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The complex Fourier transform of the two-point correlator of the energy spectrum of a quantum system is
known as the spectral form factor (SFF). It constitutes an essential diagnostic tool for phases of matter and
quantum chaos. In black hole physics, it describes the survival probability (fidelity) of a thermofield double state
under unitary time evolution. However, detailed properties of the SFF of isolated quantum systems with generic
spectra are smeared out by large temporal fluctuations, whose minimization requires disorder or time averages.
This requirement holds for any system size, that is, the SFF is non-self-averaging. Exploiting the fidelity-based
interpretation of this quantity, we prove that using filters and disorder and time averages of the SFF involve
unitarity breaking, i.e., open quantum dynamics described by a quantum channel that suppresses quantum noise.
Specifically, averaging over Hamiltonian ensembles, time averaging, and frequency filters can be described by
the class of mixed-unitary quantum channels in which information loss can be recovered. Frequency filters
are associated with a time-continuous master equation generalizing energy dephasing. We also discuss the use
of eigenvalue filters. They are linked to non-Hermitian Hamiltonian evolution without quantum jumps, whose
long-time behavior is described by a Hamiltonian deformation. We show that frequency and energy filters make
the SFF self-averaging at long times.
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I. INTRODUCTION

The spectral form factor (SFF) is an essential diagnos-
tic tool in the characterization of complex quantum systems
[1–6]. Given a Hamiltonian H of a single system with spec-
trum Sp(H ) = {En|n = 1, . . . , d}, the SFF is a real-valued
function defined as

SFF(t ) =
∣∣∣∣Z (β + it )

Z (β )

∣∣∣∣2

= 1

Z (β )2

d∑
n,m=1

e−β(En+Em )−it (En−Em ), (1)

where we use units with h̄ = 1. The partition function
Z (β ) = tr[exp(−βH )] is included as a normalization such
that SFF(0) = 1. Finite values of the inverse temperature
β exponentially suppress the contribution from the excited
states. Thus, the Boltzmann factor exp(−βEn) acts as an (en-
ergy) eigenvalue filter, where large values of β preferentially
sample the low-energy part of the spectrum, and β = 0 gives
equal weight to the whole spectrum.

The SFF admits several information theoretic interpreta-
tions. In particular, it can be expressed as the fidelity [7–10]
between a coherent Gibbs state |ψβ〉 = 1√

Z (β )

∑
n e−βEn/2|n〉

and its unitary time evolution

SFF(t ) = ∣∣〈ψβ |e−itH |ψβ〉∣∣2
, (2)

or equivalently, as the survival probability of the evolving
coherent Gibbs state. Likewise, in bipartite systems, it is

convenient to consider the entangled state

|TFD〉 = 1√
Z (β )

∑
n

e−βEn/2|n〉 ⊗ |n〉, (3)

known as the thermofield double state (TFD). In terms of it,
SFF(t ) = |〈TFD|e−itH⊗I|TFD〉|2. The TFD is the purification
of the thermal state of a single copy of the system, obtained
by doubling the Hilbert space. The TFD was first introduced
as a convenient reference state to extract thermal averages
in field theory [11]. The TFD dynamics was used early
on to model the “hot” thermal vacuum observed outside
the horizon of a single radiating eternal black hole [12].
In the context of the anti-de Sitter/conformal field theory
(AdS/CFT) correspondence, it describes an eternal two-sided
black hole in AdS [13,14]. The SFF captures the survival
probability of the TFD state under unitary time evolution
[7–10]. The conjecture that black holes are maximally
chaotic [15] has led to a surge of activity in the study
of the dynamical manifestations of quantum chaos in the
SFF [8,16–20].

In theoretical and numerical studies, it is customary to
average the SFF by considering a Hamiltonian ensemble, e.g.,
in random-matrix theory or in disordered systems. In such a
scenario, a property is said to be self-averaging when its esti-
mate using a typical member of the ensemble and the explicit
average over the ensemble coincide. Self-averaging largely
eases numerical studies in many-body systems, disposing of
the need for Hamiltonian ensemble averages in characterizing
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(a) (b) (c)

FIG. 1. Spectral form factor for a single realization (solid red line) and upon Hamiltonian average (solid black line), together with the
corresponding RV (black dashed line). The averages are taken over a sample of 500 random GOE(64) Hamiltonians H , with σ = 1. (a) In
the unfiltered case, κ = 0, the RV saturates at the unit value after the dip time. (b) RV using frequency filtering with the Gaussian function
(26) and a finite dephasing strength κ = 0.1. The RV reaches a maximum value at the dip time and then drops to a plateau of value RVp =
〈(Z (2β )2/Z (β )4〉/〈Z (2β )/Z (β )2〉2

. (c) RV with eigenvalue filtering using the Gaussian function (30) with f (E ) = E . The RV increases to its

maximum at the dip time and then drops to a plateau given by RVp = 〈1/Z (β )2〉/〈1/Z (β )〉2
. In all three panels, the inverse temperature is

β = 0.1.

the desirable property of the system. However, the SFF is not
self-averaging [21].

The structure of the SFF in the time domain is well charac-
terized [16,17]: it exhibits a slope-dip-ramp-plateau structure,
as shown in Fig. 1(a), that is manifested under averaging
over disorder or a Hamiltonian ensemble. In the absence of
averages, erratic time-domain fluctuations appear, making it
difficult to appreciate some of its features. An exception is
the SFF computed using the gauge-gravity duality in the
semiclassical approximation, where the erratic fluctuations
are absent [22]. These fluctuations are sometimes referred
to as noise [21], or quantum noise [23], terminology to be
distinguished from the standard one in the theory of open
quantum systems [24]. Erratic wiggles in the time domain
are a consequence of the discreteness of the energy spectrum
and can be associated with quantum coherence in the energy
eigenbasis in the time evolution of the coherent Gibbs state
or the TFD. Quantum noise is further responsible for the
lack of self-averaging in the SFF. Fluctuations with respect
to the signal do not cancel out upon averaging, e.g., over a
Hamiltonian ensemble [1,21,25–27]. This can be quantified
by the finite value of the relative variance (RV)

RV(t ) = 〈SFF2(t )〉 − 〈SFF(t )〉2

〈SFF(t )〉2
, (4)

which does not vanish as the size of the Hilbert space is
increased. The lack of self-averaging of the SFF and the
survival probability was analytically shown for random matri-
ces and disordered spin models [28–30]. It has been related
to the zeros of the partition function in the complex tem-
perature plane, known as Fisher zeros [31]. This implies
that no matter how large the system size is, an ensemble
average is required, adding an extra layer of complexity to
numerical studies, which are generally challenging due to the
large Hilbert space involved in analyzing many-body quantum
systems. As an alternative to averaging over a Hamiltonian
ensemble, numerical and analytical studies often resort to
running averages over time that smear SFF(t ) over intervals
of time [1,27]. A yet different approach resorts to modifying
the definition of the SFF restricting the Fourier transform

of the two-point function over an energy window, or more
generally, using a filter function over an energy or frequency
band [18,21,32–34].

In what follows, we build on the interpretation of the SFF
as a fidelity between quantum states related by time evolution
and show that suppressing the erratic wiggles implies the
breakdown of unitarity in the dynamics. To this end, we re-
formulate as quantum operations described by a (nonunitary)
quantum channel the different approaches to reduce the time
fluctuations in the SFF, such as ensemble averages, and to
enforce self-averaging, such as filters in the energy and fre-
quency domain. For a particular class of filters, the resulting
channels are of the mixed-unitary class, and the information
lost due to the unitarity breaking can be recovered.

The paper is organized as follows. We review the structure
of the unfiltered SFF in Sec. II, and introduce the general-
ization of the SFF to arbitrary physical processes in Sec. III,
paving the way to the description of filtering of the SFF in
terms of nonunitary quantum channels in Sec. IV. Physical
mechanisms associated with energy dephasing and giving
rise to different spectral filters are discussed in Sec. V. Sec-
tion VI discusses the filtered SFF as a function of the system
size, while Sec. VII focuses on information recovery under
mixed-unitary quantum channels and the frequency filter de-
convolution. Fundamental limits to quantum noise associated
with the fidelity-based SFF are presented in Sec. VIII. The
relation between eigenvalue filters and Hermitian Hamiltonian
deformations is discussed in Sec. IX. Time-continuous master
equations for frequency filters are derived in Sec. X before
closing with a discussion and conclusions.

II. FEATURES OF THE SPECTRAL FORM FACTOR
IN AN ISOLATED CHAOTIC QUANTUM SYSTEM

We start by reviewing the well-known structure of the
SFF for a chaotic system in isolation. The (unfiltered) SFF
averaged over a Hamiltonian ensemble can generally be
written down in terms of different contributions. Invoking
the annealed approximation, which replaces the average of a
quotient by the ratio of the averages at high temperature, and
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in the absence of degeneracies in the energy spectrum, one
finds [8,16]

〈SFF(t )〉 = 1

〈Z (β )〉2
[|〈Z (β + it )〉|2 + gc(β, t ) + 〈Z (2β )〉].

(5)

The first term in brackets is known as the disconnected
part as it can be derived from the average density of states
〈ρ(E )〉 = 〈∑n δ(E − En)〉 (one-point function) as

〈Z (β + it )〉 =
∫

dE〈ρ(E )〉e−(β+it )E .

The second term captures correlations among eigenvalues and
is governed by the Fourier transform gc(β, t ) of the connected
two-level correlation function of the energy spectrum
〈ρ(E )ρ(E ′)〉c = 〈ρ(E )ρ(E ′)〉 − 〈ρ(E )〉〈ρ(E ′)〉. Specifically,

gc(β, t ) =
∫

dEdE ′〈ρ(E )ρ(E ′)〉ce−(β+it )E e−(β−it )E ′
.

The last term is constant and governs the long-time
asymptotics. The SFF reduces to unit value at t = 0.
The short time evolution gives rise to a parabolic decay
〈SFF(t )〉 = 1 − 〈�H2〉t2 in the time scale fixed by the inverse
of the energy fluctuations 〈�H2〉 = ∫

dE (E − 〈E〉)2〈ρ(E )〉
and extends, forming a slope. This decay is governed by
the disconnected part of the SFF. In chaotic systems, the
decay reaches a dip below the long-time asymptotics. The
region where 〈SFF(t )〉 < 〈Z (2β )〉/〈Z (β )〉2 is known as a
correlation hole or dip [1,3]. The latter is followed by a
ramp, governed by the eigenvalue correlations, and is thus
a proxy for quantum chaos. The ramp extends from the dip
time to the plateau time, at which it takes the constant value
〈SFF〉 = 〈Z (2β )〉/〈Z (β )〉2 in the annealed approximation, in
the absence of degeneracies expected in chaotic systems.

III. SPECTRAL FORM FACTOR IN ARBITRARY
PHYSICAL PROCESSES

The fidelity-based interpretation of the SFF can be lever-
aged to consider more general sorts of time evolution beyond
the unitary case. In particular, this makes it possible to gen-
eralize the SFF to non-Hermitian and open quantum systems
characterized by nonunitary evolution [10,35–39]. This sec-
tion introduces tools used to describe nonunitary evolution
that will be employed in the explanations that follow in the
next sections.

Several generalizations of the SFF have been put forward
when the dynamics is not unitary. At variance with alternative
proposals with a restricted domain of applicability [40,41],
the fidelity-based generalization of the SFF has the advan-
tage of involving only the eigenvalue correlations that govern
quantum dynamics and applies to arbitrary physical processes.
Provided that the evolution is described by a quantum channel
	t (·) (i.e., a completely positive and trace-preserving map),
the fidelity-based SFF is given by [10,36–39]

SFF(t ) = 〈ψβ |	t (|ψβ〉〈ψβ |)|ψβ〉. (6)

An arbitrary quantum channel admits a Kraus representation,
	t (ρ0) = ∑r

α=1 Kαρ0K†
α , where r is known as the Choi rank

[42]. The case of unitary evolution corresponds to the case

of a single Kraus operator that equals the time evolution
operator, i.e., K (t ) = K1(t ) = U (t ) and Kα (t ) = 0 for α > 1.
Given that Kraus operators need only obey the condition of
adding up to the identity

∑
α K†

αKα = I for the dynamics
to be trace-preserving and that the Kraus decomposition in-
volves 1 � r � d2 Kraus operators in a d-dimensional Hilbert
space, it is apparent that the chaotic features of the SFF under
unitary dynamics are generally suppressed under nonunitary
time evolution. As a result, quantum channels with a simple
representation in the energy eigenbasis are singled out to study
filtering in quantum chaos and self-averaging of the SFF.

An important class of channels that will be of relevance in
the following is that of mixed-unitary channels [43]. A chan-
nel 	 is a mixed-unitary channel if there is an alphabet �, a
probability vector p, and a collection of unitaries {Uy : y ∈ �}
such that

	(ρ) =
∑
y∈�

p(y)UyρU †
y . (7)

The channel is thus a convex combination of unitaries. This
kind of quantum channel is unital and thus preserves the
identity I, i.e., 	t (I) = I.

The fidelity-based interpretation of the SFF extends to
higher moments of the SFF. Indeed, given that the initial state
ρ0 = |ψβ〉〈ψβ | is pure, the kth moment reads

SFFk = tr[ρ0ρt . . . ρ0ρt︸ ︷︷ ︸
k times

] = 〈ψβ |ρt |ψβ〉k . (8)

The kth moment can be associated with a Zeno sequence in
which the time evolution is interrupted by sequential projec-
tive measurements onto the initial state. Therefore, the RV in
Eq. (4) probes the degree of factorization of the time evolution
in a sequence with k = 2 in the presence of averaging.

IV. UNITARITY BREAKING: SPECTRUM FILTERING
AS A NONUNITARY QUANTUM CHANNEL

In what follows, we consider three approaches frequently
used to reduce the erratic wiggles in the SFF. They involve av-
eraging over a Hamiltonian ensemble and the use of frequency
filters and eigenvalue filters. The last two involve different
kinds of time averaging and ensure the self-averaging of the
SFF at long times. We show that all three cases involve unitary
breaking described by a nonunitary quantum channel.

A. Averaging over Hamiltonian ensembles

Averaging over a Hamiltonian ensemble constitutes a pop-
ular approach that smooths out the quantum noise wiggles
in the SFF. This approach is at the core of the random-
matrix theory, the study of disordered systems, and matrix
models [5,6,44]. Given a Hilbert space H of dimension d ,
consider an ensemble of Hamiltonians EH with a probability
density function P(H ) and integration measure dH such that∫
EH

P(H )dH = 1. The average of the SFF over EH is given by

〈SFF(t )〉EH =
∫
EH

dHP(H )

∣∣∣∣ tr(e−(β+it )H )

tr(e−βH )

∣∣∣∣
2

. (9)

The fidelity-based interpretation of the SFF illuminates the
underlying physical process involved in such an average. For
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a specific Hamiltonian H = ∑
n En|n〉〈n|, the initial state is

chosen as the coherent Gibbs state (or the TFD in the case of
a bipartite system),

|ψβ (H )〉 =
∑

n

e−βH/2√
tr(e−βH )

|n〉. (10)

The Hamiltonian ensemble EH provides an alphabet, to-
gether with the collection of unitaries {UH (t ) = e−itH : H ∈
EH }. The state |ψβ (H )〉 is chosen with probability measure
P(H )dH and evolved unitarily into UH (t )|ψβ (H )〉. The SFF
is then computed as the averaged survival probability over the
Hamiltonian ensemble,

〈SFF(t )〉EH =
∫
EH

dHP(H )|〈ψβ (H )|UH (t )|ψβ (H )〉|2. (11)

As a result, averaging the SFF over a Hamiltonian ensemble
involves breaking the unitarity of the dynamics by classically
mixing a distribution of states and unitaries. When the ini-
tial state ρ0 is fixed and independent of the Hamiltonian H ,
the process can be associated with a mixed-unitary channel
	(ρ0) = ∫

EH
dHP(H )UH (t )ρ0UH (t )†. As a relevant instance,

this is the case when the initial state is the coherent Gibbs state
in the infinite temperature limit β = 0, |ψβ〉 = ∑

n
1√
d
|n〉,

where the Hilbert space dimension fixes the probability
amplitudes.

B. Frequency filtering and the time-averaged SFF

As an alternative to Hamiltonian averaging, in numeri-
cal and analytical studies, it is customary to enforce the
SFF’s self-averaging by using a filter function w(En − Em)
that acts on the frequency domain, suppressing contribu-
tions from given eigenvalue differences in the spectrum of
a single Hamiltonian. This is equivalent to filtering eigen-
values of the Liouville superoperator L = −i(H ⊗ I − I ⊗
HT ) that governs the unitary evolution in the vectorized
density matrix |ρt ) according to d

dt |ρt ) = L|ρt ), i.e., when
representing the Liouville–von Neumann equation as a linear
matrix equation. We assume the frequency filter to be de-
scribed by a symmetric function w(x) : R → [0, 1] satisfying
w(x) = w(−x). The frequency-filtered SFF is then propor-
tional to

∑
nm e−β(En+Em )−it (En−Em )w(En − Em). Making use of

the Fourier transform of w, the frequency-filtered SFF reads

SFFw(t ) =
d∑

n,m=1

e−β(En+Em )−it (En−Em )

Z (β )2
w(En − Em)

= 1

2π

∫ ∞

−∞
dτ w̃(t − τ )

∣∣∣∣Z (β + iτ )

Z (β )

∣∣∣∣2

, (12)

with w̃(y) = ∫ ∞
−∞ dE exp(−iyE )w(E ). Filtering in frequency

space is equivalent to time-averaging the canonical SFF
associated with the unitary time evolution. Without degen-
eracies in the energy spectrum, the long-time behavior of
SFFw saturates at the plateau value set by w(0). Further,
in the fidelity-based interpretation of the SFF, frequency
filtering can be recast as the result of a nonunitary time
evolution. To this end, consider a quantum channel 	t

such that the time evolution of the initial coherent Gibbs

state |ψβ〉〈ψβ | = ∑
nm e−β(En+Em )/2/Z (β ) reads

ρt = 	t (|ψβ〉〈ψβ |)

=
∑
nm

e−β(En+Em )/2−it (En−Em )

Z (β )
w(En − Em)|n〉〈m|. (13)

The latter can be rewritten as

	t (ρ0) =
∫ ∞

−∞
dyK (y)ρ0K (y)†, (14)

with

K (y) =
(

w̃(y)

2π

) 1
2

e−i(t+y)H . (15)

For the time evolution to be trace preserving, it is required that∫ ∞

−∞
dyK (y)†K (y) = 1

2π

∫ ∞

−∞
dyw̃(y) = 1, (16)

that is, w(0) = 1. The above equations provide an analog of
the Kraus decomposition with a continuous index [45]. They
are associated with energy diffusion processes. Generally,
the Fourier transform w̃(y) of the frequency filter can take
both negative and positive values. However, given Eq. (16),
whenever p(y) = 1

2π
w̃(y) � 0, it can be thought of as a prob-

ability distribution. Frequency filtering is then described by a
mixed-unitary channel, i.e., the convex combination of uni-
tary quantum channels, each with a single Kraus operator
that equals the time-evolution operator shifted as t → t + y.
The collection of unitaries, in this case {Uy(t ) = e−i(t+y)H :
y ∈ R}, is generated by one single Hamiltonian H , lead-
ing to a time average of the quantum state at time t , ρt =∫

dyp(y)e−i(t+y)Hρ0ei(t+y)H , from which the SFF is obtained
as the fidelity SFFw(t ) = 〈ψβ |ρt |ψβ〉.

An important example concerns the time averaging of the
SFF over a time window of duration T ,

SFF(t ) = 1

T

∫ +T/2

−T/2

∣∣∣∣Z (β + it + iy)

Z (β )

∣∣∣∣2

dy, (17)

for which w̃(y) = 2π/T for y ∈ [−T/2, T/2] and zero oth-
erwise. This is tantamount to considering the averaged
time-dependent state ρt = 1

T

∫ T/2
−T/2 dye−i(t+y)Hρ0ei(t+y)H .

C. Eigenvalue filtering

An alternative filtering of the SFF involves expressions
of the form |∑n e−βEn−itEnw(En)|2 with a filter function
w(E ) � 0 that acts directly on the eigenvalues. This is equiv-
alent to selecting an energy band to study the SFF, while
disregarding contributions from other parts of the spectrum
[21,27]. As noted in the introduction, the Boltzmann factor
exp(−βEn) can be considered as an exponential eigenvalue
filter acting on the SFF with β = 0. The use of an energy-
eigenvalue filter function can be associated with the evolution
governed by a single nonunitary Kraus operator

K (t ) = e−itH√
w(H ). (18)
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The selection of the energy window corresponds to a post-
selection represented by the operation

|ψβ〉〈ψβ | → ρt = K (t )|ψβ〉〈ψβ |K (t )†

Zw(β )
, (19)

which is always a pure and normalized state, including the
state at t = 0. Here, the modified partition function

Zw(β ) = tr[K (t )|ψβ〉〈ψβ |K (t )†]

= tr[w(H )e−βH ]. (20)

This accounts for the correct normalization, so that the SFF
at all times t � 0 is still given as the Uhlmann fidelity
SFFw(t ) = tr(ρ0ρt ), i.e., the survival probability of the posts-
elected coherent Gibbs state ρ0 and its time evolution,

SFFw(t ) =
∑
nm

e−β(En+Em )−it (En−Em ) w(En)w(Em)

Zw(β )2
. (21)

The choice of the Kraus operator is nonlinear in the quantum
state, as it is tailored for the initial coherent Gibbs state,
i.e., tr[K (t )|ψβ〉〈ψβ |K (t )†] = 1, making (only) in this case
the dynamics trace preserving. While this scenario is not the
standard one in the theory of open quantum systems, it admits
a natural interpretation in terms of energy dephasing without
quantum jumps, as discussed in Sec. V B.

For completeness, we note that in terms of the Fourier
transform of w̃(y) = ∫ ∞

−∞ dE exp(−iyE )w(E ) and the defini-
tion p(y) = w̃(y)/(2π ), the filtered SFF can be found in terms
of the analytically continued partition function

SFFw(t ) = 1

Zw(β )2

∣∣∣∣
∫ ∞

−∞
dyp(t − y)Z (β − iy)

∣∣∣∣2

. (22)

Naturally, for w(E ) = 1, Zw(β ) = Z (β ), p(t − y) = δ(t − y),
one recovers the canonical SFF in Eq. (2).

Before moving forward, let us characterize the perfor-
mance of frequency and energy filters in the SFF. We consider
random matrix Hamiltonians as a paradigm of quantum chaos.
We sample the Hamiltonian matrices H from the Gaussian
orthogonal ensemble GOE(d ), calculate the corresponding
SFF(t ) and SFF2(t ), and then perform the average over the
different realizations. Specifically, we consider samples of
real matrices H = (X + X ᵀ)/2, where all elements x ∈ R of
X are pseudorandomly generated with probability measure
given by the Gaussian, exp[−x2/(2σ 2)]/(σ

√
2π ), where σ is

the standard deviation.
Figure 1 shows three panels corresponding to the isolated,

unfiltered SFF in panel (a) and its modified versions with
frequency and energy filters in panels (b) and (c), respectively.
A single realization of the SFF exhibits quantum noise, mani-
fested in the erratic oscillatory behavior in the time evolution
[red line in Fig. 1(a)]. This is suppressed by performing a
Hamiltonian ensemble average [solid black line in Fig. 1(a)].
Alternatively, the frequency filter can suppress quantum noise
in the SFF for a single random-matrix Hamiltonian without
relying on ensemble averages, as illustrated in Fig. 1(b). Its
effect is to reduce the oscillatory wiggles and the RV. The
use of filters acting on energy eigenvalues directly provides
a different alternative, shown in Fig. 1(c). Note that for the
unfiltered SFF, RV equals 1 from the time of the dip onward,

as seen in Fig. 1(a). This result holds for random matrices
of any dimension [28] and for chaotic many-body quantum
systems of any size [28,29], which means that the unfiltered
SFF is non-self-averaging. RV = 1, because the distribution
of the SFF(t ) for large times [30] is exponential, so the square
of the mean of the distribution and its variance are equal. In
contrast, the asymptotic values of the RV under frequency and
energy filters become smaller than 1. Furthermore, as we shall
see in Sec. VI, the long-time values of the RV of the filtered
SFF further decrease as d increases, indicating that the SFF
becomes self-averaging.

V. ENERGY DEPHASING PROCESSES
AND SPECTRAL FILTERING

This section explores the relationship between energy-
dephasing processes and the effects of different spectral
filters.

A. Frequency filters from energy dephasing

Energy dephasing processes, also known as energy diffu-
sion processes, arise in various scenarios [46,47]. They are
postulated in modifications of quantum mechanics involving
wave-function collapse models [48–50]. They also arise in
the description of unitary time evolution timed by a realis-
tic clock subject to errors [51,52]. They have been used to
study the interplay between quantum chaos and decoherence
[10,36,53]. Energy dephasing has also been analyzed in the
context of AdS/CFT [45,54–56] to explore the relation be-
tween entanglement and space-time connectedness [13]. It can
be described by the master equation

dtρt = −i[H, ρt ] − κ[X, [X, ρt ]], (23)

with the condition that [H, X ] = 0, so that both Hermitian
operators have a common set of eigenvectors, i.e., H =∑

n En|n〉〈n| and X = ∑
n xn|n〉〈n|. The nested commuta-

tor plays the role of the dissipator and induces dephasing,
suppressing coherent quantum superpositions in the energy
eigenbasis. This is explicitly seen by considering the time
evolution of an initial quantum state ρ0 = ∑

nm ρnm(0)|n〉〈m|,
ρt =

∑
nm

ρnm(0)e−it (En−Em )−κt (xn−xm )2 |n〉〈m|. (24)

For an initial coherent Gibbs state, the SFF is obtained as the
survival probability

SFF(t ) =
∑
nm

e−β(En+Em )−it (En−Em )

Z (β )2
e−κt (xn−xm )2

. (25)

When the Hermitian Lindblad operator is a deformation of
the Hamiltonian, X = f (H ), xn = f (En), and w(En − Em) =
exp{−κt[ f (En) − f (Em)]2} in Eq. (12). When they are equal,
X = H , one recovers the canonical case of energy dephas-
ing. In this case, one can recast SFF(t ) in Eq. (25) as the
frequency-filtered SFFw (12) with the identification of a time-
dependent Gaussian filter function

w(En − Em) = exp[−κt (En − Em)2]. (26)

The action of the frequency filter (26) in the SFF is shown
in Fig. 2(a) for fixed β = 0.1 and varying κ; see also Fig. 1.
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(a) (b)

(c) (d)

FIG. 2. Frequency filtered SFF and its RV for different dephas-
ing strengths and inverse temperatures. (a) and (b) SFF next to the
corresponding RV for inverse temperature β = 0.1 and different
dephasing strengths κ . (c) and (d) SFF next to the RV for a dephasing
strength κ = 0.01 and different values of the inverse temperature β.
In all panels, the Hamiltonian averages were taken over a sample of
500 random GOE(64) Hamiltonians H with σ = 1.

Such filtering delays the onset of the ramp, reduces its span,
and decreases the depth of the correlation hole. In short, it
decreases the dynamical manifestations of quantum chaos.
The corresponding RV is shown in Fig. 2(b) indicating that
the long-time plateau of the RV is independent of κ for κ > 0,
as expected from Eq. (25). Figure 2(c) shows the effect of
varying β for fixed κ , with the corresponding β-dependent
long-time plateau being associated with the RV of a canonical
thermal equilibrium state, as shown in Fig. 2(d).

B. Eigenvalue filtering from energy dephasing
without quantum jumps

In what follows, we show that eigenvalue filtering can
be described as the non-Hermitian evolution associated with
energy-dephasing processes without quantum jumps. To this
end, consider the evolution operator U (t ) = exp(−itHT ) gen-
erated by the time-independent non-Hermitian Hamiltonian
HT = H − i�, with H = H† and � = �†. In this case, the
evolution is not trace preserving, and one can introduce a sin-
gle nonlinear Kraus operator dependent on the initial state ρ0

K = 1√
tr
(
e−itHT ρ0eitH†

T

)e−itHT . (27)

The latter is associated with a master equation of the form

dtρt = −i(HT ρt − ρt H
†
T ) + 2tr(�ρt )ρt , (28)

which describes non-Hermitian dynamics subject to balanced
norm gain and loss [57,58].

In particular, consider a non-Hermitian Hamiltonian in
which the Hermitian and anti-Hermitian parts commute

[H, �] = 0 and thus have common eigenstates {|En〉}. The
action of the filter function can be identified by noting that
w(H ) = exp[−it�], i.e., �|En〉 = − 1

t ln w(En)|En〉.
As an illustrative example, consider the master equation for

energy dephasing in Eq. (23) with the condition [H, X ] = 0.
This evolution is of the Lindblad form with a single Hermitian
Lindblad operator

√
2X and is thus Markovian [42]. As such,

it can alternatively be written in terms of a non-Hermitian
Hamiltonian HT = H − i2κX 2 and a quantum jump term
J (ρ) = 2κXρX . Disregarding the quantum jump term in-
duces a non-Hermitian evolution exclusively governed by HT .
This can be justified at short times or by postselection of
quantum trajectories to the absence of quantum jumps [59].
The evolution of the subset of quantum trajectories exhibiting
no quantum jumps from time t = 0 to time t is governed by
Eq. (28), which is known as the nonlinear Schrödinger equa-
tion for null-measurement conditioning in this context [57].
Specifically, the time evolution subject to energy dephasing
in the absence of quantum jumps is governed by (28), which
admits a closed-form solution [36]. Explicit computation of
the survival probability for the coherent Gibbs state yields the
expression of the SFF

SFF(t ) =
∑
nm

e−β(En+Em )−it (En−Em ) e−κt (x2
n+x2

m )

Z (β )Zw(β, t )
, (29)

where the modified partition function Zw(β, t ) =
tr[w(X )2 exp(−βH )]. The case of the Hamiltonian
deformation X = f (H ) corresponds to the choice of the
time-dependent filter function

w(En) = exp[−κt f (En)2] (30)

in Eq. (21). The time dependence of the SFF with eigenvalue
filtering in Eq. (30) engineered through energy dephasing in
the absence of quantum jumps is illustrated in Fig. 3. At fixed
β, increasing κ reduces the correlation hole; see Fig. 3(a). For
κ > 0, the long-time plateaus of the SFF and RV differ from
the unfiltered case. Increasing β for fixed κ favors contribu-
tions to the SFF from the low-energy part of the spectrum
and generally reduces the correlation hole and increases the
plateau value of the SFF and the RV, as shown in Figs. 3(c)
and 3(d), respectively.

We emphasize that the definition of the SFF (1) involves
a finite inverse temperature β. In the fidelity-based interpre-
tation, this presumes a TFD state with finite β at t = 0. The
corresponding Boltzmann factors (probability amplitudes in
the TFD) can be associated with an eigenvalue filter acting on
an initial infinite-temperature TFD state. Varying the value of
β can be similarly associated with a non-Hermitian evolution
conditioned to balanced norm gain and loss. We further notice
that the difference in the SFF at β = 0 and β → 0± has been
associated with the emergence of many-body quantum chaos
in a field theory analysis [60].

VI. SELF-AVERAGING AT LONG TIMES

Under chaotic quantum dynamics, quantities that are lo-
cal in space are expected to be self-averaging at short times
[28–30]. It has further been suggested that time locality im-
plies self-averaging at long times. The SFF can be interpreted
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(a) (b)

(c) (d)

FIG. 3. Eigenvalue filtered SFF and its RV for different dephas-
ing strengths and inverse temperatures. Hamiltonian averages over a
sample of 500 random GOE(64) Hamiltonians H with σ = 1. (a)
and (b) SFF and the corresponding RV with inverse temperature
β = 0.1 and different dephasing strengths κ . (c) and (d) SFF and the
associated RV with fixed dephasing strength κ = 0.01 and varying
inverse temperatures β.

as a time autocorrelation function, thus a nonlocal quantity in
time. The unfiltered SFF lacks the self-averaging property at
all timescales in isolated quantum systems [28].

We have shown that filters ubiquitously used to reduce the
erratic wiggles of the SFF can be associated with quantum
channels involving nonunitary dynamics. The breaking of
unitarity contributes to suppressing quantum noise. In what
follows, we numerically investigate the dependence of the RV
as a function of the system size to identify when RV decreases
as d increases, thus rendering the SFF self-averaging.

Figure 1 implies that unitarity breaking can suppress
the quantum noise of the SFF. Nevertheless, the robustness
against sample-to-sample fluctuations is associated with the
reduction of the RV as the Hilbert space dimension in-
creases. Figures 4(a) and 4(b) show that the frequency- and
eigenvalue-filtered SFFs become self-averaging at the small
inverse temperature shown and large times. Figures 4(c) and
4(d) confirm that the filtered SFFs become self-averaging at
times after the correlation hole, where, according to Figs. 1(b)
and 1(c), 〈SFF(t )〉 > RV(t ).

The effect of the inverse temperature depends on the filter
considered, as shown in Fig. 5. The long-time SFF is only
self-averaging for moderate to high temperatures in the case
of frequency filtering; see Fig. 5(a). By contrast, the long-time
eigenvalue-filtered SFF remains self-averaging as the inverse
temperature varies, as shown in Fig. 5(b).

VII. INFORMATION LOSS AND ITS RECOVERY

We have shown that the different approaches to suppress
quantum noise in the SFF can be described as quantum

(a) (b)

(c) (d)

FIG. 4. Asymptotic self-averaging of the filtered SFF. Hamilto-
nian averages over a sample of 1000 random GOE(d ) Hamiltonians
H with σ = 1. (a) and (b) Plateau value of the frequency-filtered and
the energy-filtered RV, which is independent of κ , as a function of
the Hilbert space dimension d is shown for different inverse temper-
atures. (c) Frequency-filtered RV for inverse temperature β = 0.5,
dephasing strength κ = 0.2, and different Hilbert space dimensions
d . (d) Corresponding energy-filtered RV for the same parameters. In
both cases, the relative variance plateau decreases with the dimension
increment, i.e., the SFF becomes self-averaging.

channels involving nonunitary physical processes. In partic-
ular, Hamiltonian averaging, frequency filtering, and time
averaging of the SFF are all associated with mixed-unitary
channels. The latter are unital and thus satisfy the necessary
conditions for the purity Pt = tr[	t (ρ0)2] of the time-evolving
state to decay monotonically under the action of the channel
[53,61]. Conversely, the linear entropy SL = 1 − Pt increases
monotonically. Thus, these channels lead to monotonic

(a) (b)

FIG. 5. Self-averaging of the filtered SFF as a function of the
inverse temperature. (a) Value of the long-time RV plateau in the
frequency-filtered SFF, reflecting a breakdown of self-averaging as
the inverse temperature is increased. By contrast, (b) indicates that
self-averaging remains robust against variations of the inverse tem-
perature in the case of eigenvalue filtering.
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information loss. Yet, the lost information is fully recoverable
[43,62]. To appreciate this, it is convenient to consider the
Hilbert space of the system together with the Hilbert space HE

of the environment with initial density matrix ρE , such that

	t (ρ0) = trE (USEρ0 ⊗ ρEU †
SE ), (31)

in terms of a global unitary USE . One can consider a
measurement on the environment associated with a family of
operators My, such that

∑
y My = IE . The expectation value

of an operator A on the system can be described in terms of a
family of completely positive maps 	y,

tr[	t (ρ0)A ⊗ IE ] =
∑

y

trE (USEρ0 ⊗ ρEU †
SE A ⊗ My)

=
∑

y

tr[	y(ρ0)A]. (32)

The decomposition of the channel 	t = ∑
y 	y is known as

an instrument. The measurement of M on the environment
yields outcome y and the quantum state 	y(ρ0)/tr[	y(ρ0)]
with probability p(y) = tr[	y(ρ0)]. It is then possible to
select the reverse operation

Ry = U †
y 	t (ρ0)Uy, (33)

so that the information-recovery channel is

R =
∑

y

Ry ◦ 	y. (34)

In short, the information acquired by performing a
measurement on the environment can be used to reverse
the action of the quantum channel 	t on the system, thus
recovering the initial state.

This information-recovery protocol involves access to the
degrees of freedom of an environment, which may be physical
or an auxiliary construction, depending on the context. Any
physical system is embedded in an environment that may
give rise to decoherence and filtering through interaction with
the system of interest. By contrast, in an effectively isolated
system, one may still consider using nonunitary operations
for filtering as done in numerical analysis without an explicit
physical environment.

In what follows, we tackle a complementary problem, the
recovery of information masked exclusively by the filter. We
focus on frequency filtering and aim at obtaining the unfiltered
SFF from the filtered one by undoing the action of the filter.
The filtered SFF is the convolution of the Fourier transform of
the filter function and the canonical SFF, as shown in Eq. (12),
which can be written as

SFFw(t ) = 1

2π
w̃(t ) ∗ SFF(t ). (35)

By the convolution theorem, it is thus possible to retrieve SFF
from knowledge of SFFw and w using

S̃FF(ν) = S̃FFw(ν)

w(ν)
, (36)

provided that w(ν) is nonzero everywhere in the domain
of S̃FFw(ν). Even when the inverse frequency filter func-
tion 1/w(ν) is nonsingular, the inversion can be unstable for
small values of w(ν). Furthermore, knowledge of S̃FFw(ν)

generally comes with additive noise, whether resulting from
limited machine precision in a numerical simulation or sta-
tistical errors in measured data. This scenario is common in
filter analysis and motivates alternatives to direct deterministic
deconvolution, such as the Wiener deconvolution.

VIII. INTRINSIC QUANTUM NOISE
FROM EIGENVALUE STATISTICS

In the fidelity-based interpretation, the SFF is the survival
probability of the time-evolving quantum state ρt in the initial
coherent Gibbs (or TFD) state. As such, one can introduce a
projector onto the initial state

P = ρ0 = |ψβ〉〈ψβ |, (37)

satisfying P2 = P, i.e., with eigenvalues ±1. Such eigenvalues
correspond to measurement outcomes in a projective measure-
ment of P. The full counting statistics associated with the
projective measurement associated with P is thus that of a
discrete random variable, i.e., the Bernoulli distribution. Its
characteristic function reads

tr[ρt e
iθP] = 1 + (eiθ − 1)SFF(t ). (38)

For any nontrivial evolution, an intrinsic quantum noise can-
not be suppressed (other than by postselection), whether the
dynamics is unitary or not. The quantum noise associated with
the uncertainty in the measurement outcomes of a projective
measurement of P can be quantified by the relative variance
of the eigenvalue statistics encoded in the relation

varρt (P)

tr(Pρt )2
= tr(P2ρt ) − tr(Pρt )2

tr(Pρt )2
= 1 − SFF

SFF
. (39)

For any t > 0, up to recurrences of zero measure [63,64],
varρt (P) > 0.

IX. EIGENVALUE FILTERING
AS HAMILTONIAN DEFORMATION

We first note the following identity for the modified parti-
tion function (20) with an eigenvalue filter w(E ):

Zw(β ) = tr[e−β(H− 1
β

log w(H ))]. (40)

As a result, Zw(β ) can be understood as the standard partition
function of the operator

Fβ = H − 1

β
log w(H ), (41)

which describes a one-parameter family of Hermitian Hamil-
tonian deformations of H [65,66]. Formally, this deformation
takes the form of a Helmholtz free-energy operator analogous
to that introduced to bound the charging power of quan-
tum batteries [67]. In particular, the filter gives rise to the
entropy (surprisal) term S(H ) = log w(H ). The eigenvalue-
filtered SFF in Eq. (21) is then

SFFw(t ) =
∣∣∣∣ tr(e−βFβ−itH )

tr(e−βFβ )

∣∣∣∣
2

. (42)
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At long times, in the absence of degeneracies, SFFw(t ) tends
to

SFFw = tr(e−2βFβ )

tr(e−βFβ )2
. (43)

This expression is nothing but the purity P[ρw(β )] =
tr[ρw(β )2] of the canonical Gibbs thermal state ρw(β ) defined
with respect to the deformed Hamiltonian, i.e., the free-energy
operator Fβ ,

ρw(β ) = e−βFβ

Zw(β )
. (44)

Indeed, the asymptotic value of SFFw(t ) can be writ-
ten in terms of the second Rényi entropy S2[ρw(β )] =
− log tr[ρw(β )2] as

SFFw = P[ρw(β )] = e−S2[ρw (β )]. (45)

For an eigenvalue filter function w(E ) : R → [0, 1],
SFFw � SFF and S2[ρw(β )] � S2[ρ(β )], where ρ(β ) =
exp(−βH )/Z (β ) is the canonical thermal state of the
undeformed Hamiltonian.

X. MASTER EQUATIONS FOR FREQUENCY FILTERS
FROM LIOUVILLIAN DEFORMATION

We next show that frequency filters are associated with
a family of master equations that generalize the dynamics
related to energy dephasing. Consider the master equation in
which time evolution is generated by a Liouvillian L,

d

dt
|ρt ) = L|ρt ), (46)

where |ρt ) denotes the vectorized density matrix at time t . In
terms of it, SFF(t ) = (ρ0|ρt ). Formally, Eq. (46) is solved by
|ρt ) = eLt |ρ0). We focus on the case in which the Liouvillian
is diagonalizable, so that it admits a spectral decomposition of
the form L = ∑

μ λμ|μ)(μ̃| using a biorthogonal basis. Here,
|μ) and (μ̃| are the right and left eigenstates, respectively,
with complex eigenvalue λμ [68,69]. We next consider the
Liouvillian of the form

L(·) = −i[H, ·] (47)

associated with an isolated system with Hamiltonian H .
Its spectrum is purely imaginary, and left and right eigen-
vectors coincide. Given a complex function W (z) : C → C
we define the associated Liouvillian deformation W (L) =∑

n W (λμ)|μ)(μ| [37]. By specifying the Liouvillian defor-
mation in terms of the frequency filter function w(x) : R →
[0, 1] as

W (L) = log w(iL), (48)

we consider a physical process in which the initial, unfiltered
coherent Gibbs state |ψβ〉〈ψβ | evolves into a generalization
of the frequency-filtered time-dependent density matrix in
Eq. (13). Specifically, we consider the time evolution for t � 0
described by the time-dependent density matrix

ρt =
∑
nm

e−β(En+Em )/2−it (En−Em )

Z (β )
eχ (t )W (En−Em )|n〉〈m|,

where χ (t ) is a real function satisfying χ (0) = 0 and W (En −
Em) = 〈n|W (L)|m〉 are matrix elements in the Hamiltonian
eigenbasis. This evolution fulfills the master equation

d

dt
|ρt ) = [L + χ̇ (t )W (L)]|ρt ), (49)

with the initial condition ρ0 = |ψβ〉〈ψβ |, and χ̇ denotes the
time derivative of χ . While L is anti-Hermitian, W (L) is
Hermitian. Thus, W (L) breaks unitarity and can be identi-
fied as the dissipator in the master equation (49). Given that
the W (z) = W (−z), its Taylor series expansion involves only
even powers of z, i.e., W (z) = ∑∞

n=0 W (2n)(0)z2n/(2n!). The
master equation can be written as

d

dt
ρt = −i[H, ρt ] + χ̇ (t )

∞∑
n=0

W (2n)(0)

(2n)!
ad2n

H ρt , (50)

where the nested commutators in each term of the Taylor
series have been written compactly in terms of the adjoint map
adXY = [X,Y ], ad2

XY = [X, [X,Y ]], etc.
The case of a time-independent frequency filter for t > 0

is described by choosing χ (t ) as the Heaviside step function,

χ (t ) = �(t ), χ̇ (t ) = δ(t ). (51)

The delta function δ(t ) = d
dt �(t ) in the master equation is

thus required for the frequency filter to be time independent.
Implementing this filter relies on a single kick with the dissi-
pator W (L).

Naturally, for the conventional energy-dephasing fre-
quency filter (26), the master equations (49) and (50) truncate
at ad2

Hρ and reduce to (23) for the choice χ (t ) = t , χ̇ (t ) = 1.

XI. DISCUSSION AND CONCLUSIONS

The lack of self-averaging in the SFF is tied to quantum
noise, manifested by erratic wiggles in the time domain. Ana-
lytical and numerical studies of the SFF enforce the reduction
of the wiggles by resorting to Hamiltonian ensembles, time
averaging, and spectral filters in the energy or frequency
domain. Through scaling analysis of the relative variance
of the SFF, we have shown that the frequency and energy
filters ensure that the SFF becomes self-averaging at long
times.

We have established that suppressing the erratic wiggles
(quantum noise) in the SFF implies nonunitary dynam-
ics characterized by information loss and decoherence.
Hamiltonian averaging, time averaging, and frequency filters
can be described by a mixed-unitary channel representing
the application of a random unitary with a given prob-
ability distribution. Mixed-unitary channels are unital and
induce information loss that can, however, be recovered by
environment-assisted channel correction. By contrast, filters
acting directly in the energy eigenvalues can be interpreted
as a nonlinear quantum channel describing the non-Hermitian
evolution of an energy-dephasing process conditioned to the
absence of quantum jumps.

The identification of the canonical, filtered SFFs for iso-
lated systems in terms of the survival probability of a coherent
Gibbs state under nonunitary evolution singles out the fidelity-
based generalization of the SFF to open quantum systems
put forward in Refs. [10,36–39] with respect to alternative
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proposals [40,41]. The fidelity-based approach makes it pos-
sible to unify SFFs for isolated systems with and without
filters and for open quantum systems in a single framework.
Further studies of self-averaging SFFs can be envisioned by
tailoring the filter function in accordance with the system size
or Hilbert space dimension.

Our results rely on the combination of tools in quantum
information science and quantum chaos, and contribute to the
understanding of filters in the characterization of the spectral
properties of many-body systems (e.g., in numerical studies)
as physical operations breaking unitary. In particular, our re-
sults establish how such filters can be implemented in digital
or analog quantum simulation experiments of the nonequi-
librium dynamics of many-body systems. This conclusion
should be generalizable to quantities other than the SFF, such
as correlation functions, that admit an information-theoretic
interpretation associated with a quantum evolution. Our re-
sults hold for the dynamics of finite-dimensional systems and
thus can be applied to the description of black hole physics

in this framework, where self-averaging SFFs appear in a
semiclassical description. In view of our findings, the latter
involves unitarity breaking.
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