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Indefinite temporal order without gravity
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According to the general theory of relativity, time can flow at different rates depending on the configuration
of massive objects, affecting the temporal order of events. Combined with quantum theory, this gravitational
effect can result in events with an indefinite temporal order when a massive object is prepared in a suitable
quantum state. This was argued to lead to a theory-independent test of the nonclassical order of events through
the violation of Bell-type inequalities for temporal order. Here we show that the theory independence of this
protocol is problematic: one of the auxiliary assumptions in the above approach turns out to be essential,
while it is explicitly theory dependent. To illustrate this problem, we construct a complete scenario where
accelerating particles interacting with optical cavities result in a violation of temporal Bell inequalities. Due
to the equivalence principle, the same problem arises when one considers the gravitational case, and thus
theory-dependent additional assumptions are needed behind Bell inequalities for temporal order to interpret a
violation of the final inequalities as a signature of indefinite temporal order.
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I. INTRODUCTION

Quantum theory and general relativity rest on very different
foundations. In quantum theory, systems, in general, do not
posses definite physical properties prior to their measurement;
however, processes take place on a fixed background space-
time, where the causal relations between events—spacelike or
timelike—are defined independently of any operation or phys-
ical process. On the other hand, in general relativity, causal
relations are not fixed a priori, as the geometry depends on the
configuration of mass-energy. Therefore, it is expected that a
unification of the two theories should result in nonclassical, or
indefinite, causal structure [1,2].

However, the physical meaning of such an indefinite causal
structure is not clear. An early example of an indefinite causal
structure was provided by the so-called quantum switch, intro-
duced in Ref. [3], where it was shown that quantum degrees
of freedom (DoFs) controlling the order of operations can
generate evolution that cannot be described in terms of a stan-
dard quantum circuit. Most approaches to quantum gravity
attempt to establish a complete theoretical framework (that
would include, among other features, description of nonclas-
sical space-times and how they arise) [4,5] but do not offer
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a direct physical interpretation of such non-classical causal
structure.

Recent work has proposed a Gedanken experiment to di-
rectly pinpoint the physical meaning of the nonclassicality of
temporal order, independently of the details of a full quantum
theory of gravity [6]. The idea is that a superposition of mass
configurations will induce a corresponding nonclassical time
dilation on any system one might use as a “clock” to iden-
tify space-time events, effectively producing, for example, a
superposition of different orderings of timelike events. It was
argued that, following a specific protocol, one can perform
a task—the violation of a Bell inequality—that would be
impossible if the temporal order of events was classical. The
protocol was argued to provide a theory-independent certifi-
cation of the nonclassicality of temporal order among a set of
events.

Here we present an in-principle complete scheme where
accelerating particles interact with quantum fields according
to their own internal clock DoFs. Such a purely special-
relativistic setting avoids any need for assuming physics
beyond a currently tested regime, especially, the back-action
on space-time of the involved matter is negligible. A superpo-
sition of the clock states of motion causes the corresponding
nonclassical time dilation, as investigated in Ref. [7]. By
letting the particles evolve in superposition along such accel-
erating trajectories, we show that the particle-field interaction
events reproduce the “entanglement of temporal order” found
in the gravitational case [6]. Remarkably, our study reveals
that a violation of the Bell inequalities persists even when the
entangled events are spacelike, challenging the interpretation
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that the protocol uniquely identifies nonclassical temporal
order of necessarily timelike events. We find that this is due
to the failure of one of the auxiliary assumptions made in
Ref. [6], namely, that the superposed amplitudes only differ in
the event order, while all local evolutions are trivial, including
the free evolution of the systems which are measured to reveal
the violation of Bell inequalities. We also argue that the failure
of this assumption is ubiquitous and would be present in a
generic dynamical context, including a gravitational imple-
mentation of the protocol. We also propose an interpretation
of the Bell inequality violation in scenarios where nonclas-
sicality of temporal order cannot possibly explain the results
(e.g., for spacelike separated events mentioned above).

Our results raise a fundamental question, whether it is
possible to formulate an operational scenario that can un-
ambiguously discriminate the nonclassicality of the causal
structure of space-time from dynamical effects, necessarily
present in its physical implementations, or other laboratory
implementations of quantum causal structures [8–14]. We
present a discussion on what extensions to the original pro-
tocol might be required in order to achieve that.

Furthermore, a flat space-time version of the protocol may
allow for a laboratory implementation as well as provide
further insights into the requirements entering the origi-
nal, gravitational, argument. Finally, it seems probable that
the quantum indeterminacy of space-time structures lies at
the heart of the still unknown quantum theory of gravity
[15,16], therefore comparing special relativistic and gravi-
tational schemes could also provide insights into possible
violations of the equivalence principle due to quantum effects.

Throughout this paper, we use natural units, for which we
have h̄ = c = 1.

A. Gravitational implementation of an indefinite temporal order

For later reference, we will briefly review the salient as-
pects of the protocol introduced in Ref. [6]. The goal of the
protocol is to realize four events, A1, B1, A2, B2, whose pair-
wise order is entangled: A1 is in the causal past-past lightcone
of B1, denoted A1 ≺ B1 when A2 ≺ B2, and A1 is in the causal
future-future lightcone of B1, denoted A1 � B1 when A2 � B2,
(or an exemplary depiction of two events A and B being in
the relation A ≺ B or A � B–see Fig. 1. The full scenario is
arranged such that this entanglement leads to correlations that
do not admit a local classical explanation, which is formalised
in analogy to Bell-like scenarios for local classical proper-
ties. Crucially, an “event” is here understood operationally
as something that happens at a particular time and place and
thus is defined by some physical reference system. Likewise,
for a fixed event A, the relation A ≺ B operationally defines
as future such events B that are reachable by a photon or a
massive particle sent at event A.

In the considered protocol, the reference systems are four
clocks, a1, b1, a2, b2, while the events are associated with
quantum operations performed on some additional system
when the corresponding clock reaches a specified proper time:
A1 takes place (an operation is performed) when a1 reaches
time τ ∗, B1 takes place when b1 reaches time τ ∗, and so on.

In flat space-time, if the clocks are initially synchro-
nized (in an arbitrary chosen reference frame), all events are

FIG. 1. Position of a mass as a control of time order. Two iden-
tical clocks a, b are synchronized (with any source mass sufficiently
far away). Events A, B are defined as the location and fixed proper
time τ ∗ of the corresponding clock. In the absence of any source
mass, events A, B are spacelike. However, if a massive object is
initially (just after synchronization) placed closer to clock a than to
b, event A can be in the future lightcone of B (for sufficiently large
τ ∗), denoted B ≺ A. Analogously, for the mass closer to b, event A
can be up in the past lightcone of B, A ≺ B.

spacelike separated. However, introducing a massive body
closer to some clocks than others causes a differential time
dilation, which can push some events into the future lightcone
of other events. Thereby, the position of the mass provides a
control of the time order of events, see Fig. 1. If the control
mass is prepared in a semiclassical configuration denoted KA,
event Aj , j = 1, 2 is in the past of Bj , while for a different
configuration, KB, event Bj is in the past of Aj . Thus, Aj is
timelike from Bj , for each mass configuration, but their order
is interchanged. Moreover, for both mass configurations, the
pair A1, B1 is spacelike from A2, B2.

The full protocol also features two of the above-mentioned
additional systems on which the operations are performed, S1

and S2, referred to as targets. The operations at events A1 and
B1 are applied only on the target system S1, while those at
A2 and B2 are applied only on S2. The two target systems
are initially in a product state, |ψ〉S1 |ψ〉S2 , and the considered
operations are unitaries: Û A1 is applied on S1 at event A1,
etc. Operations applied to the target system S1 and S2 will be
referred to as wings 1 and 2, respectively, of the experiment.
Then, by preparing the control mass in a superposition state,
|K〉 = 1√

2
(|KA〉 + |KB〉), one obtains the final state

|�fin〉 = 1√
2

(|KA〉Û B1Û A1 |ψ〉S1Û B2Û A2 |ψ〉S2

+ |KB〉Û A1Û B1 |ψ〉S1Û A2Û B2 |ψ〉S2 ). (1)

Next, the control mass is measured in the basis |±〉 =
1√
2
(|KA〉 ± |KB〉), leaving the target system in

|�post〉 = 1√
2

(|ψA〉S1 |ψA〉S2 ± |ψB〉S1 |ψB〉S2 ), (2)

where |ψA〉 = Û BÛ A|ψ〉, |ψB〉 = Û AÛ B|ψ〉, and we are using
the same unitaries in the two wings, i.e., for A1 and A2 we have
Û A1 = Û A2 ≡ Û A, and for B1 and B2 we have Û B1 = Û B2 ≡
Û B.

In general, |�post〉 is an entangled state, unless |ψA〉 = |ψB〉
(and it is elementary to find examples of unitaries Û A, Û B such
that this is not the case). In the final step of the protocol, the
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TABLE I. Assumptions of Bell’s theorem for temporal order (see Ref. [6]).

Assumption Explanation

Local state The initial state of the whole system is separable.
Local operations All transformations performed on the systems are local .
Classical order The events at which operations (transformations and measurements) are performed are classically ordered.
Spacelike separation Events (A1, B1) are spacelike separated from events (A2, B2).

Additionally, the measurement of a control mass is space-like separated from both wings.
Free choice The measurement choices in the Bell measurement are independent of the rest of the experiment.

entangled state is measured in appropriate bases that lead to a
violation of a Bell inequality.

The argument presented in Ref. [6] is that, given the initial
product state of the target systems, local operations that are
performed in a definite order would not be able to produce
entanglement, even after conditioning on the control system.
Therefore, if a set of conditions is satisfied, a violation of Bell
inequalities implies that the operations were not performed in
a definite order (for more details, see Table I).

Another auxiliary assumption introduced in Ref. [6], which
ends up as a focal point of the present paper, is that any
additional evolution of the target systems (including their
free evolution) between the events of interest can be ne-
glected. In the present paper, we examine the consequences
of this additional assumption. We construct a scenario in
which neglecting the free part of evolution of the target is
not possible. We then argue that this is a generic feature and
that finding exceptions where the assumption holds requires
theory-dependent analysis. For completeness of the discus-
sion, we start by presenting a scenario that can generate a
violation of Bell inequalities and then discuss the possibility
of verifying the existence of indefinite temporal order solely
due to the violation of these inequalities.

In Sec. IV, we focus on reproducing the gravitational pro-
tocol using special relativistic time dilation. We present an
operational setting where the dynamics of all the relevant
DoFs are incorporated, in particular, the DoFs whose inter-
actions realize the four unitaries Û A, Û B. In Sec. IV D, we
discuss our main result—that entanglement can be generated
and Bell inequality for temporal order can be violated even
if temporal order is classically defined—and argue that it is
due to the failure of the additional assumption mentioned
above, that target systems have trivial evolution apart from
the unitaries marking the four space-time events of interest.
In Sec. IV E, we provide the simplified example showing the
importance of the free evolution. In Sec. V, we discuss the
implications of our result, including the fundamental question
of how to isolate quantum features of a causal structure from
other nonclassical effects.

II. GENERAL SETUP

Instead of using a massive object to control the space-time
geometry—and thus temporal order via gravitational time
dilation—here we want to control the trajectories of particles
so as to induce special-relativistic time dilation. For clarity
of this scheme, we decided to provide a simple compari-
son between our approach and the original one presented in
Ref. [6] in the form of Table II. The protocol involves several

DoFs, which can be best thought of as multiple particles glued
together (up to the moment when we need to break them apart,
as detailed later). We will refer to a bunch of joined particles
as a molecule, although the details of what binds the particles
together are irrelevant to the discussion.

Our protocol involves four molecules going through two
optical cavities (two molecules per cavity). In further consid-
eration, we will refer to everything that happens to these two
cavities as two wings of the protocol because they will play
the same role as the wings described in the previous section.
Moreover, each molecule is composed of three particles: a
clock, a detector, and a control. Figure 2 presents a general
scheme of our protocol.

The clock is simply a particle with some time-evolving
internal state; if the molecule evolves along a classical tra-
jectory, the internal state evolves at a rate proportional to the
trajectory’s proper time. The role of the clock is to trigger an
interaction between the detector and the cavity at the desired
proper time. Thanks to the universality of time dilation, the
protocol does not depend on the particular mechanism by
which the clocks evolve—all we need is that the clock reaches

FIG. 2. General scheme of our protocol for a violation of Bell
inequalities for temporal order. In each wing of the experiment, we
have a quantum field in a cavity, and two composite molecules. After
following entangled pairs of trajectories, the molecules interact with
the fields at a fixed proper time of their internal clocks. Due to time
dilation, entangled state of motion gets transferred to the order of
the interaction events (as well as to other degrees of freedom of the
molecules and the cavities).
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TABLE II. Comparison between the degrees of freedom involved in the gravitational scheme and ours. Here we only consider the main
scheme from Ref. [6] (variations of the scheme involve multiple control systems or different target DoFs.)

Gravity Cavity

Control system Massive body Spin- 1
2 particles (one per molecule, two in each wing)

Target system A single two-level system (e.g., a spin- 1
2 particle) Optical cavity mode and two detectors

Local operations Unitaries on each system Interaction between cavity and detectors

two different orthogonal states depending on the two proper
times involved in the protocol (see, e.g., Refs. [17,18]). We
decided to employ this particular realization of our idea to
underscore the relativistic aspect of our paper. One could
propose an alternative mechanism to achieve a delay between
two interactions, but such a mechanism would require external
entities to manipulate the atoms and position them at specific
times. Although this alternative mechanism could yield simi-
lar results, it would lack the relativistic nature. However, we
would like to emphasize that the specifics of our model are
not the focal point of our paper. Our main goal is to demon-
strate that the violation of Bell inequalities is not always an
unambiguous consequence of the indefinite temporal order of
interactions.

The detector is a particle with two internal energy levels
that (at the proper time specified by the clock) interacts with a
quantum field confined in a cavity. We use the Unruh-DeWitt
(UDW) detector model for the interaction; see Sec. IV A be-
low and Appendix A for the details of the coupling.

Finally, the control is a spin- 1
2 particle, whose two orthog-

onal spin states, |↑〉 and |↓〉, serve to define the molecules’
trajectories (see, e.g., Ref. [19] for a realization of coherent
spin-dependent trajectories which could be used here). Al-
though each detector interacts with the cavity at the same
proper time of its local clock, special-relativistic time dilation
implies that the interactions take place at different coordinate
times depending on the molecule’s trajectory (which, in turn,
depends on the spin).

In the protocol, the detectors in each molecule are prepared
in their ground state |g〉 and the clocks are synchronized
at a reference starting time τ0, while the spins of differ-
ent molecules are prepared in an appropriate entangled state
(defined below). Each molecule is sent to a cavity along a
trajectory that depends on the spin. The clock triggers an
interaction between the detector in the molecule and the
field, creating entanglement between the two. (The proper
time at which the interaction happens is chosen such that the
molecule is in the cavity for either trajectory). At this point,
the molecule is broken apart: the detector and the clock stay
next to the corresponding cavity, while all the controls are
brought together in a middle location. A joint measurement
on the controls prepares an entangled state of the remaining
systems, which can then be used to violate a Bell inequality.

In our setup, the target system on each side, say S1, com-
prises the field in the cavity as well as the two detectors that
go through that cavity. Crucially, the field-detector interaction
leaves the clock and control unaffected. This is important
to ensure that each of the operations U A,U B acts only on
the target system. Without this assumption, one could simply
entangle each target system with an additional DoF, e.g., an
extra particle, bring the two extra particles together, and, by

measuring them, induce entanglement on the two target sys-
tems. This would be a form of entanglement swapping [20]
that does not require any control of time ordering (nor any
control system for that matter).

Furthermore, note that since the control DoF goes through
the cavity together with the rest of the molecule, we effec-
tively need to trust the involved devices when we assume
that the local operations leave the control untouched. This is
the reason such a test for indefinite temporal order cannot
be formulated in a device-independent way (just as in the
gravitational protocol of Ref. [6]; see also discussion therein).

III. TRAJECTORIES

In this section, we will describe the trajectories of the
molecules mentioned in the previous section. Building upon
the concept presented in Sec. I A, we have made the decision
to utilize the same trajectories in both wings of the exper-
iment. This choice enables us to concentrate on one wing
and its two molecules, thus facilitating the analysis of the
significance of the trajectory’s specific form in the overall
protocol.

Each molecule has two possible trajectories, depending on
the spin state. The specific trajectories we propose for one
wing of the experiment are shown in Fig. 3, with identical
choices for the other wing. Each molecule always starts and
ends its trajectory at given events, which coincide for the two
possibilities. However, the proper time elapsing along the two
trajectories is different. Both trajectories can be constructed
by joining four identical hyperbolic segments, characterized
by proper accelerations A↑, A↓ for spin up, |↑〉, or spin
down, |↓〉, respectively. These segments have to be rotated
or flipped according to Fig. 3, so the acceleration for each
trajectory switches signs three times. Let us assume that the
acceleration for spin |↑〉 is bigger than the acceleration for
spin |↓〉. Knowing the value of proper time along the generic
hyperbolic trajectory (see, e.g., Ref. [21]), we can find the
difference between proper times measured at the common end
of one such pair of trajectories:

�τ = 4

A↓
asinh

(A↓TA
4

)
︸ ︷︷ ︸

τ↓

− 4

A↑
asinh

(A↑TA
4

)
︸ ︷︷ ︸

τ↑

, (3)

where τ↑/↓ is the proper time measured along the trajectory
of a ↑/↓ spin and TA is the total travel time in a common
inertial frame of reference, e.g., the frame used to initially
synchronize the clocks.

Note that it is possible to achieve a large value of �τ using
a small value of proper acceleration. For a large value of TA,
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FIG. 3. Trajectories of the molecules in one cavity giving rise to
the required time dilation. x1, x2 are initial positions of the molecules.
The trajectory of each molecule depends on the spin of its particle
called the control. For spin |↑〉, the trajectory is described by the
proper acceleration A↑ and analogously for spin |↓〉. Dots along
the trajectories divide each curve into four geometrically identical
hyperbolic segments. The trajectories of the molecules in the second
cavity are fully analogous.

we have

�τ = 2

⎛
⎝ ln

(A2
↓

4

)
A↓

− ln
(A2

↑
4

)
A↑

⎞
⎠ (4)

+ 4

(
1

A↓
− 1

A↑

)
ln(TA) + O

(
1

T 2
A

)
. (5)

It means that we can achieve the required �τ (to make the
events defined by such time dilated pair of clocks timelike)
by accelerating for a long enough time, even for arbitrarily
small accelerations. Finally, taking the initial state of the spin
of the two molecules to be entangled, one of the two clocks
in each cavity will be older than another in a correspondingly
correlated manner. Thus, the order of operations, controlled by
the clocks, will likewise be entangled, as a direct consequence
of the initial spin entanglement and of time dilation. In this
scenario, the joint spin state of the two molecules plays the
role of the control, which is played by the position of a mas-
sive object in the gravitational case [6]. Table II summarizes
the differences between the gravitational and our cavity-based
implementation of the protocol, in terms of control systems,
target(s), and local operations.

IV. PROTOCOL FOR INDEFINITE TEMPORAL ORDER

A. One cavity, two molecules

Before moving to the full protocol, let us consider the
interaction between one cavity and a pair of molecules. In
other words, let us focus only on one wing of the protocol.
Each molecule contains, in addition to a clock and a control
spin, a two-level detector, which interacts with the cavity via

the UDW Hamiltonian which in the Schrödinger picture has
the following form (see also Appendix A):

ĤUDW = λ χd (t ) μ̂S φ̂(xd ), (6)

where λ is a dimensionless coupling constant; the real func-
tion χd (t ) is equal to 0 when the detector does not interact and
1 for any other time and is commonly referred to as the switch-
ing function; μ̂S is the monopole operator μ̂S = σ̂+ + σ̂− =
|g〉〈e| + |e〉〈g|, where |g〉 is the ground state of the two-level
system and |e〉 is its excited state. The Hilbert space spanned
by |g〉 and |e〉 will be called the internal Hilbert space of the
detector. Finally, φ̂(xd ) is the field operator evaluated at the
position of the detector.

At the beginning of the protocol, the cavity field is in
the vacuum, denoted |0〉, and the two detectors are in their
respective ground states. We synchronize the clocks, namely,
we prepare them in the same state |τ0〉, and we prepare the
two control spins in the entangled state 1√

2
(|↑↓〉 + |↓↑〉).

After applying the spin-dependent accelerations described in
Sec. III, the joint state of cavity and molecules is

1√
2

(|τ↑τ↓〉|↑↓〉 + |τ↓τ↑〉|↓↑〉)|gg〉|0〉, (7)

where |τ↑/↓〉 is the state of the clock after it evolved for time
τ↑/↓. Note that for later convenience, we have grouped the
DoFs by type (clock, spin, detector) rather than by molecule.
For example, instead of

|τ↑〉|↑〉|g〉︸ ︷︷ ︸
1st molecule

⊗ |τ↓〉|↓〉|g〉︸ ︷︷ ︸
2nd molecule

, (8)

we write |τ↑τ↓〉|↑↓〉|gg〉, where inside each ket symbol we
first write the state relative to molecule 1 and then the state
relative to molecule 2.

We see from Eq. (7) that, after the spin-dependent ac-
celerations, the clocks become entangled with the remaining
systems. This can be problematic because, in the final pro-
tocol, we aim to observe entanglement in the target systems
(detectors and cavities) after projecting the control on an
appropriate state. Anything that correlates to the target, in-
cluding the clocks, would effectively degrade entanglement.
We can circumvent this by resynchronizing the clocks after
they had passed through the cavity. This can be achieved, for
example, by flipping the molecules’ spins and imparting the
accelerations identical to those in the first phase, whereby at
the end, all the trajectories accrue equal proper times (this is
analogous to the decorrelation of clocks in the gravitational
scenario, discussed in Ref. [6]). This procedure allows us to
ignore the clocks in the final state. Let us emphasize that the
role of the clock is crucial to ensure events take place at a
given time in the molecule reference frame so any conclusion
about the order of events can be attributed to an intrinsic
definition of events, similarly to the gravitational case1. It is

1One could also define the time of events relative to a common
laboratory clock, and correlate the time of each event with a control
degree of freedom. This would be effectively like “simulating” time
dilation by a direct de-synchronisation of clocks. However, here we
are interested in a relativistic definition of events and event order.
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only after ensuring that the clock decorrelates from the rest
of the system that we can remove it from the description.
Therefore, after tracing out the clock DoFs, we simplify the
notation and map |τ↑/↓〉|↑/↓〉 �→ |↑/↓〉, which allows us to
denote the state (7) as

∣∣�1
0

〉 = 1√
2

(|↑↓〉 + |↓↑〉)|gg〉|0〉, (9)

where the subscript 0 informs us that this is the initial state of
the system (before detectors and the cavity interact) and the
index 1 in the superscript informs us that this is the state of
the field and two molecules in wing 1 (see Fig. 2).

Note that according to the scheme presented above, state
|↑↓〉 corresponds to the case when the detector at position
x2 is the first to interact with the cavity (the spin of the
molecule that interacts earlier is ↓). Similarly, for state |↓↑〉,
the detector at x1 interacts earlier than the detector at x2. In
further calculations, we assume that the duration T of each
detector’s interaction with the cavity is smaller than the time
dilation between the two trajectories, i.e., T � �τ , to ensure
that the two detectors do not interact simultaneously from the
perspective of the cavity’s reference frame.

The interaction between each detector and the cavity is
described by Eq. (A5) from Appendix A, therefore since the
order of interactions is given by the molecule’s spin, we can
write the final state in the form

|�1〉 = 1√
2

(|↑↓〉Û1Û2|g〉|g〉|0〉 + |↓↑〉Û2Û1|g〉|g〉|0〉). (10)

Here, operators Û1 and Û2 act on the internal states of the
first (left) and the second (right) detector, respectively. For
ease of notation we define the state |ψR〉 := Û1Û2|g〉|g〉|0〉,
where the subscript R denotes that the right (second) detector
interacts before the left (first) one, and analogously define
|ψL〉 := Û2Û1|g〉|g〉|0〉. We thus have

|�1〉 = 1√
2
|↑↓〉|ψR〉 + 1√

2
|↓↑〉|ψL〉. (11)

Using the evolution operator given by Eq. (A5) from Ap-
pendix A, we find an explicit form of |ψR〉, |ψL〉, up to leading
order in the interaction parameter λ using Eq. (A9) from
Appendix A. The results of this calculation are

|ψR〉 = |gg〉|0〉 + |ge〉∣∣φR
ge

〉 + |eg〉∣∣φR
eg

〉 + O(λ2), (12)

|ψL〉 = |gg〉|0〉 + |ge〉∣∣φL
ge

〉 + |eg〉∣∣φL
eg

〉 + O(λ2), (13)

where |φL/R
ge 〉 and |φL/R

eg 〉 are first order in λ, describing field
states containing a single excitation, see Appendix B for their
explicit expression.

B. Two cavities, four molecules

We now move to the full protocol, whose aim is to explic-
itly demonstrate indefinite temporal order. We consider two
wings of the experiment, where in each wing two operations
take place (see Fig. 2). The goal is to correlate the order
of each pair of operations with a control system and, after
measuring the control, produce an entangled state between
the two wings, which would not have been possible had the
operations been realized in a definite order.

Recall that we want to entangle the target systems which
comprise the fields in both cavities as well as the detectors
(which are two per cavity), while the four spin- 1

2 particles
play the role of the control. The full protocol involves four
molecules (two in each wing), where each molecule contains
a clock, a detector, and a spin- 1

2 particle. Initially, the state of
these molecules reads

|τ0τ0τ0τ0〉 1√
2

(|↑↓↑↓〉 + |↓↑↓↑〉)|gggg〉, (14)

where |τ0〉 is the initial state of one clock (and thus all four
clocks are initially decorrelated and synchronized) and each
detector is in its ground state, while the spins are entangled.

Note that this state is constructed in such a way that the
four molecules can be divided into two identical pairs. As
we explained before, we have two wings of the experiment in
which we have analogous trajectories of the molecules. These
pairs are then accelerated as explained in Sec. III. After the
process of acceleration, the state of all four molecules is

1√
2

(|τ↑τ↓τ↑τ↓〉|↑↓↑↓〉 + |τ↓τ↑τ↓τ↑〉|↓↑↓↑〉)|gggg〉. (15)

Due to time dilation, after the acceleration takes place, one
clock from each pair of molecules will be older than the other
from the same pair. We cannot determine which one because
the initial state of spins is a superposition of two different
possibilities. Next, each pair of molecules enters a cavity. The
first pair is placed in cavity 1 at the respective positions x1

and x2 (determined relative to the boundary of this cavity at
x = 0). The second pair of molecules is placed in cavity 2 at
the same positions relative to that cavity. Recall that the field
in each cavity is initially in the vacuum state. As discussed
in the previous section, we can decorrelate the clock DoF by
resynchronizing the clocks. This is done after the molecules
interact with the cavities. To keep track of the effect of the
clocks on the detector-field interactions, it is enough to note
that a detector belonging to a molecule with spin ↓ interacts
first (and with spin ↑ interacts second). To sum up the pro-
tocol, the initial state of the total system including the two
cavities is

∣∣� tot
0

〉 = 1√
2

(|↑↓↑↓〉 + |↓↑↓↑〉) |gg〉|0〉︸ ︷︷ ︸
∈S1

⊗ |gg〉|0〉︸ ︷︷ ︸
∈S2

, (16)

where we used ⊗ to separate states from the two cavities and
showed which DoFs comprise the targets S1 and S2 introduced
in Sec. I.

After the interactions between the detectors and the cavity
fields, the state of the system reads

|� tot〉 = 1√
2

(|↑↓↑↓〉|ψR〉 ⊗ |ψR〉 + |↓↑↓↑〉|ψL〉 ⊗ |ψL〉),

(17)

where the detectors and cavity states, |ψL/R〉, are those in
Eqs. (12) and (13).

Next, the molecules are broken apart. All spins are sent to a
common location where, at an event labeled D, they are jointly
measured in the basis 1√

2
(|↑↓↑↓〉 ± |↓↑↓↑〉). This prepares

the remaining systems—cavities and detectors (which stay
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next to their cavities)—in the state

|�±〉 = 1√
2

(|ψR〉 ⊗ |ψR〉 ± |ψL〉 ⊗ |ψL〉), (18)

where the sign ± depends on the measurement outcome. This
state is entangled as long as |ψL〉 �= |ψR〉. This is typically
shown by finding the scalar product between |ψL〉 and |ψR〉,
which requires the Dyson series up to second order in λ.

However, there is an equivalent but technically much sim-
pler method to show that the final state is in general entangled,
which is to consider another measurement performed on each
detector pair in a basis containing the vector 1/

√
2(|ge〉 +

|eg〉). The resulting conditional states of the fields [arising
from Eqs. (12) and (13)] read

1√
2

(〈ge| + 〈eg|)|ψR〉 = 1√
2

(∣∣φR
ge

〉 + ∣∣φR
eg

〉) + O(λ3), (19)

1√
2

(〈ge| + 〈eg|)|ψL〉 = 1√
2

(∣∣φL
ge

〉 + ∣∣φL
eg

〉) + O(λ3), (20)

where the order of this result, i.e., O(λ3), is explained in
Appendix D. To sum up this method: One can perform a mea-
surement on each pair of detectors in the basis 1/

√
2(|ge〉 +

|eg〉) to obtain the state of the field given in Eqs. (19) and
(20), and then follow the previously explained procedure,
i.e., measure the control. Upon measuring the control in the
entangled basis, 1√

2
(|↑↓↑↓〉 ± |↓↑↓↑〉), the joint state of two

cavities consists only of the field states because all other DoFs
were measured. This state of the fields, up to the leading order

in λ, is

|�̃±〉 ∝ (∣∣φR
ge

〉 + ∣∣φR
eg

〉)
︸ ︷︷ ︸

|
R〉

⊗ (∣∣φR
ge

〉 + ∣∣φR
eg

〉)
︸ ︷︷ ︸

|
R〉

± (∣∣φL
ge

〉 + ∣∣φL
eg

〉)
︸ ︷︷ ︸

|
L〉

⊗ (∣∣φL
ge

〉 + ∣∣φL
eg

〉)
︸ ︷︷ ︸

|
L〉

. (21)

The conditional state of the fields |�̃±〉 is entangled as long
as |
R〉 �= |
L〉 which is easier to verify than the condition
|ψR〉 �= |ψL〉. We further note that the measurement on the
detectors has different possible outcomes, not all of which re-
sult in entangled field states. Crucially, however, for a product
state across S1 and S2, all local detector measurements would
result in product states of the fields. Therefore, obtaining an
entangled state for one of the outcomes is sufficient to prove
that the original state was entangled.

To sum up, we have shown that using two cavities, four
molecules, and the basic effects of special relativity, we can
obtain the state given in Eq. (21). If this state is entangled,
in the next steps of the protocol this entanglement can be
used to violate Bell’s inequalities with the goal to prove
that the detector–field interaction events were not classically
ordered.

C. Entanglement of the final state

We now proceed to prove that the state in Eq. (21) can
indeed be entangled by showing that there exist parameters for
which |
R〉 �= |
L〉. The scalar product between these states
reads

〈
R|
L〉 =
∑

k
e−i�τ (ωk+�)

(ωk+�)2 [1 − cos(T (ωk + �))](uk (x1) + ei�τ (ωk+�)uk (x2))2

2
∑

n
sin2 T (ωn+�)

2
(ωn+�)2 [un(x2)2 + 2un(x2)un(x1) cos(�τ (ωn + �)) + un(x1)2]

. (22)

The explicit derivation is presented in Appendix C. Therein,
we further show how to choose parameters for which the
states are not just different but orthogonal. To summarize this
procedure, the parameters that have to be chosen are:

(1) The length L of each cavity and the positions x1, x2 of
the molecules relative to their respective cavity.

(2) The energy gap � of the detectors.
(3) The duration T of the interaction between each detec-

tor and the cavity field.
(4) The time dilation �τ between clocks within each pair

of molecules (within each cavity), arising from the different
accelerations A↑/↓.

Remarkably, it is also possible to find parameters such that
|
R〉 �= |
L〉 even when the two field-detector interactions
within each cavity are spacelike separated, see Fig. 4. This
means that it is possible to obtain an entangled state also in
the case when, in some reference frame, the relevant oper-
ations are performed in the same temporal order. Although
from the perspective of such a reference frame, the operations
would take place over four different coordinate regions, their
order would be the same in each of the amplitudes. Obvi-
ously then, entanglement generated in this scheme cannot be

simply attributed to nonclassical temporal order. We discuss
implications and argue for the generality of this result in the
next sections.

D. Ambiguity in the signature of indefinite temporal order

We have explicitly modeled a special-relativistic version
of a protocol where gravitational time dilation and quantum
superposition lead to an indefinite temporal order of events
from Ref. [6]. This protocol was formulated in terms of a
Bell inequality for temporal order. The idea was to formulate
a protocol where operations in a definite order cannot produce
an entangled state if an appropriate set of assumptions is
satisfied. (The final step of the protocol requires measure-
ments on the state to violate a Bell inequality and verify the
entanglement.) The motivation was to find a test of temporal
order that is theory independent, which was based on the
observation that a violation of a Bell inequality would prove
indefinite temporal order without assuming that the final state
is described by quantum mechanics. In this section, we re-
examine the assumptions made in Ref. [6], showing that the
theory-independent nature of the argument is problematic.
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DĘBSKI, ZYCH, COSTA, AND DRAGAN PHYSICAL REVIEW A 108, 062204 (2023)

FIG. 4. Space-time diagrams of interacting detectors. Space-time
diagram showing the regions where the detector-field interactions
lead to an entangled state, Eq. (21). The diagrams are for one
cavity—the interaction regions are identically defined for the sec-
ond cavity. The first row shows spacelike separated regions which
nevertheless yield entanglement. The second row shows timelike
separation, which yields maximal entanglement. The columns cor-
respond to the two amplitudes of the process that are superimposed
using the control (spin) state. See Appendix C for the supporting
calculations.

We first remark that the issue we have identified does not
arise if we believe that quantum mechanics is valid, i.e., if
we wish to provide experimental evidence for nonclassical
temporal order assuming that the involved states and transfor-
mations are faithfully described by quantum theory. In such a
case, already the one-cavity part of our protocol, Sec. IV A, or
the gravitational equivalent, is sufficient. The reason is that, at
an abstract level, these protocols implement a quantum switch
[3]—a scenario where two local operations, represented by
unitary operators Û A Û B, act on a target system in an order
determined by a control system which is prepared in a super-
position, thus producing a final state of the form

|ψfin〉 = 1√
2

(|0〉Û AV̂0Û
B + |1〉Û BV̂1Û

A)|ψ〉. (23)

Here, |0〉, |1〉 are two basis states of the control, and |ψ〉
is the initial state of the target system. V̂0 and V̂1 are two
arbitrary unitary operators, representing the evolution of the
target between the two operations. Most presentations of the
switch do not include the intermediate evolution, but we will
see shortly that this is important in our context2. Given an
implementation of the switch, by making appropriate final
measurements for a set of suitably chosen operations Û A, Û B,
it is possible to prove that the operations are not performed in a

2For generality, one can also include a control-dependent initial
state, but this is not necessary for our analysis.

definite order. This procedure is known as measuring a causal
witness [22,23] and it could, in principle, be incorporated
within a single-cavity variant of our protocol to demonstrate
that, if the quantum description of the experiment is correct,
the cavity-detector interactions do not take place in a definite
order.

Returning to the Bell inequality approach, it essentially is
an entangled version of the switch, with the final state of the
form

|ψfin〉 = 1√
2

(|0〉Û A1V̂0Û
B1 |ψ〉 ⊗ Û A2V̂0Û

B2 |ψ〉

+ |1〉Û B1V̂1Û
A1 |ψ〉 ⊗ Û B2V̂1Û

A2 |ψ〉). (24)

To use such a state to disprove classical temporal order
among Û A, Û B, the state has to arise in a scenario satis-
fying all assumptions used to derive the Bell inequality for
temporal order, apart from the assumption of classical order
itself. All assumptions used in Ref. [6] for the derivation
of the inequality are the initial state of the target systems
S1, S2 is separable; transformations performed on the targets
are local (i.e., the operations on target Sj act as identity on
other DoFs of the system); events and space-time regions
at which transformations and measurements take place are
suitably separated: both interaction events in one wing are
spacelike separated from both interaction events in the other
wing; and event D is spacelike from the events at which the
Bell measurements are performed (which as, usual in Bell
inequalities, are assumed to be spacelike from each other);
the choices of bases for Bell measurements are independent
of all other aspects of the experiment (often referred to as free
choice assumption); and, finally, of course, the assumption
that events at which transformations and measurements are
performed are classically ordered.

The surprising result identified in Sec. IV C is that en-
tanglement is produced while all the above assumptions are
met, including the assumption of classical order. Clearly, some
other assumption was made to derive the inequality and is
violated in our implementation. Indeed, as already mentioned,
the additional implicit assumption made in Ref. [6] is that
the target systems do not have nontrivial evolution apart
from the transformations Û A and Û B. Below we explain why
this assumption is violated in the present implementation and
in Sec. IV D we argue that this will remain true in a generic
dynamical implementation. As a result, our considerations are
valid for any generic scheme attempting to verify the indefi-
nite temporal order of events implemented in a fully quantum
mechanical manner.

To see where the assumption of no free evolution enters and
why it is the culprit, it is again sufficient to look at one wing of
our setup. Comparing a single-cavity scenario, Eq. (10), and a
generic quantum switch, Eq. (23), one finds that the evolution
operators Û1, Û2 in Eq. (10) are not directly representing the
local operations Û A, Û B. The reason is that Û1, Û2 are written
in the Dirac (interaction) picture, which necessarily includes
time evolution with respect to the free Hamiltonian (starting
from some initial time established in a common reference
frame). By unraveling this time evolution, one finds precisely
a state of the form (23), where V̂0 and V̂1 represent the free
evolution of the targets (i.e., cavity and detectors) between the
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interactions. Note that the time intervals between the events,
and thus intervals of free evolution, are equal in the reference
frame of the cavity, which means that in that frame, V̂0 = V̂1.
On the other hand, Û A, Û B describe only the field-cavity
interactions in the Schrödinger picture3.

The reason this is relevant here is that if the free Hamilto-
nian does not commute with the interaction, the free evolution
does not commute with Û A, Û B, and this is how the presence
of entanglement can be explained in the state in Eq. (24) in a
frame where V̂0 = V̂1 and the events are spacelike separated.
Note that in that case there is a reference frame where Aj ≺ Bj

for both states of the control, however, as we mentioned
above, in that frame necessarily V̂0 �= V̂1, since the time inter-
vals of free evolution along the worldlines of molecules 1 and
2 are in such a frame necessarily different. In such a frame,
the final state in the two-wing scenario becomes

|ψfin〉 = 1√
2

(|0〉Û B1V̂0Û
A1 |ψ〉 ⊗ Û B2V̂0Û

A2 |ψ〉

+ |1〉Û B1V̂1Û
A1 |ψ〉 ⊗ Û B2V̂1Û

A2 |ψ〉), (25)

and the presence of entanglement is thus interpreted as
due to overall different dynamics depending on the control,
Û BiV̂0Û Ai �= Û BiV̂1Û Ai , i.e., in that frame while the order of
operations is common, when they take place relative to peri-
ods of free dynamics, and thus the overall evolution, depends
on the control. Crucially, in this case, temporal order among
events cannot even be defined as it depends on the reference
frame. A further discussion of the role played by free evolu-
tion in this protocol is presented in the next section.

In fact, if free evolution and the applied operations do
not commute, even simpler scenarios can illustrate the issue.
Consider that one of the operations is trivial, say Û B = Î, and
so, in fact, only one operation is applied. The noncommuta-
tivity between ÛA and V̂ = V̂0 = V̂1 (we are in the reference
frame of the cavity) would again result in different final states
depending on when Û A is applied relative to V̂ . This would
again lead to an entangled final state in a two-wing scenario,
even though in this case there is no time order of events to
speak of.

Finally, we note that in all quantum switch scenarios,
including the entangled switch, there is an assumption that
each local operation is performed only once. This condition
is, however, naturally satisfied in relativistic implementations
such as ours, as each operation is performed at a specific time
of a local clock.

We have focused so far on a particular realization of
the entangled switch protocol—with two-level detectors and
cavity-confined quantum field modes as targets, and the posi-
tion DoFs of the detectors as the control. However, our main
result and its explanation applies to any physical realization
of the protocol. Indeed, we have shown that entanglement can
be generated for spacelike separated operations and identified

3Strictly speaking, we should add free-evolution operators also be-
fore and after the two local unitaries—not only in between. However,
free evolution acts trivially on the vacuum state (our initial state),
while the final evolution can be reabsorbed in the definition of the
measurement basis.

that this is due to the free evolution of the targets. For any
physical implementation of the protocol, if the applied oper-
ations do not commute with the free evolution, the final state
will, in general, be entangled regardless of the commutation
relations between the operations themselves, and thus also re-
gardless of their temporal order. Entanglement can arise even
if only one operation is applied, as discussed in the previous
section.

E. Entanglement generation for spacelike
events and its implications

Results from the previous section show that also for space-
like separation of the interaction events, Bell’s inequality for
temporal order can be violated. This statement seems paradox-
ical because for spacelike separated events we cannot define
their temporal order—it depends on the reference frame. Here
we look more closely at the compatibility of this fact with the
locality of evolution.

Let us consider the cavity and two molecules placed near
its boundaries. We know that entanglement at spacelike sep-
aration appears for a short time of interaction and small time
dilation (see Fig. 4). By definition, in such scenarios, informa-
tion about the interaction with the field cannot be transferred
from the first to the second detector before the latter interacts
with the field. To notice the problem with this situation, we
can split the whole cavity into three parts (see Fig. 5). Let
us denote these as FL, F , and FR. The field FL refers only to
the part of the cavity near the left detector and, similarly, FR

describes just the right part of the cavity. The field F refers to
the middle of the whole cavity. The lengths of each part are
chosen to make sure that information about interaction with
the left (right) molecule can be localized only within the left
(right) part of the cavity. Because of this division of the cavity
into three parts, we can capture the two alternative orders of
events as follows.

For one order, the left molecule interacts first, L ≺ R; for
the other, the right molecule interacts first, R ≺ L. The whole
evolution Û of the system containing two molecules and three
parts of the cavity can then be presented as Û = Û3 Û2 Û1,
where

(1) Û1: interaction of the left (right) molecule with FL (FR)
and free evolution of remaining parts.

(2) Û2: free evolution of the whole cavity.
(3) Û3: interaction of the right (left) molecule with the FR

(FL) and free evolution of remaining parts.
The two scenarios appear to differ only by the order of

events at which detectors and the field interact. If these events
are spacelike, from the original argument, one would not ex-
pect any difference between the two scenarios. However, the
free evolution always contains parts that are timelike to one
of the interaction events and, in general, the three evolution
operators do not commute.

Thus, despite the spacelike separation of the interaction
events, the free part of the evolution still affects the system
and results in a different state of the targets for the two wings
of the protocol. It means that for such a case we cannot argue
that violation of Bell’s inequalities implies indefinite order of
events because we violate the additional assumption: there is
an additional part of the evolution of the target systems and
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FIG. 5. Space-time diagram of a cavity interacting with two detectors. Operators Û1 and Û3 describe the evolution of the system according
to the interaction, and Û2 is an operator of the free evolution that occurs between interactions. FL and FR are parts of the cavity that can
interact with the detector in some finite time. F is a middle segment of the cavity that evolves only due to the free evolution operator between
interactions.

it is this evolution that causes a different final state despite
spacelike separation of the events at which the interactions
defining the order take place.

However, we claim that this assumption is unavoidable in
a generic realization of the studied protocol, also including
its gravitational version. Indeed, it is of course possible to
identify implementations where the assumption of no free
evolution of the targets does hold (e.g., with polarization or
angular momentum DoFs of photons) or where the operations
are performed within a degenerate subspace of the Hamilto-
nian of the targets (and thus commute with free evolution),
so only noncommutativity between the two local operations is
relevant. And such strategies would lead to an entangled final
state only if the local operations are timelike and applied in
a nonclassical order. However, identifying such implementa-
tions does require a theoretical description of the states and
dynamics of the involved systems. In other words, one needs
theory-dependent assumptions to interpret a violation of the
final Bell inequalities as a signature of indefinite temporal
order, while seeking a theory-independent way to certify non-
classical time order was one of the key motivations of Ref. [6].

Furthermore, the observation above does not depend on the
special-relativistic setting studied in this paper and equally
holds for gravitational protocols. Indeed, nothing in our ar-
gument depends on how the time dilation of the clocks is
achieved. For example, the position of a massive body can
determine—through gravitational time dilation—the time at
which a single operation takes place (relative to some mass-
independent coordinates). This can lead to the same situation
described earlier: the creation of entanglement (in a two-
wing scenario) even with a single operation per wing. Again,
theory-dependent assumptions would be required to ensure
that entanglement can only arise as a result of an indefinite
order of events.

V. CONCLUSION

In this paper, we constructed a nongravitational scenario
where accelerating particles, interacting with quantum fields,
according to their own internal clock DoFs, can lead to a
violation of the temporal Bell inequalities analogous to the
gravitational case. In Sec. II, we introduced the formalism
required to reproduce the gravitational protocol using special

relativistic time dilation. We defined the kinematics of all
particles involved in the protocol and the appropriate coupling
between them and the quantum field. In Sec. IV, we discussed
the full protocol that explicitly demonstrated a violation of
Bell’s inequalities, which are claimed to test the indefinite
temporal order of events. We described the procedure that
would lead us to the violation of Bell’s inequalities for the
proposed system that also occurs when the events responsible
for the entanglement are spacelike, which we interpreted as
an ambiguity in the signature of indefinite temporal order. We
finally found that this surprising conclusion is the result of
the failure of the additional assumption that target systems
have no other evolution except the one governed by unitaries
applied in a specific time order. We presented a detailed dis-
cussion of this problem in the last two sections of our paper.

We argued that to satisfy all assumptions of the Bell
theorem for time order—including the auxiliary one (of
no free evolution of the targets)—it is essential to invoke
theory-dependent arguments. What is more, in a generic
implementation—including a gravitational version of the
protocol—this assumption is not met. Our chosen model thus
serves as a means to clarify the overlooked aspect of Bell
inequalities for temporal order. Consequently, our conclusions
hold significance for any theoretical or experimental pursuit of
indefinite temporal order.

Being able to describe and experimentally test entangled
temporal order (i.e., even working fully within quantum me-
chanics) is of interest in its own right. Our result, however,
opens the question of whether it is possible to formulate a
stronger, theory-independent, test of temporal order. The in-
sight from the present paper is that it is problematic to separate
out the effect of the free dynamics of the system from that of
the local operations. A possible avenue to circumvent this is to
consider more general operations than the fixed unitaries dis-
cussed thus far: they can involve a measurement of the system,
producing a classical variable as the outcome. Furthermore, a
setting variable for each party can model a choice among dif-
ferent operations. In this fashion, one can consider directly the
causal relations between parties—understood operationally as
correlations between settings and outcomes—without rely-
ing on a theory-dependent description of the transformations.
We leave further investigation of this possibility to future
work.
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APPENDIX A: UNRUH-DEWITT COUPLING

In this Appendix, we define the interaction between a two-
level system, the detector, and the scalar field inside the cavity
via the pointlike UDW Hamiltonian [24,25]. We first discuss
key properties of the field operators. We consider a scalar field
of a mass m governed by the Klein-Gordon equation4,

(� + m2)φ = 0, (A1)

in a cavity of length L fulfilling Dirichlet boundary conditions,
φ(x = 0) = φ(x = L) = 0. The field has the following mode
solutions:

un(x, t ) = 1√
ωnL

sin (knx)e−iωnt ≡ un(x)e−iωnt , (A2)

where ωn = √
k2

n + m2, kn = nπ
L , n ∈ N. Using these modes,

the field operator φ̂ can be decomposed as

φ̂(x) =
∑

n

[â†
nun(x) + ânun(x)], (A3)

where ân and â†
n are annihilation and creation bosonic

operators satisfying the canonical commutation relations,
[ân, â†

k] = δnk and [ân, âk] = [â†
n, â†

k] = 0. For the detector,
we consider a two-level system, the simplest model of an
atom, with an energy gap �, and position parameter denoted
xd , (where the subscript d hereafter stands for the detector).
The full Hamiltonian consists of the free Hamiltonians of the
scalar field and the detector, and an interaction Hamiltonian.
One of the simplest choices of the interaction between a scalar
field and a two-level system is the pointlike UDW Hamil-
tonian which, in the Schrödinger picture, has the following
form:

ĤUDW = λ χd (t ) μ̂S φ̂(xd ), (A4)

4For generality, we write everything for arbitrary m, although in the
numerical calculations below we set m = 0.

FIG. 6. The analysis of an orthogonality between |
L〉 and |
R〉.
The absolute value of the scalar product as a function of the energy
gap of the detector �.

where λ is a dimensionless coupling constant; the real func-
tion χd (t ) is equal to 0 when the detector does not interact and
1 for any other time and is commonly referred to as the switch-
ing function; μ̂S is the monopole operator μ̂S = σ̂+ + σ̂− =
|g〉〈e| + |e〉〈g|, where |g〉 is the ground state of the two-level
system and |e〉 is its excited state. The Hilbert space spanned
by |g〉 and |e〉 will be called the internal Hilbert space of
the detector. Finally, φ̂(xd ) is the field operator evaluated at
the position of the detector. As mentioned above, the full
Hamiltonian also includes the time-independent free Hamil-
tonian of the field and of the two-level system, which reads
Ĥ0 = ∑

n ωnâ†
nân ⊗ 1 + 1 ⊗ �σ̂+σ̂−. Thus, the evolution of

the state of the full system in the Dirac picture (also called the
interaction picture) is here given by the unitary of the form

Û = T exp −i
∫ ∞

−∞
dt Ĥ (D)

UDW(t ), (A5)

where (D) stands for the Dirac picture and T is the time-
ordering operator. It can be shown that [26]

Ĥ (D)
UDW(t ) = χ (t ) λ μ̂(D) φ̂(D), (A6)

where

μ̂(D) = (ei�t σ̂+ + e−i�t σ̂−), (A7)

φ̂(D)(xd ) =
∑

n

(â†
nun(xd )eiωnt + H.c.). (A8)

The evolution operator (A5) can be expanded into the Dyson
series. For a sufficiently small value of the coupling constant
λ, we can limit this series to the first-order term. We further
show in Appendix B that the next contributing term is λ3.
Thus, in the above approximation:

Û =1 − iλ
∫ ∞

−∞
dtχd (t )(ei�t σ̂+ + e−i�t σ̂−)

×
∑

n

(â†
nun(xd )eiωnt + ânun(xd )e−iωnt ). (A9)

APPENDIX B: DETAILS OF CALCULATIONS OF THE FINAL STATE

Using the form of the evolution operator (A5) we can find that

|ψR〉 = Û1Û2|g〉|g〉|0〉 = |g〉|g〉|0〉 − iλ
∫

dt2χ2R(t2)
∑

k

1√
ωkL

ei(ωk+�)t2 sin

(
kπ

L
x2

)
|g〉|e〉â†

k |0〉

062204-11
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− iλ
∫

dt1χ1R(t1)
∑

k

1√
ωkL

ei(ωk+�)t1 sin

(
kπ

L
x1

)
|e〉|g〉â†

k |0〉 + O(λ2), (B1)

where χ1R-switching function for the first detector in the case that the right detector interacts before the left one, χ2R-switching
function for the second detector in the case that the right detector interacts earlier. We assume that the interaction starts and
ends rapidly, so χ2R(t ) = 1 for t ∈ (0, T ) and χ2R(t ) = 0 for any other time. Similarly, χ1R(t ) = 1 for t ∈ (�τ,�τ + T ) and
χ1R(t ) = 0 for any other time. We can proceed with the same calculation for |ψL〉,

|ψL〉 = Û2Û1|g〉|g〉|0〉 = |g〉|g〉|0〉 − iλ
∫

dt2χ2L(t2)
∑

k

1√
ωkL

ei(ωk+�)t2 sin

(
kπ

L
x2

)
|g〉|e〉â†

k |0〉

− iλ
∫

dt1χ1L(t1)
∑

k

1√
ωkL

ei(ωk+�)t1 sin

(
kπ

L
x1

)
|e〉|g〉â†

k |0〉 + O(λ2), (B2)

where χ1L-switching function for the first detector in the case that the right detector interacts before the left one, χ2L-switching
function for the second detector in the case that the right detector interacts earlier. In this case, we have that χ1L(t ) = 1 for
t ∈ (0, T ) and χ1L(t ) = 0 for any other time. Similarly, χ2L(t ) = 1 for t ∈ (�τ,�τ + T ) and χ2L(t ) = 0 for any other time. It’s
worth noting that χ1L = χ2R and χ2L = χ1R. After using this property describing relations between switching functions, we have

|ψR〉 = Û1Û2|g〉|g〉|0〉 = |g〉|g〉|0〉 − iλ
∫

dt2χ2R(t2)
∑

k

1√
ωkL

ei(ωk+�)t2 sin

(
kπ

L
x2

)
|g〉|e〉â†

k |0〉

− iλ
∫

dt1χ1R(t1)
∑

k

1√
ωkL

ei(ωk+�)t1 sin

(
kπ

L
x1

)
|e〉|g〉â†

k |0〉 + O(λ2), (B3)

|ψL〉 = Û2Û1|g〉|g〉|0〉 = |g〉|g〉|0〉 − iλ
∫

dt2χ2R(t2)
∑

k

1√
ωkL

ei(ωk+�)t2 sin

(
kπ

L
x1

)
|e〉|g〉â†

k |0〉

− iλ
∫

dt1χ1R(t1)
∑

k

1√
ωkL

ei(ωk+�)t1 sin

(
kπ

L
x2

)
|g〉|e〉â†

k |0〉 + O(λ2). (B4)

For simplicity of further calculation, let us introduce the following notation:

|ψR〉 = Û1Û2|g〉|g〉|0〉 = |gg〉|0〉 + |ge〉∣∣φR
ge

〉 + |eg〉∣∣φR
eg

〉 + O(λ2), (B5)

|ψL〉 = Û2Û1|g〉|g〉|0〉 = |gg〉|0〉 + |ge〉∣∣φL
ge

〉 + |eg〉∣∣φL
eg

〉 + O(λ2), (B6)

where |φL
ge〉—a state of a field when the left detector interacts first but the right detector is excited; |φL

eg〉—a state of a field when
the left detector interacts first and the left detector is excited; |φR

ge〉—a state of a field when the right detector interacts first and
the right detector is excited; and |φR

eg〉—a state of a field when the right detector interacts first but the left detector is excited as a
consequence of the interaction between atoms and the field.

APPENDIX C: METHOD OF FINDING APPROPRIATE PARAMETERS

In this Appendix, we will find an appropriate set of parameters that orthogonalize |
R〉 and |
L〉 vectors,

|
R〉 = −iλ
∑

k

1√
ωkL

∫
dt

(
χ2R(t ) sin

(
kπ

L
x2

)
+ χ1R(t ) sin

(
kπ

L
x1

))
ei(ωk+�)t â†

k |0〉

= −iλ
∑

k

∫
dt (χ2R(t )uk (x2) + χ1R(t )uk (x1))ei(ωk+�)t â†

k |0〉

= −λ
∑

k

eiT (ωk+�) − 1

ωk + �
(ei�τ (ωk+�)uk (x1) + uk (x2))â†

k |0〉 (C1)

|
L〉 = −iλ
∑

k

1√
ωkL

∫
dt

(
χ2R(t ) sin

(
kπ

L
x1

)
+ χ1R(t ) sin

(
kπ

L
x2

))
ei(ωk+�)t â†

k |0〉

= −λ
∑

k

eiT (ωk+�) − 1

ωk + �
(ei�τ (ωk+�)uk (x2) + uk (x1))â†

k |0〉, (C2)
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FIG. 7. The analysis of an orthogonality between |
L〉 and |
R〉 for different parameters describing interaction. An absolute value of the
scalar product for two detectors standing at x1 = L/4 and x2 = 3L/4. The energy gap � is chosen as one of the cavity frequencies. Scalar
product approximated as a finite sum of 30 modes, i.e., Nk = Nn = 30.

where the form of the state |
L〉 we get by changing x1 ←→ x2. Now it is easy to see that the scalar product can be written as

〈
R|
L〉 ∼= λ2
∑

k

|eiT (ωk+�) − 1|2
(ωk + �)2

(e−i�τ (ωk+�)uk (x1) + uk (x2))(ei�τ (ωk+�)uk (x2) + uk (x1))

∼= 2λ2
∑

k

e−i�τ (ωk+�)

(ωk + �)2
[1 − cos (T (ωk + �))](uk (x1) + ei�τ (ωk+�)uk (x2))2. (C3)

We have to remember that states |
L〉 and |
R〉 were not properly normalized, so now we can find the norm:

‖|
R〉‖ =
√

〈
R|
R〉 =
√√√√λ2

∑
k

|eiT (ωk+�) − 1|2
(ωk + �)2 |ei�τ (ωk+�)uk (x1) + uk (x2)|2

= 2λ

√√√√∑
k

sin2 T (ωk+�)
2

(ωk + �)2
[uk (x1)2 + 2uk (x1)uk (x2) cos (�τ (ωk + �)) + uk (x2)2] (C4)

‖|
L〉‖ =
√

〈
L|
L〉 = 2λ

√√√√∑
k

sin2 T (ωk+�)
2

(ωk + �)2
[uk (x2)2 + 2uk (x2)uk (x1) cos (�τ (ωk + �)) + uk (x1)2]. (C5)

We can notice that ‖|
R〉‖ = ‖|
L〉‖ and, finally, the scalar product has the following form:

〈
R|
L〉 = 〈
R|
L〉
‖|
R〉‖‖|
L〉‖ =

∑
k

e−i�τ (ωk +�)

(ωk+�)2 [1 − cos(T (ωk + �))](uk (x1) + ei�τ (ωk+�)uk (x2))2

2
∑

n
sin2 T (ωn+�)

2
(ωn+�)2 [un(x2)2 + 2un(x2)un(x1) cos(�τ (ωn + �)) + un(x1)2].

(C6)

This function can be estimated as a finite sum. Let us denote the upper limits of these two sums as Nn for the sum over n and Nk

for the sum over k.
Figure 6 shows the absolute value of the scalar product as a function of the energy gap � plotted for different numbers of

modes Nn and Nk . We can see that we can produce entanglement for very short times �τ = T = L/10. Thus, it proves that there
is also an entanglement between two cavities for spacelike separated events of interaction.

Figure 6 looks quite random. Let us analyze the scalar product for the case of two detectors standing in the positions x1 = L/4
and x2 = 3L/4. Figure 7 shows the absolute value of the scalar product for different parameters �τ and T � �τ for different
values of the energy gap �. We can notice that there are many parameters minimizing the scalar product between two states.

Based on Fig. 7, we can conjecture that point (�τ, T ) = (3L, 2L) is a good candidate for the orthogonalization of the states
|
R〉 and |
L〉. To verify this hypothesis, let us consider the following calculation: Let L = 1, x1 = 1/4, x2 = 3/4, � = π ,
�τ = 3, T = 2 + ε, where ε ∈ R+ is a small parameter. Then

〈
R|
L〉 = −
∑

k
e−3ikπ

k(k+1)2 [cos ((1 + k)(2 + ε)π ) − 1]
(
sin kπ

4 − e3ikπ sin 3kπ
4

)2

2
∑

n
sin2 (n+1)πε

2
2n(n+1)2

[
(1 + 2(−1)n) cos nπ

2 + cos 3nπ
2 − 4

] . (C7)
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Each of these sums can be done analytically for arbitrary ε. Then we expand the numerator and denominator around ε = 0 to
get

|〈
R|
L〉| =
∣∣∣∣∣

1
2π

(2 ln 20 ln(1 − i) − ln(1 + i))ε2 + O(ε3)
1

6π
(9 + ln 8 − 6 ln π − 6 ln ε)ε2 + O(ε3)

∣∣∣∣∣ ≈ ln 8

9 + ln 8 − 6 ln πε
. (C8)

And we see that

lim
ε→0+

|〈
R|
L〉| = 0. (C9)

APPENDIX D: SECOND ORDER OF THE DYSON SERIES

In this Appendix, we will show that second-order Dyson expansion does not affect |
R〉 and |
L〉.
One can ask the question why (C3) depends on λ2. Previously, we limited our calculation only to the first-order expansion of

the Dyson series. We have to verify that second-order expansion does not produce lambda square terms too. Otherwise, there is
a possibility that results from (C3) will cancel out with these additional terms. Let us write the general evolution operator in the
following form:

Û =1 − iλ
∫ ∞

−∞
dtχd (t )(ei�t σ̂+ + e−i�t σ̂−)

∑
n

(â†
nun(xd )eiωnt + ânun(xd )e−iωnt )

− λ2
∫ ∞

−∞
dt2

∫ t2

−∞
dt1χd (t2)χd (t1)(ei�t2 σ̂+ + e−i�t2 σ̂−)(ei�t1 σ̂+ + e−i�t1 σ̂−)

×
∑

n

(â†
nun(xd )eiωnt2 + ânun(xd )e−iωnt2 )

∑
m

(â†
mum(xd )eiωmt1 + âmum(xd )e−iωmt1 ), (D1)

where xd is a position of a detector and σ̂± acts on the internal state of this detector. In our case, we have two detectors and two
Hilbert spaces of internal DoFs. We can simplify the notation to write operators of the evolution as

Û1 = 1 − iλ
∑

n

(Û +
1nσ̂

+
1 + Û −

1nσ̂
−
1 ) − λ2

∑
n,m

(Û ++
1nm σ̂+

1 σ̂+
1 + Û +−

1nm σ̂+
1 σ̂−

1 + Û −+
1nm σ̂−

1 σ̂+
1 + Û −−

1nm σ̂−
1 σ̂−

1 ), (D2)

Û2 = 1 − iλ
∑

n

(Û +
2nσ̂

+
2 + Û −

2nσ̂
−
2 ) − λ2

∑
n,m

(Û ++
2nmσ̂+

2 σ̂+
2 + Û +−

2nmσ̂+
2 σ̂−

2 + Û −+
2nmσ̂−

2 σ̂+
2 + Û −−

2nmσ̂−
2 σ̂−

2 ), (D3)

where U ±
1n, U ±

2n are operators from the first-order order expansion and U ±±
1nm and U ±±

2nm are operators from the second-order
expansion of the Dyson series. σ̂±

1 and σ̂±
2 are operators σ̂± acting on the internal space of the first or second detector,

respectively. To find contributions proportional to the λ2 to the value of (C3), we have to find new terms in the |ψR〉 and |ψL〉
proportional to |ge〉 or |eg〉. Knowing that |ψR〉 = Û1Û2|gg〉|0〉, |ψL〉 = Û2Û1|gg〉|0〉, σ̂−|g〉 = 0 and σ̂+|e〉 = 0 we can write

|ψR〉 =
⎡
⎣1 − iλ

∑
n

Û +
1nσ̂

+
1 − λ2

∑
n,m

Û −+
1nm σ̂−

1 σ̂+
1

⎤
⎦

⎡
⎣1 − iλ

∑
n

Û +
2nσ̂

+
2 − λ2

∑
n,m

Û −+
2nmσ̂−

2 σ̂+
2

⎤
⎦|gg〉|0〉, (D4)

|ψL〉 =
⎡
⎣1 − iλ

∑
n

Û +
2nσ̂

+
2 − λ2

∑
n,m

Û −+
2nmσ̂−

2 σ̂+
2

⎤
⎦

⎡
⎣1 − iλ

∑
n

Û +
1nσ̂

+
1 − λ2

∑
n,m

Û −+
1nm σ̂−

1 σ̂+
1

⎤
⎦|gg〉|0〉. (D5)

We can observe that second-order contributions from the same detector do not change the internal state, i.e., σ̂−σ̂+|g〉 = |g〉,
while the product of first-order terms from both detectors gives σ̂+

1 σ̂+
2 |gg〉 = σ̂+

2 σ̂+
1 |gg〉 = |ee〉. Thus, the second-order terms do

not have support on the subspace spanned by states |ge〉, |eg〉. Note that states |ge〉 or |eg〉 appear in this expansion at order λ3 or
higher. This means that second-order terms from the Dyson series do not affect states |
R〉 and |
L〉 in our approximation.
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ferometric visibility as a witness of general relativistic proper
time, Nat. Commun. 2, 505 (2011).

[18] I. Pikovski, M. Zych, F. Costa, and C. Brukner, Time dilation
in quantum systems and decoherence, New J. Phys. 19, 025011
(2017).

[19] Y. Margalit, O. Dobkowski, Z. Zhou, O. Amit, Y. Japha, S.
Moukouri, D. Rohrlich, A. Mazumdar, S. Bose, C. Henkel, and
R. Folman, Realization of a complete Stern-Gerlach interferom-
eter: Toward a test of quantum gravity, Sci. Adv. 7 (2021).

[20] B. Yurke and D. Stoler, Bell’s-inequality experiments using
independent-particle sources, Phys. Rev. A 46, 2229 (1992).

[21] A. Dragan, Unusually Special Relativity (World Scientific, Lon-
don, 2021).

[22] M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi, and
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