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We investigate the two-photon scattering processes in a one-dimensional waveguide coupled to either a
two-level or three-level giant atom. By manipulating the accumulated phase shift between the two coupling
points, we are able to effectively modify the characteristics of these scattering processes. Utilizing the Lippmann-
Schwinger formalism, we obtain the exact two-photon interacting scattering wave functions of these two systems.
Additionally, analytical expressions for the incoherent power spectra and second-order correlations are derived.
The incoherent spectrum, which is defined by the correlation of the bound state, provides valuable insights into
photon-photon correlations. It serves as a useful indicator of the degree of photon-photon correlation between
scattered photons. Furthermore, the second-order correlation function gives a direct measure of the photon-
photon correlation. For photons scattered by the two-level giant atom, manipulating the accumulated phase shift
allows for improvement of the photon-photon correlation and adjustment of the evolution of the second-order
correlation. In the case of the three-level giant atom, the photon-photon correlation can be substantially increased.
The photon-photon interaction and correlation distance of the scattered photons can be further enhanced by
tuning the accumulated phase shift. Moreover, the statistical properties can be adjusted by the control field.
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I. INTRODUCTION

Exploiting atom-photon interactions plays a critical role
in the emerging field of waveguide quantum electrodynam-
ics (QED) [1–4], which opens up novel opportunities for
both fundamental physics [5–7] and quantum information
processing [8–10]. The conventional atom-photon interac-
tion has been studied within the small atom regime, where
the interaction is localized due to the presence of atoms in
a region significantly smaller than the wavelength of pho-
tons. However, recent investigations have focused on a new
paradigm known as “giant atoms,” which exhibits nonlocal
couplings. This has been achieved by coupling artificial atoms
to propagating fields (e.g., surface acoustic waves) with wave-
lengths smaller than atomic sizes [11], or through meandering
waveguides at separated points [12,13]. The introduction of
nonlocal interactions enables the occurrence of various re-
markable phenomena that are not achievable in the case of
small atoms. These include frequency-dependent Lamb shifts
and relaxation rates [14], waveguide-mediated decoherence-
free subspaces [15,16], nonexponential decay [11,17–19],
oscillating bound states [20], and the enhanced spontaneous
sudden birth of entanglement [21].

In waveguide QED systems, the presence of a one-
dimensional (1D) continuum of modes allows for a broader
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range of field bandwidths and facilitates strong coupling
to local emitters by reducing the mode volume [1]. The
study of few-photon scattering is well established in the
strong-coupling regime, where the interaction between light
and the emitter dominates over loss and dephasing ef-
fects. Various theoretical techniques have been developed
to investigate few-photon scattering in the context of small
atoms. These techniques include the real-space Bethe-ansatz
method [22–26], the Lehmann-Symanzik-Zimmermann re-
duction [27,28], the wave-packet evolution approach [29,30],
the Lippmann-Schwinger (LS) formalism [31–33], input-
output formalism [34,35], as well as the Dyson series
summation [36].

The phenomenon of photon scattering in waveguide QED
systems involving giant atoms has gained significant atten-
tion due to the unique interference effects [37–43]. It is
worth noting that the majority of studies in this area pri-
marily focus on single-photon interactions, with relatively
limited exploration of few-photon scattering within the giant
atom regime. The presence of nonlinearity in atomic systems
would induce photon-photon correlations, and such photon-
photon correlations can, in turn, influence the transmission
and reflection of photons through phenomena like induced
tunneling or blocking of photons [44–47]. Therefore, gaining
a clear understanding of the nature of photon-photon correla-
tions is crucial to comprehending the functioning of various
quantum devices, such as a switchable mirror [48] or a single-
photon router [49]. In the context of few-photon scattering,
the wave functions typically exhibit a common structure: the
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two-particle plane wave with momenta of photons rearranged
and the bound state. The plane-wave component arises from
the coherent scattering, while the bound-state component
originates from the incoherent scattering. The bound state
decays exponentially as the distance between the two photons
increases, and is associated with the two-particle irreducible
T matrix in scattering theory [50]. Recently, the eigenstates
of the scattering matrix have been successfully obtained for
the even mode in a two-level giant system using a reasonable
wave-function hypothesis [51].

In this paper, we employ the LS formalism to analyze
the two-photon scattering processes involving both two- and
three-level giant atoms coupled to a 1D waveguide. By uti-
lizing this approach, we are able to obtain the analytical
two-photon interacting scattering wave functions for these
systems. Additionally, the incoherent power spectrum is de-
rived from the correlation of the bound state, with the total
flux serving as an indicator of photon-photon correlation. The
second-order correlation function provides a direct measure
of photon-photon correlation. Through our analysis, we find
that the accumulated phase shift can be utilized to enhance
the photon-photon correlation and control the evolution of
the second-order correlation for photons scattered by the two-
level giant atom. In comparison to the two-level giant atom,
the photon-photon correlation can be substantially enhanced
for the system of the three-level giant atom. Moreover, we
find that tuning the accumulated phase shift between the two
coupling points allows for further improvement of photon-
photon interaction and an increase in the decay distance of the
second-order correlation. These properties can be explained
by the poles of these systems. Furthermore, the statistics prop-
erty of the scattering photons in the three-level giant atom
system can be controlled by adjusting the control laser at
the resonance condition. In the presence of the control field,
the incident photons pass by the system coherently, thereby
maintaining unchanged statistics. However, in the absence of
the control field, the system effectively behaves as a two-
level model, resulting in bunched transmitted photons and
antibunched reflected photons.

The paper is organized as follows. In Sec. II, we analyze the
two-photon scattering process in the system of the two-level
giant atom coupled to a 1D waveguide. We investigate various
aspects, including the derivation of the two-photon interacting
scattering eigenstate, the incoherent power spectrum, and the
second-order correlation function. In Sec. III, we extend our
analysis to the case of the three-level giant atom, where we
examine similar quantities such as the two-photon interact-
ing scattering eigenstate, the incoherent power spectrum, and
the second-order correlation function. The conclusions drawn
from our study are given in Sec. IV. Additionally, a summary
of technical details relevant to the calculation of the incoherent
power spectrum is presented in the Appendix.

II. THE SYSTEM OF A TWO-LEVEL GIANT ATOM
COUPLED TO A 1D WAVEGUIDE

We begin by considering the correlated two-photon dy-
namics in a system consisting of a two-level giant atom
side coupled to a 1D waveguide, as shown in Fig. 1. The
configuration can be feasibly realized experimentally by

x

FIG. 1. Schematic illustration of a two-level giant atom side cou-
pled to a one-dimensional (1D) waveguide. The atomic transition
between the ground state |g〉 and the excited state |e〉 is coupled to
waveguide modes positioned at x = −d/2 and d/2. The coupling
strength is denoted as V .

establishing a coupling between a superconducting qubit and
either meandering microwave transmission lines [12,13] or
propagating surface acoustic waves (SAWs) [11,52]. In the
microwave transmission line setup, the size of the qubit is
significantly smaller than the wavelength, thereby enabling us
to treat it as a pointlike object at each coupling point. In the
SAW system, the interdigital transducer (IDT) forms the two
transmon islands and couples with the SAWs propagating on
the substrate. The entire IDT consists of two local IDTs at
opposite ends, which are sufficiently distant from each other.
Each IDT consists of N pairs of fingers, arranged such that
the distance between neighboring finger pairs matches the
corresponding phonon wavelength, allowing for a constant
coupling. Moreover, the distance between the centers of the
two local IDTs can be made to be considerably larger than the
SAW wavelengths, permitting us to approximate the interac-
tion as point couplings. For convenience, let us assume that
the atomic transition |g〉 ↔ |e〉 interacts with the waveguide
field at the coupling points of x = −d/2 and d/2, respec-
tively. While the scattering process involving single photons
has been extensively studied in previous works [43,53], our
focus in this paper lies on the investigation of two-photon dy-
namics in order to explore photon-photon interactions. In real
space, the Hamiltonian governing the system can be written
as (h̄ = 1 hereafter)

Ĥ = (ω0 − iγe/2)σ̂ee

− iνg

∫
dx[â†

R(x)∂xâR(x) − â†
L(x)∂xâL(x)]

+ V

2

∑
α=R,L

∫
dxM(x)[â†

α (x)σ̂− + σ̂+âα (x)]. (1)

Here M(x) = δ(x + d/2) + δ(x − d/2) denotes the coupling
points. The operators â†

R(x) and â†
L(x) are the creation opera-

tors for the right-moving and left-moving modes in real space,
and νg is the group velocity. We will take νg = 1 for simplic-
ity. For the two-level giant atom, ω0 is the atomic transition
frequency, and γe is the spontaneous emission rate of the ex-
cited state to modes other than the waveguide continuum. The
atomic transition |g〉 ↔ |e〉 couples to the waveguide modes
at x = −d/2 and x = d/2 with an equal strength V = √

2	,
where 	 denotes the atomic spontaneous decay rate to the
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waveguide continuum. In the strong-coupling limit, the value
of Purcell factor P is large, i.e., P = 	/γe � 1. For instance,
	/2π = 2 MHz and γe/2π = 0.03 MHz are demonstrated in
the experimental setup [12]. This indicates that the sponta-
neous decay is mainly to the waveguide compared with all the
other modes. In this case, the atomic spontaneous dissipation
rate γe can be neglected.

The total excitation number is conserved for the Jaynes-
Cummings model of interaction between the atom and
waveguide field. Thus, in the single-excitation subspace, the
eigenstate of the system can be written in the form

|φ1(k)〉α =
∫

dx
[
φα

R (k, x)â†
R(x) + φα

L (k, x)â†
L(x)

]|0, g〉

+ uα
e (k)|0, e〉, (2)

where α = {R, L}, and φα
R/L(k, x) denote the probability am-

plitudes of creating the right-moving and left-moving photons
in real space for the incident photon with the wave vector k in
the α direction. Here uα

e (k) is the excitation amplitude of the
atom, and |0, g〉 denotes the vacuum state of the system. The
probability amplitudes can be determined by the Schrödinger
equation Ĥ |φ1(k)〉α = k|φ1(k)〉α , which gives

(ω0 − k)uα
e (k) +

√
	

2

∑
α′=R,L

∫
dxM(x)φα

α′ (k, x) = 0,

(−i∂x − k)φα
R (k, x) +

√
	

2
M(x)uα

e (k) = 0,

(i∂x − k)φα
L (k, x) +

√
	

2
M(x)uα

e (k) = 0. (3)

The solution of the wave function takes the following form:

φR
R (k, x) = eikx

√
2π

{θ (−d/2 − x) + t1(k)[θ (x + d/2)

− θ (x − d/2)] + t2(k)θ (x − d/2)},

φR
L (k, x) = e−ikx

√
2π

{r1(k)θ (−d/2 − x)

+ r2(k)[θ (x + d/2) − θ (x − d/2)]},

φL
R (k, x) = eikx

√
2π

{r1(k)θ (x − d/2)

+ r2(k)[θ (x + d/2) − θ (x − d/2)]},

φL
L (k, x) = e−ikx

√
2π

{θ (x − d/2) + t1(k)[θ (x + d/2)

− θ (x − d/2)] + t2(k)θ (−d/2 − x)}, (4)

where θ (x) is the Heaviside step function. Here, t2(k) and
r1(k) denote the single-photon transmission and reflection
amplitudes in the regions where x > d/2 and x < −d/2,
respectively. Additionally, t1(k) and r2(k) are the proba-
bility amplitudes for transmission and reflection between
two coupling points −d/2 < x < d/2. These amplitudes are

calculated as

t1(k) = ω0 − k − i	/2(1 + eikd )

ω0 − k − i	(1 + eikd )
,

t2(k) = ω0 − k + 	 sin kd

ω0 − k − i	(1 + eikd )
,

r1(k) = i	(1 + cos kd )

ω0 − k − i	(1 + eikd )
,

r2(k) = i	/2
(
1 + eikd

)
ω0 − k − i	(1 + eikd )

,

uα
e (k) = −√

	/π cos(kd/2)

ω0 − k − i	(1 + eikd )
. (5)

In order to study the two-photon scattering process, we
employ the LS equation to obtain the eigenstate for two-
photon scattering [31,32]. To account for the nonlinear effect
of the two-level atom, we use a bosonic representation which
includes an on-site interaction [31,54]:

H = H0 + V, V = U

2
d̂†d̂ (d̂†d̂ − 1). (6)

The atomic operators σ̂± in Ĥ0 are replaced by the bosonic
creation and annihilation operators d̂† and d̂ , respectively. To
map the atomic ground and excited states to zero- and one-
boson states, U → ∞ should be taken in the end to eliminate
occupations greater than 1. In this bosonic representation,
when U = 0, the Hamiltonian corresponds to a noninteracting
Hamiltonian that can be easily solved. The noninteracting
two-photon eigenstate is given by

|φ2(k1, k2)〉α1α2
= 1√

2
|φ1(k1)〉α1

⊗ |φ1(k2)〉α2
. (7)

The LS equation establishes a relationship between the
fully interacting two-photon eigenstates |ψ2(k1, k2)〉α1α2 and
|φ2(k1, k2)〉α1α2 as

|ψ2(k1, k2)〉α1α2
= |φ2(k1, k2)〉α1α2

+ GR(E )V |ψ2(k1, k2)〉α1α2
, (8)

where GR(E ) = 1/(E − H0 + i0+) is the retarded Green’s
function, and E = k1 + k2 is the total energy of two incident
photons. The two-particle identity operator in real space can
be expressed as

I2 = Ix
2 ⊗ |0〉〈0| + Ix

1 ⊗ |d〉〈d| + Ix
0 ⊗ |dd〉〈dd|,

Ix
n =

∑
α1···αn

∫
dx1 · · · dxn|x1 · · · xn〉α1···αn

〈x1 · · · xn|, (9)

where |0〉 is the ground state, and we denote the single-
excitation state |d〉 = d̂†|0〉 and the two-excitation state
|dd〉 = d̂†2|0〉/√2. By inserting the identity operator into
Eq. (8), we have

|ψ2(k1, k2)〉α1α2
= |φ2(k1, k2)〉α1α2

+ GR(E )V I2|ψ2(k1, k2)〉α1α2

= |φ2(k1, k2)〉α1α2
+ UGR(E )|dd〉

× 〈dd|ψ2(k1, k2)〉α1α2
. (10)
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To determine the two-photon interacting eigenstate, we
project Eq. (10) onto 〈dd|:

〈dd|ψ2(k1, k2)〉α1α2
= (1 − UGdd )−1〈dd|φ2(k1, k2)〉α1α2

,

(11)
where Gdd = 〈dd|GR(E )|dd〉. Next, we project Eq. (10) onto
a two-photon basis state α′

1α
′
2
〈x1x2| and taking the limit U →

∞ the two-photon interacting eigenstate eventually becomes

α′
1α

′
2
〈x1x2|ψ2(k1, k2)〉α1α2

= α′
1α

′
2
〈x1x2|φ2(k1, k2)〉α1α2

− G
α′

1α
′
2

xd (x1, x2)G−1
dd 〈dd|φ2(k1, k2)〉α1α2

, (12)

where G
α′

1α
′
2

xd (x1, x2) =α′
1α

′
2
〈x1x2|GR(E )|dd〉, and x1 and x2 re-

fer to the positions of the photons. The first term denotes the
plane-wave state, while the second term contains all the non-
linearity and is commonly referred to as the two-photon bound
state. In order to solve the Green’s functions, we utilize the
two-photon noninteracting scattering eigenstates to establish
a two-particle identity in momentum space:

I ′
2 =

∑
α1,α2

∫
dk1dk2|φ2(k1, k2)〉α1α2

〈φ2(k1, k2)|. (13)

The Green’s functions can be finally derived in the following
form:

Gdd =
∑
α1,α2

∫
dk1dk2

〈dd|φ2(k1, k2)〉α1α2
〈φ2(k1, k2)|dd〉

E − k1 − k2 + i0+ ,

Gα1α2
xd (x1, x2) =

∑
α′

1,α
′
2

∫
dk1dk2

α1α2〈x1x2|φ2(k1, k2)〉α′
1α

′
2
〈φ2(k1, k2)|dd〉

E − k1 − k2 + i0+ , (14)

with the elements

〈dd|φ2(k1, k2)〉α1α2
= uα1

e (k1)uα2
e (k2),

α′
1α

′
2
〈x1x2|φ2(k1, k2)〉α1α2

= 1

2

[
φ

α1
α′

1
(k1, x1)φα2

α′
2
(k2, x2)

+ φ
α2
α′

1
(k2, x1)φα1

α′
2
(k1, x2)

]
. (15)

When the propagating time of photons between the cou-
pling points is shorter than the atomic lifetime 1/	, the
Markovian approximation can be applied [55]. In this case,
the wave vector k in the phase factors can be replaced by a
constant k0 = ω0/νg, and the accumulated phase shift between
the coupling points is denoted as ϑ = k0d . The phase shift can
be adjusted by changing the distance between these points.
Then, by performing double integrals with the use of the
standard contour integral techniques, the Green’s functions
become

Gdd = 1

E − 2ω0 + i2	′ ,

GRR
xd (x1, x2) = −	(1 + cos ϑ )

E − 2ω0 + i2	′ e
iExc ei(E/2−ω0 )|x|−	′ |x|, (16)

where 	′ = 	(1 + eiϑ ). During the contour integration, the
conditions x1 > d/2, x2 > d/2, and x = x2 − x1, xc = (x1 +
x2)/2 are used. It can be proven that GLL

xd (−x1,−x2) =
GRR

xd (x1, x2) = GRL
xd (x1,−x2) = GLR

xd (−x1, x2) because of the
parity symmetry. Substituting these expressions into Eq. (12),
the two-photon interacting eigenstate becomes

|ψ2(k1, k2)〉RR =
∫

dx1dx2

[
fRR(x1, x2)√

2
â†

R(x1)â†
R(x2)

+ fLL(x1, x2)√
2

â†
L(x1)â†

L(x2)

+ fRL(x1, x2)â†
R(x1)â†

L(x2)

]
|0〉. (17)

The coefficients are

fRR(x1, x2) = eiExc

√
2π

[t2(k1)t2(k2) cos �1x + Bk1k2 (x)],

fLL(x1, x2) = e−iExc

√
2π

[r1(k1)r1(k2) cos �1x + Bk1k2 (x)],

fRL(x1, x2) = eiEx/2

2π
[t2(k1)r1(k2)e2i�1xc

+ r1(k1)t2(k2)e−2i�1xc + 2Bk1k2 (xc)],

Bk1k2 (x) = 	2(1 + cos ϑ )2ei(E/2−ω0 )|x|−	′|x|

(E/2 − ω0 + i	′)2 − �2
1

, (18)

where �1 = (k1 − k2)/2 corresponds to half of the energy dif-
ference between two incident photons. For the case of ϑ = 0,
the interacting eigenstate can be simplified to the same form
as that of the small two-level atom scenario with a single
coupling point in Ref. [56] by replacing 	 with 	/4. The
factor 4 arises from the constructive interference between two
coupling points.

For the input of the two-particle plane wave, the scattering
wave function exhibits a common constituent: the two-particle
plane wave with rearranged momenta of the photons and the
bound state. The plane wave originates from the coherent scat-
tering, while the bound state originates from the incoherent
scattering. As the distance between the two photons increases,
the bound state decays exponentially. The bound state can
also be referred to as the two-particle irreducible T matrix in
scattering theory [50].

A. Incoherent power spectrum

The two-photon interacting eigenstate is composed of two
components: the plane wave arising from coherent scattering,
and the bound state arising from photon-photon interac-
tions. To investigate their impacts on scattering processes, we
first consider the power spectrum or resonance fluorescence,
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which is the Fourier transform of the first-order correlation
function:

Sα (ω) =
∫

dte−iωt 〈ψ2|â†
α (x0)âα (x0 + t )|ψ2〉, (19)

where x0 is the position of the detector located far away from
the scattering region. Here Sα (ω) accounts for the spectral
decomposition of the photons in the two-photon interacting
wave function |ψ2〉. The detailed derivation of the power
spectrum is presented in the Appendix. In general, the power
spectrum consists of the coherent and incoherent parts, i.e.,
Sα (ω) = Scoh

α (ω) + Sincoh
α (ω). The coherent scattering compo-

nent contributes a δ function, while the incoherent scattering
component is determined by the correlation of the bound state
in the wave function, as shown in Eq. (A5).

To explore the physical implications of the incoherent
power spectrum, we consider the case where α = R, specif-
ically focusing on the two-photon transmission state. In this
case, the incoherent power spectrum can be expressed in the
form

Sincoh
R (ω) = 4

π2
|ϒ(ω)|2, (20)

where

ϒ(ω) = 	2(1 + cos ϑ )2

(E/2 − ω0 + i	′)

× 1

(E − ω0 − ω + i	′)(ω − ω0 + i	′)
. (21)

This expression is provided in the Appendix. When trans-
forming the transmitted state from real space to frequency
space, it can be represented as t2(ω1)t2(ω2)â†

R(ω1)â†
R(ω2)|0〉 +

i
π

∫
dωϒ(ω)â†

R(E − ω)â†
R(ω)|0〉. The first term describes the

independent propagation of the two photons, while the second
term represents the final state of the two photons after under-
going inelastic scattering. According to the principle of energy
conservation, the two scattered photons are always generated
in pairs with frequencies of opposite signs. The coefficient
ϒ(ω) quantifies the generation of these photon pairs. There-
fore, the incoherent power spectrum serves as a direct measure
of the production of photon pairs with a frequency of ω.

Furthermore, the total incoherent power spectrum is de-
fined by

F (k) =
∑

α

∫
dωSincoherent

α (ω)

= 4

π

∫
dxB∗

k1k2
(x)Bk1k2 (x). (22)

It serves as a quantitative measure for the overall strength of
correlations, and also provides a direct measure of the bound-
state term. Under the assumption of a narrow bandwidth of
incident photons, where the spectral width of the wave packet
is significantly smaller than 	, the wave packet approaches to
a δ function. This implies that the incident photons have the
equal frequency k1 = k2 = k. In this case, the expression for
the total incoherent power spectrum can be simplified as

F (k) = 4	3(1 + cos ϑ )3

π |k − ω0 + i	′|4 = 4

π

|Bk1k2 (0)|2
	(1 + cos ϑ )

, (23)

FIG. 2. The total incoherent power spectrum F (k) as a function
of the incident frequency k with different values of the accumulated
phase shift ϑ . The other parameter is ω0 = 100	.

which is consistent with the single coupling point case (by
replacing 	 with 	/4) when ϑ = 0 [57].

The total incoherent power spectrum F (k) as a function of
the incident frequency k is shown in Fig. 2. A large value of
F (k) indicates strong correlation effects, since the incoherent
scattering originates from the correlation of the bound state.
Therefore, the peak value of F (k) corresponds to the strongest
correlation, and kpeak denotes the optimal incident frequency
to obtain photon-photon correlations. It also shows that the
peak value of F (k) and kpeak vary with the phase shift ϑ . For
example, when ϑ = 0.85π , it can be observed that the peak
value of F (k) increases by approximately an order of magni-
tude compared to its value at ϑ = 0. This implies a significant
enhancement of photon-photon correlations. Physically, the
position and width of the peak can be explained by the pole of
the system, which corresponds to the zero of the denominator
in the single-photon transmission or reflection amplitude t (k)
or r(k). We denote the pole as z = ω̃ − i	̃, where the real
part ω̃ = ω0 + 	 sin θ represents the eigenfrequency and 	̃ =
	(1 + cos θ ) denotes the effective decay rate. The position of
the peak corresponds to the eigenfrequency ω̃, while its width
is determined by 	̃. Moreover, the peak value is given by
Fpeak = 4/π	̃. In comparison to the single coupling point of a
small atom, where the peak value is 8/π	, it can be surpassed
in the giant atom with ϑ ⊂ (2π/3, 5π/3). This indicates that
the smaller effective decay rate can enhance photon-photon
correlations, and it is adjustable through the change of the
phase shift ϑ in the two-level giant atom system.

B. Second-order correlation function

Next, we utilize the second-order correlation function to
demonstrate the spatial interaction between photons [58].
The second-order correlation functions of the transmitted and
reflected fields (x1 > d/2, x2 > d/2 and x = x2 − x1) are de-
fined as follows:

G(2)
α (x) = 〈ψ2|â†

α (x1)â†
α (x2)âα (x2)âα (x1)|ψ2〉

= 2| fαα (x1, x2)|2. (24)
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FIG. 3. The difference between the probability of two-photon
detection and the independent single-photon detection when x = 0,
denoted as χR = 2π 2| fRR(0)|2 − |t2(k)|4 for the transmitted field and
χL = 2π 2| fLL (0)|2 − |r1(k)|4 for the reflected field, as functions of
the incident frequency k and the accumulated phase shift ϑ . The other
parameter is ω0 = 100	.

This correlation function represents the probability of detect-
ing a photon at x2 after detecting the first one at x1. The
expression is directly proportional to the rate at which two
photons are transmitted or reflected, and is determined by the
interference between the plane-wave term and the bound-state
term. In order to briefly illustrate the effect of the bound state,
we examine the difference between the probability of two-
photon detection and the independent single-photon detection
when x = 0, under the condition that k1 = k2 = k, denoted
as χR = 2π2| fRR(0)|2 − |t2(k)|4 for the transmitted field and
χL = 2π2| fLL(0)|2 − |r1(k)|4 for the reflected field. If χR > 0,
it indicates that the bound state enhances the transmission of
two photons, resulting in a phenomenon known as photon-
induced tunneling, which serves as a signature of photon
bunching. Conversely, if χR < 0, it implies that the bound
state can suppress the transmission of two photons, leading
to photon blockade [44]. In Fig. 3, it is shown that χR > 0,
indicating that the transmitted photons are bunched, while
χL < 0, suggesting that reflected photons are antibunched.
Therefore, the statistical properties of photons are determined
by the interference between the plane-wave and the bound-
state terms.

It is also useful to introduce the normalized second-order
correlation function [32,59,60]:

g(2)
α (x) = G(2)

α (x)

|α〈x1|φ1(k1)〉R|2|α〈x2|φ1(k2)〉R|2 . (25)

This function is normalized by the single-photon transmission
and reflection probability. Furthermore, for incident photons
with equal frequency, i.e., k1 = k2 = k, and by substituting the
explicit expressions, the normalized second-order correlation
functions can be simplified as

g(2)
R (x) =

∣∣∣∣∣1 + 	2(1 + cos ϑ )2ei(k−ω0 )|x|−	′ |x|

(k − ω0 − 	 sin ϑ )2

∣∣∣∣∣
2

,

g(2)
L (x) = ∣∣1 − ei(k−ω0 )|x|−	′ |x|∣∣2

. (26)

FIG. 4. The normalized second-order correlation functions, de-
noted as g(2)

R (x) for transmitted photons (a) and g(2)
L (x) for reflected

photons (b), as a function of x with different values of ϑ . The other
parameters are ω0 = 100	 and k = ω0.

These correlation functions are depicted in Fig. 4. Here we
choose the frequency of the input field to be resonant with
the atomic transition frequency, i.e., k = ω0. As a result, the
second-order correlation function is primarily determined by
	′. When ϑ = 0, the behavior of g(2)

R/L(x) resembles that of
the single coupling point, which has been extensively in-
vestigated in theory as well as experiment with microwave
photons [49]. The transmitted photons exhibit bunching be-
havior, while the reflected photons display antibunching. The
correlations quickly reach the value of 1 with little structure.
Therefore, the initial value g(2)

R/L(0) makes a good predic-
tion of the overall correlation nature. It should be noted
here that at resonance, i.e., k = ω0, the single-photon trans-
mission rate becomes zero, leading to a divergence in the
normalized second-order correlation function of g(2)

R (x). In
physics, g(2)

L (0) = 0 of the reflected field is due to the two-
level atom and can only absorb and emit one photon at a
time [49].

However, when ϑ takes values of 0.5π , 0.75π , and 0.85π ,
g(2)

R (x) exhibits oscillations between bunching and antibunch-
ing. Moreover, it takes a longer distance to reach the value of
1. This behavior indicates that the photons become periodi-
cally organized in time and space. In contrast to the behavior
observed in the case of ϑ = 0, where the initial correlation can
predict whether the system generates bunching or antibunch-
ing of photons, the oscillatory feature presents a challenge
in using the initial correlation as a reliable predictor. These
features can be explained by the pole of the system, which
appears in the exponential factor of Eq. (26). The oscillation
arises from beating between the eigenfrequency and the inci-
dent frequency, and its duration is determined by the effective
decay rate. Therefore, for ϑ = 0, the effective decay rate
reaches the maximum value 2	 and g(2)

R/L(x) rapidly reaches
1. For ϑ = 0.5π , the effective decay rate becomes equal to
	, resulting in an extended oscillation period. For ϑ = 0.75π

and 0.85π , the effective decay rates further decrease, leading
to even longer-lasting oscillations.
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x

FIG. 5. Schematic illustration of a three-level giant atom side
coupled to a 1D waveguide. The transition between the ground state
|g〉 and the excited state |e〉 is coupled to waveguide modes positioned
at x = −d/2 and d/2 with strength V . Additionally, the transition
between the excited state |e〉 and the metastable state |s〉 is driven
by a laser field of frequency ωc with the Rabi frequency �, and the
detuning between the transition frequency and the laser frequency
is �.

III. THE SYSTEM OF A THREE-LEVEL GIANT ATOM
COUPLED TO A 1D WAVEGUIDE

We extend our investigation to explore the dynamics of
correlated two-photon processes in a system consisting of a
1D waveguide side coupled to a three-level �-type giant atom,
as shown in Fig. 5. The configuration of a giant transmon cou-
pled to a transmission line has been demonstrated in Ref. [13],
and its characteristic phenomenon, i.e., electromagnetically
induced transparency (EIT), has been observed. For the single
coupling point, it demonstrates that the second-order correla-
tion of scattered photons can be tuned by adjusting the Rabi
frequency of the control field [61]. Now, our focus is specifi-
cally on investigating how the accumulated phase shift affects
nonclassical properties of scattered photons. The system un-
der consideration is described by the Hamiltonian (h̄ = 1 and
the group velocity νg = 1)

Ĥ = −i
∫

dx
[
â†

R(x)∂xâR(x) − â†
L(x)∂xâL(x)

]
+ (ω0 − iγe/2)σ̂ee + (ω0 − �)σ̂ss + �

2
(σ̂es + σ̂se)

+ V

2

∑
α=R,L

∫
dxM(x)[â†

α (x)σ̂ge + σ̂egâα (x)], (27)

where M(x) = δ(x + d/2) + δ(x − d/2) represents the posi-
tions of the coupling points, where d is the separation between
them. The parameter ω0 denotes the transition frequency of
the atomic levels |g〉 → |e〉, and � represents the detuning
between the transition frequency of |s〉 → |e〉 and the laser
driving frequency ωc. It is worth noting that we consider the
strong atom-waveguide coupling regime, where the interac-
tion strength 	 = V 2/2 is significantly larger than the atomic
spontaneous emission rate γe. The regime is realizable in ex-
perimental setups, and the atomic spontaneous dissipation rate
γe can be neglected. Within the single-excitation subspace, the

eigenstate of the system can be written in the form

|φ1(k)〉α =
∫

dx
[
φα

R (k, x)â†
R(x) + φα

L (k, x)â†
L(x)

]|0, g〉

+ uα
e (k)|0, e〉 + uα

s (k)|0, s〉. (28)

Here φα
R/L(k, x) indicate the probability amplitudes of creating

the right-moving and left-moving photon in real space for the
α-direction incoming photon with the wave vector k, respec-
tively; uα

e (k) is the excitation amplitude of the atomic level |e〉;
uα

s (k) is the excitation amplitude of the atomic level |s〉. These
probability amplitudes can be determined by the Schrödinger
equation Ĥ |φ1(k)〉α = k|φ1(k)〉α , which obeys

(−i∂x − k)φα
R (k, x) +

√
	

2
M(x)uα

e (k) = 0,

(i∂x − k)φα
L (k, x) +

√
	

2
M(x)uα

e (k) = 0,

(ω0 − k)uα
e (k) + �

2
uα

s (k)

+
√

	

2

∑
α′=R,L

∫
dxM(x)φα

α′ (k, x) = 0,

(ω0 − � − k)uα
s (k) + �

2
uα

e (k) = 0. (29)

The solutions of these probability amplitudes take the follow-
ing form:

φR
R (k, x) = eikx

√
2π

{θ (−d/2 − x) + t1(k)[θ (x + d/2)

− θ (x − d/2)] + t2(k)θ (x − d/2)},

φR
L (k, x) = e−ikx

√
2π

{r1(k)θ (−d/2 − x)

+ r2(k)[θ (x + d/2) − θ (x − d/2)]},

φL
R (k, x) = eikx

√
2π

{r1(k)θ (x − d/2)

+ r2(k)[θ (x + d/2) − θ (x − d/2)]},

φL
L (k, x) = e−ikx

√
2π

{θ (x − d/2) + t1(k)[θ (x + d/2)

− θ (x − d/2)] + t2(k)θ (−d/2 − x)}, (30)

where the coefficients are

t1(k) = (ω0 − � − k)
[
ω0 − k − i 	

2 (1 + eiϑ )
] − �2

4

(ω0 − � − k)[ω0 − k − i	(1 + eiϑ )] − �2

4

,

t2(k) = (ω0 − � − k)(ω0 − k + 	 sin ϑ ) − �2

4

(ω0 − � − k)[ω0 − k − i	(1 + eiϑ )] − �2

4

,

r1(k) = i	(ω0 − � − k)(1 + cos ϑ )

(ω0 − � − k)[ω0 − k − i	(1 + eiϑ )] − �2

4

,

r2(k) = i	/2(ω0 − � − k)(1 + eiϑ )

(ω0 − � − k)[ω0 − k − i	(1 + eiϑ )] − �2

4

,
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uα
e (k) = −√

	/π (ω0 − � − k) cos ϑ
2

(ω0 − � − k)[ω0 − k − i	(1 + eiϑ )] − �2

4

,

uα
s (k) = �/2

√
	/π cos ϑ

2

(ω0 − � − k)[ω0 − k − i	(1 + eiϑ )] − �2

4

. (31)

We have made the assumption that the wave vector k in the
accumulated phase shift is a constant k0 under the Markovian
approximation, and replaced k0d with ϑ .

In order to construct the wave function for two-photon scat-
tering, the LS equation is employed by replacing the atomic
operators with bosonic operators. To ensure compliance with
level statistics, an additional on-site repulsion denoted as U
needs to be introduced and assumed to be infinite in the end.
For a three-level atom, apart from the repulsion for each upper
level, an additional term must be included to fully eliminate
the double occupancy. Here the repulsion operator Ṽ is

Ṽ = U

2
(b̂†

eb̂†
eb̂eb̂e + b̂†

s b̂†
s b̂sb̂s + 2b̂†

eb̂eb̂†
s b̂s). (32)

The coefficient of the last term is chosen for convenience, and
any coefficient would be canceled out after taking U → ∞
[62]. By introducing an appropriate on-site interaction Ṽ , it
becomes possible to calculate the two-photon wave function
|ψ2〉 following the preceding steps. As a result, in the limit
U → ∞, the two-photon interacting eigenstate in the coordi-
nate representation takes the form

α′
1α

′
2
〈x1x2|ψ2(k1, k2)〉α1α2

= α′
1α

′
2
〈x1x2|φ2(k1, k2)〉α1α2

−
3∑

i, j=1

G
α′

1α
′
2

i (x1, x2)(G−1)i j〈 j|φ2(k1, k2)〉α1α2
. (33)

Here, for simplicity, we denote |1〉 = |dede〉, |2〉 = |deds〉, and
|3〉 = |dsds〉. The elements of the Green’s functions are de-
fined as follows:

Gα1α2
i (x1, x2) = α1α2〈x1x2|GR(E )|i〉

=
∑
α′

1α
′
2

∫
dk1dk2

× α1α2〈x1x2|φ2(k1, k2)〉α′
1α

′
2
〈φ2(k1, k2)|i〉

E − k1 − k2 + i0+ ,

Gi j = 〈i|GR(E )| j〉

=
∑
α1α2

∫
dk1dk2

〈i|φ2(k1, k2)〉α1α2
〈φ2(k1, k2)| j〉

E − k1 − k2 + i0+ ,

G−1 =
⎛
⎝G11 G12 G13

G21 G22 G23

G31 G32 G33

⎞
⎠

−1

, (34)

with the use of relations

〈1|φ2(k1, k2)〉α1α2
= uα1

e (k1)uα2
e (k2),

〈2|φ2(k1, k2)〉α1α2
= 1

2

[
uα1

e (k1)uα2
s (k2)

+ uα1
e (k2)uα2

s (k1)
]
,

〈3|φ2(k1, k2)〉α1α2
= uα1

s (k1)uα2
s (k2),

α′
1α

′
2
〈x1x2|φ2(k1, k2)〉α1α2

= 1
2

[
φ

α1
α′

1
(k1, x1)φα2

α′
2
(k2, x2)

+ φ
α2
α′

1
(k2, x1)φα1

α′
2
(k1, x2)

]
. (35)

By employing the standard contour integral techniques to
evaluate the double integral, we can obtain

G11 = 16	2 cos4 ϑ
2

(λ1 − λ2)2

[
(λ1 − ω0 + �)4

f1(λ1, λ2)
− (λ1 − ω0 + �)2(λ2 − ω0 + �)2

f2(λ1, λ2)
+ λ1 ↔ λ2

]
,

G22 = 4	2�2 cos4 ϑ
2

(λ1 − λ2)2

[
(λ1 − ω0 + �)2

f1(λ1, λ2)
− (λ1 + λ2 − 2ω0 + 2�)2

4 f2(λ1, λ2)
+ λ1 ↔ λ2

]
,

G33 = �4	2 cos4 ϑ
2

(λ1 − λ2)2

[
1

f1(λ1, λ2)
− 1

f2(λ1, λ2)
+ λ1 ↔ λ2

]
,

G12 = 8�	2 cos4 ϑ
2

(λ1 − λ2)2

[
(λ1 − ω0 + �)3

f1(λ1, λ2)
− (λ1 − ω0 + �)2(λ2 − ω0 + �)

f2(λ1, λ2)
+ λ1 ↔ λ2

]
,

G13 = 4�2	2 cos4 ϑ
2

(λ1 − λ2)2

[
(λ1 − ω0 + �)2

f1(λ1, λ2)
− (λ1 − ω0 + �)(λ2 − ω0 + �)

f2(λ1, λ2)
+ λ1 ↔ λ2

]
,

G23 = 2�3	2 cos4 ϑ
2

(λ1 − λ2)2

[
(λ1 − ω0 + �)

f1(λ1, λ2)
− (λ1 − ω0 + �)

f2(λ1, λ2)
+ λ1 ↔ λ2

]
,

G21 = G12, G31 = G13, G32 = G23,

GRR
1 (x1, x2) = 2	 cos2 ϑ

2

λ1 − λ2

[
(λ1 − ω0 + �)(λ1 + ω0 − � − E )

(2λ1 − E )(λ1 + λ2 − E )
eiEx2−iλ1t − λ1 ↔ λ2

]
,

GRR
2 (x1, x2) = �	 cos2 ϑ

2

2(λ1 − λ2)

[
2ω0 − 2� − E

(2λ1 − E )(λ1 + λ2 − E )
eiEx2−iλ1t − λ1 ↔ λ2

]
,

GRR
3 (x1, x2) = −�2	 cos2 ϑ

2

2(λ1 − λ2)

[
1

(2λ1 − E )(λ1 + λ2 − E )
eiEx2−iλ1t − λ1 ↔ λ2

]
. (36)
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The expressions for λ1 and λ2 are given as

λ1 = 1
2 [2ω0 − � − i	′ +

√
(−� + i	′)2 + �2],

λ2 = 1
2 [2ω0 − � − i	′ −

√
(−� + i	′)2 + �2], (37)

with 	′ = 	(1 + eiϑ ). Furthermore, the functions f1(λ1, λ2)
and f2(λ1, λ2) are defined as

f1(λ1, λ2) = (2λ1 − E )(λ1 − λ∗
1 )2(λ1 − λ∗

2 )2,

f2(λ1, λ2) = (E − λ1 − λ2)(λ1 − λ∗
1 )(λ2 − λ∗

2 )|λ1 − λ∗
2|2.
(38)

During the contour integration, we utilize the con-
ditions x1 > d/2 and x2 > d/2, and define x = x1 −
x2 and xc = (x1 + x2)/2. It can also be demonstrated
that GLL

i (−x1,−x2) = GRL
i (x1,−x2) = GLR

i (−x1, x2) = GRR
i

(x1, x2) for i = 1, 2, 3, owing to the parity symmetry. Finally,
the expression for the two-photon interacting eigenstate be-
comes

|ψ2(k1, k2)〉RR =
∫

dx1dx2

[
f (�)
RR (x1, x2)√

2
â†

R(x1)â†
R(x2)

+ f (�)
LL (x1, x2)√

2
â†

L(x1)â†
L(x2)

+ f (�)
RL (x1, x2)â†

R(x1)â†
L(x2)

]
|0〉. (39)

The coefficients can be written as the sum of the plane-wave
and bound-state terms:

f (�)
RR (x1, x2) = eiExc

√
2π

[
t2(k1)t2(k2) cos �1x + B(2)

k1k2
(x)

]
,

f (�)
LL (x1, x2) = e−iExc

√
2π

[
r1(k1)r1(k2) cos �1x + B(2)

k1k2
(x)

]
,

f (�)
RL (x1, x2) = eiEx/2

2π

[
t2(k1)r1(k2)e2i�1xc

+ r1(k1)t2(k2)e−2i�1xc + 2B(2)
k1k2

(xc)
]
. (40)

The bound-state term B(2)
k1k2

(x) at the resonance condition, i.e.,
� = 0, can be expressed as

B(2)
k1k2

(x) = A+ei(E/2−γ+ )|x| + A−ei(E/2−γ− )|x|. (41)

Here, γ± are the values of λ1,2 in Eq. (37) with � = 0, i.e.,

γ± = ω0 − i
	′

2
±

√
�2 − 	′2

2
, (42)

and the coefficients A± are

A± = 	2(1 + cos ϑ )2

2
√

�2 − 	′2

[
± (k1 + k2 − 2ω0)

�2

4

+ (k1 − ω0)(k2 − ω0)(
√

�2 − 	′2 ∓ i	′)
]

/[(k1 − γ+)(k1 − γ−)(k2 − γ+)(k2 − γ−)]. (43)

If � = 0, these coefficients can be reduced to the same form as
those of the two-level giant atom derived above. In the follow-
ing discussion, we also consider the narrow bandwidth limit

FIG. 6. The total incoherent power spectrum F (k) of the three-
level giant atom as a function of the incident frequency k with
different values of ϑ . The other parameters are ω0 = 100	 and
� = 	/2.

for incident photons, where the frequencies of the incident
photons are equal, i.e., k1 = k2 = k.

A. Incoherent power spectrum

According to the previous discussion on the two-level giant
atom system, the total incoherent power spectrum can be
utilized as a metric for the photon-photon correlation because
it originates from the correlated bound state. In the case of
a three-level giant atom, the exact derivation of the total in-
coherent power spectrum F (k) is provided in the Appendix,
which is

F (k) = 8i

π

∑
m,n=+,−

A∗
mAn

γ ∗
m − γn

. (44)

The results are numerically shown in Fig. 6. Notably, when
the system reaches the perfect EIT window, i.e., k = ω0, the
value of F (k) becomes zero. This indicates that all photons are
scattered coherently, and no bound state is formed in the wave
function. This observation aligns with the expression of the
bound-state term in Eq. (41), which becomes zero when k =
ω0. Thus, it is consistent with the notion that photon-photon
correlation and incoherent scattering are related. Additionally,
F (k = ω0) = 0 at the perfect transparency remains unaffected
by the phase shift ϑ , and even the number of identical atoms
coupled to the waveguide [62]. This phenomenon is com-
monly referred to as fluorescence quenching [35,63].

A significant level of photon-photon correlation is indi-
cated by a large value of F (k). Figure 6 illustrates that the
peak value of F (k) for the three-level giant atom is consider-
ably higher than that of the two-level giant atom. This suggests
that the three-level giant atom generates photon-photon corre-
lation more efficiently. Furthermore, when ϑ = 0, the shape
of F (k) exhibits symmetry and resembles that of the single-
point coupling [62]. However, for other phase shifts such as
ϑ = 0.5π , 0.75π , and 0.85π , the magnitude of incoherent
scattering increases significantly, and the line shape changes
from symmetry to asymmetry. This phenomenon can be ex-
plained by the presence of an asymmetric pole structure. The
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FIG. 7. The total incoherent power spectrum F (k) of the three-
level giant atom as a function of the incident frequency k with
different values of ϑ . The other parameters are ω0 = 100	 and
� = 5	.

poles referred to here are γ± in Eq. (42). When ϑ = 0, the real
parts of the pole are symmetric with respect to ω0. However,
for ϑ = 0.5π , 0.75π , and 0.85π , they become asymmetric.
Additionally, the height of the peak is inversely proportional
to its width, which is determined by the imaginary part of
the pole. For example, when ϑ = 0.5π , the two poles are
ω0 + 1.03 − 0.97i and ω0 − 0.032 − 0.03i. As a result, the
main peak is located at ω0 − 0.032 while the other peak is
negligible due to its large imaginary part. Similarly, for ϑ =
0.75π , the two poles are ω0 + 0.78 − 0.27i and ω0 − 0.072 −
0.025i, leading to the main peak being located at ω0 − 0.072.
The height of the peak is higher due to the smaller imaginary
part. At the same time, the other peak is located at ω0 + 0.78
with a smaller height due to its slightly larger imaginary part.
Also, for ϑ = 0.85π , the two poles are ω0 + 0.56 − 0.091i
and ω0 − 0.11 − 0.017i, leading to the main peak being lo-
cated at ω0 − 0.11 with a higher height. Simultaneously, the
other peak located at ω0 + 0.56 also becomes evident due to
its small imaginary part.

When the Rabi frequency increases, the transparency win-
dow becomes wider. Within the transparency window, the
scattered photons are not confined to the bound state, as shown
in Fig. 7. The peak values of F (k) can be observed around
ω0 ± �

2 , but their amplitudes decrease. Therefore, a strong
Rabi frequency can hinder the photon-photon correlation and
result in simpler and less structured effects. This characteristic
may be advantageous in certain circumstances [61]. The struc-
ture can also be explained by the poles γ±, which approach
ω0 ± �

2 − i 	′
2 . The amplitudes become smaller due to the

larger values of the imaginary parts.

B. Second-order correlation function

Likewise, to briefly illustrate the effect of the bound state
on the transmitted and reflected field (x1 > d/2, x2 > d/2,
and x = x2 − x1) in the system of the three-level giant atom,
we first examine the difference between the probability of
the two-photon detection and the single-photon detection
when x = 0. Under the condition of k1 = k2 = k, we denote

FIG. 8. The difference between the probability of the two-photon
detection and the single-photon detection when x = 0, denoted as
χR = 2π 2| f (�)

RR (0)|2 − |t2(k)|4 for the transmitted field (a) and χL =
2π 2| f (�)

LL (0)|2 − |r1(k)|4 for the reflected field (b), as functions of the
incident frequency k and the accumulated phase shift ϑ . The other
parameters are ω0 = 100	 and � = 	/2.

χR = 2π2| f (�)
RR (0)|2 − |t2(k)|4 for the transmitted field and

χL = 2π2| f (�)
LL (0)|2 − |r1(k)|4 for the reflected field. If χR >

0, it indicates that the bound state enhances the transmission
of two photons, resulting in a phenomenon known as photon-
induced tunneling, which serves as a signature of photon
bunching. Conversely, if χR < 0, it implies that the bound
state can suppress the transmission of two photons, leading
to photon blockade. Figure 8 shows that χR > 0, indicating
that the transmitted photons are bunched, while χL < 0, sug-
gesting that the reflected photons are antibunched. Therefore,
the statistical properties of photons are determined by the
interference between the plane-wave and bound-state terms.

Similarly, the normalized second-order correlation func-
tions are utilized to investigate the photon-photon correlation
of the transmitted and reflected field in the system. Upon
performing calculations, the normalized correlation functions
can be expressed in the form

g(2)
R (x) =

∣∣∣∣1 + A+
t2(k1)t2(k2)

ei(E/2−γ+ )|x|

+ A−
t2(k1)t2(k2)

ei(E/2−γ− )|x|
∣∣∣∣
2

,

g(2)
L (x) =

∣∣∣∣1 + A+
r1(k1)r1(k2)

ei(E/2−γ+ )|x|

+ A−
r1(k1)r1(k2)

ei(E/2−γ− )|x|
∣∣∣∣
2

. (45)

From the definition, it can be proven that at the perfect EIT
window, where k = ω0, we have g(2)

R/L(x) = 1 due to the bound
term in Eq. (41) being equal to zero. This implies that all of
the photons are scattered coherently, without any structured
correlation effects, which is consistent with the existence of a
zero value for F (k). It suggests that the statistical properties
of the scattering photons can be adjusted by the control field
in the three-level giant atom under the resonance condition. In
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FIG. 9. The normalized second-order correlation functions, de-
noted as g(2)

R (x) for transmitted photons (a) and g(2)
L (x) for reflected

photons (b), as a function of x with different values of ϑ . The other
parameters are � = 	/2 and ω0 − k = �/2.

the presence of the control field, the incident photons pass by
the system coherently, thereby maintaining unchanged statis-
tics. However, in the absence of the control field, the system
effectively behaves as a two-level model, resulting in bunched
transmitted photons and antibunched reflected photons. Actu-
ally, the generation of strong photon interactions indicated by
the peak value of F (k) appears slightly away from the EIT
condition [61]. Furthermore, it can be verified that when x =
0, we have g(2)

L (0) = 0, indicating that the reflected photons
are initially antibunched. As for the transmitted photons, the
second-order correlation function at x = 0 is given by

g(2)
R (0) =

∣∣∣∣∣1 + 	2(1 + cos ϑ )2

×
2∏

i=1

(ki − ω0)

(ω0 − ki )(ω0 − ki + 	 sin ϑ ) − �2

4

∣∣∣∣∣
2

. (46)

It can be seen that when the incident photons have equal
frequency, the transmitted photons are initially bunched. The
analysis is consistent with the results presented in Fig. 8 and
similar to that of the single coupling point [62].

To illustrate the spatial correlation between photons, we
have chosen ω0 − k = �/2 for the numerical plot of g(2)

R/L(x)
in Fig. 9. It should be noted that the initial value cannot
be used to predict the overall photon-photon correlation due
to the complex nature of g(2)

R/L(x) resulting from the beating
between two eigenfrequencies and the incident frequency. For
the given parameters in Fig. 9, considering that |Im[γ+]| �
|Im[γ−]|, the behavior of g(2)

R/L(x) at small values of x is pri-
marily determined by the term of A+. It can be easily verified
that g(2)

R (x) rapidly decreases within the scale of π/(Re[γ+] −
k), while g(2)

L (x) quickly reaches a local peak at the same scale.
On the other hand, for large values of x, the contribution of
the term A+ becomes negligible due to its fast decay. Instead,
it is dominated by the beating of the term A− with the in-
cident frequency. In addition to the enhanced photon-photon

correlation compared to the two-level atom, the correlation
lasts for a longer distance. The long decay distance can be
characterized by the smaller value of the imaginary part of
γ−. When ϑ = 0, the decay time is on the scale of 8	/�2,
which is longer than that of two-level atom when employ-
ing the weak Rabi frequency �. It should be noted here
that the single-photon transmission rate becomes zero for
ϑ = 0, resulting in a divergence in the normalized second-
order correlation function of the transmitted field. Therefore,
its evolution is not depicted in Fig. 9. Moreover, for ϑ =
0.5π , 0.75π , and 0.85π , the imaginary parts become even
smaller, indicating the possibility of achieving significantly
long-distance correlations.

IV. CONCLUSIONS

In conclusion, we have employed the LS method to in-
vestigate the two-photon scattering processes involving two-
and three-level giant atoms coupled to a 1D waveguide. We
focus on effects of the accumulated phase shift acquired by
photons as they travel between coupling points. The multiple
coupling points of the giant atom give rise to interference
effects that are absent in small atoms. Based on the analytical
results for the total incoherent power spectra and second-order
correlation functions of scattered photons, we have found that
the accumulated phase shift can be utilized to enhance the
strength and distance of photon-photon interactions. In the
case of a two-level giant atom, photon-photon interactions are
enhanced, and the evolution of the second-order correlation
displays an oscillation between bunching and antibunching.
Comparatively, the system of a three-level giant atom exhibits
significantly increased photon-photon correlation, surpassing
that of the two-level counterpart. The photon-photon interac-
tion and the correlation distance can be further enhanced by
tuning the accumulated phase shift between the two coupling
points. These characteristics can be explained by analyzing
the poles of the system.
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APPENDIX A: CALCULATION OF THE INCOHERENT
POWER SPECTRUM

1. The two-level giant atom

The power spectrum or resonance fluorescence is defined
as the Fourier transform of the first-order coherence function:

Sα (ω) =
∫

dte−iωt 〈ψ2|â†
α (x0)âα (x0 + t )|ψ2〉, (A1)

where x0 is the position of a detector located far away from the
scattering region. For example, considering α = R, the first-
order coherence in |ψ2〉 is

〈ψ2|â†
R(x0)âR(x0 + t )|ψ2〉 = 2

∫
dx′ f ∗

RR(x0, x′) fRR(x0 + t, x′).

(A2)
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Under the condition of the narrow bandwidth for incident
photons, they have equal frequency, i.e., k1 = k2 = k = E/2,
and

f ∗
RR(x0, x′) fRR(x0 + t, x′)

= eiEt/2

2π2

[|t2(E/2)|4 + t2
2 (E/2)B∗

k1k2
(x)

+ t∗2
2 (E/2)Bk1k2 (x − t ) + B∗

k1k2
(x)Bk1k2 (x − t )

]
, (A3)

with x = x′ − x0. By substituting Eqs. (A2) and (A3) into
Eq. (19), the power spectrum can be divided into two parts:

SR(ω) = Scoh
R (ω) + Sincoh

R (ω), (A4)

where the coherent part contains terms proportional to
δ(0)δ(ω − E/2) due to the use of delta-normalized plane
waves. On the other hand, the incoherent part is related to the
correlation of the bound-state term:

Sincoh
R (ω) = 1

π2

∫∫
dtdxei(E/2−ω)t B∗

k1k2
(x)Bk1k2 (x − t ).

(A5)

After the integration, the incoherent power spectrum becomes

Sincoh
R (ω) = 4

π2
|ϒ(ω)|2, (A6)

where

ϒ(ω) = 	2(1 + cos ϑ )2

(E/2 − ω0 + i	′)

× 1

(E − ω0 − ω + i	′)(ω − ω0 + i	′)
. (A7)

The total incoherent power spectrum is obtained by summing
the right- and left-moving incoherent power spectra:

Sincoh(ω) = Sincoh
R (ω) + Sincoh

L (ω). (A8)

Here it can be proven that Sincoh
R (ω) = Sincoh

L (ω). The total in-
coherent power can be used to measure the overall strength of
photon-photon correlations to show the nonclassical effects.
It also provides a direct measure of the bound-state term. The
definition of the total incoherent power spectrum is

F (k) =
∫

dωSincoh(ω) = 4

π

∫
dxB∗

k1k2
(x)Bk1k2 (x). (A9)

Via integrating over ω, it becomes

F (k) = 4	3(1 + cos ϑ )3

π |k − ω0 + i	′|4 . (A10)

2. The three-level giant atom

The incoherent power spectrum in the system of the three-
level giant atom can be calculated by following the same
procedure as that of the two-level giant atom, which yields

Sincoh
R (ω) = 1

π2

∣∣∣∣∣∣
∑

m=+,−

Am(E − 2γm)

(E − ω − γm)(ω − γm)

∣∣∣∣∣∣
2

, (A11)

where γ± = ± 1
2

√
�2 − 	′2 + i

2	′. By performing integration
over the frequency ω, the total incoherent power spectrum
F (k) = 2

∫
dωSincoh

R (ω) becomes

F (k) = 8i

π

∑
m,n=+,−

A∗
mAn

γ ∗
m − γn

. (A12)
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