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PT -symmetry breaking in quantum spin chains with exceptional non-Hermiticities
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Since the realization of quantum systems described by non-Hermitian Hamiltonians with parity-time (PT )
symmetry, interest in non-Hermitian, quantum many-body models has steadily grown. Most studies to date
map to traditional quantum spin models with a non-Hermiticity that arises from making the model parameters
complex or purely imaginary. Here we present a set of models with non-Hermiticity generated by splitting a
Hermitian term into two Jordan-normal form parts, and the perturbations are confined to one or two sites. We
present exact diagonalization results for a finite PT threshold in such models and provide an analytical approach
for understanding the numerical results. Surprisingly, with non-Hermitian potentials confined to two or even a
single site, the PT threshold seems insensitive to the size of the quantum spin chain. Our results provide a
pathway to experimentally feasible non-Hermitian quantum spin chains where the confluence of many-body
effects and non-Hermiticity effects can be observed.
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I. INTRODUCTION

Since the seminal discovery by Bender et al. 25 years
ago [1], the field of non-Hermitian systems has dramatically
flourished. Research initially focused on continuum, nonrel-
ativistic Schrödinger equations with complex (often purely
imaginary) potentials that were invariant under combined
operations of parity and time reversal, i.e., V (x) = V ∗(−x)
[2–4]. Such PT -symmetric Hamiltonians showed purely real
spectra at small non-Hermiticity, going over to complex-
conjugate spectra at large non-Hermiticity [5,6]. Experiments
in wave systems (optics [7–9], acoustics [10], and the like
[11,12]) with balanced, spatially separated gain and loss
provided a simple physical interpretation for PT -symmetric
Hamiltonians as effective models for open systems [13,14].
From this vantage point, the PT -symmetry-breaking tran-
sition marks the concomitant emergence of amplifying and
decaying modes in an open system. Thus, in the classical
domain, PT -symmetric Hamiltonians are often modeled with
purely anti-Hermitian potentials that signify local amplifica-
tion or absorption. Over the years, these ideas have been
generalized to time-periodic models [15–17], non-Markovian
models [18,19], and synthetic degrees of freedom [20,21], all
in the classical domain.

In the quantum domain, the creation of balanced gain and
loss potentials is precluded by thermal fluctuations associ-
ated with the dissipation [22] and even at zero temperature
the quantum noise associated with linear amplifiers [23,24].
Instead, the coherent nonunitary dynamics generated by
PT -symmetric Hamiltonians is simulated by mode-selective
losses [25,26], Hamiltonian dilation [27], or unitary dilation
[28] methods. Most recently, it was realized that a Lindbla-
dian minimal quantum system [29–31], when postselected
on trajectories that do not undergo quantum jumps [32,33],
is described by a non-Hermitian PT -symmetric Hamilto-
nian with state-dependent trace-preserving nonlinearity [34].
This technique has enabled the exploration of non-Hermitian
Hamiltonians in quantum two-level systems [35–38].

Theoretical studies of non-Hermitian, quantum many-body
models have commenced by changing parameters in their Her-
mitian counterparts from real to complex while maintaining
their functional form [39–52]. Such models inherit the sym-
metries of their Hermitian counterparts, such as translational
invariance, and therefore can be analytically investigated.
However, preserving those symmetries comes at the cost
of having non-Hermitian potentials on a large number of
sites, spins, or other relevant degrees of freedom. Experi-
mentally, observing non-Hermitian dynamics in even a single
qubit is constrained by an exponentially decaying proba-
bility p1 ∼ e−γ t for obtaining no-quantum-jump trajectories
[35–38]. When simulating the dynamics of a system with n
non-Hermitian qubits, the success probability Pn, given by
quantum trajectories where none of them undergoes a quan-
tum jump, is doubly exponentially suppressed, Pn = pn

1 ∼
exp(−nγ t ). This experimental-feasibility analysis endorses a
minimal footprint for the non-Hermitian potential, even at the
expense of symmetries.

Here we present a class of models with non-Hermiticity
created by splitting a Hermitian potential into two Jordan-
form terms and then spatially separating them. For example,
in a transverse-field quantum Ising model, this means γ σ x

m →
γ (σ+

m−n + σ−
m+n), where σα

m represents the relevant Pauli op-
erator on site m. Note that σ± ≡ (σ x ± iσ y)/2 are rank-1
Jordan-form matrices, i.e., they represent single-qubit Hamil-
tonians at an exceptional point (EP) [35]. Contrary to typi-
cal anti-Hermitian potentials, (exceptional) non-Hermiticities
such as γ σ±, with their EP degeneracies, do not have an
energy scale. In quantum spin systems with a finite number
of levels, the mapping between raising (lowering) operators
σ+ (σ−) and gain (loss) is ambiguous due to the presence of
a ceiling in the spectrum. On the contrary, in bosonic mod-
els such as two coupled oscillators, this splitting procedure
will generate non-Hermitian gain or loss potentials such as
γ (a†

1 + a2). We emphasize that the operators σ± are terms in
the Hamiltonian, not dissipators routinely used in Lindblad
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dynamics to model spontaneous emission and absorption; the
latter give rise to anti-Hermitian potentials [53].

In this paper, we investigate the PT -symmetry-breaking
threshold in transverse-field Ising models with a finite number
of spins N and its dependence on parameters using an exact
diagonalization method. Other traditional techniques such as
perturbation theory or tensor networks are ideal for probing a
small ground-state-proximate subspace of the exponentially
large Hilbert space. Determining the PT -breaking thresh-
old, where the Hamiltonian first develops complex-conjugate
eigenvalues, requires knowledge of the entire spectrum, since
the states that develop complex eigenvalues are typically not
at the bottom (or the top) of the band [54].

The plan of the paper is as follows. In Sec. II we intro-
duce the canonical quantum Ising chain and its non-Hermitian
variations. The non-Hermitian variations on it consist of per-
turbations on one or two sites. In addition to the PT threshold
for the zero-transverse-field case, we also present the flow
of eigenvalues across the PT -symmetry-breaking transition.
In Sec. III we present an analytical approach that explains
the surprising insensitivity of the zero-field PT -threshold
results to the spin-chain size N from Sec. II. We conclude
the paper in Sec. IV with higher-spin generalizations, a brief
feasibility analysis, and a summary. The PT -threshold results
are valid for chains with N > 2 where the bulk-vs-edge sites
and periodic-vs-open boundary conditions are unambiguously
defined but do not seem to depend on N .

II. NON-HERMITIAN QUANTUM ISING MODELS

The canonical quantum Ising model with N sites is de-
scribed by the Hamiltonian

H0(J, hz ) = −J

4

∑
i=1

σ x
i σ x

i+1 − hz

2

∑
i=1

σ z
i , (1)

where J > 0 is the ferromagnetic coupling between adjacent
spins, the uniform transverse field is along the z axis, and
the boundary term σ x

Nσ x
1 is included when periodic bound-

ary conditions are required [55,56]. This exactly solvable
model undergoes a quantum phase transition from a sponta-
neously broken Z2-symmetry phase to a paramagnetic phase
with short-range correlations as the transverse-field strength
crosses hz = J/2 [57,58].

In this section, we investigate its varied non-Hermitian
extensions. We start with the hz = 0 case where H0 contains
only commuting operators and can be trivially diagonalized.
Adding a noncommuting term to H0 changes it into a genuine
quantum Ising model.

A. Two-site perturbations with Hermitian or anti-Hermitian
limit (hz = 0)

Consider the non-Hermitian extension

Heff(J, hz|γ ) = H0(J, hz ) + �+
pq(γ ), (2)

�+
pq = γ (σ+

p + σ−
q ) �= �+†

pq , (3)

where γ > 0 is the strength of the exceptional perturbations
σ± and 1 � p, q � N denote their locations along the chain.
When p = q, the perturbation (3) is trivially Hermitian and the

system has no threshold. Since Heff has real entries, its char-
acteristic polynomial has real coefficients and its eigenvalues
are real or complex conjugates [59].

Figure 1 summarizes the PT -threshold phase diagram of
such a quantum spin chain in the absence of transverse field.
It involves calculating the spectrum of Heff(J, 0|γ ) by exact
diagonalization and then recursively increasing the strength of
�+ until complex-conjugate eigenvalues emerge at the thresh-
old γPT. Figure 1(a) shows the dimensionless threshold γPT/J
for an N = 7 open chain as a function of (p, q), but the results
remain the same for any chain size N > 2. Ignoring the trivial
Hermitian case p = q (black diamonds), the threshold results
can be grouped into three categories:

γPT = 0 (red crosses) for adjacent sites (|p − q| = 1),
(4)

γPT = J/4 (blue circles) for edge sites (|p − q| > 1),
(5)

γPT = J/2 (green squares) for bulk sites (|p − q| > 1).

(6)

When periodic boundary conditions are imposed on Eq. (1),
the “edge sites” category [Eq. (5)] disappears; the threshold
is zero when the perturbations σ± are on adjacent sites and
γPT = J/2 when they do not share a bond. These numerical
results remain unchanged with respect to the number of spins
(N > 2), (open or periodic) boundary conditions, or the dis-
tance |p − q| � 2 and the locations of the two sites along the
chain. This surprising nonzero threshold implies that the P
operator is not the spatial reflection, k ↔ N + 1 − k. Indeed,
since the Hamiltonian Heff(J, hz|γ ) is purely real, its antilinear
symmetry can be chosen as P = 1N and T = ∗ (complex
conjugation).

To understand the mechanism of PT -symmetry breaking
under exceptional perturbations, we show the flow of eigen-
values Re(E ) (blue lines) and Im(E ) (red lines) as a function
of γ /J in Figs. 1(b)–1(f). Since the eigenvalues occur in
complex-conjugate pairs, it is sufficient to plot Im(E ) > 0.
When the potentials are maximally separated (p, q) = (1, N ),
starting from N bands with varying degeneracies, a set of
central bands undergoes level attraction and develops imag-
inary parts at γ = J/4 [Fig. 1(b)]. The ground state (or its
particle-hole symmetric counterpart) does not participate in
PT -symmetry breaking. Figure 1(c), with (p, q) = (6, 4),
shows that for bulk nonadjacent sites, again, PT symmetry
breaks with a multitude of bands across the energy-level spec-
trum at γ = J/2. The trivial case of a Hermitian perturbation
p = 1 = q shows expected linear level splitting [Fig. 1(d)].
When the perturbation sites share a bond, (p, q) = (2, 1), lin-
early increasing Im(E ) signals the zero threshold [Fig. 1(e)].
We note that the bands developing complex eigenvalues are
neither particle-hole symmetric nor at the bottom or the top.
Finally, when the edge perturbation sites are not maximally
separated, (p, q) = (6, 1), the flow of eigenvalues is different
[Fig. 1(f)] from the results in Fig. 1(a).

Next we replace the �+
pq potential by

�−
pq = γ (σ+

p − σ−
q ), (7)
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FIG. 1. PT -breaking threshold for a seven-spin chain with hz = 0 and non-Hermiticity �+
p,q [Eq. (3)]. (a) Apart from the Hermitian case at

p = q (black diamonds), the threshold takes three possible values: zero for adjacent sites (red crosses), γPT(p, q) = J/4 when at least one site
is at the edge (blue circles), and γPT(p, q) = J/2 when both sites are in the bulk (green squares). (b)–(f) Flow of eigenvalues Re(E )(γ )/J [blue
(dark gray) lines, bound to the real plane)] and Im(E )(γ )/J > 0 [red (light gray) lines, protruding forward] for the (p, q) locations marked in
(a). At γ = 0, the system has seven particle-hole symmetric bands with varying degeneracies spanning the 27 = 128 eigenvalues; at a finite γ ,
the particle-hole symmetry is generally broken. The ground-state band typically does not participate in the PT -symmetry-breaking transition.
Therefore, variational or perturbative methods that focus on the lowest-lying states cannot be used to determine the PT -symmetry-breaking
threshold.

which reduces to an anti-Hermitian term �−
pp = iγ σy when

p = q. When p �= q, the PT threshold γPT(p, q) = γPT(q, p)
is given by Eqs. (4)–(6). When p = q, the resulting threshold
γPT(p, p) = 0 for a bulk site, whereas γPT = J/4 for an edge
site. The PT thresholds obtained from exact diagonalization
appear to be independent of the number of spins N > 2, the
distance |p − q| > 1 between the perturbations, and the nature
of boundary conditions. Here too, since Eq. (7) has purely
real entries, PT = 1N∗ gives the corresponding antilinear
symmetry.

The simple expressions for the PT threshold [Eqs. (4)–(6)]
hint at an analytical solution. At this point, it is important to
recall that the spectrum of the Hamiltonian (1) is traditionally
obtained by using the Jordan-Wigner transformation to map
the problem onto noninteraction fermions [57,58]. Under this
mapping, however, the exceptional perturbations σ+

p and σ−
q

create non-Hermitian, fermionic string operators, thereby ren-
dering such an approach useless.

B. Single-site perturbations (hz = 0)

Inspired by the repeating structure of bands in Fig. 1 and
the finite PT threshold obtained in the anti-Hermitian limit of
Eq. (7), we now consider the Ising spin chain with a single-site
perturbation

�p(γ+, γ−) = γ+σ+
p + γ−σ−

p , (8)

where γ± ∈ R denote the strengths of (exceptional) non-
Hermiticities σ±

p that act on the spin at site p. Starting with the
case γ− = 0, the PT -breaking threshold for the Hamiltonian
H0 + �p(γ , 0) is given by

γPT(p) =
{

J/4 for the edge case

J/2 for the bulk case.
(9)

Figure 2 shows the evolution of the energy spectra of an
N = 8 chain as a function of γ when the sole perturbation
σ+ is on the edge site [Fig. 2(a)] and the bulk site p = 2
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FIG. 2. Flow of eigenvalues E (γ )/J for an eight-spin chain with
potential γ σ+ on one site. Blue (dark gray) lines (bound to the
real plane) are used for E (γ )/J that are purely real and red (light
gray) lines (protruding forward) are used for E (γ )/J that have an
imaginary part. At γ = 0, the system has eight particle-hole sym-
metric bands with varying degeneracies that account for the total
28 = 256 eigenvalues. (a) When the site is at the edge, Im(E ) > 0
emerge past the threshold γPT = J/4. (b) For a bulk site p = 3, the
complex-conjugate eigenvalues occur past the threshold γPT = J/2.

[Fig. 2(b)]. These results have many features in common
with the eigenvalue flows in Fig. 1. Specifically, we see that
starting with N particle-hole symmetric bands at γ = 0, the
PT breaking occurs at a threshold equal to J/4 or J/2, re-
spectively, but the ground-state eigenvalue does not become
complex. Since a unitary basis change can map σy → −σy

without changing the interaction term in H0 [Eq. (1)], the
threshold results for a �p(0, γ ) perturbation are the same as
in Eq. (9).

Finally, we consider the case where both γ± are varied. The
non-Hermitian purely real Hamiltonian is given by

Heff = H0 + (γ+ + γ−)σ x
p + i(γ+ − γ−)σ y

p . (10)

We characterize the PT -phase diagram in the (γ+, γ−) plane
by plotting the largest imaginary part of the eigenvalues of
Heff(γ+, γ−) obtained via exact diagonalization (Fig. 3). It
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FIG. 3. PT -phase diagram of a six-spin chain in the (γ+, γ−)
plane. Color denotes the maximum imaginary part Im(E )/J of the
eigenvalues of the Hamiltonian (10). Deep blue regions indicate the
PT -symmetric phase. (a) When the perturbation site is at the edge
(p = 1), γPT is positive along the antidiagonal. (b) When the site is
in the bulk (p = 2), the threshold is zero.

indicates whether the system is in the PT -symmetric phase
max Im(E ) = 0 (deep blue) or PT -symmetry-broken phase
max Im(E ) > 0 (other colors) and quantifies the amplification
rate for the PT -broken eigenstates. Along the diagonal γ+ =
γ−, Heff is Hermitian and the spectrum is always real. Along
the other diagonal, given by γ+ + γ− = 0, the perturbation (8)
is anti-Hermitian. In this case, we obtain a positive threshold
for the edge case [Fig. 3(a)], while the threshold is zero for the
bulk case [Fig. 3(b)], as seen in Sec. II A.

The PT -phase diagram in Fig. 3 is symmetric un-
der individual reflections across the two diagonals. Since
Im(E )(γ+, γ−) is an even function of the strength of the
iσ y term in Eq. (10), reflection symmetry along the main
diagonal is expected. Reflection symmetry along the an-
tidiagonal, on the other hand, arises because the Hermitian
term in �p [Eq. (8)] commutes with the Ising interaction
term H0.
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FIG. 4. Threshold γPT(hz ) for the Hamiltonian (2) with N = 9
spins and exceptional perturbations on two sites. (a) For perturbation
�+

pq, adjacent sites with zero threshold develop a finite threshold
proportional to |hz|. This is signified by max Im(E ) = 0 regions
that emerge at small γ when hz �= 0. (b) For edge sites, the hz = 0
threshold at γ /J = 0.25 [Eq. (5)] is suppressed to vanishingly small
values when hz = 0+ and increases with hz thereafter (solid lines
with symbols). For bulk sites, the threshold at γ /J = 0.5 [Eq. (6)] is
also suppressed to zero for hz = 0+ and increases with hz (dot-dashed
lines).

C. Effect of nonzero transverse field on two-site
perturbations (hz �= 0)

When the transverse field hz is introduced, the Hamiltonian
Heff contains three mutually noncommuting pieces, one for
each Pauli matrix. Since the PT -threshold results depend
only on hz, without loss of generality, we choose hz > 0. Here
we consider the fate of the Hamiltonian (2) where potentials
σ± are introduced on sites p and q, respectively. Apart from
the trivial Hermitian case (p = q), the behavior of the thresh-
old γPT can be categorized as

γPT(hz ) = A1hz for adjacent sites, (11)

γPT(hz ) = (J/4) + A2hz for both edge sites, (12)

γPT(hz ) = (J/4)δh,0 + A3hz for one edge site, (13)

γPT(hz ) = (J/2)δh,0 + A4hz for bulk sites, (14)

where Ak are configuration-dependent parameters. This be-
havior also persists when the non-Hermitian perturbation is
changed to �′

pq(γ ) ≡ γ (σ+
p + σ+

q ).
Figure 4 shows the typical dependence of max Im(E )(γ )

on the transverse field hz for the Hamiltonian Heff = H0 +
�+

pq. For adjacent sites p = q ± 1, the zero threshold at hz = 0
is lifted to values proportional to hz. This is indicated by
broadening of the region where max Im(E ) = 0 as γ is in-
creased from zero [Fig. 4(a)]. For nonadjacent cases, if one
of the sites is at the edge, the hz = 0 threshold is given by
γPT = J/4. It is suppressed to zero with the introduction of the
transverse field. As hz increases, the threshold also increases.

FIG. 5. (a) Threshold γPT(hz ) for the Hamiltonian (2) with N = 7
spins, now normalized vs the transverse field hz. Though the thresh-
old γPT(hz ) depends on the exact values of p, q, J , and hz, it is never
less than hz. Also shown is the flow of eigenvalues (b) Re(E )(γ /J )
[blue (dark gray)] and (c) Im(E )(γ /J ) [red (light gray)] for an N = 5
spin chain with perturbation �−

12 at transverse field hz/J = 0.1. The
eigenvalues become complex conjugates in three distinct groups.
The imaginary parts of the first two groups grow with increasing
γ , whereas the third group shows recombinant behavior where pairs
of eigenvalues become complex conjugates and then real again with
increasing γ /J . The PT threshold, defined by the first emergence of
complex eigenvalues, is dependent on p, q, J , and hz.

Similar behavior is observed for max Im(E )(γ ) when both
sites are in the bulk [Fig. 4(b)]. We have verified that these
results hold for spin chains up to size N = 12.

Next we consider the threshold in the weak-coupling limit
J 
 hz, γ , where the Hamiltonian becomes

H ≈ −hz

2

∑
i=1

σ z
i + γ (σ+

p + σ−
q ). (15)

Since the perturbations γ σ± = γ σ x ± iγ σ y are already at
the EP, adding a nonzero Hermitian transverse field displaces
the EP eigenvalues onto the real axis 0 =

√
γ 2 + (iγ )2 →

±|hz|/2. Therefore, in the limit J → 0, the PT threshold for
Eq. (15) diverges. For intermediate values of J/hz, we find that
the threshold remains finite γPT ∼ hz, albeit dependent on the
configuration. Figure 5(a) shows this behavior through (repre-
sentative) results for an N = 7 spin chain with configurations
listed in (12)–(14). Figure 5(b) shows the eigenvalue flows for
hz = J as a function of γ . The particle-hole symmetry of the
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FIG. 6. Evolution of max Im(E )(γ , hz ) of the Hamiltonian (10)
with N = 7 spins. Deep blue regions [max Im(E ) = 0] indicate PT -
symmetric phase. (a) For edge-site perturbation γ σ+

1 , the threshold
increases from J/4 with increasing hz. (b) For the same perturbation
in the bulk, the threshold increases from γPT(h = 0+) = 0 while
its value is J/2 at hz = 0. (c) Same as (a) but for anti-Hermitian
edge perturbation. (d) Same as (b) but for anti-Hermitian bulk-site
perturbation, where the no-field threshold is zero.

spectrum in Fig. 1 is destroyed by a nonzero transverse field,
the degeneracies are also lifted, and complex eigenvalues now
occur at different values of γ for different sets of levels.

D. Effect of nonzero transverse field on single-site
perturbation (hz �= 0)

Finally, we investigate the hz dependence of γPT for
the single-site perturbation model (10) with γ− = 0, by
tracking the maximum imaginary part of its eigenvalues,
max Im(E )(γ , hz ). Figure 6(a) shows that for an edge pertur-
bation, starting from J/4, the threshold continuously increases
with hz. In contrast, when the exceptional potential γ σ+ is on
an interior site, the threshold J/2 at hz = 0 is suppressed to
vanishingly small values for hz → 0 before increasing linearly
with hz [Fig. 6(b)]. When the edge-site potential is purely
anti-Hermitian, starting from J/4, the threshold further in-
creases continuously with hz [Fig. 6(c)]. Figure 6(d) shows
that when the anti-Hermitian potential iγ σ y is in the bulk, the
zero threshold at hz = 0 is linearly lifted. Thus, the transverse
field can strengthen or weaken the PT -symmetric phase.

III. SYMMETRIES AND THE
PT -BREAKING THRESHOLD

The simple N-independent results for the PT -breaking
threshold for a quantum Ising chain in the absence of

a transverse field hint at an analytical solution. The
numerically observed stability of that threshold γPT in the
points to the possibility of investigating the interplay between
the hz/J-driven quantum phase transition and the γ /J-driven
PT -symmetry-breaking transition. Here we discuss the ana-
lytical solution that shows why the PT threshold is robust
when hz = 0.

Consider the zero-field model with a single-site perturba-
tion �p(γ , 0) [Eq. (8)]. The eigenstates of H0 [Eq. (1)] can
be written as |ψ〉 = |±1〉 ⊗ |±2〉 · · · |±N 〉, where σ x

m|±m〉 =
±|±m〉 are the symmetric (antisymmetric) eigenstates at site
m. For a perturbation on site p, we consider an eigenstate
ansatz as

|φ〉 ≡ |±1〉 · · · |n̂p〉 · · · |±N 〉, (16)

where |n̂p〉 denotes the spin state at the perturbation site. The
eigenvalue equation satisfied by the state |φ〉 becomes

Hp|n̂p〉 =
(

hxσ
x + i

γ

2
σ y

)
|n̂p〉 = Ep|n̂p〉, (17)

hx = −J

4
〈φ|σ x

p−1 + σ x
p+1|φ〉 + γ

2
, (18)

where one of the p ± 1 terms is absent when the location
p is at the edge. The 2×2 Hamiltonian Hp [Eq. (17)] un-
dergoes PT -symmetry breaking when the strength of the
imaginary field is equal to that of the real field, i.e., hx =
±γ /2. This gives Eq. (9) as the threshold result. A similar
analysis can be carried out for other exceptional potentials,
including two-site potentials [Eq. (3)], when the two sites
are not adjacent. When the two sites are adjacent, a simi-
lar reduction to a 4×4 Hamiltonian gives the zero threshold
[Eq. (4)]. The interaction contribution to the effective field
in Eq. (18) vanishes in states where the neighboring spins
p ± 1 have opposite projections. For such states, the effective
Hamiltonian Hp remains at the exceptional point, producing
γ -independent flat bands in the energy spectrum that never be-
come complex. This unusual behavior results solely from our
choice of exceptional non-Hermiticities γ σ± that generate no
energy scale.

It is a useful exercise to think about what the threshold
analysis presented here would look like in the Jordan-Wigner
fermions language. When hz = 0, the single- or two-site non-
Hermiticities will lead to (p, q)-dependent fermionic strings,
all of which lead to simple threshold answers. One might
imagine obtaining different energy shifts through a pertur-
bative analysis. However, it is known that the perturbation
theory cannot be used to predict the PT threshold as its
radius of convergence is exactly at the boundary between the
PT -symmetric and PT -symmetry-broken regions [60,61].
Adding a transverse field hz only changes the fermions that
diagonalize the Hermitian Hamiltonian through a Bogoliubov
transform. Thus, the relative insensitivity of the threshold γPT

to configuration details is a common feature of systems with
or without the transverse field.

Note that although the two-site perturbation was motivated
by splitting a Hermitian term into two Jordan-normal-form
terms, symmetries in the hz = 0 case map σ+ ↔ σ− under
a local unitary transformation on the site of the potential. This
equivalence between the two potentials is another reminder

062205-6



PT -SYMMETRY BREAKING IN QUANTUM … PHYSICAL REVIEW A 108, 062205 (2023)

that in systems with a bounded eigenvalue spectrum, “gain”
and “loss” are not equivalent to raising and lowering oper-
ators. Additional unitary-equivalent terms such as γ σ+ ↔
−γ σ+ or hz ↔ −hz were already taken into account when
obtaining the PT -threshold results.

IV. DISCUSSION

In this paper, we have developed a class of PT -symmetric
quantum Ising models with N spins, where the non-Hermitian
potentials are confined to one or two sites and the resulting
nonzero PT threshold appears to be independent of N > 2. In
most traditional models, the non-Hermiticity is introduced by
changing model parameters from real to complex. That means
the number of sites with non-Hermiticity is proportional to
N , something that is virtually impossible to implement in
coupled-qubit realizations of a quantum spin chain. Therefore,
with experimental feasibility in mind, we have chosen local-
ized non-Hermiticities. Our second deliberate choice is that
instead of commonly used anti-Hermitian potentials (obtained
by changing a parameter from real to purely imaginary), we
have used perturbations that by themselves do not generate an

energy scale and therefore keep the system at an EP in the
limit γ � J, hz.

Our models show that introducing a single non-Hermitian
qubit in a Hermitian quantum Ising chain gives rise to a
γPT that can be varied with the transverse field. With full
control required over only the non-Hermitian qubit, our mod-
els provide a pathway to investigate the interplay between
interaction and non-Hermitian properties. Our results remain
qualitatively unchanged when the Hermitian Hamiltonian is
changed from a quantum Ising model to its integer-spin coun-
terpart or Heisenberg model with or without anisotropies. The
spin-1 case, for example, is made richer by the possibility of
different exceptional perturbations such as S+ = (Sx + iSy)/2
and S+2 �= 0. An exact diagonalization analysis is required to
obtain the general threshold γPT(Jxx, Jyy, Jzz; h) as a function
of the multiple, possible non-Hermiticities, and its exhaustive
characterization is an open problem.
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