a quasiequilibrium state in a canonical system.
We define stochastic thermodynamic quantities based on the trajectories of the phase-space distribution. The
conservation law of energy, the H theorem, and fluctuation theorems are therefore obtained. Our work sets an
alternative formalism of quantum stochastic thermodynamics that is independent of the two-point measurement
scheme. The numerous projective measurements of quantum systems are replaced by the sampling of the phase-
space distribution, offering hope for experimental verifications in the future.
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I. INTRODUCTION

Stochastic thermodynamics uses stochastic variables to
better understand the nonequilibrium dynamics present in mi-
croscopic systems. In these systems, thermal fluctuations are
significant and the laws of thermodynamics need to be under-
stood from probabilistic perspectives. Typical results include
the definition of stochastic thermodynamic quantities and
fluctuation theorems [1–4], the latter of which quantify the
statistical behavior of nonequilibrium systems and generalize
the second law. In addition, exact thermodynamic statements
beyond the realm of linear response are obtained. These ex-
act results refer to distribution functions of thermodynamic
quantities, such as exchanged heat, applied work, and entropy
production for these systems [2].

Stochastic thermodynamics is also applied to quantum
systems by usually introducing the two-point measurement
scheme [5]. Here, work is not an observable [6], but is defined
as the energy difference between the initial and final projec-
tive measurements. By applying the two-point measurement
scheme to open quantum systems, stochastic thermodynamics
is also established for Lindblad-type systems [7] and Caldeira-
Leggett-type systems [8]. For a comprehensive overview of
quantum stochastic thermodynamics, readers are referred to
Ref. [9].

The two-point measurement scheme assumes numerous
projective measurements of quantum systems. However, such
an assumption is impractical for quantum many-body systems
or the reservoir in realistic experiments, presenting a signif-
icant challenge to this scheme. Therefore, it is necessary to
establish quantum stochastic thermodynamics within alterna-
tive formalisms.
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In our view, the reason for the conundrum is that too
much information is involved in projective measurements to
establish quantum stochastic thermodynamics. We circum-
vent this issue by semiclassically treating quantum systems
in phase space. When the largest energy-level spacing of the
system is small compared to the thermal excitation energy,
a phase-space description of the system under a proper error
is possible through a distribution function ρ(z), z = (x, p)
(a one-dimensional system is considered here for simplic-
ity) [10]. Meanwhile, the temperature is low enough that
the system still presents quantum statistics, i.e., the thermal
wavelength of a particle is comparable to the interparticle
spacing [11].

In our formalism, the system is governed by a stochastic
Fokker-Planck equation that is a nonlinear equation incorpo-
rating a noise term that characterizes the fluctuation of the
flux density. The nonlinear equation determines an equilib-
rium state satisfying non-Boltzmann statistics, especially for
quantum systems [12–14]. A simple derivation using heuristic
arguments is provided in Ref. [15]. As an approximation of
quantum Boltzmann equations, such a nonlinear equation has
been used to study finite fermionic or bosonic systems [16,17],
and the electron collisions in dense plasmas [18]. The noise
term keeps track of the finite-N effect arising from random
collisions between the system and the reservoir. Consequently,
the system implies a quasiequilibrium state in a canonical
system, which originates from the reverse form of the Boltz-
mann entropy, i.e., the exponential of the entropy denotes the
number of the corresponding microscopic states according to
Einstein’s interpretation [19,20].

In this paper, we establish the stochastic thermodynam-
ics based on the trajectories of the phase-space distribution.
Accordingly, the stochastic thermodynamic quantities are de-
fined and reproduce their counterparts in previous studies for
systems consisting of distinguishable noninteracting particles
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[1–3]. The conservation law of energy, the H theorem, and
fluctuation theorems are therefore obtained. A connection
between stochastic thermodynamics and the quasiequilibrium
state is also established.

For experimental verifications of our formalism, we would
like to point out that the current experimental techniques do
not support the simultaneous sampling of the phase-space
distribution (but for the possible separate measurements of
the density distribution with high-resolution optics [21] or
the momentum distribution using the time-of-flight image
[22]). Our formalism is hopefully verified in experiments once
appropriate techniques become available. It is emphasized
that, although formulated in phase space for the purpose of
a straightforward connection to the Wigner function, our for-
malism can be extended to various other spaces, where the
current experimental techniques may be sufficient.

II. NONLINEAR FOKKER-PLANCK EQUATION
INCORPORATING QUANTUM STATISTICS

Let us first introduce a nonlinear Fokker-Planck equa-
tion [12–14],

∂ρt

∂t
= Lstρt + ∂ jt

∂ p
, (1)

with a flux density in phase space jt originating from colli-
sions between the system and the reservoir. It reads

jt = γ pρt (1 + ερt ) + γ mkBT
∂ρt

∂ p
, (2)

where Lst = − p
m

∂
∂x + ∂U

∂x
∂
∂ p denotes the streaming operator, m

the mass of the particle, γ the damping coefficient, U the
potential energy of the particle, kB the Boltzmann constant,
and T the temperature of the reservoir. Here, ε = 1,−1, 0 for
bosons, fermions, and distinguishable particles, respectively.
In the derivation, we have used the Kramers-Moyal expansion
of the master equation and truncated the expansion up to the
second order [12,23].

For bosons, Eq. (1) describes the evolution of particles
above the critical temperature of the Bose-Einstein conden-
sation. The Bose-Einstein condensation is not considered in
this paper. For fermions, due to the Pauli exclusion principle,
we require 0 � ρt � 1 [24].

Equation (1) is conservative in particle numbers, N[ρt ] =∫
dzρt (z), where dz = dxdp/h, and h denotes the Planck

constant. Also, it determines a steady state (a semiclassical
equilibrium state in phase space)

ρeq(z) = 1

eβ[p2/(2m)+U (x)−μ] − ε
, (3)

where β = 1/(kBT ) is the inverse temperature, and μ the
chemical potential. Equation (3) can be found in Refs. [26–28]
for bosons by ignoring the two-body interaction, and in
Ref. [29] for fermions.

To highlight the connection between Eq. (1) and ther-
modynamics, we rewrite it in the following form (also see
Ref. [14]),

∂ρt

∂t
= Lstρt + Lfp(ρt )

δF [ρt ]

δρt
, (4)

where the operator Lfp(ρ) = mγ ∂
∂ p [ρ(1 + ερ) ∂

∂ p ]. Here, for
the system, F [ρt ] = E [ρt ] − T S[ρt ] is the free energy, where
the internal energy E [ρt ] and the entropy S[ρt ] are respec-
tively given by

E [ρt ] =
∫

dzρt

(
p2

2m
+ U

)
, (5)

and

S[ρt ] = kB

∫
dz[−ρt ln ρt + ε−1(1 + ερt ) ln(1 + ερt )]. (6)

III. STOCHASTIC FOKKER-PLANCK EQUATION

It seems straightforward to construct a Langevin equa-
tion for a single particle corresponding to the nonlinear
Fokker-Planck equation (1) (see examples in Sec. 6.5.4 of
Ref. [13]), and establish stochastic thermodynamics on that.
However, it is inconsistent to incorporate quantum statistics
in a Langevin equation for a single particle. This is because
that quantum statistics is an effect of the exchange symmetry
of a many-body system. In contrast, we introduce fluctuations
of the many-body system in another manner: adding a noise
term in the flux density jt [Eq. (2)].

Due to the discreteness of particle numbers and the ran-
domness of collisions between the system and the reservoir,
Eq. (1) only describes the evolution of ρt on average for a
finite-size system. Hence, we add a noise term ηt into jt to
characterize the finite-N effects of the dynamics. The intro-
duction of the noise term in the position-space flux density has
been used to study many systems, such as many-body Brow-
nian motion [30], and hydrodynamic fluctuations [31]. In par-
ticular, it is used to describe the turbulence in randomly stirred
fluids [32], the onset of hydrodynamic stabilities [33], and
charge transport in semiconducting devices [34]. Moreover,
the connection between the stochastic Fokker-Planck equa-
tion [Eq. (7)] and the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy is discussed in Ref. [35].

According to the above discussions, we postulate a
stochastic Fokker-Planck equation (similar results for density
in position space are shown in Refs. [36,37])

∂ρN
t

∂t
= Lstρ

N
t + Lfp

(
ρN

t

)δF
[
ρN

t

]
δρN

t
+ ∂ηt

∂ p
, (7)

where ηt is a Gaussian white noise satisfying 〈ηt (z)〉 = 0,
〈ηt (z)ηt ′ (z′)〉 = 2hmγ kBT ρN

t (z)[1 + ερN
t (z)]δ(z − z′)δ(t −

t ′). Such an equation is still conservative in particle number.
In the thermodynamic limit, the suppression of the noise ηt is
shown in Refs. [36,37].

Since the phase-space distribution ρN
t now is a random

variable, we define the probability distribution of observing a
fixed distribution φ at time t as Pt [φ] = 〈∏z δ[φ(z) − ρN

t (z)]〉.
Then, following the similar procedure in Refs. [36–39], its
evolution equation (the functional Fokker-Planck equation) is
given by

∂Pt [φ]

∂t
= −

∫
dz

δ

δφ(z)

{
Pt [φ]Lstφ(z)

+ Lfp(φ(z))
[
δF [φ]

δφ(z)
Pt [φ] + kBT

δPt [φ]

δφ(z)

]}
. (8)
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Its stationary solution is

Ps[φ] = Z−1e−βF [φ]δ(N − N[φ])δ(Lstφ), (9)

where Z = ∫
Dφe−βF [φ]δ(N − N[φ])δ(Lstφ) is the gener-

alized partition function. Here, the condition Lstφ = 0
means that φ is a constant along the equienergy surface
in the phase space. Also, the integral

∫
Dφ is con-

strained by the condition:
∫

dzφ(z) = 1, φ � 0 (0 � φ �
1 for fermions). The stationary solution is actually a
quasiequilibrium state in a canonical system according to
the theory of equilibrium fluctuations [19], which precisely
determines the form of the noise term [37]. In the ther-
modynamic limit, φ converges to ρeq in probability by
using the method of steepest descent. In other words, ac-
cording to the minimum free-energy principle in a canonical
ensemble, Ps[φ] now is replaced by its most probable distri-
bution ρeq.

The functional Fokker-Planck equation has an equivalent
path-integral form. Let us define a trajectory of the stochastic
phase-space distribution as φ[0,t] := {φs|s ∈ [0, t]}. Then, the
probability distribution of the trajectory conditioned with a
fixed distribution φ0 at initial time t = 0 reads P[φ[0,t]|φ0] ∝
e−βS[φ[0,t]], where the action S is a generalized Onsager-
Machlup functional,

S[φ[0,t]] = −1

4

∫ t

0
ds

∫
dz

[
∂φs

∂s
− Lstφs − Lfp(φs)

δF [φs]

δφs

]

× Lfp(φs)−1

[
∂φs

∂s
− Lstφs − Lfp(φs)

δF [φs]

δφs

]
.

(10)

Similar results can be found in Refs. [36,37,40,41]. Here,
the expression Lfp(φ)−1 should be understood as the Green’s
function of Lfp(φ). According to the principle of least ac-
tion (the steepest descent approximation of S[φ[0,t]]), the
dynamics of φt converges to the nonlinear Fokker-Planck
equation (4) in probability in the thermodynamic limit [42].

IV. STOCHASTIC THERMODYNAMICS

When the potential energy is tuned by a time-dependent
parameter λt , we can establish the stochastic thermodynamics
incorporating quantum statistics along a given trajectory of
the phase-space distribution φ[0,t].

The stochastic work w[φ[0,t]] and the stochastic heat
q[φ[0,t]] are defined as

w[φ[0,t]] =
∫ t

0
ds

∫
dzφs(z)

dλs

ds

∂U (x, λs)

∂λs
, (11)

and

q[φ[0,t]] =
∫ t

0
ds

∫
dz

∂φs(z)

∂s

[
p2

2m
+ U (x, λs)

]
. (12)

They satisfy the conservation law of energy

E [φt ; λt ] − E [φ0; λ0] = w[φ[0,t]] + q[φ[0,t]]. (13)

It is worth mentioning that for a deterministic trajectory of φs,
the definitions of work (11) and heat (12) are the semiclas-
sical phase-space counterparts of the quantum work and the
quantum heat given in Ref. [43].

The stochastic entropy s[φt ], stochastic total entropy pro-
duction sp[φ[0,t]], and stochastic free energy f [φt ; λt ] are
respectively given by

s[φt ] = S[φt ] − kB ln Pt [φt ], (14)

sp[φ[0,t]] = s[φt ] − s[φ0] + sr[φ[0,t]], (15)

f [φt ; λt ] = E [φt ; λt ] − T s[φt ] = F [φt ; λt ] + kBT ln Pt [φt ],
(16)

where Pt [φ] is the solution of the functional Fokker-Planck
equation (8), and sr[φ[0,t]] = −q[φ[0,t]]/T denotes the entropy
change of the reservoir.

While the stochastic internal energy E [φt ; λt ], the stochas-
tic work w[φ[0,t]], and the stochastic heat q[φ[0,t]] are solely
determined by φt , Eq. (14) means that the stochastic en-
tropy s[φt ] also depends on the probability distribution of the
stochastic phase-space distribution Pt [φ]. That is to say, the
explicit expression of s[φt ] cannot be determined until we
have obtained the solution of the functional Fokker-Planck
equation. Moreover, if we take an average of s[φt ] over Pt [φ],
we have

〈s[φt ]〉 = 〈S[φt ]〉 − kB

∫
DφPt [φ] ln Pt [φ]. (17)

The term −kB ln Pt [φt ] actually has a contribution to the av-
erage entropy due to the probability distribution Pt [φ] from
the perspective of information theory [44,45]. Also, this term
is essential to prove the H theorem d

dt 〈sp[φ[0,t]]〉 � 0 (see
Appendix A).

We prove the fluctuation theorems according to these
stochastic thermodynamic quantities. For this purpose, let
P[φ[0,t]|φ0] (P†[φ†

[0,t]|φ†
0]) denote the conditional probability

distribution of the forward (reverse) trajectory φ[0,t] [φ†
[0,t] :=

{φ†
s |s ∈ [0, t]}, φ†

s (x, p) := φt−s(x,−p)] with a fixed initial
distribution φ0 (φ†

0) and a forward (reverse) protocol λs (λ†
s :=

λt−s). Then, using the generalized Onsager-Machlup func-
tional [Eq. (10)], we obtain the detailed fluctuation theorems
(see Appendix C),

ln
P[φ[0,t]|φ0]

P†[φ†
[0,t]|φ†

0]
= ln

Pt [φt ]

P0[φ0]
+ sp[φ[0,t]]

kB
. (18)

By adding an arbitrary normalized distribution of φ at the
initial time of the forward (reverse) process P0[φ0] (P′

0[φ†
0]),

we obtain the integral fluctuation theorems,

〈
P′

0[φ†
0]

Pt [φt ]
e−sp/kB

〉
= 1. (19)

Such an equality is formally consistent with the integral fluc-
tuation theorems in previous studies [2,3].

For a choice of P′
0[φ†

0] = Pt [φt ], we obtain the integral
fluctuation theorem for total entropy production [2,3],

〈e−sp/kB〉 = 1. (20)
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Then, as a corollary, the second law 〈sp〉 � 0 follows from the
fluctuation theorem by using Jensen’s inequality.

Moreover, when both P0[φ0], P′
0[φ†

0] are stationary solu-
tions of the functional Fokker-Planck equation [Eq. (9)], i.e.,
P0[φ0] = Ps[φ0; λ0], P′

0[φ†
0] = Ps[φt ; λt ], we obtain the gener-

alized Jarzynski equality,

〈e−βw〉 = Z (λt )

Z (λ0)
, (21)

and the generalized principle of maximum work

〈w〉 � −kBT ln

[Z (λt )

Z (λ0)

]
, (22)

by using Jensen’s inequality. In the limit N →
∞,Z (λt )/Z (λ0) = e−β(F [ρeq(λt )]−F [ρeq(λ0 )]) by using the steep-
est descent approximation of Z , which further results in the
Jarzynski equality 〈e−βw〉 = e−β(F [ρeq(λt )]−F [ρeq(λ0 )]), and the
principle of maximum work 〈w〉 � F [ρeq(λt )] − F [ρeq(λ0)]
[1–3].

We would like to emphasize that for the stationary solution
Ps[φ; λ] (9), we have

〈 f [φ; λ]〉 = −kBT lnZ (λ), (23)

〈E [φ; λ]〉 = −∂ lnZ (λ)

∂β
, (24)

〈s[φ; λ]〉
kB

= lnZ (λ) − ∂ lnZ (λ)

∂β
. (25)

Hence, the generalized partition function Z (λ) as the char-
acteristic state function of a canonical quasiequilibrium state
plays the same role as the partition function of a canonical
equilibrium state.

For distinguishable particles (ε = 0), our formalism coin-
cides with previous stochastic thermodynamics. It is demon-
strated by following Dean’s study of a system of N-particle
Langevin equations [30],

dxi(t )

dt
= pi(t )

m
,

(26)
dpi(t )

dt
= −∂U (xi(t ))

∂xi(t )
− γ pi(t ) + ξi(t ),

where the white noises are uncorrelated, 〈ξi(t )〉 = 0,
〈ξi(t )ξ j (t ′)〉 = 2mγ kBT δi jδ(t − t ′). Then, the empirical

density ρ̃N
t (z) = ∑N

i=1 δ(z − zi(t )) of particles satisfies the
stochastic Fokker-Planck equation (7), where ηt = ∑N

i=1 ξi(t )
correspondingly. Substituting ρ̃N

t (z) into the definition of
stochastic thermodynamic quantities E [φt ; λt ], w[φ[0,t]],
q[φ[0,t]], and s[φt ] [the second term in Eq. (14)], we
reproduce their counterparts in previous studies of stochastic
thermodynamics [1–3].

V. CONCLUSION

For a quantum many-body system semiclassically treated
by a phase-space distribution at the mesoscopic level, we
consider a stochastic Fokker-Planck equation as the dynamics
of the system at the mesoscopic level. Here, the noise term
finds its origin in the discreteness of the particle number
and the randomness of collisions between the system and the
reservoir, embodying Einstein’s interpretation of the reverse
form of the Boltzmann entropy.

Based on trajectories of the stochastic phase-space distri-
bution, we propose a formalism of stochastic thermodynamics
that accounts for quantum statistics. Consequently, a connec-
tion between stochastic thermodynamics and the quasiequilib-
rium state is established.

Independent of a previous formalism that relies on the
two-point measurement scheme, our formalism is based on the
sampling of the stochastic phase-space distribution, offering
hope for experimental verifications. Moreover, by incorpo-
rating mean-field interactions and considering other types of
non-Boltzmann entropy [12–14], our formalism can be read-
ily extended to interacting systems and other non-Boltzmann
systems. It is worth mentioning that an efficient treatment of
fractional exclusion statistics is given by using the nonlinear
Fokker-Planck equation in Ref. [46].
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APPENDIX A: PROOF OF THE H THEOREM

It follows from Eqs. (15) and (16) and the conservation of energy that

d

dt
〈sp[φ[0,t]]〉 = 1

T

d

dt
(〈w[φ[0,t]]〉 − 〈 f [φt ; λt ]〉) = 1

T

d

dt
(〈w[φ[0,t]]〉 − 〈F [φt ; λt ] + kBT ln Pt [φt ]〉). (A1)

Substituting Eq. (11) into Eq. (A1), and using Eq. (8) we have [noticing ∂F [φ;λt ]
∂λt

= ∫
dzφ(z) dλt

dt
∂U (x,λt )

∂λt
]

1

T

d

dt
(〈w[φ[0,t]]〉 − 〈F [φt ; λt ] + kBT ln Pt [φt ]〉) = 1

T

(∫
dz〈φt (z)〉dλt

dt

∂U (x, λt )

∂λt
− d

dt
〈F [φt ; λt ] + kBT ln Pt [φt ]〉

)

= 1

T

(∫
DφPt [φ]

∫
dzφ(z)

dλt

dt

∂U (x, λt )

∂λt
− d

dt
〈F [φt ; λt ] + kBT ln Pt [φt ]〉

)

= 1

T

(∫
DφPt [φ]

dλt

dt

∂F [φ; λt ]

∂λt
− d

dt

∫
DφPt [φ](F [φ; λt ] + kBT ln Pt [φ])

)
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= −
∫

Dφ
∂Pt [φ]

∂t
(T −1F [φ; λt ] + kB ln Pt [φ] + kB)

=
∫

Dφ

∫
dz

δ

δφ(z)

{
Pt [φ]Lstφ(z) + Lfp(φ(z))

[
δF [φ; λt ]

δφ(z)
Pt [φ]+kBT

δPt [φ]

δφ(z)

]}

× (T −1F [φ; λt ] + kB ln Pt [φ] + kB). (A2)

Finally, using integral by parts, we obtain

∫
Dφ

∫
dz

δ

δφ(z)

{
Pt [φ]Lstφ(z) + Lfp(φ(z))

[
δF [φ; λt ]

δφ(z)
Pt [φ] + kBT

δPt [φ]

δφ(z)

]}
(T −1F [φ; λt ] + kB ln Pt [φ] + kB)

=
∫

DφPt [φ]
∫

dz

{
− 1

T

δF [φ; λt ]

δφ(z)
+ kB

δ

δφ(z)

}
Lstφ(z)

+
∫

Dφ

∫
dz

γφ(z)[1 + εφ(z)]

T Pt [φ]

{
∂

∂ p

[
δF [φ; λt ]

δφ(z)
Pt [φ] + kBT

δPt [φ]

δφ(z)

]}2

. (A3)

Because the first term actually equals 0 by using the two identities in Appendix B and the second term is not less than 0, we
obtain the H theorem d

dt 〈sp[φ[0,t]]〉 � 0.

APPENDIX B: TWO IDENTITIES IN EQ. (A3)

For the first identity, using F [φ] = E [φ] − T S[φ] and integral by parts, we have

∫
dz

δF [φ]

δφ(z)
Lstφ(z) =

∫
dz

[
p2

2m
+ U (x, λ)

]
Lstφ(z) − T

∫
dz

δS[φ]

δφ(z)
Lstφ(z)

= −
∫

dzφLst

[
p2

2m
+ U (x, λ)

]
− kBT

∫
dzLst[−φ ln φ + ε−1(1 + εφ) ln(1 + εφ)]

= 0. (B1)

For the second identity, let us first define a set of real orthonormal complete square-integrable functions {ui(z)} in the phase
space. Then, we decompose φ(z) as

φ(z) =
∑

i

φiui(z), (B2)

where

φi =
∫

dzφ(z)ui(z). (B3)

Hence, it follows from Eq. (B3) that

∫
dz

δ

δφ(z)
Lstφ(z) =

∑
i

∫
dz

δφi

δφ(z)
Lstui(z)

=
∑

i

∫
dzui(z)Lstui(z)

= −
∑

i

∫
dzui(z)Lstui(z)

= 0. (B4)

The minus sign in the third equality results from integral by parts.
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APPENDIX C: PROOF OF THE DETAILED FLUCTUATION THEOREM

We first prove that the normalization factor of the forward propagator P[φ[0,t]|φ0] equals that of the reverse propagator
P†[φ†

[0,t]|φ†
0]. Let us define another white noise ζt = ∂

∂ pηt , where 〈ζt (z)〉 = 0 and

〈ζt (z)ζt ′ (z′)〉 = ∂2

∂ p∂ p′ 〈ηt (z)ηt ′ (z′)〉

= 2hkBT
∂

∂ p

{
ρN

t (z)[1 + ερN
t (z)]

∂

∂ p′ δ(z − z′)
}
δ(t − t ′)

= −2hkBT
∂

∂ p

{
ρN

t (z)[1 + ερN
t (z)]

∂

∂ p
δ(z − z′)

}
δ(t − t ′)

= −2hkBT Lfp(φt (z))δ(z − z′)δ(t − t ′). (C1)

Thus, the probability distribution of a trajectory ζ[0,t] reads

P[ζ[0,t]] = N [φ[0,t]]e
β

4

∫ t
0 ds

∫
dzζs (z)Lfp (φs )−1ζs (z), (C2)

where

N [φ[0,t]] =
∫

Dζ[0,t]e
β

4

∫ t
0 ds

∫
dzζs (z)Lfp (φs )−1ζs (z). (C3)

We obtain the propagator P[φ[0,t]|φ0] through

P[φ[0,t]|φ0] =
∫

Dζ[0,t]P[ζ[0,t]]
∏
(s,z)

δ

(
∂φs(z)

∂s
− Lstφs(z) − Lfp(φs(z))

δF [φs]

δφs(z)
− ζs(z)

)

= J [φ[0,t]]N [φ[0,t]]e
−βS[φ[0,t]], (C4)

where the Jacobian J [φ[0,t]] stemming from the variable transformation from ζ to φ is just a constant when the standard Ito
forward discretization is applied [40].

According to Eq. (C3) and φ†
s (x, p) = φt−s(x,−p), we have the following equality,

N [φ†
[0,t]] =

∫
Dζ[0,t]e

β

4

∫ t
0 ds

∫
dzζs (z)Lfp (φ†

s )−1ζs (z)

=
∫

Dζ[0,t]e
β

4

∫ t
0 ds

∫
dzζs (z)Lfp (φs )−1ζs (z)

= N [φ[0,t]], (C5)

where we have used the transformation s → t − s, p → −p, ζt−s(x,−p) → ζs(x, p).
Next, using the transformation s → t − s, p → −p, it is straightforward to verify that the action S[φ†

[0,t]] [Eq. (10)] can be
rewritten in terms of φ[0,t]:

S[φ†
[0,t]] = −1

4

∫ t

0
ds

∫
dz

[
∂φs

∂s
− Lstφs + Lfp(φs)

δF [φs]

δφs

]
Lfp(φs)−1

[
∂φs

∂s
− Lstφs + Lfp(φs)

δF [φs]

δφs

]
. (C6)

Finally, we derive the detailed fluctuation theorem,

ln
P[φ[0,t]|φ0]

P†[φ†
[0,t]|φ†

0]
= −β(S[φ[0,t]] − S[φ†

[0,t]])

= −β

∫ t

0
ds

∫
dz

∂φs

∂s

δF [φs; λs]

δφs

= −β(F [φt ; λt ] − F [φ0; λ0] − w[φ[0,t]])

= ln
Pt [φt ]

P0[φ0]
+ sp[φ[0,t]]

kB
, (C7)

where in the first line we have used Eq. (C5), in the second line we have used Eqs. (10) and (C6), in the third line we have
used dλt

dt
∂F [φt ;λt ]

∂λt
= dλt

dt
∂E [φt ;λt ]

∂λt
= d

dt w[φ[0,t]], and in the fourth line we have used the definitions of the stochastic thermodynamic
quantities [Eqs. (11)–(16)].
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