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Null dimension witness based on single measurements
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We present a null witness of the dimension of a quantum system, discriminating real, complex, and classical
spaces, based on equality due to linear independence. The witness involves only a single measurement with
sufficiently many outcomes and prepared input states. In addition, for intermediate dimensions, the witness
bounds saturate for a family of equiangular tight frames including symmetric informationally complete positive
operator-valued measures. Such a witness requires a minimum of resources, being robust against many practical
imperfections. We also discuss errors due to finite statistics.
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I. INTRODUCTION

Efficient classical and quantum information technologies
rely on few state systems such as bits, qubits, and their
networks. Usually, algorithms for error correction and miti-
gation assume a known dimension of the working systems.
Otherwise, uncontrolled or systematic errors can reduce sig-
nificantly the accuracy of the realized tasks, accumulated
during long sequences. Therefore, the information processing
systems require precise dimension certification.

The dimension certificate should be a numerical criterion
based on the results of a special set of experiments, a dimen-
sion witness. The standard construction of the witness is the
two-stage protocol, the initial preparation and final measure-
ment [1], which are taken from several respective possibilities.
The preparation must be independent of the measurement and
completed prior to the beginning of the latter. Initially such
witnesses involved linear and quadratic inequalities, tested
experimentally [2–5]. However, they are not particularly use-
ful when additional contributions from the same space are
relatively small. Incidentally, that is the most practical in-
stance, taking into account that the physical system is already
fabricated as a good approximation of the desired dimension.
Thus, it is better to use a null witness, i.e., based on equality.
The witness is a functional expression of the results of the
experiments, which is exactly zero up to a certain dimension
and can be nonzero otherwise [6,7].

Such a desired witness test is given by the linear inde-
pendence of the specific outcome probability pi j ≡ p(i| j)
for the preparation j and measurement i by a suitable de-
terminant [6,7]. In previous works, a witness of dimension
d needed 2k preparations and k measurements with binary
outcomes, with d � k for the classical system and d2 � k
for the quantum system [6]. We have recently reduced the
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number of preparations to k + 1, preserving the properties
of the witness [8]. Experimental null witness tests [6,8] have
been demonstrated recently using optical angular momentum
and transmon qubits [9,10]. The disadvantage of the test is to
still perform k separate measurements with the total cost of
k × (k + 1) experiments.

Here, we show that only a single measurement is necessary,
with the number of preparations still being k + 1. However,
the measurements cannot be binary but must return k + 1
outcomes. Our witness is zero for k � d, (d + 1)d/2, d2 for
classical, real, and complex quantum systems, respectively.
The real quantum system is described by a Hilbert subspace
of only real vectors, which occur, e.g., when the Hamiltonian
is purely imaginary and the unitary operations become real
rotations in real space [11]. The witness is a determinant of
the matrix with entries pi j for the outcome i and the prepared
state j and it tests the linear independence of the underlying
Hilbert space. The measurement operation must be identical
and independent of the prepared state in each run of the
experiment.

In addition, for the cases when the witness is not zero,
one can find an elegant universal bound, depending only
on the dimension and the number of outcomes and prepa-
rations. In fact, the bound can be saturated only for a
special family of states and measurements, equiangular tight
frames (ETFs) [12–15], closely related to a symmetric
informationally complete positive operator-valued measure
(SIC-POVM) [16,17]. No experiment can measure exactly
zero in a finite number of repetitions. Therefore we append the
discussion of errors due to finite statistics, unavoidable in each
probabilistic test, which are estimated by the adjoint (minor)
matrix, for the boundary k.

II. DIMENSION CERTIFICATE

We consider the standard prepare and measure scenario
with n outcomes (Fig. 1). The input state is prepared in
one of m possibilities represented by Hermitian matrices
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FIG. 1. Preparation and measurement scenario; the state is pre-
pared as ρ and measured by M to give an outcome 1 . . . n.

0 � ρ̂1, . . . , ρ̂m, Tr ρ̂ j = 1. The probability of the measure-
ment of an outcome i = 1, . . . , n, is applied out of m input
states, pi j = Tr M̂iρ̂ j for the measurement operators 0 �
M̂1, . . . , M̂n,

∑
i M̂i = 1̂. If the system is classical, with d

states, then pi j = ∑
a qiara j with a = 1, . . . , d and r, q de-

scribing the transfer probabilities from the prepared state to
the classical d-dimensional register, whereas q is the transfer
probability from the register to the measurement outcome.
The quantum states and measurements can be either real or
fully complex. The real register of a d-level quantum state
consists of (d + 1)d/2 Gell-Mann basis matrices with all
zeros except a single 1 on the diagonal or a symmetric off-
diagonal pair of two 1’s. The complex register is enlarged by
(d − 1)d/2 antisymmetric matrices with entries (i,−i).

For any dimensions witness, both the number of prepara-
tions and outcomes must exceed the dimension d . Otherwise,
for d outcomes and n > d preparations, we can generate
the desired probability matrix pi j taking M̂i = |i〉〈i| and
ρ̂ j = ∑

i pi j |i〉〈i|. On the other hand, having n > d outcomes
and d preparations we take M̂i = ∑

j pi j | j〉〈 j| while ρ̂ j =
| j〉〈 j|, since

∑
i pi j = 1. Following previous results [6], for a

d-dimensional quantum system we have
∏

i

pii � min[1, (d/n)n], (1)

because the maximum of pii is bounded by Tr M̂i and the geo-
metric mean is bounded by the average

∑
i Tr M̂i/n = d/n [6].

A saturating real example is ρ̂a = |a〉〈a|, M̂a = ρ̂ad/n, and,
e.g., Refs. [18,19],

√
d/2|a〉 = (2 � d )|d〉/

√
2 +

∑

j�d/2

[|2 j − 1〉 cos(2πa j/n)

+ |2 j〉 sin(2πa j/n)], (2)

where j = 1, 2, . . . and 2 � d means to include this term only
if d is odd.

The classical bound is obtained observing that M becomes
a classical Markov process matrix for d states. The optimal
pii occurs when the state corresponds to the largest element
in the ith row of M. From the pigeonhole principle, having
more outcomes than states, some states must be assigned
to multiple outcomes. Again using arithmetic and geometric
mean inequality and the fact that the the sum of each column
of M is 1, the optimal case is for this maximum to equal 1/q
for the multiplicity q. Therefore the classical bound for (1) is

1/qq(d−r)(q + 1)(q+1)r, (3)

if n = qd + r for r = 0, . . . , d − 1. Note that both bounds
coincide only when n is the multiplicity of d .

The inequality (1) is not satisfactory because (i) it does not
discriminate between real and complex quantum systems, (ii)

it provides the same classical and quantum bound in some
cases, and (iii) it is incapable of detecting small contributions
from the extra space. Therefore we propose a null test of the
dimension by taking a single measurement with n = k + 1
outcomes and preparations.

Let the matrix p be formed with entries pi j , the prob-
abilities of the outcome i for the preparation j. We define
the witness Wk = det p which is equal to 0 for k � d, d (d +
1)/2, d2 for classical, quantum real, and quantum complex
states of dimension d , because the determinant size exceeds
the dimension of spanning the linear space of states. Option-
ally, the witness can be reduced to a k × k matrix noting that
the sum of all measurements is equal to 1, and replacing

pi j → pi j − pi,k+1. (4)

The above construction is the main result of the present paper.
However, there is another very important inequality, which
helps to estimate the scale of the violation in the above null
test by the extra space.

Theorem. The dimension witness Wk satisfies the relation

Wk � min[1, (d − 1)k/kk], (5)

for a system of dimension d .
Proof. The absolute bound is W � 1, since p is a Markov

process matrix, and therefore from the Perron-Frobenius the-
orem all moduli of its eigenvalues are bounded by 1. It is
saturated for d > k taking M̂i = |i〉〈i| = ρ̂i. Let us then as-
sume d � k. We define m = Tr M̂ and M̂ ′ = M̂/m so that
Tr M̂ ′ = 1. Then

det p = det p′ ∏

i

mi, (6)

with M̂i replaced by M̂ ′
i in p′. Since

∑
i mi = ∑

i Tr M̂i =
Tr 1̂ = d , from the arithmetic and geometric means

∏
i mi

has the maximum [d/(k + 1)]k+1 for mi = d/(k + 1). On the
other hand, det p′ is maximized for projective M̂ ′

i = |mi〉〈mi|
because of the linearity of the determinant with respect to each
row separately.

For any normalized set of vectors ui and vi such that p′
i j =

〈〈ui|v j〉〉, with some scalar product 〈〈·|·〉〉, we shall show that
the determinant of p′ is maximized by either vi replaced by
ui or ui replaced by vi. Let us take the orthonormalization
matrix U such that ui = ∑

j Ui j ũ j so that 〈〈ũi|ũ j〉〉 = δi j , e.g.,
by Gram-Schmidt method (analogously V for v and ṽ). Then
p′ = U T p̃′V for p̃′

i j = 〈〈ũi|ṽ j〉〉, and thus

det p′ = det p̃′ det U det V. (7)

By rotation ũi = ∑
k Oikek in some basis e and orthogonal

transform O, we get OT p̃′ = p′′, where p′′
i j = 〈〈ei|ṽ j〉〉. Now

the matrix consists of columns ṽ j . By virtue of the Hadamard
inequality, det p′′ � ∏

i |ve
i |, where |ve

i | is the length vector ṽi

projected onto the space e (the original space may be larger).
We have |ve

i | � |ṽi| = 1 and so det p′′ � 1. As det O = ±1 we
end up with | det p′| � | det U det V |. We choose the greater of
either det U or det V and replace the corresponding set of v by
u, or vice versa.

We apply the above fact to the Hilbert-Schmidt metric for
Hermitian matrices ûi and v̂i with 〈〈u|v〉〉 = Tr û†v̂. Now, the
symmetric matrix is positive definite and has real eigenvalues.
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However, for the vector a = (1, . . . , 1) we get aT p′a = Tr Ŝ2

for Ŝ = ∑
i ρ̂i, with ρ̂i = |ψi〉〈ψi|. Then from the Cauchy-

Schwarz (CS) inequality Tr Â2 Tr B̂2 � (Tr ÂB̂)2 applied to
Â = Ŝ, B̂ = 1̂ (the identity), we obtain the Benedetto-Fickus
inequality [19]

Tr Ŝ2d � (Tr Ŝ)2 = (k + 1)2, (8)

because Tr 1̂2 = d , Tr Ŝ = ∑
i Tr ρ̂i = ∑

i 1 = k + 1.
Therefore aT p′a � (k + 1)2/d . Then one of eigenvalues
of p′ must be at least (k + 1)/d , while the sum of all
eigenvalues

∑
i λi = Tr p′ = k + 1. Let us recall here that

det p′ = ∏
i λi. Let us isolate λk+1 � (k + 1)/d . From

the inequality between arithmetic and geometric means,
we retrieve the maximal product when all λi = λ. Then
λk+1 = k + 1 − kλ and the determinant reads λk (1 + k − kλ)
which has the maximum at λ = 1. Therefore the maximum is
reached when the other constraint is saturated, namely λk+1 =
(k + 1)/d , giving λ = (1 + 1/k)(1 − 1/d ). Altogether,
det p′ � (k + 1)k+1(d − 1)k/dk+1kk leading finally to (5) for
d � k. �

The bound (5) is saturated only when all the inequalities in
the proof become equalities. This means that the largest eigen-
value becomes minimal, i.e., (k + 1)/d , which occurs only
if Ŝ = (k + 1)1̂/d by the property of CS inequality. More-
over, the other eigenvalues must become equal to saturate
the bound due to arithmetic and geometric mean inequality.
This means that |〈ψi|ψ j〉|2 = (k + 1 − d )/kd , known as the
Welch bound [20], and M̂ j = |ψ j〉〈ψ j |(k + 1)/d . All these
conditions define ETF [12]. Saturation of (5) leads then to the
same solution (if it exists) as minimizing the frame potential∑

i j |〈ψi|ψ j〉|2p for p > 1 [21–23]. A trivial case occurs when
k = d for states on a regular simplex, ρ̂i = |ψi〉〈ψi|, with |ψi〉
inscribed in a unit sphere, e.g.,

|ψi〉 =
√

1 + d−1|i〉 − d−3/2(
√

d + 1 + 1)
∑

j

| j〉, (9)

for i = 1, . . . , d , |ψd+1〉 = ∑
j | j〉d−1/2, and M̂i = ρ̂id/(d +

1). In particular, for d = k = 2, the regular simplex is the
equilateral triangle but one can take independent measurement
and preparation real bases. The case d = 2, k = 3 is saturated
for a regular tetrahedron on the Bloch sphere, i.e.,

√
3|ψ j〉 =

|1〉 + √
2ω j |2〉, j = 1, 2, 3, and |ψ4〉 = |1〉 for ω = e2π i/3 =

(i
√

3 − 1)/2, and one can take independent (complex) mea-
surement and preparation bases. Another simple case is k = 5,
d = 3 for the vertices of a regular icosahedron.

Unfortunately, there is no straightforward method to de-
termine if there exists an ETF for a given pair (d, k). We
refer the reader to the mathematical literature discussing and
tabularizing a large number of cases, involving nontrivial al-
gebraic properties [12–15] (see also the Appendix). From a
physical point of view, it is relevant that the maximal k + 1
for a given d for the possible ETF is d (d + 1)/2 and d2 in
the real and complex case, respectively. However, the real
case does not always provide ETF (e.g., for d = 4) but the
complex maximal ETF (SIC-POVM) is conjectured to exist
in all dimensions [16,17,24].

Apart from the cases saturating (5), the search for the
maximum of the witness for each pair (d, k) is hard if tackled
only from the analytical point of view, although it is always

TABLE I. The quantum maximum of Wk for the (k + 1) × (k +
1) matrix for a d-dimensional system, either real (r) or complex (c).
An empty cell means the value is the nearest number to the left in the
row. The bold value saturates (5).

k 2r 2c 3r 3c 4r 4c 5r 5c 6r 6c

1 1
2 0.25 1
3 0 0.037 0.296 1
4 0 0 0.053 0.059 0.316 1
5 0 0 0.010 0.073 0.075 0.328 1

in principle some algebraic number. The numerical results are
presented in Table I. Our search is somewhat similar to the
search of ETF and SIC-POVM, which also could not avoid
numerical calculations except for some special cases [17]. The
optimization is taken over the states ρ̂1, . . . , ρ̂k+1, represented
by pure states ρ̂ j = |ψ j〉〈ψ j | (they are optimal by linearity
of the determinant with respect to each column). The vectors
|ψ j〉 are real or complex unit vectors in Rd and Cd .

The outcome operators M̂i are not fully independent as
they are positive and must be summed to 1̂. Construction of
the optimal M̂i goes as follows. Without loss of generality,
suppose that M̂1 and M̂2 have rank >d/2. Then their sup-
port spaces overlap, i.e., there exists a nonzero M̂0 � M̂1,2.
From linearity, we can increase the witness, moving the whole
M̂0 to either of M̂1,2. Therefore we can assume rank �d/2.
For the numerical analysis, we simply generate any positive
Hermitian matrix, e.g., by a combination of projections in
some basis, and rotate and scale them. In particular, M̂ ′

i = Ŝ2
i ,

where Ŝi is a diagonal matrix with entries sin φi j , j � �d/2	,
and 0 otherwise, while Ĉi is diagonal with entries cos φi j for
j � �d/2	 and 1 otherwise. Then we correct

M̂i+1 = Ĉ1Û1 · · · ĈiÛiM̂
′
i+1Û

†
i Ĉi · · · Û †

1 Ĉ1, (10)

for all i < k while M̂1 = M̂ ′
1 and M̂k+1 = 1̂ − ∑

i�k M̂k .
Here, Ûi are arbitrary orthogonal/unitary rotations in the
real/complex case. With a proper parametrization, the prob-
lem consists of finding the supremum of Wk . The details of
such algorithms are given in Ref. [8] while the results are
presented in the Appendix. In all explored cases, we found
the optimal cases for M̂i of rank 1 and conjecture that this is a
general property.

In the special case k + 1 = (d + 1)d/2 and k + 1 = d2 for
real and complex quantum states of dimension d , respectively,
it is equal to the dimension of the operator space spun by the
appropriate Gell-Mann matrices. Then the determinant can
be written as a product of determinants of separate square
matrices for the preparations ρ̂ j and outcome measurements
M̂i so the maximum can be determined separately for M̂ and ρ̂

and the same maximum is reached if preparations are rotated
by an arbitrary orthogonal/unitary matrix R̂/Û (the same for
all preparations) in the real/complex case, i.e., ρ̂ j → R̂ρ̂ j R̂T

or ρ̂i → Û ρ̂iÛ †.
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III. EXTRA SPACE DETECTION

The witness is useful to detect higher dimensions of the
system by checking the deviation from 0 for k = d2 or
d (d + 1)/2. Let us suppose that the system is designed to
be a perfect d-level state but there is a small contribution
from the extra space δρ̂ and δM̂. This deviation is given by
δpi j = TrδM̂iδρ̂ j . Then the small contribution from the extra
space reads, due to the Jacobi identity,

W̄ 
 W + Trδp A, (11)

where A = Adj p is the adjoint matrix to p. Note that we
cannot use the fact A = p−1 det p as det p = 0.

However, even without extra space the null prediction con-
cerns an asymptotic case in the limit of infinite series of
identical and independent experiments. No experiment will
produce an exact zero in finite statistics. In fact, the null
hypothesis remains valid if the witness is within the error
bound, determined mainly by the number of trials. Suppose
N trials for each preparation. Then p̄i j = ni j/N , where ni j

is the number of outcomes i occurring in N trials with the
preparation j. It is then a random variable and we can denote
its deviation from the asymptotic limit pi j as δpi j = p̄i j − pi j .
The witness also becomes a random value W̄ depending on the
actual results of the experiments, p̄. We shall estimate average
〈W̄ 〉 and deviation 〈(δW̄ )2〉 for δW̄ = W̄ − 〈W̄ 〉. Expanding
p̄ = p + δp for small δp we can use (11) to estimate possible
errors. Then 〈δp〉 = 0 and N〈δpi jδpqr〉 = δ jr (pi jδiq − pi j pq j )
which gives 〈W̄ 〉 = W = 0 and

N〈(δW̄ )2〉 =
∑

i j

pi j (Aji − Ā j )
2 =

∑

i j

pi j
(
A2

ji − Ā2
j

)
, (12)

for Ā j = ∑
i pi jA ji, taking into account

∑
i pi j = 1. A similar

error analysis has been successfully applied in the real exper-
iments [9,10].

There is no a priori optimal set of measurements and the
witness is expected to remain zero always. However, one
should avoid a deliberate reduction of the space, e.g., taking
real instead of complex space. In principle one can also use
higher k but it is less reliable as (a) the adjoint matrix becomes
zero and so the errors need second-order minors, and (b) at
such small errors one should also discuss the instability of the
probability distribution due to the calibration drifts. This is
beyond the scope of this paper as they violate the assumptions
of our test. Nevertheless, it would need a modification of the
test, taking into account a reasonable model of instabilities.

IV. CONCLUSION

Our null dimension witness based on a single measure-
ment can speed up diagnostic tests of qubits and other basic
working systems of quantum computers. A many-outcome
measurement can be implemented coupling a single qubit to,
e.g., auxiliary ones. The witness can be generalized, modify-
ing the assumptions, to include compound systems (e.g., two
qubits with controlled interactions), or weakening the inde-
pendence condition (e.g., imposing only partial restrictions).
It is also important to determine the possible physical sources
of potential extra space, e.g., higher excitations. In any case,

dimension diagnostics will remain essential for successful
quantum error correction and mitigation.
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APPENDIX: NUMERICAL SEARCH FOR THE MAXIMUM
AND EQUIANGULAR TIGHT FRAMES

We shall summarize the algebraic and numerical search
for the maximum of Wk . For d = 3, k = 4 the maximum
is (3/8)3 = 0.052 734 375 in the real case for 2|ψ1,2〉 =
|1〉 ± √

3|2〉 and 2|ψ3,4〉 = |1〉 ± √
3|3〉, |ψ5〉 = |1〉, with

2M̂ j = |mj〉〈mj | for |m1,2〉 = |1〉/2 ± |2〉, |m3,4〉 = |1〉/2 ±
|3〉, |m5〉 = |1〉.

For the complex case, the maximum is numerical for a
special class of states and measurements, namely |ψ j〉 =
| j〉, and Mj = C2|ψ j〉〈ψ j | for j = 1, 2 while M̂ j = |mj〉〈mj |
and √

2|ψ j〉 = A(ω j |1〉 + ω2 j |2〉) +
√

2B|3〉,
√

3|mj〉 = D(ω j |1〉 + ω2 j |2〉) + |3〉, (A1)

for j = 3, 4, 5 and ω = e2π i/3. Then, for the constraints A2 +
B2 = C2 + D2 = 1, the determinant reads

C4A2B2D2(
√

2B + AD/2)2,

which is approximately 0.058 580 6 at A, D =
0.617 344, 0.603 104. It is still below (5), giving 1/16 =
0.0625.

Another saturating case is d = 3, k = 5 for the vertices of
a regular icosahedron [25],

√
φ + 2|ψs+ j〉 = φ| j〉 + (−1)s| j + 1〉, (A2)

for | j + 3〉 ≡ | j〉, the golden ratio φ = (1 + √
5)/2, s = 0, 3,

and measurements M̂ j = |ψ j〉〈ψ j |/2. The real bases of the
measurement and preparations are independent.

In the real case k = 5, d = 4, the optimal value is attained
for the states

|ψs+ j〉 = a| j〉 + (−1)sb|4〉, (A3)

for j = 1, 2, 3, s = 0, 3, with a = √
7/10, b = √

3/10, and
measurements M̂ j = |mj〉〈mj |,

|ms+ j〉 = A| j〉 + (−1)sB|4〉, (A4)

for A = 1/
√

2 and B = 1/
√

6 giving W = 73
√

7/4 · 55 

0.072 599 415 975 612 33.

In the complex case, the generic optimal family reads

|ψ j〉 = x|1〉 + y|2〉 + zω j |3〉 + tω2 j |4〉,
|ψ j+3〉 = y|1〉 + x|2〉 + tω j |3〉 + zω2 j |4〉, (A5)

and M̂ j = |mj〉〈mj |/3 with

|mj〉 = |1〉 + Aω j |3〉 + Bω2 j |4〉,
mj+3〉 = |2〉 + Bω j |3〉 + Aω2 j |4〉, (A6)
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and real A, B, x, y, z, t , A2 + B2 = x2 + y2 + z2 + t2 = 1 (cir-
cle and 3-sphere). Then the generic determinant

(xzA − ytA − yzB + xtB)2

× (xzA + ytA + yzB + xtB + 2ztAB)2

× [x2 − y2 + (z2 − t2)(A2 − B2)] (A7)

gives the numerical maximum 
0.074 847, below our univer-
sal bound 0.077 76.

For a comprehensive list of ETFs, see Ref. [12]. Here, we
summarize the most regular cases. In the complex case, one
can take a SIC-POVM for k = d2 − 1 with independent mea-
surement and preparation bases [17]. Moreover, for a prime p
such that 4|p + 1 (e.g., p = 3, 7, 11, 19, 23), k = p − 1, and

|ψ j〉 =
d−1∑

a=0

ζ ja2 |a + 1〉, (A8)

for d = (p + 1)/2, or

|ψ j〉 =
d∑

a=1

ζ ja2 |a〉, (A9)

for d = (p − 1)/2, with ζ = e2π i/p, because of the Gaussian
quadratic identity

∑(p−1)/2
a=0 ζ ja2 = ±i

√
p for j < p [26]. For

all odd primes p,
∑(p−1)/2

a=0 ζ ja2 = s
√

p with s4 = 1, which

gives another example for d = (p + 1)/2, k = p with [24]

√
p|ψ j〉 = |d〉 +

d−1∑

a=0=1

√
2ζ ja2 |a + 1〉, (A10)

for j = 1, . . . , p and |ψp+1〉 = |d〉. Other real examples are,
e.g., known equiangular sets of lines [25] (see also direct con-
structions [27,28]). By completion to the orthonormal basis
one can show duality, i.e., if there exists an ETF (d, k) then
it exists also for (k + 1 − d, k) [15,24]. Expanding |ψ j〉 =∑

a ψa j |a〉 from

(k + 1)1̂/d =
∑

j

|ψ j〉〈ψ j | =
∑

ab j

ψa j |a〉〈b|ψ∗
b j, (A11)

we get
∑

ab j ψa jψ
∗
b j = (k + 1)δab/d . Treating the sequence

ψa1, . . . , ψa k+1 as entries of the vector 
a we see that they
are orthogonal. By scaling with

√
d/(k + 1) they become

normalized 
 ′
a and we can complete the set by the remaining

orthonormal 
 ′
a for a = d + 1, . . . , k + 1. Rescaling the latter

by
√

(k + 1)/(k + 1 − d ) we get the entries ψa j for the dual
ETF as orthogonality works in both directions, with

∑

a

ψ ′
aiψ

′∗
a j = δi j . (A12)

Since
∑

a = ∑
a�d +∑

a>d and the former is√
(k + 1 − d )/dkd/(k + 1) = √

(k + 1)/k(k + 1 − d )(k +
1 − d )/(k + 1) for i �= j, it satisfies all the conditions of ETF.
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