
PHYSICAL REVIEW A 108, 062203 (2023)

Imaginarity of Gaussian states

Jianwei Xu *

College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China

(Received 5 August 2023; accepted 17 November 2023; published 4 December 2023)

It is a long-standing debate that why quantum mechanics uses complex numbers but not real numbers only.
To address this topic, in recent years, the imaginarity theory has been developed in the way of quantum resource
theory. However, the existing imaginarity theory mainly focuses on the quantum systems with finite dimensions.
Gaussian states are widely used in many fields of quantum physics, but they are in the quantum systems with
infinite dimensions. In this paper we establish a resource theory of imaginarity for bosonic Gaussian states. To
do so, under the Fock basis, we determine the real Gaussian states and real Gaussian channels in terms of the
means and covariance matrices of Gaussian states. Also, we provide two imaginary measures for Gaussian states
based on the fidelity.
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I. INTRODUCTION

Complex numbers are widely used in both physics and
mathematics. It has been a long-standing debate since the
inception of quantum mechanics that why quantum mechanics
uses complex numbers but not real numbers only. To improve
this topic, recently, the imaginarity theory has been developed
[1–11]. We consider a quantum system associated with the
complex Hilbert space H and choose the orthonormal basis
{| j〉}d

j=1 of H , with d being the dimension of H. Imaginarity
theory is basis dependent, and when we talk about imaginarity
theory, we always preset an orthonormal basis. A quantum
state represented by a density operator ρ is called real with
respect to {| j〉}d

j=1 if ρ jk = 〈 j|ρ|k〉 ∈ R for all j and k; here
R denotes the set of all real numbers. A quantum operation
[12] φ on H is often represented by a set of Kraus operators
φ = {Kμ}μ satisfying

∑
μ K†

μKμ � I , where K†
μ is the adjoint

of Kμ, I is the identity operator, and
∑

μ K†
μKμ � I means

I −∑
μ K†

μKμ � 0, i.e., I −∑
μ K†

μKμ is positive semidefi-
nite. A quantum operation φ = {Kμ}μ is called a quantum
channel if

∑
μ K†

μKμ = I . In imaginarity theory, an operation
φ is called real if φ can be expressed by a set of Kraus
operators φ = {Kμ}μ and KμρK†

μ is real for any μ and any
real state ρ.

Imaginarity theory can be viewed as a quantum resource
theory. Quantum resource theories provide a powerful way
to characterize certain quantum properties of a quantum sys-
tem [13,14]. The well-known quantum resource theories are
entanglement theory [15,16] and coherence theory [17–20].
Besides, other quantum resources have been developed, such
as quantum thermodynamics [21,22], purity [23–25], non-
locality [26], quantum phase [27], and continuous-variable
quantum resource theories [28–30]. A quantum resource the-
ory for quantum states has two basic ingredients, free states
and free operations. Resource measure and state transforma-
tion are two main topics in a quantum resource theory for
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quantum states. Imaginarity theory characterizes the property
that a quantum state may be complex but not real. In imagi-
narity theory, the free states are real states and free operations
are real operations. State transformations under real opera-
tions have been extensively studied [8]. Several imaginarity
measures have been proposed [1–3,7,8]. Some results of
imaginary theory have been experimentally tested [2,4–6,9].

The imaginarity theory discussed above mainly focuses
on finite-dimensional quantum states. When we attempt to
apply the concepts and results of imaginarity theory to
infinite-dimensional quantum states, two problems occur.
First, for the quantum states and quantum operations on
infinite-dimensional systems, there may be some “diver-
gence” difficulties, such as the energy of a quantum state,
then some definitions for finite-dimensional states can no
longer be well defined for infinite-dimensional states. Second,
even if a definition or result is still well defined for infinite-
dimensional states in a sense, there still may be a problem that
this definition or result is hard to evaluate. These problems
are similar to the cases of coherence theory. In coherence
theory, the l1 norm of coherence Cl1 (ρ) = ∑

j �=k |〈 j|ρ|k〉| is
a valid coherence measure [17] and can be easily calcu-
lated for finite-dimensional states. But Cl1 (ρ) may diverge
for some infinite-dimensional states [31]. In coherence theory,
the relative entropy of coherence Cr(ρ) = S(ρdiag) − S(ρ) is a
valid coherence measure [17] which can be easily calculated
for finite-dimensional states, but Cr(ρ) is hard to calculate
for some infinite-dimensional states [31–33], where S(ρ) =
−tr(ρ log2 ρ) is the Von Neumann entropy and ρdiag is the
diagonal part of ρ.

Bosonic Gaussian states are a class of infinite-dimensional
states, which are widely used in quantum optics and quantum
information theory [34–40]. A Gaussian state ρ is completely
and conventionally described by its mean X and covariance
matrix V ; then we write ρ as ρ(X ,V ). The Fock basis is
the orthonormal basis spanning the complex Hilbert space the
Gaussian states are in; then it is natural to choose the Fock ba-
sis as the fixed basis for imaginarity theory of Gaussian states.
So far, several imaginarity measures for finite-dimensional
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states have been proposed, such as Itr(ρ) based on the trace
norm [1,2], Ir(ρ) based on the Von Neumann entropy [7], and
If(ρ) based on the fidelity [3,8]; they are defined as

Itr(ρ) = ||ρ − ρ∗||tr, (1)

Ir(ρ) = S(Reρ) − S(ρ), (2)

If(ρ) = 1 − F (ρ, ρ∗), (3)

where ρ∗ is the conjugate of ρ, || · ||tr denotes the trace norm,
Reρ is the real part of ρ, and F (ρ, σ ) = tr

√√
ρσ

√
ρ is the fi-

delity of states ρ and σ [41,42]. We consider whether Eqs. (1),
(2), and (3) are applicable to Gaussian states. Till now, to
calculate ρ∗, Reρ, and ||ρ − ρ∗||tr for general Gaussian states
is very hard since it is hard to express general Gaussian
states in the Fock basis [31–33,43–45]. F (ρ, σ ) has a closed
expression for Gaussian states ρ and σ in terms of their means
and covariance matrices [46], but we do not know whether ρ∗
is a Gaussian state. Moreover, we do not even know which
Gaussian states are real in terms of means and covariances.

In this paper we study the imaginarity of bosonic Gaus-
sian states. We establish a resource theory of imaginarity for
bosonic Gaussian states. This paper is structured as follows. In
Sec. II, we determine the conditions for real Gaussian states
and the conjugate of a Gaussian state under the Fock basis in
terms of means and covariances. In Sec. III, we characterize
the structure of real Gaussian channels. In Sec. IV, we provide
two imaginary measures for Gaussian states based on the
fidelity, and they all have explicit expressions. Section V is
a brief summary and outlook. For structural clarity, we focus
on stating the theoretical framework and results in the main
text, and we put most of the proofs in the appendices.

II. REAL GAUSSIAN STATES AND THE CONJUGATE
OF A GAUSSIAN STATE

In this section we determine the real Gaussian states and
the conjugate of a Gaussian state. We first recall some basics
and give the notation we use for Gaussian states. We denote
the one-mode Fock basis by {| j〉}∞j=0, with j ∈ {0, 1, 2, 3, . . .};
{| j〉}∞j=0 is an orthonormal basis spanning the complex Hilbert

space H . H is a countable but infinite-dimensional complex
Hilbert space. The N-mode Fock basis is {| j〉}⊗N

j , the N-fold
tensor product of {| j〉}∞j=0, and {| j〉}⊗N

j spans the complex

Hilbert space H
⊗N = ⊗N

l=1Hl with each Hl = H . On each
Hl , the bosonic field operators, annihilation operator âl and
creation operator â†

l , are defined as

âl |0〉 = 0, âl | j〉 =
√

j| j − 1〉 for j � 1; (4)

â†
l | j〉 =

√
j + 1| j + 1〉 for j � 0. (5)

We arrange {̂al , â†
l }N

l=1 as a vector as

Â = (̂a1, â†
1, â2, â†

2, . . . , âN , â†
N )T

= (Â1, Â2, Â3, Â4, . . . , Â2N−1, Â2N )T , (6)

with T standing for the transposition.

From the bosonic field operators {̂al , â†
l }N

l=1, we can define
the quadrature field operators {q̂l , p̂†

l }N
l=1 as

q̂l = âl + â†
l , p̂l = −i(̂al − â†

l ), (7)

where i = √−1. We arrange {q̂l , p̂†
l }N

l=1 as a vector as

X̂ = (q̂1, p̂1, q̂2, p̂2, . . . , q̂N , p̂N )T

= (X̂1, X̂2, X̂3, X̂4, . . . , X̂2N−1, X̂2N )T . (8)

Under these definitions, we obtain the canonical commuta-
tion relations

[Âl , Âm] = �lm, (9)

[X̂l , X̂m] = 2i�lm, (10)

where [Âl , Âm] = Âl Âm − ÂmÂl is the commutator of Âl and
Âm, and �lm is the element of the 2N × 2N matrix � with

� = ⊕N
n=1ω, ω =

(
0 1

−1 0

)
. (11)

A quantum state ρ in H
⊗N

can be characterized by its
characteristic function

χ (ρ, ξ ) = tr[ρD(ξ )], (12)

where D(ξ ) is the displacement operator,

D(ξ ) = exp(iX̂ T �ξ ), (13)

ξ = (ξ1, ξ2, . . . , ξ2N )T ∈ R2N . (14)

For state ρ in H
⊗N

, the mean of ρ is

X = tr(ρX̂ ) = (X 1, X 2, . . . , X 2N )T ; (15)

the covariance matrix V is defined by its elements

Vlm = 1
2 tr(ρ{	X̂l ,	X̂m}), (16)

with 	X̂l = X̂l − X l , and {	X̂l ,	X̂m} = 	X̂l	X̂m +
	X̂m	X̂l is the anticommutator of 	X̂l and 	X̂m. The
covariance matrix V = V T is a 2N × 2N real and symmetric
matrix which must satisfy the uncertainty principle [47]

V + i� � 0. (17)

Note that V + i� � 0 implies V  0, meaning that V is posi-
tive definite.

With these preparations, we turn to the definition of Gaus-
sian states. A quantum state ρ in H

⊗N
is called an N-mode

Gaussian state if its characteristic function has the Gaussian
form

χ (ρ, ξ ) = exp
[− 1

2ξT (�V �T )ξ − i(�X )T ξ
]
, (18)

where X is the mean of ρ and V is the covariance matrix of
ρ. The Gaussian state ρ is determined by its characteristic
function χ (ρ, ξ ) via the inverse relation (see, for example,
Chap. 4 in Ref. [40])

ρ =
∫

d2Nξ

πN
χ (ρ, ξ )D(−ξ ), (19)

where
∫ = ∫∞

−∞. X and V with Eq. (17) completely determine
the Gaussian state ρ [47], and thus we write ρ as ρ(X ,V ).
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Now we consider the question of under what con-
ditions on X and V , ρ is a real Gaussian state, i.e.,
〈 j1|〈 j2| . . . | jN |ρ|k1〉|k2〉 . . . |kN 〉 ∈ R for any Fock basis vec-
tors {| j1〉, | j2〉|, . . . , | jN 〉; |k1〉, |k2〉, . . . , |kN 〉}. For this ques-
tion, we have Theorem 1 below; we provide a proof for
Theorem 1 in Appendixes A and F.

Theorem 1. The N-mode Gaussian state ρ(X ,V ) is real if
and only if

X 2l = 0 for l ∈ {1, 2, . . . , N}, (20)

V2l−1,2m = 0 for l, m ∈ {1, 2, . . . , N}. (21)

If one of {X 2l ,V2l−1,2m}N
l,m=1 is nonzero, then there exists

〈 j1|〈 j2| . . . | jN |ρ|k1〉|k2〉 . . . |kN 〉 /∈ R for ρ(X ,V ); ρ(X ,V ) is
called not real. When ρ(X ,V ) is not real, we further ask how
about the conjugate ρ∗ of ρ(X ,V ). Is ρ∗ still a Gaussian state?
If ρ∗ is still a Gaussian state, then how about the mean and
covariance matrix of ρ∗? Theorem 2 below answers these
questions; we provide a proof for Theorem 2 in Appendixes B
and F.

Theorem 2. For the N-mode Gaussian state ρ(X ,V ), the
conjugate state of ρ(X ,V ) is still a Gaussian state. We denote
the conjugate state of ρ(X ,V ) by ρ∗(X

′
,V ′) with the mean X

′

and covariance matrix V ′, and then

X
′
l = (−1)l+1X l , l ∈ {1, 2, . . . , 2N}, (22)

V ′
lm = (−1)l+mVlm, l, m ∈ {1, 2, . . . , 2N}. (23)

With Theorem 1, Theorem 2, and Eqs. (15) and (16), we
see that, for the N-mode Gaussian state ρ(X ,V ), the real part

of ρ, Reρ = ρ+ρ∗
2 , has the mean X+X

′

2 and the covariance

matrix V +V ′
2 , and ( X+X

′

2 , V +V ′
2 ) determines a real Gaussian

state since

V + V ′

2
+ i� = (V + i�) + (V ′ + i�)

2
� 0. (24)

Then one may ask the question of whether Reρ is a Gaussian
state. The answer to this question is negative. That is, if ρ is a
Gaussian state, then Reρ is not a Gaussian state in general. We
can check this fact using the Glauber coherent state in Exam-
ple 2 below. With this observation, for the N-mode Gaussian
state ρ(X ,V ), we define a real Gaussian state ρ having the

mean X+X
′

2 and the covariance matrix V +V ′
2 ; we write ρ as

ρ( X+X
′

2 , V +V ′
2 ). We call ρ( X+X

′

2 , V +V ′
2 ) the real Gaussian state

induced by the Gaussian state ρ(X ,V ). Obviously, for the
Gaussian state ρ(X ,V ), we have

ρ = (ρ )∗ = ρ∗, (25)

and ρ is real (i.e., ρ = Reρ) if and only if ρ = ρ. In general,
Reρ �= ρ for the Gaussian state ρ(X ,V ).

III. REAL GAUSSIAN CHANNELS

A Gaussian channel φ on H
⊗N

can be represented by
φ = (d, T, N ), here d = (d1, d2, . . . , d2N )T ∈ R2N , and T and
N = NT are 2N × 2N real matrices. φ = (d, T, N ) maps the
Gaussian state ρ(X ,V ) to the Gaussian state with the mean

FIG. 1. Classification of real Gaussian channels.

and the covariance matrix given as

X → T X + d, V → TV T T + N, (26)

and φ = (d, T, N ) fulfills the complete positivity condition

N + i� − iT �T T � 0. (27)

We then define that a Gaussian channel is real if it maps any
real Gaussian state to a real Gaussian state. For the structure
of real Gaussian channels, we have Theorem 3 below; we
provide a proof for Theorem 3 in Appendix C.

Theorem 3. The N-mode Gaussian channel φ = (d, T, N )
is real if and only if

d2l = 0 for l ∈ {1, 2, . . . , N}, (28)

N2l−1,2m = 0 for l, m ∈ {1, 2, . . . , N}, (29)

and one of Eqs. (30) and (31) below:

T2l,2m−1 = T2l,2m = 0 for l, m ∈ {1, 2, . . . , N}, (30)

T2l−1,2m = T2m,2l−1 = 0 for l, m ∈ {1, 2, . . . , N}. (31)

We discuss the properties of real Gaussian channels. If a
real Gaussian channel φ fulfills Eq. (30), we call it a com-
pletely real Gaussian channel. If a real Gaussian channel φ

fulfills Eq. (31), we call it a covariant real Gaussian channel.
The meanings of these definitions are explained in Theorem
4 below. We give a proof for Theorem 4 in Appendix D. In
particular, if a real Gaussian channel φ fulfills both Eqs. (30)
and (31), we call it a covariant and completely real Gaussian
channel. Such a classification of real Gaussian channels is
shown in Fig. 1.

Theorem 4. If φ is a completely real Gaussian channel, then
φ(ρ) is real for any Gaussian state ρ. If φ is a covariant real
Gaussian channel, then for any Gaussian state ρ, we have

[φ(ρ)]∗ = φ(ρ∗), (32)

φ(ρ) = φ(ρ). (33)

IV. IMAGINARITY MEASURES OF GAUSSIAN STATES

An imaginarity measure M(ρ) for N-mode Gaussian states
is a real-valued functional on Gaussian states. In the spirit
of quantum resource theory, we propose that any imaginarity
measure M(ρ) for N-mode Gaussian states should satisfy the
following two conditions.

(M1) Faithfulness: M(ρ) � 0 for any state ρ and M(ρ) =
0 if and only if ρ is real.
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(M2) Monotonicity: M(φ(ρ)) � M(ρ) for any state ρ and
any real Gaussian channel φ.

We provide two imaginarity measures based on the fidelity
for Gaussian states in Theorem 5 below. We give a proof for
Theorem 5 in Appendix E.

Theorem 5. For any N-mode Gaussian state ρ(X ,V ),

M(ρ) = 1 − F (ρ, ρ∗) (34)

and

M ′(ρ) = 1 − F (ρ, ρ ) (35)

are all imaginarity measures; i.e., M(ρ) and M ′(ρ) both satisfy
(M1) and (M2).

From the definitions of M(ρ) and M ′(ρ), we see that M(ρ)
and M ′(ρ) have the property of conjugation invariance:

M(ρ) = M(ρ∗), M ′(ρ) = M ′(ρ∗). (36)

It is shown that 1 − F (ρ, ρ∗) in Eq. (3) is a valid imag-
inarity measure for finite-dimensional states [3,8]. We have
shown that if ρ is a Gaussian state, then ρ∗ and ρ are all
Gaussian states. Then the calculation of M(ρ) and M ′(ρ) is
about the calculation of the fidelity for two Gaussian states.
The expression of the fidelity F (ρ, σ ) for two Gaussian states
ρ and σ has been studied for many years [46,48–53], and
in Ref. [46] an explicit expression of F (ρ, σ ) for any two
N-mode Gaussian states was provided. Consequently, M(ρ)
and M ′(ρ) have explicit expressions via the explicit expres-
sion of F (ρ, σ ) for any two N-mode Gaussian states [46].
Below we discuss some special one-mode Gaussian states to
demonstrate the calculation of M(ρ) and M ′(ρ).

For any two one-mode Gaussian states ρ(X ,V ) and
σ (Y ,W ), the fidelity F (ρ, σ ) has the following expression
[46,53]:

F (ρ, σ ) = exp
[− 1

4 (X − Y )T (V + W )−1(X − Y )
]√√

det
(

V +W
2

)+ � − √
�

, (37)

� = 4 det

(
V + i�

2

)
det

(
W + i�

2

)
. (38)

With these expressions we can directly calculate M(ρ) and
M ′(ρ) for any one-mode Gaussian state ρ.

Corollary 1. For the one-mode Gaussian state ρ(X ,V ), the
imaginarity measures M(ρ) in Eq. (34) and M ′(ρ) in Eq. (35)
become

M(ρ) = 1 − exp
(− X

2
2

2V22

)√√
V11V22 + � − √

�

, (39)

� =
(
V11V22 − V 2

12 − 1
)2

4
; (40)

M ′(ρ) = 1 −
exp

[− V11X
2
2

2(4V11V22−V 2
12 )
]

√√(
V11V22 − 1

4V 2
12

)+ �′ − √
�′

, (41)

�′ = 1

4

(
V11V22 − V 2

12 − 1
)
(V11V22 − 1). (42)

We discuss some classes of special one-mode Gaussian
states: the thermal states, the Glauber coherent states, and the

FIG. 2. M(|α〉) and M ′(|α〉) versus Imα in Eqs. (45) and (46).

squeezed states. These classes of Gaussian states are widely
used in quantum optics and quantum information theory. For
the one-mode case, we also write the Fock basis as {| j〉}∞j=0 =
{|n〉}∞n=0, and we write the creation and annihilation operators
as â1 = â and â†

1 = â†.

Example 1. Consider the one-mode thermal state

ρth(n) =
∞∑

n=0

nn

(n + 1)n+1
|n〉〈n|, (43)

with n = tr[̂a†̂aρth(n)] being the mean number of ρth(n).
The mean of ρth(n) is X = (0, 0)T , and the covariance
matrix of ρth(n) is V = (2n + 1)(1 0

0 1). Then Eqs. (39)–
(42) yield M(ρth(n)) = M ′(ρth(n)) = 0. In fact, M(ρth(n)) =
M ′(ρth(n)) = 0 is an obvious result, since the matrix elements
of ρth(n) are all real in the Fock basis; i.e., ρth(n) is a real
Gaussian state.

Example 2. Consider the one-mode Glauber coherent state

|α〉 = D(α)|0〉 = e− |α|2
2

∞∑
n=0

αn

√
n!

|n〉, (44)

with α being any complex number. The mean of |α〉〈α| is X =
(2Reα, 2Imα)T , and the covariance matrix of |α〉〈α| is V =
(1 0
0 1). Then Eqs. (39)–(42) yield

M(|α〉) = 1 − e−2(Imα)2
, (45)

M ′(|α〉) = 1 − e− (Imα)2

2 . (46)

We see that M(|α〉) > M ′(|α〉) > 0 when α /∈ R; M(|α〉) =
M ′(|α〉) = 0 if and only if α ∈ R; M(|α〉) and M(|α〉) increase
as |Imα| increases; and M(|α〉) and M ′(|α〉) are independent
of Reα. We depict Eqs. (45) and (46) in Fig. 2.

Example 3. Consider the one-mode squeezed state

|ζ 〉 = exp

[
1

2
(ζ ∗̂a2 − ζ â†2)

]
|0〉 (47)

= 1√
cosh |ζ |

∞∑
n=0

(−eiθ tanh |ζ |)n

√
(2n)!

2nn!
|2n〉, (48)

with ζ being any complex number and ζ = |ζ |eiθ its polar
form. exp[ 1

2 (ζ ∗̂a2 − ζ â†2)] is the squeezing operator. The
mean of |ζ 〉〈ζ | is X = (0, 0)T , and the covariance matrix V
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FIG. 3. M(|ζ 〉) in Eq. (50).

of |ζ 〉〈ζ | is

V11 = cosh(2|ζ |) + cos θ sinh(2|ζ |),
V12 = V21 = sin θ sinh(2|ζ |),
V22 = cosh(2|ζ |) − cos θ sinh(2|ζ |).

(49)

Then Eqs. (39)–(42) yield

M(|ζ 〉) = 1 − 1
4
√

1 + sin2 θ sinh2(2|ζ |)
, (50)

M ′(|ζ 〉) = 1 − 1

4

√
1 + 3

4 sin2 θ sinh2(2|ζ |)
. (51)

We see that if ζ /∈ R then M(|ζ 〉) > M ′(|ζ 〉) > 0; M(|ζ 〉) and
M ′(|ζ 〉) increase as |ζ | increases; and M(|ζ 〉) = M ′(|ζ 〉) = 0
if and only if ζ ∈ R. We depict Eq. (50) in Fig. 3, and compare
Eqs. (50) and (51) in Fig. 4.

V. SUMMARY AND OUTLOOK

We established a resource theory of imaginarity for Gaus-
sian states. To this aim, under the Fock basis, we determined
the real Gaussian states and real Gaussian channels via the
means and covariances of Gaussian states. We provided two
imaginarity measures based on the fidelity which all have
closed expressions. As a by-product, we proved that the con-
jugate of a Gaussian state is still a Gaussian state. We also
discussed the imaginarity of some one-mode Gaussian states.

There remained many open questions for future explo-
rations. First, for the two imaginarity measures M(ρ) and
M ′(ρ) provided in this work, are there some physically
operational interpretations linked to them? Second, does

FIG. 4. M(|ζ 〉) and M ′(|ζ 〉) versus sin2 θ sinh2(2|ζ |) in Eqs. (50)
and (51).

M(ρ) � M ′(ρ) hold for all Gaussian states? Third, are there
some other imaginarity measures for Gaussian states satis-
fying the conditions (M1) and (M2) in this work? Last, the
properties of state conversions under real Gaussian channels
are worthy of further investigations.
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APPENDIX A: PROOF OF THEOREM 1

We set three steps to prove Theorem 1.
Step (A.i). We first prove that if the Gaussian state ρ(X ,V )

is real then {X2l = 0}N
l=1 and {V2l−1,2m = 0}N

l,m=1; this step is
comparatively straightforward.

Expand the Gaussian state ρ(X ,V ) in the Fock basis
{| j〉}⊗N

j as

ρ(X ,V ) =
∞∑

j1,k1,..., jN ,kN =0

ρ j1k1, j2k2,..., jN kN

× | j1〉〈k1| ⊗ | j2〉〈k2| ⊗ . . . ⊗ | jN 〉〈kN |, (A1)

where ρ j1k1, j2k2,..., jN kN = 〈 j1|〈 j2| . . . 〈 jN |ρ|k1〉|k2〉 . . . |kN 〉 ∈ R
for any { j1, k1, j2, k2, . . . , jN , kN } ⊂ {0, 1, 2, . . .}. We also
use the symbols ρ j1k1 = 〈 j1|ρ (1)|k1〉, with ρ (1) being the
reduced state of ρ to the first mode, and ρ j1k1; j2k2 =
〈 j1|〈 j2|ρ (12)|k1〉|k2〉, with ρ (12) being the two-mode reduced
state of ρ to the first and second modes.

Without loss of generality, we only need to prove that if
ρ(X ,V ) is real then X 2 = 0 and V12 = V14 = V23 = 0. Note
that X 1 is not on an equal footing with X 2 by the definition
of Eqs. (7), (8), and (15); any X 2l−1 (X 2l ) is on an equal
footing with X 1 (X 2). Similarly, V12, V14, and V23 have distinct
meanings by the definition of Eqs. (7), (8), and (16); any
V2l−1,2m has the similar situation with one of {V12,V14,V23}.

From Eqs. (A1), (4), (5), (7), (8), and (15), direct calcula-
tions show that

tr(ρâ1) =
∞∑

j1=0

ρ∗
j1, j1+1

√
j1 + 1, (A2)

tr(ρâ†
1) =

∞∑
j1=0

ρ j1, j1+1

√
j1 + 1, (A3)

X 1 = tr(ρâ1) + tr(ρâ†
1), (A4)

X 2 = −i[tr(ρâ1) − tr(ρâ†
1)]. (A5)

We see that if ρ(X ,V ) is real, then X 2 = 0.
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To express V12, V14, and V23, from Eqs. (A1), (4), (5), (7),
(8), and (16) we derive that

tr
(
ρâ 2

1

) =
∞∑

j1=0

ρ∗
j1, j1+2

√
( j1 + 1)( j1 + 2), (A6)

tr
(
ρâ†2

1

) =
∞∑
j=0

ρ j1, j1+2

√
( j + 1)( j + 2), (A7)

V12 = −i
[
tr
(
ρâ2

1

)− tr
(
ρâ†2

1

)]− X 1X 2; (A8)

tr(ρâ1̂a2) =
∞∑

j1=0, j2=0

ρ∗
j1, j1+1; j2, j2+1

√
( j1 + 1)( j2 + 1),

(A9)

tr(ρâ†
1â†

2) =
∞∑

j1=0, j2=0

ρ j1, j1+1; j2, j2+1

√
( j1 + 1)( j2 + 1),

(A10)

tr(ρâ1̂a†
2) =

∞∑
j1=0, j2=1

ρ∗
j1, j1+1; j2, j2−1

√
( j1 + 1) j2, (A11)

tr(ρâ†
1â2) =

∞∑
j1=0, j2=1

ρ j1, j1+1; j2, j2−1

√
( j1 + 1) j2, (A12)

V14 = −itr[ρ (̂a1̂a2 − â†
1â†

2 − â1̂a†
2 + â†

1â2)] − X 1X 4, (A13)

V23 = −itr[ρ (̂a1̂a2 − â†
1â†

2 + â1̂a†
2 − â†

1â2)] − X 2X 3. (A14)

It follows that if ρ(X ,V ) is real, then V12 = V14 = V23 = 0.

Step (A.ii). Next, we prove that, for the Gaussian
state ρ(X ,V ), if {X2l = 0}N

l=1 and {V2l−1,2m = 0}N
l,m=1, then

ρ(X ,V ) must be real. This step is comparatively difficult. Our
proof is inspired by Ref. [32] (see Appendix A therein).

For a quantum state ρ in H
⊗N

, its characteristic function
χ (ρ, ξ ) determines ρ via the relation [40]

ρ =
∫

d2Nξ

πN
χ (ρ, ξ )D(−ξ ). (A15)

Then

〈 j1| · · · 〈 jN |ρ|k1〉 · · · |kN 〉

=
∫

d2Nλ

πN
χ (ρ, ξ )〈 j1|D(−λ1)|k1〉 · · · 〈 jN |D(−λN )|kN 〉,

(A16)

where λ1 = ξ1 + iξ2, λ2 = ξ3 + iξ4, . . . , λN = ξ2N−1 + iξ2N ,

D(λ1) = D[(ξ1, ξ2)T ] = exp(λ1̂a†
1 − λ∗

1â1), (A17)

D(ξ ) = D(λ1)D(λ2) · · · D(λN ), (A18)

D(λ2) = D[(ξ3, ξ4)T ], . . . , D(λN ) = D[(ξ2N−1, ξ2N )T ]. We
further let (ξ1, ξ2, ξ3, ξ4, . . . , ξ2N−1, ξ2N ) = (xλ1 , yλ1 , xλ2 ,

yλ2 , . . . , xλN , yλN ), d2λ1 = dxλ1 dyλ1 , and d2Nλ = d2Nξ =
dxλ1 dyλ1 dxλ2 dyλ2 · · · dxλN dyλN . In Eq. (A16),

〈 j1|D(−λ1)|k1〉

=
∫

d2α1

π

d2β1

π
〈 j1|α1〉〈α1|D(−λ1)|β1〉〈β1|k1〉 (A19)

=
∫

d2α1

π

d2β1

π

α
j1
1 β

∗k1
1√

j1!k1!
exp b1, (A20)

b1 = − 1

2

(
xα1 , yα1 , xβ1 , yβ1 , xλ1 , yλ1

)
Q1

× (
xα1 , yα1 , xβ1 , yβ1 , xλ1 , yλ1

)T
, (A21)

Q1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −1 −i 1 i

0 2 i −1 −i 1

−1 i 2 0 −1 i

−i −1 0 2 −i −1

1 −i −1 −i 1 0

i 1 i −1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(A22)

In Eq. (A19), α1 = xα1 + iyα1 , β1 = xβ1 + iyβ1 ,
{xα1 , yα1 , xβ1 , yβ1} ⊂ R, d2α1 = dxα1 dyα1 , and d2β1 =
dxβ1 dyβ1 . Below we use α2, β2, . . . , αN , βN and d2Nα =
dxα1 dyα1 · · · dxαN dyαN and d2Nβ = dxβ1 dyβ1 · · · dxβN dyβN

similarly. In Eq. (A19),

|α1〉 = D(α1)|0〉 = e− |α1 |2
2

∞∑
j1=0

α
j1
1√
j1!

| j1〉 (A23)

is the Glauber coherent state, |β1〉 similarly, and we have
used the relations

∫ d2α1
π

|α1〉〈α1| = ∫ d2β1

π
|β1〉〈β1| = I.

In Eq. (A20), we have used 〈α1|D(−λ1)|β1〉 =
〈0|D(−α1)D(−λ1)D(β1)|0〉 and the relation

D(α1)D(β1) = D(α1 + β1) exp
α1β

∗
1 − α∗

1β1

2
. (A24)

Now we consider the case where ρ is a Gaussian state
ρ = ρ(X ,V ). Taking Eq. (A20) and the characteristic func-
tion χ (ρ, ξ ) in Eq. (18) into Eq. (A16), we find

〈 j1| · · · 〈 jN |ρ|k1〉 · · · |kN 〉 =
∫

d2Nλ

πN

d2Nα

πN

d2Nβ

πN

α
j1
1 β

∗k1
1 · · ·α jN

N β
∗kN
N√

j1!k1! · · · jN !kN !
exp b2, (A25)

b2 = −1

2
�T Q� + B′T �, (A26)

� = (
xα1 , yα1 , xβ1 , yβ1 , xα2 , yα2 , xβ2 , yβ2 , . . . , xαN , yαN , xβN , yβN , xλ1 , yλ1 , xλ2 , yλ2 , . . . , xλN , yλN

)T
, (A27)

B′ = (0, 0, . . . , 0, 0,−iX 2, iX 1,−iX 4, iX 3, . . . ,−iX 2N , iX 2N−1)T , (A28)
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Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −1 −i 0 0 0 0 . . . 1 i 0 0 . . .

0 2 i −1 0 0 0 0 . . . −i 1 0 0 . . .

−1 i 2 0 0 0 0 0 . . . −1 i 0 0 . . .

−i −1 0 2 0 0 0 0 . . . −i −1 0 0 . . .

0 0 0 0 2 0 −1 −i . . . 0 0 1 i . . .

0 0 0 0 0 2 i −1 . . . 0 0 −i 1 . . .

0 0 0 0 −1 i 2 0 . . . 0 0 −1 i . . .

0 0 0 0 −i −1 0 2 . . . 0 0 −i −1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 −i −1 −i 0 0 0 0 . . . 1 + V22 −V21 V24 −V23 . . .

i 1 i −1 0 0 0 0 . . . −V12 1 + V11 −V14 V13 . . .

0 0 0 0 1 −i −1 −i . . . V42 −V41 1 + V44 −V43 . . .

0 0 0 0 i 1 i −1 . . . −V32 V31 −V34 1 + V33 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A29)

We introduce the Gaussian integral

J =
∫

d2Nλd2Nαd2Nβ exp

(
b2 +

N∑
l=1

(ulαl + vlβ
∗
l )

)
,

(A30)

where {ul , vl}N
l=1 ⊂ R, and thus

〈 j1| · · · 〈 jN |ρ|k1〉 · · · |kN 〉

=
(

∂ j1

∂u
j1
1

∂k1

∂v
k1
1

· · · ∂ jN

∂u
jN
N

∂kN

∂v
kN
N

J
)∣∣

{ul =vl =0}N
l=1

π3N
√

j1!k1! · · · jN !kN !
. (A31)

To calculate J, we write

b2 +
N∑

l=1

(ulαl + vlβ
∗
l ) = −1

2
�T Q� + BT �, (A32)

with

B = (u1, iu1, v1,−iv1, . . . , uN , iuN , vN ,−ivN ,

− iX 2, iX 1,−iX 4, iX 3, . . . ,−iX 2N , iX 2N−1)T . (A33)

Employing the Gaussian integral formula one gets

J = (2π )3N

√
det Q

exp

(
1

2
BT Q−1B

)
. (A34)

Now we prove that if a Gaussian state ρ(X ,V ) satisfies
{X2l = 0}N

l=1 and {V2l−1,2m = 0}N
l,m=1, then J ∈ R, and hence,

Eq. (A31) implies that ρ(X ,V ) must be real. Observe that if
{X 2l = 0}N

l=1 and {V2l−1,2m = 0}N
l,m=1, then in Eq. (A29)

{Q2l−1,2m−1, Q2l,2m}N
l,m=1 ⊂ R, (A35)

{Q2l−1,2m, Q2l,2m−1}N
l,m=1 ⊂ iR, (A36)

{X 2l−1}N
l=1 ⊂ R, {X 2l}N

l=1 ⊂ iR, (A37)

iR = {ix|x ∈ R}. (A38)

Let

Q = E∗Q′E , (A39)

with

E = diag{i, 1, i, 1, . . . , i, 1}, (A40)

and hence,

E∗ = E−1, (A41)

Q′
2l−1,2m−1 = Q2l−1,2m−1, (A42)

Q′
2l,2m = Q2l,2m, (A43)

Q′
2l−1,2m = iQ2l−1,2m, (A44)

Q′
2l,2m−1 = −iQ2l,2m−1. (A45)

BT Q−1B = BT E∗Q′−1EB. (A46)

We see that Q′ is a real matrix, {(EB)l}N
l=1 ⊂ iR, and

{(BT E∗)l}N
l=1 ⊂ iR. It follows that BT Q−1B in Eq. (A46) is

real and

exp
(

1
2 BT Q−1B

)
> 0. (A47)

Let { j1, k1, j2, k2, . . . jN , kN } all be zero, then

[0, 1] � 〈0|〈0| · · · 〈0|ρ|0〉|0〉 · · · |0〉
= 1

π3N
J{ul =vl =0}N

l=1

= 23N

√
det Q

exp

(
1

2
BT Q−1B

)
{ul =vl =0}N

l=1

. (A48)

As a result,

det Q > 0. (A49)

Equations (A34) and (A31) imply that J ∈ R and ρ(X ,V )
must be real.
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Step (A.iii). From the viewpoint of mathematical rigor, we
need to prove that the Gaussian integral in Eqs. (A30), (A32),
(A33), (A29), and (A27) is convergent, then Eq. (A34) is
valid. To this aim, we prove ReQ is positive definite (the con-
vergence condition of the Gaussian integral, see, for example,
Ref. [54]).

Decompose Q as

Q = Q2 + Q3, (A50)

where Q2 is obtained by deleting all {Vlm}2N
l,m=1 in Q. Since

V  0,

Q3 = �V �T  0. (A51)

There exists a permutation matrix P0 such that

Q2 = P0
(⊕N

l=1Q1
)
PT

0 , (A52)

where Q1 is defined in Eq. (A22), P0 permutes the rows of
(⊕N

l=1Q1) while PT
0 permutes the columns of (⊕N

l=1Q1) in the
same way. Taking the real part of Eqs. (A50) and (A52) gives

ReQ = ReQ2 + Q3, (A53)

ReQ2 = P0
(⊕N

l=1ReQ1
)
PT

0 . (A54)

ReQ1 is symmetric and direct calculation shows that ReQ1

has the eigenvalues {2 + √
3, 2 + √

3, 2 − √
3, 2 − √

3, 1, 1};
thus, ReQ1  0 and ReQ2  0. Together with Q3 = �V �T 
0, we get ReQ  0.

This completes the proof of Theorem 1.

APPENDIX B: PROOF OF THEOREM 2

We set three steps to prove Theorem 2.
Step (B.i). For the N-mode Gaussian state ρ(X ,V ), we

define the real column vector X
′ = (X

′
1, X

′
2, . . . , X

′
2N )T and

the 2N × 2N real, symmetric matrix V ′ = (V ′
lm)2N

l,m=1 as

X
′
l = (−1)l+1X l , l ∈ {1, 2, . . . , 2N}, (B1)

V ′
lm = (−1)l+mVlm, l, m ∈ {1, 2, . . . , 2N}. (B2)

We first show that (X
′
,V ′) determines a Gaussian state ρ ′

with X
′

being the mean and V ′ the covariance matrix. To do
so, we need to prove that V ′ satisfies the uncertainty relation

V ′ + i� � 0. (B3)

Since V is the covariance matrix of Gaussian state ρ(X ,V ),
the uncertainty relation

V + i� � 0 (B4)

holds. Taking the conjugate of the left-hand side of Eq. (B4)
gives

V − i� � 0. (B5)

That is, V + i� � 0 and V − i� � 0 are essentially equiva-
lent.

Now we introduce the matrix

O = ⊕N
l=1

(
1 0
0 −1

)
. (B6)

O is a real orthogonal matrix and O† = O. We can check
that OV O† = V ′ and O�O† = −�. Hence, O(V − i�)O† �
0 and Eq. (B3) follows.

Step (B.ii). We prove that the conjugate of ρ(X ,V ), ρ∗, has
the mean X

′
and the covariance matrix V ′.

Similar to Eqs. (A6)–(A14), we have

tr(ρâ†
1â1) =

∞∑
j=0

j1ρ j1 j1 , (B7)

V11 = tr
[
ρ
(̂
a2

1 + â†2
1 + 2̂a†

1â1 + 1
)]− X

2
1, (B8)

V22 = −tr
[
ρ
(̂
a2

1 + â†2
1 − 2̂a†

1â1 − 1
)]− X

2
2, (B9)

V13 = tr[ρ (̂a1̂a2 + â†
1â†

2 + â1̂a†
2 + â†

1â2)] − X 1X 3, (B10)

V24 = −tr[ρ (̂a1̂a2 + â†
1â†

2 − â1̂a†
2 − â†

1â2)] − X 2X 4. (B11)

We see that if replace ρ by its conjugate ρ∗, then (X ,V )
become (X

′
,V ′). This says that the mean and the covariance

matrix of ρ∗ are (X
′
,V ′).

Step (B.iii). Last, we prove that the Gaussian state
ρ ′(X ′

,V ′) is just ρ∗. To this aim, we calculate the matrix
elements 〈 j1| · · · 〈 jN |ρ ′|k1〉 · · · |kN 〉 of ρ ′(X ′

,V ′) in the Fock
basis {| j〉}⊗N

j . Since

〈 j1| · · · 〈 jN |ρ∗|k1〉 · · · |kN 〉 = 〈k1| · · · 〈kN |ρ| j1〉 · · · | jN 〉,
(B12)

we need to show

〈 j1| · · · 〈 jN |ρ ′|k1〉 · · · |kN 〉 = 〈k1| · · · 〈kN |ρ| j1〉 · · · | jN 〉
(B13)

for any { j1, k1, . . . , jN , kN } ⊂ {0, 1, 2, . . .}.
We now show that when replacing (X ,V ) and

(u1, v1; . . . ; uN , vN ) by (X
′
,V ′) and (v1, u1; . . . ; vN , uN ),

respectively, in Eq. (A34), the integral J in Eq. (A34) remains
invariant. Together with Eq. (A31), we obtain Eq. (B13). With
such replacements, in Eq. (A34), we consider what det Q and
BT Q−1B become.

Q becomes

Q2 + �V ′�T = Q2 + �OV O�T (B14)

= Q2 + O�V �T O (B15)

= O1(Q∗
2 + �V �T )O1 (B16)

= O1Q∗O1, (B17)

det Q then becomes det Q∗. In Eq. (B14) we use Eqs. (A50)
and (A51). In Eq. (B14) we use the matrix O defined in
Eq. (B6), and the fact that V ′ = OV O. In Eq. (B15) we use the
fact that O� = −�O. In Eq. (B16) we extend the 2N × 2N
matrix O defined in Eq. (B6) to a larger 6N × 6N real sym-
metric orthogonal matrix O1 as

O1 = ⊕3
m=1O = ⊕3N

l=1

(
1 0
0 −1

)
, (B18)
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and we use the following facts:

O1Q∗
2O1 = Q2, (B19)

O�V �T O = O1�V �T O1. (B20)

Equations (B19) and (B20) can be directly checked. In
Eq. (B17) we again used Eqs. (A50) and (A51) and the fact
that �V �T is real.

B becomes O2B with O2 being a 6N × 6N real symmetric
orthogonal matrix as

O2 =

⎡⎢⎢⎣⊕N
l=1

⎛⎜⎜⎝
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞⎟⎟⎠
⎤⎥⎥⎦⊕

[
⊕N

l=1

(−1 0
0 1

)]
.

(B21)

BT Q−1B becomes

BT O2O1(Q∗)−1O1O2B

= BT [(O2O1QO1O2)∗]−1B = BT Q−1B, (B22)

where we have used the fact that

O2O1QO1O2 = Q∗ (B23)

which can be directly checked. Further, Eq. (B23) implies

det Q = det Q∗. (B24)

With Eqs. (B22), (B24), and (A34), we obtain Eq. (B13),
and ρ ′(X ′

,V ′) = ρ∗ then follows.

APPENDIX C: PROOF OF THEOREM 3

Step (C.i): One-mode case.
Consider the real Gaussian state ρ(X ,V ) with

V =
(

V11 0

0 V22

)
, X =

(
X 1

0

)
. (C1)

Suppose φ = (d, T, N ) is a real Gaussian channel,

T =
(

T11 T12

T21 T22

)
, N =

(
N11 N12

N12 N22

)
, d =

(
d1

d2

)
. (C2)

Equation (26) yields

T X + d =
(

T11X 1 + d1

T21X 1 + d2

)
. (C3)

Varying X 1 ∈ R, T21X 1 + d2 = 0 implies T21 = d2 = 0.
Further,

TV T T + N

=
(

T 2
11V11 + T 2

12V22 + N11 T12T22V22 + N12

T12T22V22 + N12 T 2
22V22 + N22

)
. (C4)

Varying V22 ∈ R, T12T22V22 + N12 = 0 yields T12T22 = N12 =
0. Then Theorem 3 holds for the one-mode case.

Step (C.ii): N-mode case.
Define the 2N × 2N permutation matrix P as

Pl,2l−1 = PN+l,2l = 1 for l ∈ {1, 2, . . . , N}, (C5)

and other elements are all zero. P reorders the indices
(1, 2, 3, . . . , 2N )T to (1, 3, 5, . . . , 2N − 1, 2, 4, . . . , 2N )T .
Consider the real Gaussian state ρ(X ,V ), we find

PX = (X 1, X 3, . . . , X 2N−1, 0, . . . , 0)T , (C6)

PV PT =

⎛⎜⎜⎜⎜⎜⎜⎝
V11 V13 . . . 0 0 . . .

V31 V33 . . . 0 0 . . .

. . . . . . . . . . . . . . . . . .

0 0 . . . V22 V24 . . .

0 0 . . . V42 V44 . . .

. . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎠
=
(

V1 0
0 V4

)
, (C7)

with V1 = Vo and V4 = Ve all being N × N real matrices.
Suppose φ = (d, T, N ) is a real Gaussian channel. PT PT

and PNPT have reordered structures similar to those of PV PT .
We write

PT PT =
(

T1 T2

T3 T4

)
, PNPT =

(
N1 N2

NT
2 N4

)
, (C8)

Pd = (d1, d3, . . . , d2N−1, d2, d4, . . . , d2N )T , (C9)

with T1, T2, T3, T4, N1, N2, and N4 all being N × N real
matrices. Equation (26) yields

T X + d = PT [(PT PT )(PX ) + (Pd )]. (C10)

Varying {X 2l−1}N
l=1 ⊂ R, we get T3 = 0 and d2l = 0 for l ∈

{1, 2, . . . , N}. Equation (26) further yields

TV T T + N

= PT [(PT PT )(PV PT )(PT T PT ) + (PNPT )]P

= PT

(
T1V1T T

1 + T2V4T T
2 + N1 T2V4T T

4 + N2

T4V4T T
2 + NT

2 T4V4T T
4 + N4

)
P,

×T2V4T T
4 + N2 = 0. (C11)

Varying {V2l,2m}N
l,m=1 ⊂ R in Eq. (C11), we get N2 = 0, T2 =

0, or T4 = 0. Then Theorem 3 follows for the N-mode case.

APPENDIX D: PROOF OF THEOREM 4

Suppose φ = (d, T, N ) is an N-mode real Gaussian chan-
nel and ρ(X ,V ) is any N-mode Gaussian state. P, PX , PT PT ,
PNPT , and Pd are defined similarly to Eqs. (C5), (C6), (C8),
and (C9). We also denote

X o = (X 1, X 3, X 5, . . . , X 2N−1)T , (D1)

X e = (X 2, X 4, X 6, . . . , X 2N )T , (D2)

PV PT =
(

V1 V2

V T
2 V4

)
, (D3)

do = (d1, d3, d5, . . . , d2N−1)T , (D4)

where {V2,V1 = Vo,V4 = Ve} are all N × N matrices.
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Step (D.i). If φ = (d, T, N ) is a completely real Gaussian
channel, then

PT PT =
(

T1 T2

0 0

)
, PNPT =

(
N1 0
0 N4

)
. (D5)

We calculate the mean and the covariance of φ[ρ(X ,V )].
Equation (26) yields

T X + d = PT [(PT PT )(PX ) + (Pd )]

= PT

(
T1X o + T2X e + do

0

)
, (D6)

TV T T + N = PT [(PT PT )(PV PT )(PT T PT ) + (PNPT )]P

= PT

(
V ′

1 0

0 N4

)
P,

V ′
1 = T1V1T T

1 + T1V2T T
2 + T2V

T
2 T T

1 + T2V4T T
2 + N1.

(D7)

Consequently, φ[ρ(X ,V )] is a real Gaussian state.
Step (D.ii). If φ = (d, T, N ) is a covariant real Gaussian

channel, then

PT PT =
(

T1 0

0 T4

)
, PNPT =

(
N1 0

0 N4

)
. (D8)

We calculate the mean and the covariance of φ[ρ(X ,V )].
Equation (26) yields

T X + d = PT [(PT PT )(PX ) + (Pd )]

= PT

(
T1X o + do

T4X e

)
, (D9)

TV T T + N = PT [(PT PT )(PV PT )(PT T PT ) + (PNPT )]P

= PT

(
T1V1T T

1 + N1 T1V2T T
4

T4V T
2 T T

1 T4V4T T
4 + N4

)
P.

(D10)

Applying Theorem 2, {φ[ρ(X ,V )]}∗ is still a Gaussian
state with the mean and the covariance matrix

PT

(
T1X o + do

−T4X e

)
, (D11)

PT

(
T1V1T T

1 + N1 −T1V2T T
4

−T4V T
2 T T

1 T4V4T T
4 + N4

)
P. (D12)

We see that Eqs. (D11) and (D12) are just the mean and the
covariance matrix of φ[ρ∗(V ′, X

′
)], that is, X e → −X e and

V2 → −V2. Thus, Eq. (32) holds.
The proof of Eq. (33) is similar to the proof of Eq. (32).

APPENDIX E: PROOF OF THEOREM 5

We prove that Eq. (34) fulfills conditions (M1) and (M2).
Equation (34) fulfilling condition (M1) is apparent since for
any two quantum states ρ and σ , the fidelity F (ρ, σ ) � 0
and F (ρ, σ ) = 0 if and only if ρ = σ [12]. Now we prove
Eq. (34) fulfills condition (M2).

For a real Gaussian channel φ, if φ is a completely real
Gaussian channel, then φ(ρ) is a real Gaussian state and
M(φ(ρ)) = 0 � M(ρ) for any Gaussian state ρ.

For a real Gaussian channel φ, if φ is a covariant real Gaus-
sian channel, then from Theorem 4 we have [φ(ρ)]∗ = φ(ρ∗)
and

M(φ(ρ)) = 1 − F [φ(ρ), (φ(ρ))∗]

= 1 − F [φ(ρ), φ(ρ∗)]

� 1 − F (ρ, ρ∗) = M(ρ). (E1)

In the inequality we have used the monotonicity of the fidelity
under a quantum channel φ, F [φ(ρ), φ(σ )] � F (ρ, σ ) for
any two quantum states ρ and σ [12].

The proof of Eq. (35) fulfilling conditions (M1) and (M2)
is similar to Eq. (34). Theorem 5 then follows.

APPENDIX F: ALTERNATIVE PROOFS FOR STEPS (A.ii)
AND (B.iii)

In this section we provide alternative proofs for Steps (A.ii)
and (B.iii) based on the Husimi function. For the N-mode
Gaussian state ρ(X ,V ), the Husimi function of ρ is defined
as [55]

Q(α) = 1

πN
〈α1| · · · 〈αN |ρ|α1〉 · · · |αN 〉, (F1)

where {|α j〉}N
j=1 are Glauber coherent states defined in

Eq. (A23). Note that Q(α) � 0 and
∫

Q(α)d2Nα = 1. In-
serting Eq. (A23) into Eq. (F1), we have (see, for example,
chapter 3 in Ref. [56])

Q(α) = 1

πN
e−|α|2

∞∑
j1,k1,..., jN ,kN =0

(α∗
1 ) j1α

k1
1 · · · (α∗

N ) jN α
kN
N√

j1! · · · jN !k1! · · · kN !
〈 j1| · · · 〈 jN |ρ|k1〉 · · · |kN 〉, (F2)

where |α|2 = ∑N
j=1 |α j |2 = ∑N

j=1 α∗
j α j . We regard {α j, α

∗
j }N

j=1 as formally independent variables, and we regard Q(α), e−|α|2 ,

and e|α|2 as functions of {α j, α
∗
j }N

j=1.

From Eq. (F2), we can calculate 〈 j1| · · · 〈 jN |ρ|k1〉 · · · |kN 〉 by

〈 j1| · · · 〈 jN |ρ|k1〉 · · · |kN 〉 =
πN
(

∂
∂α∗

1

) j1( ∂
∂α1

)k1 · · · ( ∂
∂α∗

N

) jN ( ∂
∂αN

)kN

√
j1! · · · jN !k1! · · · kN !

[Q(α)e|α|2 ]
∣∣
α1=α∗

1=···=αN =α∗
N =0. (F3)
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Expand e−|α|2 and e|α|2 as power series (of {α j, α
∗
j }N

j=1)

e−|α|2 =
∞∑

j1=0

(−α∗
1α1) j1

j1!
· · ·

∞∑
jN =0

(−α∗
NαN ) jN

jN !
, (F4)

e|α|2 =
∞∑

j1=0

(α∗
1α1) j1

j1!
· · ·

∞∑
jN =0

(α∗
NαN ) jN

jN !
. (F5)

Evidently, all coefficients of the power series of e−|α|2 (e|α|2 ) are real. Consequently, all coefficients of the power series of Q(α)
are real if and only if all coefficients of the power series of Q(α)e|α|2 (Q(α)e−|α|2 ) are real.

From Eq. (F2) we see that if ρ is real, then all coefficients of the power series of Q(α)e|α|2 are real. While Eq. (F3) implies
that if all coefficients of the power series of Q(α)e|α|2 are real, then ρ is real. As a result, ρ is real if and only if all coefficients
of the power series of Q(α) are real.

Taking Eqs. (18) and (19) into Eq. (F1), we calculate Q(α) as

Q(α) =
∫

d2Nξ

π2N
χ (ρ, ξ )〈α1| · · · 〈αN |D(−ξ )|α1〉 · · · |αN 〉

=
∫

d2Nξ

π2N
χ (ρ, ξ )〈α1|D(−λ1)|α1〉 · · · 〈αN |D(−λN )|αN 〉 (F6)

=
∫

d2Nξ

π2N
χ (ρ, ξ ) exp

(
−|λ1|2

2
+ α1λ

∗
1 − α∗

1λ1

)
· · · exp

(
−|λN |2

2
+ αNλ∗

N − α∗
NλN

)
(F7)

=
∫

d2Nξ

π2N
exp

[
−1

2
ξT (�V �T )ξ − i(�X )T ξ

]
exp

(
−1

2
ξT ξ − 2iαT �ξ

)
(F8)

=
∫

d2Nξ

π2N
exp

[
−1

2
ξT (�V �T + I2N )ξ + i(X − 2α)T �ξ

]
(F9)

=
(

2

π

)N 1√
det(�V �T + I2N )

exp

[
−1

2
(X − 2α)T �(�V �T + I2N )−1�T (X − 2α)

]
(F10)

=
(

2

π

)N 1√
det(V + I2N )

exp

[
−1

2
(2α − X )T (V + I2N )−1(2α − X )

]
. (F11)

In Eq. (F6), we use λ1 = ξ1 + iξ2, . . . , λN = ξ2N−1 + iξ2N . In
Eq. (F7), we have used

〈α1|D(−λ1)|α1〉 = 〈0|D(−α1)D(−λ1)D(α1)|0〉
= exp (α1λ

∗
1 − α∗

1λ1)〈0|D(−λ1)|0〉

= exp

(
−|λ1|2

2
+ α1λ

∗
1 − α∗

1λ1

)
.

In Eq. (F8), we define the real vector α =
(xα1 , yα1 , xα2 , yα2 , . . . , xαN , yαN )T , with α1 = xα1 + iyα1 , α2 =
xα2 + iyα2 , ..., αN = xαN + iyαN . In Eq. (F9), I2N is the identity
matrix of size 2N . In Eq. (F10), we use the Gaussian integral
formula. In Eq. (F11), we use the facts �T = −� and
�2 = −I2N .

Using the matrix P defined in Eq. (C5), in the exponent of
Eq. (F11), we define the function q(α) and calculate it as

q(α) = (2α − X )T (V + I2N )−1(2α − X )

= [(2α − X )T PT ][P(V + I2N )−1PT ][P(2α − X )]

= [P(2α − X )]T [P(V + I2N )PT ]−1[P(2α − X )]

= [P(2α − X )]T (PV PT + I2N )−1[P(2α − X )]. (F12)

Now we prove the result of Step (A.ii) that if an N-mode
Gaussian state ρ(X ,V ) satisfies {X2l = 0}N

l=1 and {V2l−1,2m =
0}N

l,m=1, then ρ(X ,V ) must be real. We only need to prove that
if ρ(X ,V ) satisfies {X2l = 0}N

l=1 and {V2l−1,2m = 0}N
l,m=1, then

all coefficients of the power series of Q(α) are real.
Suppose {X2l = 0}N

l=1 and {V2l−1,2m = 0}N
l,m=1. With

Eqs. (D1)–(D3), then q(α) in Eq. (F12) reads

q(α) = [P(2α − X )]T [(Vo ⊕ Ve) + I2N ]−1[P(2α − X )]

= [P(2α − X )]T [(Vo + IN )−1 ⊕ (Ve + IN )−1]

× [P(2α − X )]

= (2αo − X o)T (Vo + IN )−1(2αo − X o)

+ 2αT
e (Ve + IN )−1(2αe), (F13)

where IN is the identity matrix of size N , and we
define the real vectors αo = (xα1 , xα2 , . . . , xαN )T and
αe = (yα1 , yα2 , . . . , yαN )T . Notice that 2αo = (α1 +
α∗

1 , α2 + α∗
2 , . . . , αN + α∗

N )T and 2αe = −i(α1 − α∗
1 , α2 −

α∗
2 , . . . , αN − α∗

N )T . Hence, Eqs. (F13) and (F11) imply that
all coefficients of the power series of q(α) and Q(α) are real
and the result of Step (A.ii) follows.

Next we prove the result of Step (B.iii) that, for
the N-mode Gaussian state ρ(X ,V ), the Gaussian state
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ρ ′(X ′
,V ′) with (X

′
,V ′) defined in Eqs. (22) and (23) is

just ρ∗. We use Eq. (F3) to show 〈 j1| . . . 〈 jN |ρ|k1〉 . . . |kN 〉 =
〈k1| . . . 〈kN |ρ ′| j1〉 . . . | jN 〉. In Eq. (F11), if we replace α j , α∗

j ,

V , and X by α∗
j , α j , V ′, and X

′
, respectively, then α, V , and X

become Oα, V ′ = OV O, and X
′ = OX , respectively, with O

defined in Eq. (B6). Further, det(V + I2N ) becomes

det(V ′ + I2N ) = det[O(V + I2N )O] = det(V + I2N ); (F14)

(V + I2N )−1 becomes

(V ′ + I2N )−1 = [O(V + I2N )O]−1 = O(V + I2N )−1O; (F15)

and (2α − X )T (V + I2N )−1(2α − X ) becomes

(2Oα − OX )T O(V + I2N )−1O(2Oα − OX )

= (2α − X )T (V + I2N )−1(2α − X ). (F16)

Equations (F11), (F14), and (F16) show that if we replace
α j , α∗

j , V , and X by α∗
j , α j , V ′, and X

′
, respectively, then Q(α)

remains invariant. e|α|2 remains invariant obviously under such
replacements. From Eq. (F3), we then conclude that the Gaus-
sian state ρ ′(X ′

,V ′) is just ρ∗.
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