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Managing rogue quantum amplitudes: A possible control in quantum walks
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We investigate the emergence of rogue quantum amplitudes in discrete-time quantum walks (DTQWs)
influenced by phase disorder. Our study reveals the statistics of occupation probability amplitudes in space
and time, uncovering optimal disorder regimes that favor rogue wave events. Through numerical simulations,
we demonstrate that the probability of rogue waves increases with quantum coins close to the Pauli-Z choice,
regardless of the disorder degree. Conversely, for coins near the Pauli-X choice, rogue events are scarce, except
under weak disorder. A monotonic threshold is observed between rare and high-probability rogue wave regimes,
depending on the quantum coin. We provide a comprehensive analysis of the coin-disorder interplay in regard
to rogue wave events. Our findings shed light on the possible control of extreme quantum amplitudes through
quantum coins in disordered DTQWs.
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I. INTRODUCTION

Understanding the emergence of unlikely extreme events in
nature has long been a topic of great interest [1–3], with ap-
plications in fields as diverse as epidemics [4], photonics [5],
and neurobiology [6], to name a few. One such phenomenon
is known as rogue waves (RWs) [7,8]. In the maritime com-
munity, RWs have been described as waves with amplitudes
far exceeding what is expected for the prevailing sea state. In
this context, RWs represent unpredictable oceanic waves with
large amplitudes that seemingly materialize out of nowhere
and vanish without a trace.

The intriguing and often unpredictable occurrence of RWs
has captivated the attention of researchers across various sci-
entific domains, from oceanography [8] to optics [9] and many
others (for comprehensive reviews, see, e.g., Refs. [10,11]).
In particular, the connection between the oceanic RW phe-
nomenon and light propagation within optical fibers has
gained prominence, specially in the framework of the nonlin-
ear Schrödinger equation [9]. This link has spurred a surge of
interest in wave phenomena exhibiting long-tailed statistical
distributions, whose associated outlier events greatly surpass
the predictions from Gaussian statistics. RWs have also been
extensively explored in diverse other contexts, including lin-
ear and nonlinear optics [12,13], plasmas [14], Bose-Einstein
condensates [15], and even finance [16]. From the perspec-
tive of nonlinear dynamics related to the emergence of RWs,
factors contributing to their occurrence include delayed feed-
back systems [17,18], chaotic dynamics in low-dimensional
systems [19], soliton collisions [20], space-time chaos [21],
vortex turbulence [22], and integrable turbulence [23].

One of the central issues in the study of RWs lies in
the understanding of how these events arise, an objective
closely related to the will of predicting and controlling ex-
treme events. This challenge stems from the multifaceted
processes involved in the RW formation. Extensive debates
persist regarding whether RWs originate from linear [24] or

nonlinear [25–27] processes, and the role of disorder in this
narrative [28,29]. In this context, nonlinear phenomena may
further amplify the effects of extreme events that naturally
arise from purely linear processes, in a way possibly related
to modulational instability [11,30].

RWs have also been explored in the quantum mechani-
cal context. The emergence of RWs in quantum chains has
introduced novel aspects to the understanding of a number
of quantum dynamical regimes, particularly in disordered
media [28,29]. In a previous work [31], we investigated the
role of randomness in the formation of anomalous amplitudes
in the quantum wave function of a one-dimensional system
described by a tight-binding Hamiltonian with correlated on-
site disorder. We found that a specific effective degree of
correlation is responsible for inducing the occurrence of much
larger extreme-amplitude events, particularly when compared
with the case of uncorrelated disorder. We remark that similar
phenomena involving correlation have also been reported in
optical systems [12], with the identification of super RWs.

Discrete-time quantum walks (DTQWs) have emerged as
a powerful framework for modeling various physical systems
and phenomena [32]. DTQWs have also been recently em-
ployed to investigate RW events in the form of sudden, highly
localized extreme wave amplitudes. In Ref. [33] the authors
introduced the first model utilizing the approach of DTQWs
to study RWs. By employing the Hadamard quantum walk
with phase disorder, they observed the emergence of RWs in
a purely linear system. This work also demonstrated that the
competition between mobility and localization properties in
an intermediate disordered regime is more conducive to the
occurrence of extreme events [33].

However, some fundamental questions arise within the
context of DTQWs that remain not addressed so far: What is
the influence of applying different quantum coins (apart from
the Hadamard one [33]) to the emergence of RWs? Also, can
the occurrence of rogue quantum amplitudes be controlled?
Previous works have shown how various quantum coins can
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alter fundamental properties of DTQWs, such as transport
features in nonlinear [34,35] and aperiodic media [36], insta-
bility and self-focusing characteristics [37], diffusivity [38],
and entanglement [39,40] properties, to name a few. Thus,
investigating the dynamics of the quantum walker under dif-
ferent quantum coins in chains with phase disorder becomes
important to understand the emergence of RWs in DTQWs.

This work aims at bridging between RWs and DTQWs
by examining how the inherent wavelike characteristics of
quantum walks can shed light on the emergence and dynam-
ics of RWs. We demonstrate how the application of various
quantum coins influences the occurrence of RWs within the
context of one-dimensional DTQWs driven by random phase
fluctuations. This investigation unveils the characteristic long-
tailed statistical behavior of occupation probability, analogous
to light intensity observed in optics [41], across the space-
time domain. Our findings reveal multiple optimal regimes
of disorder that maximize the occurrence of these extreme
events. The RW phenomenon in DTQWs emerges due to a
subtle balance between mobility and localization, in which the
localization length significantly impacts the walk dynamics.
We identify a monotonic threshold between quantum walks
characterized by rare occurrence of RWs and those with high
occurrence probability, displaying a direct dependence on the
quantum coin employed in the system. Finally, we compre-
hensively map the relationship between the quantum coins and
degree of disorder through a diagram featuring the regions that
maximize the emergence of RW events.

This paper is organized as follows. In Sec. II we introduce
the model and describe the general formalism. Results and a
discussion are presented in Sec. III. Lastly, final remarks and
conclusions are given in Sec. IV.

II. MODEL AND FORMALISM

We consider a quantum random walker propagating in
a one-dimensional phase-disordered chain of N sites, with
discrete positions indexed by integers n (= 1, 2, . . . , N). The
quantum walker is defined in a two-level space constituted
by the coin space HC = {[|↑〉 = (1, 0)T ], [|↓〉 = (0, 1)T ]}, in
which the superscript denotes the transpose, and the position
space HP = {|n〉}. The Hilbert space is the tensor prod-
uct H = HP ⊗ HC . The initial state (t = 0) of the quantum
walker is a superposition of the coin and position states in the
form

|�(t )〉 =
∑

n

[an(t )|↑〉 + bn(t )|↓〉] ⊗ |n〉, (1)

where an(t ) and bn(t ) are the probability amplitudes for the
up and down coin states at position n, respectively. The nor-
malization condition is given by

∑
n Pn(t ) = ∑

n[|an(t )|2 +
|bn(t )|2] = 1.

The system evolution is obtained through |ψ (t )〉 =
Û t |�(0)〉, where the time evolution operator Û = ŜĈD̂ de-
pends on both internal and spatial degrees of freedom of the
walker and describes the simultaneous action of the quantum
coin Ĉ, conditional displacement Ŝ, and phase-gain D̂ opera-
tors. Indeed, to account for the internal degrees of freedom,
a unitary operator Ĉ, known as a quantum coin, is applied,

which can be expressed as a SU(2) unitary matrix [42,43],

Ĉ(θ ) = cos θ |↑〉〈↑| + sin θ |↑〉〈↓|
+ sin θ |↓〉〈↑| − cos θ |↓〉〈↓|, (2)

where the angle 0 � θ � π/2 drives the spatial bias of the
quantum coin. For example, in the case of a fair coin, which
selects both up and down states with equal probability, the
choice θ = π/4 is adopted (Hadamard coin).

On the other hand, in order to describe the N-cycle
architecture, we add periodic boundary conditions to the con-
ditional displacement operator that moves the walker by one
lattice spacing at each unit time,

Ŝ =
N−1∑

n=1

|↑〉〈↑| ⊗ |n + 1〉〈n| +
N∑

n=2

|↓〉〈↓| ⊗ |n − 1〉〈n|

+ |↑〉〈↑| ⊗ |1〉〈N | + |↓〉〈↓| ⊗ |N〉〈1|. (3)

In addition, the phase-gain operator, defined as

D̂ =
∑

c

∑

n

eiF (c,n,t )|c〉〈c| ⊗ |n〉〈n|, (4)

also plays a relevant role, with F (c, n, t ) representing an
arbitrary real-valued function and c = {↑,↓}. Actually, the
versatility for the choice of F (c, n, t ) allows the generation
of different dynamic regimes, such as in the investigation
of nonlinear and electric field effects in DTQWs [35,37,44].
For F = 0 and θ = π/4 the system exhibits the standard
Hadamard quantum walk behavior, with the walker spread-
ing out ballistically. However, Anderson localization can also
emerge by introducing a static random phase modulation char-
acterized by F (c, n, t ) = F (c, n) = 2πν, where ν is a number
randomly distributed in the range [−W,W ] and W represents
the width of the disorder. So it becomes important to investi-
gate whether RWs can arise in DTQWs under suitable initial
conditions and for proper choices of the noise level embedded
in F (c, n) and disorder strength.

III. RESULTS

Our results were obtained by following the time evolution
of a qubit with initial wave function evenly distributed across
all sites of the chain,

|�0〉 = 1√
2N

N∑

n=1

(|↑〉 + i|↓〉) ⊗ |n〉. (5)

We note that the choice of a completely delocalized initial
state avoids ambiguity between RWs and the Anderson local-
ization phenomenon, which would likely arise if the walker
started with an initially localized wave function, so allowing
just a few modes to act in the evolution of the wave packet and
leading to narrow periodic beats over time.

We begin our discussions by examining the time evolution
of the probability density Pn of the quantum walker as a
function of the position n on a chain with N = 100 sites,
over a time period of t = 100N . Here we define RWs associ-
ated with quantum state configurations exhibiting probability
amplitudes at some site n greater than twice the average prob-
ability of one-third of the largest amplitudes [12,29,31], i.e.,
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FIG. 1. Snapshots of the probability density Pn of the quantum
walker in a chain with N = 100 sites after t = 100N time steps, for
three representative quantum coins: (a) and (b) θ = π/18, (c) and
(d) θ = π/4 (Hadamard), and (e) and (f) θ = 4π/9. Two degrees of
disorder are considered: weak disorder in the left column (W = 0.1)
and strong disorder (W = 0.5) in the right column. The red horizon-
tal line depicts the probability threshold value Pth = 2P1/3 for the
occurrence of RW events.

for Pn above the threshold probability amplitude Pth = 2P1/3,
represented by the red horizontal line in Fig. 1.

To understand the influence of different quantum coins
on the emergence of RWs in DTQWs, we present in Fig. 1
snapshots of Pn at times when RWs occur. We consider three
representative configurations of quantum coins, namely, θ =
π/18 in Figs. 1(a) and 1(b), θ = π/4 (Hadamard) in Figs. 1(c)
and 1(d), and θ = 4π/9 in Figs. 1(e) and 1(f), under two
distinct disorder situations. The left column in Fig. 1 repre-
sents quantum walks with weak disorder for W = 0.1, while
the right one displays results for the strong disorder regime,
W = 0.5. We notice that when disorder is weak, RWs arise
for all configurations of quantum coins. However, for strong
disorder, RWs are not present for quantum coins close to the
θ = π/2 Pauli-X choice, such as θ = 4π/9, as indicated in
Fig. 1(f).

For a statistical viewpoint, we display in Fig. 2 the prob-
ability density functions (PDFs) of values of Pn for the same
configurations shown in Fig. 1. The PDFs illustrated in Fig. 2
are mathematically defined as the normalized distribution of
the quantum amplitudes’ probability of occupation over the
space-time set of events. It characterizes the statistical be-
havior of the quantum walk, specifically with respect to the
emergence of rogue waves. In fact, looking into these PDFs is
relevant because they may exhibit another important signature

FIG. 2. Probability density functions (PDFs) of Pn values for
the same parameters as in Fig. 1. The red vertical line marks the
threshold Pth = 2P1/3 for the RW occurrence. More pronounced non-
Gaussian PDFs occur close to the θ = π/4 Hadamard choice, while
results for θ = 4π/9 near the Pauli-X choice display a Gaussian-like
shape.

of the occurrence of RWs, which is a non-Gaussian L-shape-
like statistics [12,41]. The threshold amplitude value Pth is
shown as a red vertical line in Fig. 2. We notice that, consistent
with the results in Fig. 1, all cases exhibit RW events with Pn

surpassing the threshold limit, except for the quantum walk
with coin parameter θ = 4π/9 near the Pauli-X choice in
the strongly disordered regime, which shows a Gaussian-like
profile. In Fig. 2(c) the Hadamard quantum walk in the weakly
disordered regime (W = 0.1) displays the PDF with largest
number of RW events among all cases shown, thus suggesting
that this regime favors the emergence of RWs.

The results shown in Figs. 1 and 2 evidence that the emer-
gence of RWs in DTQWs depends strongly on the interplay
between quantum coins and the degree of disorder. Indeed,
the amplitude of these rare and unpredictable extreme events
varies according to the specific quantum coin applied to the
dynamics of the quantum walker. In Fig. 3 we present the
maximum probability amplitude Pmax averaged over 104 inde-
pendent walk realizations, in a chain with N = 100 sites after
t = 100N time steps, for quantum coins in the whole range
θ ∈ [0, π/2] and considering five disorder strengths in the in-
terval W ∈ [0.1, 0.5]. We identify in Fig. 3 three regions based
on the combination of quantum coins and disorder degree, as
follows.

In region (I), for coins from the θ = 0 Pauli-Z choice and
up to θ ≈ 0.3, the average amplitude of RWs tends to be
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FIG. 3. Maximum probability amplitudes of RWs for quantum
coins in the range θ ∈ [0, π/2] and five disorder strengths, W =
0.1, 0.2, 0.3, 0.4, 0.5, averaged over 104 walk realizations, in a chain
with N = 100 sites after t = 100N time steps. Three regions are
identified. In region (I), for coins close to the θ = 0 Pauli-Z choice,
wave-function amplitudes are higher for stronger degrees of disorder.
In region (II), for coins with intermediate θ , above the Pauli-Z coin
and below the θ = π/4 Hadamard coin, a moderate disorder strength
(W = 0.2) yields larger amplitudes. In region (III), larger θ values
up to the θ = π/2 Pauli-X choice lead weakly disordered systems to
consistently exhibit higher RW amplitudes.

higher for stronger degrees of disorder (W = 0.5 in Fig. 3).
In this case the interaction with coins near the Pauli-Z choice
amplifies the effect of disorder, leading to more pronounced
RW events. In region (II), quantum walks with intermediate
disorder (W = 0.2) exhibit larger probability amplitudes on
average. This suggests that the occurrence of RWs in this
regime is more likely for quantum coins away from both
Pauli-Z and Pauli-X choices, 0.3 � θ � 0.6, and for moderate
disorder strengths. Finally, in region (III), in the regime of
weakly disordered quantum walks (W = 0.1), the average
maximum probability amplitude of RWs remains consistently
higher when compared with other disorder degrees. This result
indicates that for coins with θ � 0.6, even for relatively low
disorder, there is a higher probability of observing RW events.

We now turn to the analysis of the relative fraction of
RW events occurring for disorder strengths in the range W ∈
[0, 0.5]. Figure 4 portrays this quantity averaged over 104

walks after t = 100N time steps, for chains with N = 50, 100,
200, 400, 800, 1600, and 3200 sites, showing how the system
size influences the statistics and localization behavior of RWs.
We consider in Fig. 4(a) the quantum coin with θ = π/18.
In this case, we observe that the minimum value of W in
the weak disorder regime for the emergence of RWs changes
with the system size, despite the high mobility of the quantum
walker. The number of RW events always saturates on average
at relative values no larger than 0.3 for all chain sizes and
sufficiently large disorder, a result directly related to the local-
ization wavelength of the walker’s wave function for quantum
coins close to Pauli-Z choice. So, before reaching saturation
the evolution of the wave packet is generally characterized

FIG. 4. Relative fraction of RW events as a function of the
disorder strength W for N = 50, 100, 200, 400, 800, 1600, 3200
chain sizes, with three representative choices of quantum coins:
(a) θ = π/18, (b) θ = π/4 (Hadamard), and (c) θ = 4π/9. Averages
were taken over 104 quantum walk realizations after t = 100N time
steps.

by sparse low-amplitude waves that hardly add up to produce
rogue events.

On the other hand, for the Hadamard quantum walk with
θ = π/4, Fig. 4(b) shows that the minimum degree of dis-
order required for the emergence of RWs is reduced. In the
strongly disordered regime the relative fraction of RW events
is much smaller than the corresponding one for θ = π/18,
shown in Fig. 4(a). In addition, for quantum walks with coins
tending to the Pauli-X choice, θ = 4π/9 in Fig. 4(c), no RWs
arise for disorder strengths W � 0.2. This observation sug-
gests the emergence of an interesting behavior in the regime
in which the system becomes predominantly localized, par-
ticularly for W � 0.2. As the disorder strength approaches
this value, our results indicate a pivotal shift in the system’s
behavior. The competition between the quantum walker’s mo-
bility for θ = 4π/9 (low degree of mobility) and the degree
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of localization starts to intensify, leading to enhanced local-
ization effects on the wave packet. This causes a substantial
reduction in the walker’s mobility, implying a decrease in
the probability of emergence of rogue quantum amplitudes.
Our results indicate that the region characterized by W � 0.2
presents an optimal scenario for the emergence of RW events.
Furthermore, in the case in which the chain length N is con-
siderably large (presumably in the N → ∞ limit as well), the
results suggest the occurrence of rogue quantum amplitudes
for any minimum value of W . It is thus noticeable that this
phenomenon emerges due to the interaction of the large chain
length with the quantum walk features under changes in the
disorder degree.

In order to deepen our understanding of these findings,
we plot in Fig. 5(a) the minimum disorder strength Wc above
which RWs can emerge as a function of the chain size N , for
the three previous values of θ . Regardless of the coin choice,
we notice that Wc ∝ N−1/2, so that an increase in the chain
size renders the quantum system to be more susceptible to
RW events. This scaling behavior relates to the fact that the
emergence of RWs in this context is induced by disorder,
and so these events take place when the associated Anderson
localization length λ decreases to a value smaller than the
system size, λ < N . In fact, in the regime of weak disorder the
typical localization length of the eigenstates in quantum walks
subjected to random phase shifts exhibits [45] a quadratic de-
pendence on the inverse of the square disorder width, namely,
λ = k/W 2, where k is a constant. Hence the condition for the
emergence of RWs becomes k/W 2 < N , or W > (k/N )1/2, in
agreement with Fig. 5(a).

Figure 5(b) displays the dependence of Wc on the quantum
coin value θ , for a chain with N = 100 sites and t = 100N .
The blue and gray colors depict regions (I) and (II), respec-
tively, associated with the presence or absence of RW events.
We note that quantum coins near the θ = 0 Pauli-Z choice
are more effective in mitigating the occurrence of RWs. On
the other hand, as one considers coins closer to the θ = π/2
Pauli-X choice, a monotonic decay of Wc becomes apparent,
underscoring the substantial influence of quantum coins on the
occurrence of RW events in DTQWs.

We also examined, in Fig. 5(c), the disorder profile with θ

for the emergence of the maximum number of RWs (Wmax),
for chain sizes N = 100 (circles), 200 (squares), and 400
(triangles). A monotonic decrease (increase) of Wmax with θ

(N) is observed, indicating that RW events exist in a broader
range of disorder strengths W for higher θ . In the inset, we
show how observing RW events depends on the maximum
disorder strength Wend as a function of θ . The blue and gray
colors represent regions (III) and (IV), respectively, associated
with the presence or absence of RW events.

Finally, all the above findings can be summarized in the
comprehensive mapping shown in Fig. 6 of the relative frac-
tion of RW events in the parameter space defined by the
quantum coin parameter (θ ∈ [0, π/2]) and disorder strength
(W ∈ [0, 0.5]), for a chain with N = 100 sites and t = 10N .
We first notice the absence of RWs in the weakly disordered
regime, 0 � W � 0.2, for quantum coins close to the θ =
0 Pauli-Z choice. Indeed, regardless of the disorder degree
the emergence of RWs is very rare in this regime. On the
other hand, for quantum coins in the range π/4 � θ � π/2,

FIG. 5. (a) Disorder strength Wc above which RWs emerge for
three choices of quantum coins: θ = π/18 (black circles), θ = π/4
(red squares, Hadamard), and θ = 4π/9 (blue triangles). The scaling
behavior Wc ∝ N−1/2 unveils that at W = Wc the localization length
λ ∝ 1/W 2 is of the order of the chain size N , independently of the
quantum coin. (b) The blue and gray colors depict regions (I) and (II),
respectively, associated with the presence or absence of RW events.
(c) Wmax for the observation of the maximum number of RW events
as a function of θ , for chain sizes N = 100 (circles), 200 (squares),
and 400 (triangles). Inset: maximum disorder strength Wend for the
observation of RW events.

disorder strengths 0 � W � 0.2 lead to the most likely occur-
rence of RW events, a trend that fades away as the θ = π/2
Pauli-X coin is approached. At last, in the intermediate and
high disorder regimes, 0.2 � W � 0.5, the relative fraction
of RW events remains nearly constant for quantum coins
0 � θ � 2π/9 and then starts to decline until entering a less
likely region, consistent with our previous findings.
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FIG. 6. Heat map of the fraction of RW events in the parameter
space W ∈ [0, 0.5] and θ ∈ [0, π/2], for a chain with N = 100 sites
and t = 100N . One identifies regions in which the occurrence of
RW events is very rare, such as near the points (θ,W ) = (0, 0) and
(θ,W ) = (π/2, 0.5), as well as configurations of quantum coins and
disorder strengths that promote the likely emergence of these events,
as in the region π/4 � θ � π/2 and 0 � W � 0.2. N.E, number of
events.

From Figs. 4 and 6, it is clear that the maximum selectivity
on W is obtained near the Pauli-X coin, an interesting aspect
uncovered by our study. The reason for this characteristic
involves a delicate interplay between the quantum walker’s
mobility and the influence of phase disorder. For Pauli-X
coins, particularly around θ = 4π/9, the exclusion of RW
events for disorder strengths W � 0.2 indicates a transition to
a localized state. This transition occurs due to the competition
between the degree of mobility exhibited by the quantum
walker and the level of phase disorder. Actually, the increased
phase disorder, beyond the mentioned threshold, results in the
localization of the wave packet, thus preventing the emergence
of rogue quantum amplitudes. Hence the reduced mobility

coupled with higher disorder strengths shifts the system into
a localized state, with reduced occurrence of rogue events, in
agreement with our results.

IV. FINAL REMARKS AND CONCLUSIONS

In this paper, we have delved into the intriguing phe-
nomenon of rogue waves (RWs) within the discrete-time
quantum walks (DTQWs) protocol. Through a comprehensive
analysis of different quantum coin configurations and degrees
of disorder, we have shed light on the general properties
of these rare and unpredictable events in DTQW chains. In
this context, our investigation has revealed a rich interplay
between quantum dynamics, disorder, and coin parameters in
regard to the emergence of RW events.

Notably, we have identified distinct regimes where RWs
are more likely to be manifested, influenced by factors such
as quantum phase fluctuations, disorder-induced localization,
and spatial scaling. The transition from weak to strong disor-
der highlights the evolution of the RW behavior, with certain
coin configurations amplifying or dampening their occur-
rence.

The identification of specific parameter ranges of disorder
strength and quantum coins in which RWs are exceptionally
rare or abundant contributes to the understanding of their
controllability, with possible applications in various fields. In
general lines, our study provides a comprehensive framework
for exploring and manipulating RWs in DTQWs. The insights
gained here not only enrich the overall knowledge of RWs
but also offer potential avenues for harnessing their unique
properties in future advances.

ACKNOWLEDGMENTS

This work was partially supported by the Brazilian agen-
cies Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq) and Fundação de Amparo a Ciência e
Tecnologia do Estado de Pernambuco (FACEPE).

[1] E. J. Gumbel, Statistics of Extremes (Columbia University
Press, New York, 1958).

[2] J. Beirlant, Y. Goegebeur, J. Teugels, and J. Segers, Statistics of
Extremes: Theory and Applications (Wiley, New York, 2004).

[3] D. Sornette, Critical Phenomena in Natural Sciences (Springer,
Berlin, 2006).

[4] F. Wong and J. J. Collins, Evidence that coronavirus super-
spreading is fat-tailed, Proc. Natl. Acad. Sci. USA 117, 29416
(2020).

[5] B. C. Lima, P. I. R. Pincheira, E. P. Raposo, L. d. S. Menezes,
C. B. de Araújo, A. S. L. Gomes, and R. Kashyap, Extreme-
value statistics of intensities in a cw-pumped random fiber laser,
Phys. Rev. A 96, 013834 (2017).

[6] K. Basnayake, D. Mazaud, A. Bemelmans, N. Rouach, E.
Korkotian, and D. Holcman, Fast calcium transients in dendritic
spines driven by extreme statistics, PLoS Biol. 17, e2006202
(2019).

[7] C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the
Ocean (Springer, Berlin, 2008).

[8] S. Haver, A possible freak wave event measured at the Draupner
Jacket January 1 1995, in Rogue Waves Workshop (Ifremer,
Brest, 2004), p. 1.

[9] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Optical rogue
waves, Nature (London) 450, 1054 (2007).

[10] J. M. Dudley, G. Genty, A. Mussot, A. Chabchoub, and F. Dias,
Rogue waves and analogies in optics and oceanography, Nat.
Rev. Phys. 1, 675 (2019).

[11] J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, Instabilities,
breathers and rogue waves in optics, Nat. Photonics 8, 755
(2014).

[12] C. Bonatto, S. D. Prado, F. L. Metz, J. R. Schoffen, R. R. B.
Correia, and J. M. Hickmann, Super rogue wave generation in
the linear regime, Phys. Rev. E 102, 052219 (2020).

[13] J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, Dissipative
rogue waves: Extreme pulses generated by passively mode-
locked lasers, Phys. Rev. E 84, 016604 (2011).

[14] W. M. Moslem, P. K. Shukla, and B. Eliasson, Surface plasma
rogue waves, Europhys. Lett. 96, 25002 (2011).

062206-6

https://doi.org/10.1073/pnas.2018490117
https://doi.org/10.1103/PhysRevA.96.013834
https://doi.org/10.1371/journal.pbio.2006202
https://doi.org/10.1038/nature06402
https://doi.org/10.1038/s42254-019-0100-0
https://doi.org/10.1038/nphoton.2014.220
https://doi.org/10.1103/PhysRevE.102.052219
https://doi.org/10.1103/PhysRevE.84.016604
https://doi.org/10.1209/0295-5075/96/25002


MANAGING ROGUE QUANTUM AMPLITUDES: A POSSIBLE … PHYSICAL REVIEW A 108, 062206 (2023)

[15] L. Wen, L. Li, Z.-D. Li, S.-W. Song, X.-F. Zhang, and W. M.
Liu, Matter rogue wave in Bose-Einstein condensates with at-
tractive atomic interaction, Eur. Phys. J. D 64, 473 (2011).

[16] Z. Yan, Vector financial rogue waves, Phys. Lett. A 375, 4274
(2011).

[17] A. K. Dal Bosco, D. Wolfersberger, and M. Sciamanna, Ex-
treme events in time-delayed nonlinear optics, Opt. Lett. 38, 703
(2013).

[18] V. Odent, M. Taki, and E. Louvergneaux, Experimental spatial
rogue patterns in an optical feedback system, Nat. Hazards
Earth Syst. Sci. 10, 2727 (2010).

[19] C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller,
J. R. R. Leite, and J. R. Tredicce, Deterministic optical rogue
waves, Phys. Rev. Lett. 107, 053901 (2011).

[20] S. Toenger, T. Godin, C. Billet, F. Dias, M. Erkintalo, G. Genty,
and J. M. Dudley, Emergent rogue wave structures and statis-
tics in spontaneous modulation instability, Sci. Rep. 5, 10380
(2015).

[21] F. Selmi, S. Coulibaly, Z. Loghmari, I. Sagnes, G. Beaudoin,
M. G. Clerc, and S. Barbay, Spatiotemporal chaos induces ex-
treme events in an extended microcavity laser, Phys. Rev. Lett.
116, 013901 (2016).

[22] C. J. Gibson, A. M. Yao, and G.-L. Oppo, Optical rogue waves
in vortex turbulence, Phys. Rev. Lett. 116, 043903 (2016).

[23] P. Walczak, S. Randoux, and P. Suret, Optical rogue waves in
integrable turbulence, Phys. Rev. Lett. 114, 143903 (2015).

[24] R. Höhmann, U. Kuhl, H.-J. Stöckmann, L. Kaplan, and E. J.
Heller, Freak waves in the linear regime: A microwave study,
Phys. Rev. Lett. 104, 093901 (2010).

[25] L. H. Ying, Z. Zhuang, E. J. Heller, and L. Kaplan, Linear
and nonlinear rogue wave statistics in the presence of random
currents, Nonlinearity 24, R67 (2011).

[26] N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, Rogue
waves and rational solutions of the nonlinear Schrödinger equa-
tion, Phys. Rev. E 80, 026601 (2009).

[27] M. Tlidi and M. Taki, Rogue waves in nonlinear optics, Adv.
Opt. Photonics 14, 87 (2022).

[28] F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod.
Phys. 80, 1355 (2008).

[29] D. Rivas, A. Szameit, and R. A. Vicencio, Rogue waves in
disordered 1D photonic lattices, Sci. Rep. 10, 13064 (2020).

[30] L. J. R. Bezerra Jr., D. Morais, A. R. C. Buarque, F. S. Passos,
and W. S. Dias, Thresholds between modulational stability,

rogue waves and soliton regimes in saturable nonlinear media,
Nonlinear Dyn. 111, 6629 (2023).

[31] A. R. C. Buarque, W. S. Dias, G. M. A. Almeida, M. L. Lyra,
and F. A. B. F. de Moura, Rogue waves in quantum lattices with
correlated disorder, Phys. Rev. A 107, 012425 (2023).

[32] K. Manouchehri and J. Wang, Physical Implementation of
Quantum Walks (Springer, Berlin, 2014).

[33] A. R. C. Buarque, W. S. Dias, F. A. B. F. de Moura, M. L. Lyra,
and G. M. A. Almeida, Rogue waves in discrete-time quantum
walks, Phys. Rev. A 106, 012414 (2022).

[34] A. R. C. Buarque and W. S. Dias, Self-trapped quantum walks,
Phys. Rev. A 101, 023802 (2020).

[35] C. Navarrete-Benlloch, A. Pérez, and E. Roldán, Nonlinear
optical galton board, Phys. Rev. A 75, 062333 (2007).

[36] M. A. Pires and S. M. D. Queirós, Quantum walks with sequen-
tial aperiodic jumps, Phys. Rev. E 102, 012104 (2020).

[37] A. R. C. Buarque and W. S. Dias, Probing coherence and
noise tolerance in discrete-time quantum walks: Unveiling self-
focusing and breathing dynamics, Phys. Rev. A 103, 042213
(2021).

[38] A. R. C. Buarque, F. S. Passos, W. S. Dias, and E. P. Raposo,
Discrete-time quantum walk dispersion control through long-
range correlations, Phys. Rev. E 107, 064139 (2023).

[39] Q.-Q. Wang, X.-Y. Xu, W.-W. Pan, K. Sun, J.-S. Xu, G.
Chen, Y.-J. Han, C.-F. Li, and G.-C. Guo, Dynamic-disorder-
induced enhancement of entanglement in photonic quantum
walks, Optica 5, 1136 (2018).

[40] R. Vieira, E. P. M. Amorim, and G. Rigolin, Entangling power
of disordered quantum walks, Phys. Rev. A 89, 042307 (2014).

[41] L. Gao, Q. Wu, Y. Cao, S. Wabnitz, and T. Zhu, Optical polar-
ization rogue waves and their identifications, J. Phys.: Photonics
2, 032004 (2020).

[42] C. M. Chandrashekar, R. Srikanth, and R. Laflamme, Optimiz-
ing the discrete time quantum walk using a SU(2) coin, Phys.
Rev. A 77, 032326 (2008).

[43] R. A. Campos, B. E. A. Saleh, and M. C. Teich, Quantum-
mechanical lossless beam splitter: SU(2) symmetry and photon
statistics, Phys. Rev. A 40, 1371 (1989).

[44] A. R. C. Buarque, M. L. Lyra, and W. S. Dias, Bloch-like super-
oscillations and unidirectional motion of phase-driven quantum
walkers, Phys. Rev. A 103, 012222 (2021).

[45] S. Derevyanko, Anderson localization of a one-dimensional
quantum walker, Sci. Rep. 8, 1795 (2018).

062206-7

https://doi.org/10.1140/epjd/e2011-20485-4
https://doi.org/10.1016/j.physleta.2011.09.026
https://doi.org/10.1364/OL.38.000703
https://doi.org/10.5194/nhess-10-2727-2010
https://doi.org/10.1103/PhysRevLett.107.053901
https://doi.org/10.1038/srep10380
https://doi.org/10.1103/PhysRevLett.116.013901
https://doi.org/10.1103/PhysRevLett.116.043903
https://doi.org/10.1103/PhysRevLett.114.143903
https://doi.org/10.1103/PhysRevLett.104.093901
https://doi.org/10.1088/0951-7715/24/11/R01
https://doi.org/10.1103/PhysRevE.80.026601
https://doi.org/10.1364/AOP.438025
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1038/s41598-020-69826-x
https://doi.org/10.1007/s11071-022-08170-3
https://doi.org/10.1103/PhysRevA.107.012425
https://doi.org/10.1103/PhysRevA.106.012414
https://doi.org/10.1103/PhysRevA.101.023802
https://doi.org/10.1103/PhysRevA.75.062333
https://doi.org/10.1103/PhysRevE.102.012104
https://doi.org/10.1103/PhysRevA.103.042213
https://doi.org/10.1103/PhysRevE.107.064139
https://doi.org/10.1364/OPTICA.5.001136
https://doi.org/10.1103/PhysRevA.89.042307
https://doi.org/10.1088/2515-7647/ab9bf7
https://doi.org/10.1103/PhysRevA.77.032326
https://doi.org/10.1103/PhysRevA.40.1371
https://doi.org/10.1103/PhysRevA.103.012222
https://doi.org/10.1038/s41598-017-18498-1

