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We explore special features of quantum light-matter interactions inside structured waveguides due to their
finite bandwidth, band edges, and nontrivial topological properties. We model the waveguides as either a
tight-binding (TB) chain or a Su-Schrieffer-Heeger (SSH) chain. For unstructured waveguides with infinite
bandwidth, the transmission and reflection coefficients of a side-coupled two-level emitter (2LE) are the same
as the reflection and transmission coefficients of a direct-coupled 2LE. We show that this analogy breaks down
for structured waveguides with finite bandwidth due to the appearance of Lamb shift only for the direct-coupled
2LE. We further predict a robust light-emitter coupling at zero collective decay width of a single giant 2LE (with
two couplings at different points) near the band edges of the structured waveguides where topological features
can be beneficial. Finally, we study single-photon dynamics in a heterojunction of a long TB and short SSH
waveguide connected to a 2LE at the SSH end. We show the propagation of a photon from the excited emitter to
the TB waveguide only when the SSH waveguide is in the topological phase. Thus, the heterojunction acts as a
conditional propagation channel.
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I. INTRODUCTION

Waveguide quantum electrodynamics (WQED) [1–4] is a
descendant of cavity QED, with no optical confinement along
the propagation direction of light. Strong light-matter interac-
tions are generated in the WQED systems by employing tight
confinement of the light fields to deeply subwavelength sizes
in the transverse dimensions using open waveguides and/or
large effective dipole moment of the emitter(s). While a lin-
ear energy-momentum dispersion with an infinite bandwidth
for propagating photons inside the continuum waveguides
has been extensively investigated for physical reasons and
convenience [1,4], some previous studies have also explored
the nonlinear dispersion with a finite bandwidth for struc-
tured waveguides [5–16]. Both single-photon and multiphoton
transport were investigated inside structured waveguides with
a tight-binding (TB) chain dispersion, respectively, for quan-
tum switching [5] and the effect of finite bandwidth on
generated photon-photon interaction via matter [6,7]. Fur-
ther, recent studies have explored giant emitters coupled to
structured waveguides [17,18]. Nevertheless, this paper shows
that many exciting features of light-matter interactions in
structured waveguides have yet to be found. Notably, we
demonstrate here that a well-known analogy [19] between the
transport coefficients through a two-level emitter (2LE) side
coupled and direct coupled to continuum waveguides breaks
down for structured waveguides. It is due to the appearance
of finite Lamb shift [14,20,21] in a 2LE direct coupled to
structured waveguides of finite bandwidth. The Lamb shift
is absent for such a configuration of an infinite bandwidth.
There is no Lamb shift for the 2LE side coupled to structured
or continuum waveguides with finite or infinite bandwidth,
respectively.

Topological features of structured waveguides can further
influence the light-matter interactions [22]. Bello et al. [23]

have investigated interactions of single or multiple emitters
with light confined inside a structured waveguide modeled
as a Su-Schrieffer-Heeger (SSH) lattice with nontrivial band
topology. They discovered interesting chiral (spatially asym-
metric) emission of an excited side-coupled 2LE to the SSH
waveguide when the transition energy of the 2LE lies in the
band gap of the waveguide [23,24]. The chirality of emitted
photon depends on the position of the emitter’s coupling
to the particular type of sublattice of the SSH waveguide.
These predictions were later experimentally verified by Kim
et al. [25].

For WQED with superconducting circuits, an emitter can
be capacitively connected to multiple discrete points of the
superconducting transmission line waveguide. While each
coupling can be treated within the dipole and rotating-
wave approximation (RWA), the resultant coupling between
light in the transmission line and emitter breaks the dipole
approximation to produce an effective large or giant emit-
ter [26] when the distance between the discrete coupling
points is comparable to the resonant light wavelength.
Such giant emitter displays many remarkable features, such
as frequency-dependent energy (Lamb) shifts and decay
widths (non-Markovian behavior) and waveguide-mediated
decoherence-free interactions between emitters [27,28]. In-
teraction of a giant 2LE with an SSH waveguide has been
recently explored to understand the features of chiral emis-
sion from an excited giant emitter within the band gaps of
the waveguide, and the role of multiple coupling to differ-
ent sublattice sites [29]. Further, Bello et al. [23] calculated
single-photon transmission line shape through a giant 2LE
coupled to both sublattices of the same unit cell of the SSH
waveguide for studying the nature of transmission dip at
different Lamb shifts for different topological phases of the
waveguide. Interestingly, the Lamb shift for such a giant
emitter configuration (two couplings in the same unit cell)
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FIG. 1. Two configurations of a giant 2LE of transition frequency ωe side coupled to two neighboring sites of an SSH waveguide modeled
by the resonators of frequency ωo connected via hopping amplitudes v, w. The configurations A-B and B-A are defined by the connection sites
(0A, 0B) and (0B, 1A), respectively, with coupling amplitudes g1 and g2.

is independent of the incident light’s frequency (momentum)
and the relative phase factor between two sublattices in the
Bloch states of the SSH waveguide. The latter phase factor
determines the topological character of the waveguide. The
phase can instead be extracted from the decay width of the
giant 2LE in such a configuration.

Here we carefully study the decay width, Lamb shift, and
transport coefficients through a giant 2LE for two different
configurations of the giant emitter. These configurations are
defined by two waveguide-emitter couplings to different sub-
lattice sites belonging to the same or different unit cell(s)
of the SSH waveguide as depicted in Fig. 1. We use the
band edges of the structured waveguides [11,12] to predict a
robust light-emitter coupling (i.e., a significant Lamb shift)
at zero collective decay width of a giant 2LE, indicating a
decoherence-free strong coupling [14,27]. Such strong cou-
pling is possible for any (odd) number of unit-cell separations
between two couplings of the emitter with an SSH (TB)
waveguide. We also show a constraint (no-go theorem) on
the collective decay rate of the giant 2LE in one of the two
topological phases of the SSH chains for these configurations.

Finally, we explore single-photon dynamics in a hetero-
junction made of a finite SSH waveguide connected to a long
TB waveguide. Applying the edge modes of a finite SSH
waveguide, Kim et al. [25] demonstrated the quantum state
transfer between distant qubits attached to the ends of the
SSH waveguide. We apply a similar concept to show the
conditional propagation of a photon to the TB waveguide
from an excited emitter connected to the other end of the
SSH waveguide. The photon travels to the TB waveguide
in finite time only when the SSH waveguide is in the topo-
logical phase. We study the scattering properties in these
waveguide QED models employing the Lippmann-Schwinger
(LS) scattering theory [7] and the direct simulation of the
time-dependent Schrödinger equation. The rest of the paper
is divided into four sections for the main results and dis-
cussions and Appendices A–D for details of the nontrivial
calculations.

II. DECAY WIDTH AND LAMB SHIFT
OF A GIANT EMITTER

We consider two lattice models for the structured waveg-
uide, namely, the TB and the SSH model. While both these

models give a nonlinear energy-momentum dispersion and a
finite bandwidth for propagating photons in the waveguide,
the SSH model also displays nontrivial topological features
and a band gap. We extract the decay rate and Lamb shift of a
giant 2LE coupled to these structured waveguides by finding
the light scattering properties in these systems applying the
LS formalism. Let us denote Ĥw, Ĥe, and Ĥi for the Hamil-
tonian of the light fields inside waveguide, the 2LE, and the
interaction between the light fields and 2LE, respectively. In
the LS formalism, an eigenstate |ψ〉 of the full Hamiltonian
Ĥ = Ĥw + Ĥe + Ĥi with energy E is related to eigenstate |φ̃〉
of the free Hamiltonian Ĥo = Ĥw + Ĥe with the same energy
E via the following relation:

|ψ〉 = |φ̃〉 + GR
o (E )Ĥi|ψ〉, GR

o (E ) = lim
ε→0

1

E − Ĥo + iε
, (1)

where GR
o (E ) is the retarded Green’s function of the free

system. The Green’s-function approach has been widely em-
ployed in various studies of wave propagation through a peri-
odic array of scatterers [30–33]. In this section and the next
one, we are considering an infinitely long TB or SSH lattice
which hosts a continuum spectrum but with finite bandwidths.

A. TB waveguide

The Hamiltonian for bosonic light fields in the TB lattice
after setting h̄ = 1 is

ĤTB =
∞∑

x=−∞
J (c†

xcx+1 + c†
x+1cx ) + ωoc†

xcx, (2)

where c†
x (cx) is the photon creation (annihilation) operator at

the xth site, ωo is the onsite energy, and J is the hopping am-
plitude for a photon between nearest-neighbor sites. Each site
of the lattice can be conceived as a resonator, and the hoppings
are generated due to evanescent-field coupling or evanescent
Bloch waves [34]. The energy-momentum dispersion relation
of ĤTB is ωk = ωo + 2J cos k with wave vector k ∈ [−π, π ).
Ferreira et al. [35] have fabricated a TB waveguide con-
taining 26 capacitively coupled resonators in an array. The
typical parameters for their setup are as follows: The average
resonator frequency ωo/2π ≈ 4.8 GHz, the hopping J/2π ≈
33 MHz, and the quality factor of resonators Q ≈ 105. The
extracted value of a resonator frequency disorder in the array
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is 2 × 10−4ωo. The TB dispersion can also be implemented in
coupled-resonator optical waveguides [34] or photonic crystal
structures [8,11,16]. We take a 2LE being side coupled at two
distinct sites, x = 0,�x (with �x > 0), of the TB waveguide
with amplitude g1 and g2, respectively. The Hamiltonian of
the 2LE with the frequency ωg and ωe for the ground (|g〉) and
excited (|e〉) state is

Ĥe = ωgσσ † + ωeσ
†σ, (3)

where σ = |g〉〈e| and σ † = |e〉〈g|, and we set ωg = 0. The
interaction Hamiltonian is written assuming the RWA:

Ĥi = (g1c†
0 + g2c†

�x )σ + σ †(g1c0 + g2c�x ). (4)

We then consider a single-photon input state φ(x) in the
waveguide from the left of the emitter propagating towards the
right, φ(x) ≡ 〈x|φ〉 = eikx/

√
2π , and the emitter in its ground

state. We only take negative values of k since the group veloc-
ity vg(k) = ∂ωk

∂k = −2J sin k > 0 for k < 0. We apply the LS
formalism to derive the single-photon transmission (Tk) and
reflection (Rk) coefficient as follows:

Tk = 1 − Rk, Rk = (
k/2)2

(ωk − ωe − �k )2 + (
k/2)2
. (5)

The giant 2LE acts as a perfect mirror (Rk = 1) for a reso-
nant frequency of the incident light ωk = ωe + �k , where the
wave-vector-dependent (for �x > 1) Lamb shift is

�k[g1, g2] = 2

vg(k)
g1g2 sin k�x. (6)

The width of the reflection line shape near the resonant fre-
quency is determined by 
k (the decay rate), and is also
wave-vector dependent:


k[g1, g2] = 2

vg(k)

[
g2

1 + g2
2 + 2g1g2 cos (k�x)

]
. (7)

Both the Lamb shift �k and the decay width 
k can be
probed experimentally. The decay width gives a measure of
the quantum interference effect in the giant emitter configu-
ration arising due to interference between two paths of light
propagation for x ∈ [0,�x]: One through the emitter and an-
other through the waveguide. The argument of the cosine term
in Eq. (7) contains the phase picked up by light traveling an
extra distance �x. Nevertheless, these quantum interference
effects can be suppressed to zero by properly fixing the wave
vector of the incident light within the TB bandwidth asso-
ciated with a given giant emitter configuration, i.e., there is
a valid solution of cos(k �x) = 0 in the physical domain of
k ∈ [−π, 0] for any �x (including �x = 1). In the absence
of interference between two paths for k�x = −π/2, we thus
have 
k[g1, g2] = 
k[g1, 0] + 
k[0, g2], i.e., the total decay
width of the giant 2LE is a sum of the individual decay width.
We later discuss a qualitative change in the discussed behavior
of decay width of a giant emitter for a topological waveguide.

For such one-dimensional structured waveguides, the pho-
ton group velocity vg(k) approaches zero near the band edges
for k = 0,±π [even though optical phase velocity vp(k) =
ωk/k can be nonzero or tend towards infinity at the band
edges], which leads to an exceedingly long optical path length
in the waveguide. This in turn enhances the individual decay

FIG. 2. Wave-vector (k) dependence of decay rate 
k and Lamb
shift �k of a giant 2LE side coupled to a TB waveguide at two distinct
sites with an even (blue dotted and green full lines) and an odd (red
solid-dotted and black dash-dotted lines) unit-cell separation �x.
Parameters are g1/J = g2/J = 0.2.

widths, 2g2
1/vg(k) and 2g2

2/vg(k), near the band edges since
photons spend a longer time around the emitter. In recent
years, the giant emitters have been explored for decoherence-
free interaction between them [27]. Here, we show that a
large Lamb shift of a giant 2LE with zero total decay width
(
k[g1, g2] = 0) can be generated near the band edges of
the TB waveguide [11,12,14]. A large �k also indicates a
strong light-emitter coupling. We find from Eqs. (6) and
(7) that 
k[g1, g2] = 0 implies cos (k �x) = −1, i.e., kn =
−(2n + 1)π/�x where n = 0, 1, 2, . . . for g1 = g2. Interest-
ingly, �k[g1, g2] also vanishes at these kn excluding kn around
−π for odd integer values of �x. Therefore, for an odd
integer unit-cell separation between the two couplings of a
giant 2LE with a TB waveguide, we have 
k→−π [g1, g1] = 0
and �k→−π [g1, g1] = −g2

1�x/J as limk→−π sin k�x/ sin k =
(−1)�x+1�x. We display the features of 
k[g1, g2] and
�k[g1, g2] for odd and even �x in Fig. 2. We show next that
such a strong light-emitter coupling (i.e., a large �k) at zero
collective decay width of a giant 2LE (i.e., a decoherence-free
strong coupling) is possible for both an even and an odd inte-
ger unit-cell separation between two couplings of the emitter
with an SSH waveguide.

B. SSH waveguide

The Hamiltonian for photon fields in the SSH lattice is

ĤSSH =
∞∑

x=−∞
ωo(a†

xax + b†
xbx ) + v(a†

xbx + b†
xax )

+ w(a†
x+1bx + b†

xax+1). (8)

Here, a†
x (b†

x) is the photon creation operator at the sublattice
site A (B) of the xth unit cell. The hopping amplitude inside
(between) the unit cell(s) is v ≡ J (1 − δ) [w ≡ J (1 + δ)], and
the onside frequency for both sublattices is ωo. Kim et al.
[25] have realized a metamaterial waveguide of the SSH lat-
tice of nine unit cells, with parameters ωo/2π ≈ 6.621 GHz,
J/2π ≈ 368 MHz, and δ = 0.282, and the typical intrinsic
quality factor of one of the normal modes is Q = 9.8 × 104.
The SSH lattice has two energy bands separated by a bulk
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gap for v 
= w. The bulk dispersion and eigenvectors for these
bands are, respectively,

ω±
k = ωo ±

√
v2 + w2 + 2vw cos k ≡ ωo ± fk, (9)

|φ±
k 〉 = 1√

4π

∞∑
x=−∞

eik x(±e−iθk |x, A〉 + |x, B〉), (10)

where k ∈ [−π, π ), |x, A〉 ≡ |x〉 ⊗ |A〉 = a†
x |ϕ〉, |x, B〉 ≡

|x〉 ⊗ |B〉 = b†
x|ϕ〉. The superscript (±) denotes the upper or

lower band, and |ϕ〉 indicates the vacuum mode of the photon
fields. The k-dependent relative phase factor θk between two
sublattices in the Bloch states captures the essence of bulk
topology of the SSH lattice:

θk = Arg[v + weik]. (11)

The Zak phase γ±, which is a bulk topological invariant of the
SSH model [36], is related to θk as

γ± = i
∫ π

−π

dk〈u±
k |∂k|u±

k 〉 = 1

2
(θk=π − θk=−π ), (12)

where |u±
k 〉 = 1√

2
( ± e−iθk |A〉 + |B〉) is the cell periodic Bloch

state. We have γ± = π (0) for v/w < 1 (> 1) indicating a
topologically nontrivial (trivial) phase of the waveguide. We
show below how θk qualitatively differentiates quantum inter-
ference in the topologically trivial and nontrivial phase for a
single photon propagating through a giant 2LE.

We again consider a 2LE is side coupled to two sites of
the SSH waveguide. These two sites can be both A or both B
or one A and another B sublattice. Our studied constraint on
the decay width of a giant 2LE is only possible for a giant
emitter coupled to two sublattice sites of A and B as explained
below. Interestingly, it has been shown recently that particle-
hole symmetry is satisfied by A-A or B-B coupling but not by
A-B or B-A coupling [29]. Below, we discuss separately two
configurations of one A and another B coupling as depicted
for smallest separation in Fig. 1.

1. A-B type of configuration

A 2LE is connected to sublattice site A of the zeroth unit
cell and sublattice site B of the �xth unit cell of an SSH
waveguide. The coupling amplitudes at these two connec-
tion points (0 A,�x B) are g1 and g2, respectively. We take
�x � 0. Thus, an incoming photon from the left of the emitter
encounters the emitter first when it reaches sublattice site A of
the zeroth unit cell. The light-emitter interaction Hamiltonian
within the RWA is written as

ĤiAB = g1(a†
0σ + σ †a0) + g2(b†

�xσ + σ †b�x ). (13)

We consider a right-moving single-photon input state |φ+
k 〉,

with an energy in the upper band, E = ω+
k , for k ∈ [−π, 0],

and the emitter in its ground state. The range of k ∈ [−π, 0]
ensures a positive group velocity in the upper band, i.e.,

v+
g (k) = ∂ω+

k
∂k = −vw sin k/|v + weik| > 0. Since ĤiAB con-

serves total excitation of light and emitter, an eigenstate of the
full Hamiltonian ĤSSH + Ĥe + ĤiAB in the single-excitation

sector can be written as

|ψk〉 =
∑

x

(ψk (x, A)a†
x + ψk (x, B)b†

x )|ϕ, g〉 + ψe|ϕ, e〉,
(14)

where ψk (x, α) ≡ (〈g|〈x, α|)|ψk〉 (α = A, B) and ψe are the
probability amplitudes of a single photon in the waveguide
and an excited emitter, respectively. Plugging Eqs. (14) and
(13) in the LS equation (1), we get the following relations:

ψk (x, α) = φ+
k (x, α) + (

g1〈g|〈x, α|GR
o |0, A〉|g〉

+ g2〈g|〈x, α|GR
o |�x, B〉|g〉)ψe, (15)

ψe = 1

E − ωe
[g1ψk (0, A) + g2ψk (�x, B)]. (16)

These two equations can be solved for an initial state
φ+

k (x, α) ≡ 〈x, α|φ+
k 〉, using the Green’s functions evaluated

in Appendix A. Thus, we find the following wave function
away from the scattering region:

ψk (x, A) =
{ 1√

4π
(eikxe−iθk + rke−ikxeiθk ) for x < 0,

1√
4π

tkeikxe−iθk for x > �x,

(17)

ψk (x, B) =
{ 1√

4π
(eikx + rke−ikx ) for x < 0,

1√
4π

tkeikx for x > �x,
(18)

where rk and tk are the reflection and transmission am-
plitudes. The transmission and reflection coefficients, T̃k =
|tk|2 and R̃k = |rk|2, are

T̃k = 1 − R̃k, R̃k = (
̃k/2)2

(ω+
k − ωe − �̃k )2 + (
̃k/2)2

, (19)

which have similar forms as those for the TB waveguide (5).
The k-dependent Lamb shift �̃k and total decay width 
̃k for
photons in the upper band are

�̃k[g1, g2] = g1g2

v+
g (k)

sin (k�x + θk ), (20)


̃k[g1, g2] = 1

v+
g (k)

[
g2

1 + g2
2 + 2g1g2 cos (k�x + θk )

]
. (21)

Equations (20) and (21) for the SSH waveguide are mostly
similar to Eqs. (6) and (7) for the TB waveguide apart from
the appearance of an extra θk factor in the sinusoidal depen-
dence. The form of photon group velocity is different for the
two structural waveguides, and v+

g (k) for the SSH waveguide
depends also on θk . Similar to our previous discussion for
the TB waveguide, we get here a condition for zero inter-
ference in 
̃k[g1, g2] as (v/w) cos k�x = − cos k(�x + 1),
which admits a real solution of k ∈ (−π, 0) for �x 
= 0 both
in topological and trivial phases of the SSH waveguide. There-
fore, the total decay width of the giant 2LE coupled to a
SSH waveguide can become a sum of the individual decay
width for some incident wave vector when �x 
= 0 for all
v,w. Nevertheless, the above condition needs special atten-
tion for �x = 0, when it becomes cos k = −v/w, which has
no physical solution for real k values when v > w in the
trivial phase of the SSH waveguide. Since cos k = −v/w has
a physical solution for real k values when v < w, we can get

̃k[g1, g2] = 
̃k[g1, 0] + 
̃k[0, g2] in the topological phase.
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FIG. 3. Wave-vector (k) dependence of decay rate 
̃k and Lamb shift �̃k for (a) A-B and (b) B-A configuration of a giant 2LE side coupled
to the SSH waveguide at two distinct sites with an odd (even) unit-cell separation �x in the trivial, δ = −0.5 (nontrivial, δ = 0.5), phase of
the waveguide. Other parameters are g1/J = g2/J = 0.2.

The photon group velocity v+
g (k) for SSH waveguides

also tends towards zero near the band edges at k = 0,±π .
From Eqs. (21) and (20), we observe that 
̃k[g1, g2] = 0 im-
plies cos (k�x + θk ) = −1, i.e., kn = −[(2n + 1)π + θk]/�x
where n = 0, 1, 2, . . . for g1 = g2. Now, θk = 0 at k = 0,±π

in the trivial phase, and θk = 0,±π at k = 0,±π , respec-
tively, in the nontrivial phase. Thus, for the trivial phase
of a SSH waveguide, �̃k[g1, g1] vanishes at the above kn

values excluding kn = −π for odd integer values of �x,
which is similar to the TB waveguide. However, contrary
to the TB waveguide, we get 
̃k→−π [g1, g1] = 0 and a
nonzero �̃k→−π [g1, g1] for even integer values of �x in
the nontrivial phase of a SSH waveguide due to θk=−π =
−π . Therefore, both for an odd and an even integer unit-
cell separation between the two couplings of a giant 2LE
with an SSH waveguide, we have 
̃k→−π [g1, g1] = 0 and
�̃k→−π [g1, g1] = (−1)�xg2

1[(v − w)�x − w]/(vw), respec-
tively, for the trivial and nontrivial phase. We display these
features in Fig. 3(a).

2. B-A type of configuration

We next consider a reverse configuration in which a 2LE
is connected to (0 B,�x A) with coupling strengths g1 and g2,
respectively, and �x > 0. An incoming photon from the left
of the giant emitter first meets the 2LE at sublattice site B of
the zeroth unit cell. The light-emitter interaction Hamiltonian
within the RWA is written as

ĤiBA = g1(b†
0σ + σ †b0) + g2(a†

�xσ + σ †a�x ). (22)

The form of the Lamb shift and collective decay width for
this configuration is mostly the same as those in Eqs. (20) and
(21) in A-B type configuration apart from a sign change for the
θk factor, i.e., θk is replaced by −θk . The condition for fully
suppressing the interference in 
̃k for this configuration is
then (v/w) cos k�x = − cos k(�x − 1), which admits a real
physical solution of k ∈ (−π, 0) for both the topological and
trivial phase of the SSH waveguide when �x 
= 1. Neverthe-
less, when �x = 1, the above equation reads cos k = −w/v,
which does not have a real solution for k in the topological
phase for v < w. Thus, we proof a constraint (no-go theorem)
on the collective decay width 
̃k of the giant 2LE in one of the
two topological phases for these two configurations.

The above discussed features of a decoherence-free strong
coupling indicating a large Lamb shift and zero collective
decay width around the band edges for A-B configura-
tion hold true for B-A configuration. However, the value
of the Lamb shift around the band edges has changed,
and it is given by �̃k→−π [g1, g1] = (−1)�xg2

1[(v − w)�x +
w]/(vw), which is higher (lower) for B-A configuration than
A-B configuration for an odd (even) number of unit-cell
separation in the trivial (nontrivial) phase. We show this com-
parison in Figs. 3(a) and 3(b).

III. DIRECT-COUPLED VS SIDE-COUPLED EMITTER

For unstructured (continuous) waveguides with a linear
energy-momentum dispersion and an infinite bandwidth (i.e.,
no band edge) for propagating photons, the transport proper-
ties of a side-coupled emitter are closely related to those of a
direct-coupled emitter. Then, the single-photon transmission
and reflection coefficient for a side-coupled 2LE are identical
to the single-photon reflection and transmission coefficient,
respectively, for a direct-coupled 2LE [19]. We here examine
such a comparison for structured waveguides with a finite
bandwidth. An emitter directly coupled to waveguides re-
quires coupling the emitter at the edges of the waveguides
[14,37].

A. TB waveguide: Lamb shift

The Hamiltonian of a 2LE direct coupled to the TB waveg-
uides is

ĤdTB =
∑

x 
=−1,0

J (c†
xcx+1 + c†

x+1cx ) +
∑
x 
=0

ωoc†
xcx + Ĥe

+ (gLc†
−1 + gRc†

1)σ + σ †(gLc−1 + gRc1), (23)

where the sums over site x are redefined to insert a 2LE at
site x = 0. The 2LE is direct coupled to sites x = −1, 1 of
the TB waveguide with strength gL and gR, respectively. The
Hamiltonian ĤTB + Ĥe + Ĥi in Eqs. (2)–(4) for g2 = 0 is the
side-coupled analog of Eq. (23) when gL = gR = g1/2 [7].
The single-photon transmission and reflection coefficient of
the analog side-coupled 2LE can be obtained from Eq. (5) by
setting �k = 0 and 
k = −g2

1/(J sin k) for g2 = 0.
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We derive the single-photon transmission and reflection
coefficients Td and Rd for an incident photon from the left of
the direct-coupled 2LE:

Td = 
L
R

(ωk − ωe − �d )2 + (
L+
R )2

4

, Rd = 1 − Td , (24)

where the decay widths 
L = −(2g2
L sin k)/J and 
R =

−(2g2
R sin k)/J and the Lamb shift �d = (g2

L + g2
R) cos k/J .

We thus find a finite Lamb shift for a 2LE direct coupled
to structured waveguides, and �d survives even when either
gL or gR is zero [14]. However, no Lamb shift appears for a
2LE side coupled to a TB waveguide at one site. Therefore,
unlike unstructured waveguides with an infinite bandwidth,
the single-photon transmission and reflection coefficients for
a side-coupled 2LE are not the same as the single-photon
reflection and transmission coefficients for a direct-coupled
2LE for the TB waveguide.

We further notice that the total decay width of a side-
coupled 2LE and that of a direct-coupled 2LE are very
different in their form for a TB waveguide. The total de-
cay widths are 
d = 
R + 
L = −(g2

1 sin k)/J and 
s =
−g2

1/(J sin k), respectively, for a direct-coupled 2LE and a
side-coupled 2LE when gL = gR = g1/2. While 
d is largest
near k = −π/2 and vanishes near the band edges at k =
0,−π , 
s shows a very opposite trend at these quasimomenta.
Further, the Lamb shift is maximum and the decay width is
zero near the band edges for a direct-coupled 2LE as observed
by Mirhosseini et al. [14] with a two-band structured waveg-
uide. As expected, the differences of the total decay width and
the Lamb shift between a 2LE direct coupled and side coupled
to the TB waveguide disappear in the continuum limit at the
matching condition for the wave vector lk ∼ −π/2 where we
set the lattice constant l = 1.

B. SSH waveguide

Next, we explore a 2LE direct coupled to SSH waveguides
and discuss an exciting feature of asymmetric dependence
of the Lamb shift on the light-matter couplings in such a
system that emerges due to topological features of the SSH
waveguides. The Hamiltonian of the full system is

ĤdSSH =
∑
x 
=0

ωoa†
xax +

∑
x

ωob†
xbx +

∑
x 
=0

v(a†
xbx + b†

xax )

+
∑

x 
=−1

w(a†
x+1bx + b†

xax+1) + Ĥe

+ (gLb†
−1 + gRb†

0)σ + σ †(gLb−1 + gRb0), (25)

where the sums over unit cell x from −∞ to ∞ are re-
defined to insert a 2LE at sublattice site A of the x = 0
unit cell. The 2LE is direct coupled to sublattice site B of
x = −1, 0 unit cells of the SSH waveguide with strength gL

and gR, respectively, as depicted in Fig. 4. The Hamiltonian
ĤSSH + Ĥe + ĤiAB in Eqs. (8), (3), and (13) for g2 = 0 is
the side-coupled analog of Eq. (25) when gL = gR = g1/2.
The single-photon transmission and reflection coefficients of
the analog side-coupled 2LE can be found from Eq. (19) by
setting �̃k = 0 and 
̃k = g2

1/[v+
g (k)] ≡ 
̃s for g2 = 0.

FIG. 4. A 2LE with a transition frequency ωe is direct coupled
to an SSH waveguide by replacing the sublattice site at (x, α) =
(0, A). The intra-unit-cell (inter-unit-cell) hopping is v (w) and
the frequency of each sublattice site is ωo. The coupling ampli-
tudes of the 2LE to the sublattice site B of unit cells x = −1, 1
are gL, gR.

The form of the single-photon transmission and reflec-
tion coefficients, T̃d and R̃d , for an incident photon from the
left of the direct-coupled 2LE in Eq. (25) is the same as
those for the direct-coupled model of the TB waveguide
in Eq. (24) after replacing ωk by ω+

k for the upper band.
However, the decay widths 
̃L and 
̃R and the Lamb shift
�̃d have exciting dependence on the intercell and intra-
cell hopping amplitudes and the emitter-waveguide coupling
strengths:


̃L = −2g2
Lv sin k

w fk
, 
̃R = −2g2

Rw sin k

v fk
, (26)

�̃d = g2
L(w + v cos k)

w fk
+ g2

R(v + w cos k)

v fk
, (27)

which show that the decay widths depend asymmetrically on
v,w, i.e., 
̃L does not transform to 
̃R when gL is replaced by
gR. Further, �̃d also depends asymmetrically on gL and gR due
to the appearance of v,w. Nevertheless, 
̃L transforms to 
̃R

when the couplings gL, gR and the hoppings v,w are simulta-
neously exchanged. �̃d remains invariant under exchange of
gL with gR and v with w. Therefore, the single-photon trans-
port coefficients T̃d and R̃d remain the same for an incident
photon from the left or the right side of the 2LE even when
gL 
= gR. Thus, there is no rectification of a single photon in
these direct-coupled spatially asymmetric models as expected
following [38]. However, the value of T̃d changes significantly
for gL 
= gR when v,w are exchanged, which we show in
Fig. 5. Further, a single photon can fully transmit through this
direct-coupled 2LE system only when 
̃L = 
̃R.

The analogy between transport coefficients of side-coupled
and direct-coupled models for gL = gR = g1/2 also breaks
down for SSH waveguides due to the finite Lamb shift ap-
pearing in a direct-coupled 2LE. Thus, the single-photon
transmission and reflection coefficients for a side-coupled
2LE do not match with the single-photon reflection and trans-
mission coefficients for a direct-coupled emitter both for TB
and SSH waveguides. Like the TB waveguide case, �̃d is
again nonzero even for one-sided coupling (i.e., for gL = 0 or
gR = 0), indicating the emergence of a finite Lamb shift when
an emitter is connected to the end of a structured waveguide
with a finite bandwidth [14]. We prove the previous conclu-
sion explicitly in Appendix B by deriving the Lamb shift
and the decay width of a 2LE connected to a semi-infinite
SSH waveguide at one end. Appendix B also clarifies the
contributions of the edge modes of the SSH chains to the
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FIG. 5. Single-photon transmission coefficient T̃d through a
direct-coupled 2LE for topologically trivial and nontrivial phase of
the SSH waveguide. While T̃d remains the same in both phases when
gL = gR (= 0.1J ), its value changes significantly between the two
phases when gL 
= gR, e.g., gL/J = 0.08, gR/J = 0.11. The other
parameters are ωo/J = 3.0 and ωe/J = 4.5.

Lamb shift. The decay width 
̃d = 
̃L + 
̃R of the direct-
coupled 2LE to SSH waveguides has a very different form
and quasimomentum dependence from those of 
̃s of a side-
coupled 2LE to the SSH waveguide, which we demonstrate in
Fig. 6. In Fig. 6, we further depict the topology dependence of

̃d when gL 
= gR.

IV. HETEROJUNCTION OF STRUCTURED WAVEGUIDES

We finally study the dynamics of a single photon in a
heterojunction made of a long TB waveguide and a short
SSH waveguide. Let us consider a 2LE being connected
to the one end of the heterojunction as depicted in Fig. 7.
We show below that a photon from the excited emitter can

FIG. 6. Comparison between decay rates 
̃d , 
̃s of a direct-
coupled (green full line) and a side-coupled (blue dashed line)
2LE to the SSH waveguide when gL = gR = g1/2 = 0.1J , |δ| =
0.5. The black dot-dashed and magenta dot lines show decay rates

̃d of a direct-coupled 2LE in different topological phases of the
SSH waveguide when coupling amplitudes are unequal, i.e., gL/J =
0.07, gR/J = 0.14.

propagate to the TB waveguide within a finite time only
when the SSH waveguide is in the topological phase. Thus,
the whole system acts as a quantum switch. We choose the
TB waveguide of N + 1 sites and the SSH waveguide of
M unit cells in the region of x ∈ [−N, 0] and x ∈ [1, M]
of the heterojunction, respectively. The total Hamiltonian of
the heterojunction is ĤTB + ĤSSH + Ĥγ , where Ĥγ denotes
tunnel coupling between the TB and SSH waveguides with a
rate γ :

Ĥγ = γ (c†
0a1 + a†

1c0). (28)

The 2LE is coupled to the last sublattice site, i.e., (x, α) =
(M, B) of the SSH waveguide. We fix the size M of the SSH
waveguide such that there is a finite coupling between the
midgap edge modes at the boundaries of the SSH waveguide
in the topological phase. Thus, M � 1/ log[w/v]. We further
consider the transition frequency ωe of the 2LE around the
middle of the SSH spectrum, i.e., ωe = ωo. The last ensures a
finite overlap between the edge modes of the SSH waveguide
and the 2LE. We again write the coupling of the 2LE with the
heterojunction within the RWA:

ĤI = g (b†
Mσ− + σ+bM ), (29)

where g is the coupling amplitude.
We calculate the time evolution of a single-excitation initial

state by numerically solving the time-dependent Schrödinger
equation, i∂t |ψ (t )〉 = ĤT |ψ (t )〉, with the total Hamiltonian,
ĤT = ĤTB + ĤSSH + Ĥγ + Ĥe + ĤI . A general wave function
|ψ (t )〉, at any time t , for the whole system in the single-
excitation sector can be written as

|ψ (t )〉 =
(

0∑
x=−N

ψx(t )c†
x +

M∑
x=1

[ψxA(t )a†
x + ψxB(t )b†

x]

+ ψe(t )σ+
)

|ϕ, g〉. (30)

We cast the time-dependent Schrödinger equation into a first-
order discrete time difference equation with small time steps
(e.g., δt = 10−3) and determine the probability amplitudes
ψx, ψxA, ψxB, ψe up to a future time t = tf for the initial
condition of an excited emitter with no photon in the het-
erojunction, i.e., |ψ (t = 0)〉 = |ϕ, e〉. The simulation run time
tf is adequately fixed to avoid the boundary scattering at the
end of the TB waveguide for a finite N , i.e., vg(k)tf < N
where vg(k) is the group velocity in a TB waveguide and
wave vector k corresponds to the energy of the excitation
traveling in TB waveguide. We calibrate tf to get a good
quantum switch behavior for some parameter sets of our in-
terest. In Fig. 8, we show our simulation results for the time
evolution of a single excitation over the sites of the hetero-
junction and the emitter. For the trivial phase of the SSH
waveguide in Fig. 8(b), we observe that the excitation is
mainly confined within the emitter and the SSH waveguide
with a slight leakage to the TB waveguide within our ob-
servation time tf . On the other side, we find a significant
leakage of a single photon to the TB waveguide within the
time tf for the SSH waveguide in the topologically nontrivial
phase, as shown in Fig. 8(a). Therefore, the hybrid system
acts as a quantum switch allowing a single photon to transmit
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FIG. 7. A heterojunction of a long TB waveguide and a finite SSH waveguide is connected to a 2LE at one end with an amplitude g. Here,
J is the TB hopping, v(w) is the intracell (intercell) hopping of the SSH part, and each site of the heterojunction is modeled as a resonator of
frequency ωo. γ is the tunneling rate at the junction between the TB and SSH parts.

to the TB waveguide from an excited emitter depending on
the topological nature of the SSH waveguide. The hetero-
junction has two edge modes at the boundaries of the SSH
waveguide near the energy ω0 in the topological phase. These

FIG. 8. Spatiotemporal evolution of single excitation in the het-
erojunction from an initially excited 2LE for the (a) nontrivial
(δ = −0.5) and (b) trivial (δ = 0.5) phase of the SSH waveguide.
Color legends indicate values of single-excitation probability. While
the 2LE and the SSH waveguide are labeled by site index 19 and
from 18 to 1, respectively, the rest (between 0 and −229) represent
the TB waveguide. Other parameters are g/J = 0.07, γ /J = 0.4,
ωo/J = 3.0, tf = 110/J , δt = 0.001/J , N = 229, M = 9.

modes are strongly hybridized with the 2LE, as we explain
below.

The edge mode around the x = 1 unit cell is further cou-
pled by Ĥγ to continuum band modes of the TB waveguide.
Thus, there is a strong propagation channel from the emitter to
the TB waveguide via the edge modes for the SSH waveguide
in the topologically nontrivial phase. Due to the absence of
edge modes in the trivial phase, such a propagation channel is
mostly missing, and the emission from the 2LE hardly leaks
to the TB waveguide within tf .

Finally, we point out the role of different parameters
M, γ , g in controlling the efficiency of the proposed single-
photon quantum switch. The efficiency of the quantum
switching, η(t ), is determined by the fraction of single-photon
pulse leaked out to the TB waveguide within the time t . Thus,
we define η(t ) = 1 − (|ψe(t )|2 + ∑M

x=1

∑
α=A,B |ψxα (t )|2).

Since the tunneling between two edge modes is the most
important ingredient for the emission leaking to the TB
waveguide, η(t ) depends strongly on M. For a fixed set of
γ , g and topological phase of the SSH waveguide, there is
an optimal M for which η(t ) approaches unity in shorter
times, as shown in Fig. 9(a). The appearance of an optimal
M [e.g., M = 9 in Fig. 9(a)] in the topological phase can be
explained through the following arguments. The hybridiza-
tion of the edge modes is stronger for a shorter M, which
generates a larger energy splitting of these modes. Then, the
edge modes are more detuned from the emitted photon by the
2LE, resulting in lower η(t ). In contrast, a longer M reduces
the hybridization of the edge modes as well as their energy
detuning from the emitted photons. Simultaneously, a longer
M decouples the edge modes from each other, thus weakening
the propagation channel. So η(t ) becomes smaller with longer
M. Therefore, there is an optimal M for simultaneous stronger
coupling between the edge modes as well as between the 2LE
and the edge modes. We further show the dependence of η(t )
on g in Fig. 9(b) for fixed M, γ .

The main features of η(t ) at short times in the topolog-
ical phase of the SSH waveguide can be understood better
by analytically studying the dynamics of a truncated model
with the two edge modes of the SSH waveguide and the
excited emitter. The truncated heterojunction model is de-
veloped in Appendix C by integrating all the modes of the
TB waveguide and the bulk mode of the SSH waveguide.
The integrating out of the TB waveguide in its semi-infinite
limit (N → ∞) generates a loss term (order of −iγ 2/J) at the
edge mode near the interface. The loss term determines the
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FIG. 9. Dependence of photon emission efficiency η(t ) on the SSH length M (a) and the emitter’s coupling amplitude g (b) in the
topologically trivial (δ < 0) and nontrivial (δ > 0) phase of the SSH waveguide. Other parameters are γ /J = 0.4, ωo/J = 3.0, N = 219,
tf = 110/J , δt = 0.001/J in both plots, and g/J = 0.07 for (a) and M = 9 for (b).

emission of photons to the TB waveguide, and the emission
probability increases with increasing γ 2/J . In the truncated
model, we ignore the bulk modes of the SSH waveguide for
a finite bulk gap when v 
= w. Further, the two edge modes
of a finite SSH waveguide are tunnel coupled by amplitude
ξ [∝ (v/w)M] and the edge mode near the emitter is cou-
pled to the emitter by amplitude ζ (∝ g). These two coupling
amplitudes set a timescale order of 1/(

√
ξ 2 + ζ 2) for the

oscillation of excitation between the edge modes of the SSH
waveguide and the 2LE. In the truncated model, the timescale
(order of J/γ 2) of photon emission to the TB waveguide
through the interface competes with the timescale of exci-
tation oscillation to settle the single-photon dynamics and
the efficiency of the emission. When the emission timescale
is shorter (e.g., for greater γ ) than the oscillation timescale
(e.g., for smaller g), the emission is favored, and η(t )
is higher.

Figure 9(b) indicates how an increasing g reduces η(t ) by
favoring the excitation oscillation between the SSH waveg-
uide and the 2LE over leakage to the TB waveguide, which is
controlled by γ . Figure 9(b) also demonstrates that a higher
g increases the emission rate in the topologically trivial phase
by coupling the 2LE to the TB waveguide through the bulk
modes of the SSH waveguide.

V. SUMMARY AND OUTLOOK

This paper carefully analyzes yet unexplored features of
quantum light-matter interactions inside structured waveg-
uides, mainly due to their finite bandwidths, band edges,
and localized topological edge modes. We demonstrate that a
well-known analogy between the transmission and reflection
coefficients of a side-coupled 2LE to those of a direct-coupled
2LE for unstructured waveguides with infinite bandwidth
no longer holds for the structured waveguide with finite
bandwidth. This is due to the appearance of the Lamb shift
for a 2LE direct coupled to waveguides with limited band-
width. We further clarify the reasons for the emergence of
the Lamb shift in different configurations of the emitter-
waveguide coupling. It would be exciting to experimentally
realize the direct-coupled 2LE for the TB and SSH waveg-
uides and verify our theoretical predictions for the Lamb
shifts and decay widths [14,39]. While nonreciprocity in
multiphoton transport for asymmetric waveguide QED se-

tups has been explored for unstructured waveguides [38,40–
42], it is yet to be investigated for structured waveguides,
especially for topological cases where the topological fea-
tures can enhance the nonreciprocity. Our predictions for
decoherence-free light-matter interactions with a giant 2LE
near the band edges can readily be tested by combining
various recent experimental advancements [11,12,25,28]. In
Appendix D, we have further confirmed the robustness of
our main results against some amount of disorder in the
parameters [14].

Our investigation of single-photon dynamics in a hetero-
junction of two different structured waveguides using the
first-principle numerics and the analytical method with a trun-
cated model would be potentially valuable for future studies
with large networks of these structured waveguides. While
we have coupled an excited 2LE at the end of the hetero-
junction for the source of a photon, any other photon source
can replace the 2LE in our study of single-photon dynamics.
An extension of our research to multiphoton dynamics in
such SSH waveguides and heterojunctions would be excit-
ing for many physical phenomena, including the effect of
topology on the correlated photon transport [6,7,19,38,43–
46], the resonance fluorescence [47], and the Kerr and cross-
Kerr effect [48–50]. Another prospective extension of the
present paper is to consider the coupling of more 2LEs (both
pointlike emitters or giant emitters) to the structured waveg-
uides and investigate how the topological features described
here might affect collective phenomena (e.g., subradiance
and superradiance) [51] due to the waveguide-mediated
interactions.

ACKNOWLEDGMENTS

We thank R. Nehra for helping us evaluate Green’s func-
tions in Appendix A.

APPENDIX A: EVALUATION OF GREEN’S FUNCTION

In Sec. II B, we have used the real-space components of
the retarded Green’s function of the free Hamiltonian Ĥo =
Ĥe + ĤSSH. We here explain how to find these components
[52]. The completeness relation in the single excitation sector
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for the Hilbert space of Ĥo is

1 = |ϕ, e〉〈ϕ, e| +
∫ π

−π

dq(|φ+
q 〉〈φ+

q | + |φ−
q 〉〈φ−

q |)|g〉〈g|,
(A1)

into which we plug in the definition of the retarded Green’s
function in Eq. (1) to obtain the following relation (the limit
of ε → 0 is assumed to be implicit in the following relevant
relations):

GR
o (E )

= |ϕ, e〉〈ϕ, e|
(E − ωe + iε)

+
∫ π

−π

dq
∑
x,x′

eiq(x−x′ )

4π

×
[

(e−iθq |x, A〉 + |x, B〉)|g〉〈g|(eiθq 〈x′, A| + 〈x′, B|)
(E − ω+

q + iε)

+ (−e−iθq |x, A〉 + |x, B〉)|g〉〈g|(−eiθq〈x′, A|+〈x′, B|)
(E − ω−

q + iε)

]
.

(A2)

The component of the retarded Green’s function in the excited
state of the 2LE is

〈ϕ, e|GR
o |ϕ, e〉 = 1

(E − ωe + iε)
. (A3)

The components of the retarded Green’s function in the real-
space basis of the SSH waveguide are

〈g|〈x, A|GR
o |x′,B〉|g〉 = 1

2π

∫ π

−π

(v + we−i q)eiq(x−x′ )

(E − ωo + iε)2 − f 2
q

dq,

(A4)

〈g|〈x, B|GR
o |x′,A〉|g〉 = 1

2π

∫ π

−π

(v + wei q )eiq(x−x′ )

(E − ωo + iε)2 − f 2
q

dq,

(A5)

〈g|〈x, A|GR
o |x′, A〉|g〉 = 〈g|〈x, B|GR

o |x′, B〉|g〉

= 1

2π

∫ π

−π

(E − ωo + iε)eiq(x−x′ )

(E − ωo + iε)2 − f 2
q

dq.

(A6)

The above integrals can be evaluated on the complex energy
plane using the residue theorem. Let us define

I = 1

2π

∫ π

−π

eiq(x−x′ )

(E − ωo + iε)2 − f 2
q

dq

= 1

2π

∫ π

−π

eiq(x−x′ )

(E − ωo)2 − f 2
q + 2i (E − ωo)ε

dq

= 1

2π vw

∫ π

−π

eiq|x−x′ |

2D − 2 cos q + 2i (E−ωo)
vw

ε
dq, (A7)

where D = [(E − ωo)2 − v2 − w2]/(2vw). We retain the
terms up to first order in ε only. For E inside the upper
energy band of the SSH waveguides, we have ε′ ≡ [(E −
ωo)ε]/(vw) → 0+ when ε → 0+ as we choose vw > 0 and
E > ωo. By substituting z = eiq, the integration in Eq. (A7)
can be cast into a contour integral over a unit circle around the

origin of the complex plane:

I = − 1

2π i vw

∮
z|x−x′|

−2(D + iε′)z + z2 + 1
dz

= − 1

2π i vw

∮
z|x−x′|

(z − z+)(z − z−)
dz,

where the integrand has two simple poles at

z± = (D + iε′) ± i

(√
1 − D2 − iDε′

√
1 − D2

)
. (A8)

One of the poles, e.g., z−, lies inside the unit circle. Thus, we
find after applying the residue theorem and taking the limit
ε → 0

I = − i

2 vw

(D − i
√

1 − D2)|x−x′|
√

1 − D2
. (A9)

Here,
√

1 − D2 is always positive. We substitute D = cos k
in the above equation to derive

I = −i

2 vw

(cos k − i| sin k|)|x−x′|

| sin k| , (A10)

which is then used to find the components of the retarded
Green’s functions in Eqs. (A4)–(A6). These are for k < 0:

〈g|〈x, A|GR
o |x′, A〉|g〉 = 〈g|〈x, B|GR

o |x′, B〉|g〉

= i

2vw sin k
|v + weik|eik|x−x′ |, (A11)

〈g|〈x, A|GR
o |x′, B〉|g〉 = i

2vw sin k
(veik|x−x′ | + weik|x−x′−1|),

(A12)

〈g|〈x, B|GR
o |x′, A〉|g〉 = i

2vw sin k
(veik|x−x′ | + weik|x−x′+1|).

(A13)

APPENDIX B: SELF-ENERGY CORRECTION OF A 2LE
DIRECT COUPLED TO THE SSH WAVEGUIDE

In Secs. II and III, we have identified the Lamb shift and
the decay width of the emitter from the transport coefficients.
In this Appendix, we provide an alternative calculation for
the Lamb shift and the decay width from the self-energy
corrections of the 2LE due to its coupling to the waveguide
modes. We particularly derive these for a 2LE direct coupled
to the SSH waveguide in Sec. III B. The expressions for the
Lamb shift and the decay width in Eqs. (26) and (27) suggest
that these appear as a sum of individual contributions from the
left and right waveguide parts. Therefore, we can evaluate the
self-energy correction from one side of the waveguide, e.g.,
the left, and the other term due to the coupling to the right
waveguide can be found by replacing gL by gR and swapping
(v,w) → (w, v).

Thus, we consider the Hamiltonian Ĥo + Ĥg for the left
SSH waveguide part, the emitter, and their coupling by elim-
inating all the parts on the right of the 2LE from Eq. (25).
We thus read from Eq. (25) Ĥg = gL(σ+b−1 + b†

−1σ ). The
bulk eigenfrequencies of the left SSH waveguide are the
same as those in Eq. (9), and the corresponding eigen-
states are obtained by fixing the boundary condition as
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〈0, A|φ±
k 〉L = 0:

|φ±
k 〉L =

√
1

π

∑
x<0

[± sin kx|x, A〉 + sin (kx + θk )|x, B〉],

(B1)

for 0 < k < π . The self-energy correction �e to the 2LE is
defined as [18,53,54]

�e(E + i 0+) = lim
ε→0+

〈ϕ, e|
(

Ĥg + Ĥg
PL

E − Ĥo + iε
Ĥg

)
|ϕ, e〉

(B2)

where the projection operator PL spans the single-excitation
sector of the SSH waveguide modes and the ground state
of the 2LE. PL = ∫ π

0 dk(|φ+
k 〉LL〈φ+

k | + |φ−
k 〉LL〈φ−

k |)|g〉〈g|
in the topologically trivial phase (v > w) of the SSH

waveguide, and PL = (
∫ π

0 dk(|φ+
k 〉LL〈φ+

k | + |φ−
k 〉LL〈φ−

k |) +
|em1〉〈em1| + |em2〉〈em2|)|g〉〈g|, where |em1〉 and |em2〉 are
two discrete localized modes with degenerate energy ωem =
ωo in the topologically nontrivial phase when v < w. In the
trivial phase without the edge states, we get for �e

�e(E + i 0+)

= lim
ε→0+

∫ π

0
dq

〈ϕ, e|Ĥg|φ+
q 〉L|g〉〈g|L〈φ+

q |Ĥg|ϕ, e〉
E − ω+

q + iε

+ lim
ε→0+

∫ π

0
dq

〈ϕ, e|Ĥg|φ−
q 〉L|g〉〈g|L〈φ−

q |Ĥg|ϕ, e〉
E − ω−

q + iε

= 1

π
lim

ε→0+

∫ π

0
dq

1

E − ω+
q + iε

g2
Lv2 sin2 q

f 2
q

+ 1

π
lim

ε→0+

∫ π

0
dq

1

E − ω−
q + iε

g2
Lv2 sin2 q

f 2
q

= 1

2π
lim

ε→0+
(E − ωo + iε)

∫ π

−π

dq
g2

Lv2(1 − cos 2q)

(E − ωo + iε)2 − f 2
q

1

f 2
q

= 1

2π
lim

ε→0+
(E−ωo + iε)

∫ π

−π

dq
g2

Lv2(1 − ei2q )

(E − ωo + iε)2 − f 2
q

1

f 2
q

.

(B3)

The above integration can be cast into an integral on the
complex plane by substituting z = eiq. After evaluating the in-
tegration in Eq. (B3) following the procedure in Appendix A,
we find

�e(E + i 0+)

=
⎧⎨
⎩

i
2vw sin k

1
fk

g2
Lv2(1 − ei2k ) + g2

L
fk

, for v > w,

i
2vw sin k

1
fk

g2
Lv2(1 − ei2k ) + v2

w2
g2

L
fk

, for v < w.

(B4)

We here note that we have parametrized above E = ωo +
fk , with k < 0. We further need to include in �e(E + i 0+) the
contribution from the edge modes when v < w. One of these
two modes (say |em1〉) has a nonzero wave-function ampli-
tude at the SSH waveguide boundary site (x, α) = (−1, B),

where the 2LE is coupled (the other is located at the other
boundary of unit cell x = −∞). The wave function of the
edge mode |em1〉 in real-space basis is given by

|em1〉 =
√

1 − v2

w2

∑
x�1

(
− v

w

)x−1

| − x, B〉. (B5)

The self-energy correction �em
e (E + i0+) due to the topolog-

ical edge modes in the nontrivial phase is

�em
e (E + i0+) = |〈ϕ, e|Ĥg|em1〉|g〉|2

E − ωem + i0+ = g2
L

fk

(
1 − v2

w2

)
.

(B6)

Adding the contributions in Eqs. (B4) and (B6) for v < w, we
find that the total self-energy correction �e is the same in both
the topological phases, and it is given by

�e(E + i 0+) = i

2 vw sin k

1

fk
g2

L v2 (1 − ei 2k ) + g2
L

fk

= g2
L

fk

v

w
(cos k + i sin k) + g2

L

fk
. (B7)

We can identify the Lamb shift (�̃L) and the decay width
(
̃L) from �e(E + i 0+) expressed as �e(E + i 0+) = �̃L −
i
̃L/2:

�̃L = g2
L

w fk
(w + v cos k), (B8)


̃L

2
= −g2

L

fk

v

w
sin k. (B9)

APPENDIX C: TRUNCATED MODEL FOR
SINGLE-PHOTON DYNAMICS IN THE TOPOLOGICAL

PHASE OF THE HETEROJUNCTION COUPLED
TO A 2LE

Here we explain how we obtain the truncated model
discussed in Sec. IV for the single-photon dynamics in
the topological phase of the heterojunction coupled to a
2LE. We integrate out all the continuum modes of the
semi-infinite TB waveguide and the discrete bulk modes
of the finite SSH waveguide in two steps. First, we in-
tegrate out of the TB modes as we describe below. An
eigenstate of the full Hamiltonian of the system ĤT in
the limit of N → ∞ in the single-excitation sector can be
written as

|ψ̃〉 =
∫ π

0
dkψ̃k|k〉|g〉 +

M∑
x=1

(ψ̃xA|x, A〉 + ψ̃xB|x, B〉)|g〉

+ ψ̃e|ϕ, e〉, (C1)

where we employ the real-space and the momentum-space
basis states for the SSH and the TB waveguide, respec-
tively. Here, ψ̃k, ψ̃xA, and ψ̃xB are the respective amplitude
of a single photon in the kth mode of the TB waveg-
uide, at A and B sublattices of the xth unit cell of the
SSH waveguide when the 2LE is in the ground state. The
momentum-space basis states of the TB waveguide (for
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N → ∞) are

|k〉 =
√

2

π

∑
x�0

sin k(x − 1) |x〉. (C2)

We find the following relations by taking the projection of
ĤT |ψ̃〉 = E |ψ̃〉 on the TB modes |q〉|g〉 and the SSH sublat-
tice |1, A〉|g〉:

ψ̃q = −γ

√
2

π

sin q

E − ωq
ψ̃1A, (C3)

vψ̃1B − γ

∫ π

0
dq

√
2

π
sin q ψ̃q = (E − ωo)ψ̃1A. (C4)

We substitute ψ̃q from Eq. (C3) in Eq. (C4) and get

vψ̃1B =
(

E − ωo − γ 2 2

π

∫ π

0
dq

sin2 q

E − ωq

)
ψ̃1A. (C5)

We evaluate the integration in Eq. (C5) by shifting the pole
of the integrand into the complex plane, and transforming the
integration into a complex integral. We thus find

lim
ε→0+

2

π

∫ π

0
dq

sin2 q

E − ωq + iε
= 1

J
(cos k − i sin k), (C6)

where E = ωo + 2J cos k ≡ ωk , with k > 0. Therefore, we
get from Eq. (C5)

ψ̃1A = vψ̃1B

ωk − (ωo + �k − i
k/2)
, (C7)

where �k = γ 2 cos k/J and 
k/2 = γ 2 sin k/J are the real
and imaginary frequency shifts, respectively, to the end
sublattice site (1, A) of the SSH waveguide due to the inte-
gration out of the TB band continuum. For γ 2/J � ωo, we
approximate ωk � ωo, which gives k ≈ π/2 and �k≈π/2 = 0
and 
k≈π/2/2 = γ 2/J . Within this approximation, the end
(1, A) sublattice’s energy acquires only an imaginary shift or
a finite decay width. Therefore, we can write the following
effective Hamiltonian for the full system by integrating the
TB waveguide out:

Ĥ1 = ĤSSH + Ĥe + ĤI − i

(
γ 2

J

)
a†

1a1. (C8)

Next, we eliminate the bulk modes of the SSH waveguide
in the topological phase when g2/J is small in comparison
with the frequency differences of the 2LE and the SSH bulk
modes for a finite bulk gap (e.g., v < w). We are essen-
tially thus left with three modes of the full system: |e〉 of
the 2LE and the two edge modes (|em±〉) [55] of the SSH
waveguide. Further, we choose to work with the symmetric
(antisymmetric) linear combination of the edge modes, |L〉 =
(|em+〉 + |em−〉)/

√
2 (|R〉 = (|em+〉 − |em−〉)/

√
2), which

ensure the localized state on the sublattice A (B) at the
left (right) boundary of the SSH waveguide. The final ef-
fective Hamiltonian of the truncated model in the basis of
{|L〉|g〉, |R〉|g〉, |ϕ, e〉} is

Ĥeff =

⎛
⎜⎜⎝

ωo − iϒ ξ 0

ξ ωo ζ

0 ζ ωo

⎞
⎟⎟⎠, (C9)

where ϒ = γ 2|〈L|1, A〉|2/J determines the decay rate of ex-
citation from the left edge state, ξ = 〈L|ĤSSH|R〉 denotes the
overlap of the left and right edge states, and ζ = g〈R|M, B〉
is the effective coupling of the 2LE with the right edge
state of the SSH waveguide. We here follow the treat-
ment in [36] to approximately estimate ϒ, ζ , and ξ as
given below:

ϒ ≈ γ 2

J

1 − v2

w2

1 − (
v2

w2

)M , ζ ≈ g

√√√√ 1 − v2

w2

1 − (
v2

w2

)M ,

ξ ≈ w

(
v

w

)M 1 − v2

w2

1 − (
v2

w2

)M . (C10)

By treating the non-Hermitian term in Eq. (C9) as a perturba-
tion for ϒ <

√
ξ 2 + ζ 2, we find the right eigenvalues of Ĥeff

up to first-order correction in ϒ as

ω0 ≈ ωo − i
ζ 2

ξ 2 + ζ 2
ϒ, (C11)

ω± ≈ ωo ±
√

ξ 2 + ζ 2 − i
ξ 2

2(ξ 2 + ζ 2)
ϒ. (C12)

The corresponding eigenvectors are |ω j〉 ≈
(Aj, Bj,Cj )/

√
2(ξ 2 + ζ 2) for j = 0,±, with

A0 = −√
2ζ , B0 = −i

√
2ζ ξ

ξ 2+ζ 2 ϒ,C0 = √
2ξ, (C13)

A± = ξ

(
1 ∓ i ξ 2+4ζ 2

4(ξ 2+ζ 2 )
3
2
ϒ

)
, (C14)

B± = ±
√

ξ 2 + ζ 2 + i ξ 2

4(ξ 2+ζ 2 )ϒ, (C15)

C± = ζ

(
1 ± i 3ξ 2

4(ξ 2+ζ 2 )
3
2
ϒ

)
. (C16)

Applying the truncated model, we finally calculate the
wave function for single-photon dynamics in the topologi-
cal phase for an excited emitter as an initial condition. The
time evolution of the wave function is given by |ψT (t )〉 =∑

j=0,± y je
−iω j t |ω j〉, where

y0 =
√

2(ξ 2 + ζ 2)B−(B+A− − A+B−)
(A0B− − B0A−)(B−C+ − C−B+)

− (C−B0 − C0B−)(B+A− − B−A+)

, (C17)

y+ = A0B− − B0A−
B+A− − A+B−

y0, y− = −A0y0 + A+y+
A−

. (C18)

The photon emission efficiency is now given by η(t ) = 1 −
|ψT (t )|2, which is compared in Fig. 10 with that obtained from
the first-principle numerics in Sec. IV. Figure 10 shows a good
agreement between two different calculations of η(t ) in the
topological phase for small g when the bulk modes of the SSH
waveguide do not contribute in the single-photon dynamics.

APPENDIX D: DISORDER EFFECTS

In the main text, we considered translation-invariant pho-
tonic lattices modeled by a TB or an SSH chain with uniform
onsite energy. Nevertheless, the translational invariance may
not hold in experimental setups due to design imperfections.
The study of onsite impurities has been a popular research
area, particularly in strong disorder, which gives rise to the
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FIG. 10. Comparison of photon emission efficiency η(t ) with
t calculated from the first-principle numerics (FP) in Sec. IV and
the truncated model (T) in Sec. C. The parameters are, g/J = 0.07,
γ /J = 0.4, ωo/J = 3.0, tf = 110/J , δt = 0.001/J , N = 119, and
δ = 0.1 indicating the topological phase of the SSH waveguide.

Anderson localization. In this Appendix, we focus on a
weak disorder regime, where a propagating photon encounters
nonuniform potentials at impurity sites and undergoes random
scattering without being trapped. We present numerical results
demonstrating how such random scattering affects both the
Lamb shift and the decay width discussed in Secs. II and III.
We introduce random onsite energy to a finite section in the
middle of the waveguide, and both the edges of the waveguide
with uniform onsite energy act as leads. The onsite energy
is uniformly sampled from a narrow window of [−δωo, δωo]
around the average value ωo. We here calculate the mean
physical quantities, e.g., transport coefficients, by averaging
over many disorder realizations. Mirhosseini et al. [14] re-
cently reports approximately 0.5% of disorder in the resonator
frequencies of their waveguide QED setups. We here exceed
this disorder limit and consider disorder strength up to 3% in
our numerical analysis in Appendices D 1 and D 2.

1. Giant 2LE in a SSH waveguide

Figure 11 shows the disorder averaged value of the single-
photon reflection coefficient 〈R̃k〉 from a giant 2LE being side
coupled to an SSH waveguide. The disordered middle part of
the SSH waveguide consists of 41 unit cells. We introduce
random onsite energy to each sublattice site.

In Fig. 11, we compare 〈R̃k〉 for two different strengths
of disorder δωo (denoted by black dashed and blue dot-
dashed curves) with the ordered case R̃k (solid green line).
We determine the Lamb shift from the difference between the
resonance peak of 〈R̃k〉 and ωe. The Lamb shift mostly re-
mains unchanged as the disorder strength increases. However,
the decay width, determined by measuring the full width at
half maximum of the reflection profile, increases when δωo

exceeds 2%.
It is apt here to remind the readers about the substantial

negative value of the decoherence-free Lamb shift near the
lower band edge. This negative shift effectively moves the
transition energy of the dressed giant emitter even deeper

FIG. 11. Comparison of the disorder averaged reflection coef-
ficient 〈R̃k〉 with the ordered one R̃k for varying incident photon
energy ω+

k for B-A configuration of a giant 2LE coupled to the
SSH waveguide. A unit-cell separation of �x = 5 in the nontrivial
phase with δ = 0.5 of the SSH is considered. Other parameters are
g1/J = 0.2, g2/J = 0.1, ωo/J = 3.0. An averaging over 100 disor-
der realizations is performed.

into the band-gap region. As a result, it is not possible to
probe this shift using propagating photons within the band.
One can apply a dispersive read-out technique for measuring
the decoherence-free Lamb shift of the dressed giant 2LE
following Mirhosseini et al. [14].

2. Direct-coupled vs side-coupled 2LE in TB waveguides

In Fig. 12(a), we show the disorder averaged single-photon
transmission coefficient 〈Td〉 through a direct-coupled 2LE
with the TB waveguides. We introduce random onsite energy
to a finite number (≈40) of TB lattice sites at both sides of the
2LE. The disorder averaged single-photon reflection coeffi-
cient 〈Rk〉 for a side-coupled 2LE to a random TB waveguide
is displayed in Fig. 12(b). We introduce onsite randomness
to 81 TB lattice sites, and the 2LE is coupled to the middle
site of the TB lattice. The black dashed and blue dot-dashed
curves in both figures represent 〈Td〉 and 〈Rk〉 for two dif-
ferent δωo as noted there. The solid green lines denote the
corresponding curves in the ordered waveguide, which are
computed employing the analytical formulas in Secs. III A
and II A. In Fig 12(a), we observe a gradual reduction in
the height of 〈Td〉 with increasing disorder strength. Never-
theless, the Lamb shift in the direct-coupled system shows
robustness against disorder. While the decreasing height of
the 〈Td〉 peak in the direct-coupled system significantly affects
the decay width, it is less affected in the side-coupled sys-
tem. Therefore, we conclude that the Lamb shift is immune
to disorder, but the decay width in the side-coupled system
exhibits greater robustness compared to its direct-coupled
counterpart.

3. Heterojunction of structure waveguides

The topological properties of the finite SSH array play
a crucial role in controlling the photon emission efficiency
η(t ) in the heterojunction of TB and SSH waveguides. The
presence of two topological edge modes and their localiza-
tion properties influences the single-photon dynamics in the
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FIG. 12. Direct-coupled vs side-coupled 2LE in TB waveguides. (a) Comparison of disorder averaged transmission coefficient 〈Td〉 with
the ordered Td through a direct-coupled 2LE when gR/J = gL/J = 0.3 and (b) comparison of disorder averaged reflection coefficient 〈Rk〉 with
the ordered Rk through a side-coupled 2LE when g1/J = 0.2, g2/J = 0. The other parameter is ωo/J = 3. An averaging over 100 disorder
realizations is performed.

nontrivial phase of the SSH waveguide. The last feature con-
trasts the previously discussed cases, where the scattering
involved bulk modes of the system. We here examine the
effects of two types of disorder on η(t ): (a) onsite disorder
(δωo) in the resonator energies (ωo) and (b) disorder (δh,
where h = v,w) in the hoppings of the SSH chain. We do not
include disorder to the TB waveguide, as it primarily functions
as a lead. Figure 13(a) shows a slight deviation of 〈η(t )〉

beyond 1% disorder in δωo. However, 〈η(t )〉 remains highly
robust in Fig. 13(b) even for 5% disorder in δh. The high
robustness of 〈η(t )〉 against hopping disorder can be attributed
to preserving the chiral symmetry in the SSH chain. Unlike
onsite energy disorder, the hopping disorder retains the chiral
symmetry of the SSH model. Hence, the localization length of
the topological edge states remains robust even in the presence
of finite hopping disorder [36].

FIG. 13. Dependence of disorder averaged photon emission efficiency 〈η(t )〉 on different types of disorder for a fixed length M = 9 of
the SSH waveguide. (a) Onsite energy disorder δωo and (b) hopping disorder δh in the topologically nontrivial (δ = 0.1) phase of the SSH
waveguide. Other parameters are γ /J = 0.4, ωo/J = 3.0, N = 219, tf = 110/J , δt = 0.001/J in both plots, and g/J = 0.07. An averaging
over 50 disorder realizations is performed.
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