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Nonclassical magnon pair generation and Cauchy-Schwarz inequality violation
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We theoretically propose a magnon-based superconducting qubit hybrid system containing two ferromagnetic
yttrium iron garnets (YIGs) and one superconducting qubit, demonstrating that this hybrid quantum system is
feasible in achieving the unconventional two-mode magnon blockade and generating the quantum correlated
magnon pairs. Through the virtual-photon excitation mediated by the same cavity mode, the effective couplings
can be established not only between the Kittel modes and the qubit, but also between the two Kittel modes.
We characterize the magnon blockade by utilizing the equal-time second-order correlation functions and impose
a constraint on the correlations between the two Kittel modes by introducing the Cauchy-Schwarz inequality
(CSI). In the weak qubit-magnon coupling regime, our results indicate the following: (i) Under the scenario of
the resonance couplings, the ratio of driving strengths and the ratio of coupling strengths between the two Kittel
modes and the cavity mode can be employed to control and regulate the magnon blockade and the violation of the
CSI. Not only the two Kittel modes can achieve the unconventional magnon antibunching effects simultaneously,
but also the correlations between them violate the classical CSI. It is important to note that when the degrees of
both the antibunching effects for the two Kittel modes and the anticorrelation between them reach their highest
levels simultaneously, the correlations happen not to violate the CSI. But our proposal offers a feasible route
for preparing a high-quality single-magnon source. (ii) Under the scenario of the out-of-resonance couplings,
by adjusting the frequency detunings between the first Kittel mode and the second Kittel mode as well as the
qubit, the quantum correlated two-mode magnon pairs can be obtained. (iii) Finally, it is found that the magnon
antibunching effect of the second Kittel mode is robust against the dissipation ratio between the two Kittel modes.
These results illustrate how to optimally choose the parameters to realize nonclassical magnon pair generation
and CSI violation. The hybrid YIG quantum system we propose here holds the potential in the development
of efficient microwave single-magnon sources and quantum magnon-magnon pairs required in future quantum
information processing tasks.
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I. INTRODUCTION

As a promising platform for exploring intriguing quan-
tum optical phenomena, hybrid quantum systems based on
magnonics [1–3] have attracted great research attention. Yt-
trium iron garnet (YIG) [4,5], a ferromagnetic material with
great potential in the field of quantum information, is often uti-
lized to construct new hybrid quantum systems by combining
it with various physical systems due to its small mode volume
[6,7], low dissipation rate [5,8,9], high spin density [8,10,11],
and high Curie temperature [11,12]. Magnon, which is the col-
lective spin-excited quanta in YIG [3,6,13,14], has potential
value to be employed as a novel logic device for carrying and
processing information. For example, (i) through the magne-
tostrictive interaction, the magnon modes can be coupled to
the mechanical modes in the cavity magnomechanics [3,15–
17]; (ii) through the magneto-optical effect, i.e., the Fara-
day effect, the magnon modes can be coupled to the optical
cavity mode in the cavity optomagnonics [18,19]; and (iii)
through the magnetic dipole interaction, the magnon modes
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can be coupled to the microwave cavity mode in the cav-
ity electromagnonics [5,8,11]. Based on the above available
physical basis, many interesting quantum phenomena involv-
ing magnons have been reported, such as the generation of the
quantum squeezed states of magnons and phonons [15], the
magnetically controllable slow light [16], the magnon-photon-
phonon tripartite entanglement [17], the magnon dark modes
[20,21], the magnon blockade effect [22–25], and so on.

In a ferromagnetic sphere, there are numerous magneto-
static modes which are called Walker modes [1,26–28]. In
the microwave magnetic field which is uniform throughout
the ferromagnetic sample, the YIG sphere possesses uniform
spin precession [13,29], then the magnetic dipole couplings
of the nonuniform magnetostatic modes disappear [1]. As a
result, the uniform magnetostatic mode, i.e., the Kittel mode
which is the simplest Walker mode, becomes the dominant
coupled magnetostatic mode [1,13]. Again, due to the nonlin-
ear natures of Josephson junction, the superconducting qubit
is admitted as an artificial two-level atom in various hybrid
systems [29–31]. In a hybrid ferromagnet-superconductor
quantum system, the effectiveness of the indirect coupling
between the superconducting qubit and the Kittel mode
in the spin ensembles has been experimentally recognized
[13,26,29,32]. And by utilizing superconducting qubit as an
aid, there are experiments which have demonstrated how
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to detect a single magnon [33], and generate the quantum
states of the magnon and achieve precise quantum control
of a single magnon [34]. These experimental backgrounds
provide us with a viable option and an available platform
to study the quantum phenomena of the magnon. Based on
the understanding and study of the photon blockade [35–37]
and the phonon blockade [38–41], the magnon blockade has
been theoretically proposed for the first time as a pure quan-
tum effect [22]. It describes a pure quantum effect based
on magnons: after the transmission of the first magnon, the
transmission of the second one will be suppressed, indicating
that the magnon statistical characteristics follow the sub-
Poisson distribution [23]. This nonclassical effect based on
magnons facilitates the preparation of a single-magnon source
and makes the operation at the level of a single magnon to
be possible, which serves as an important component of the
quantum information science. According to different blockade
generation mechanisms, the magnon blockade effect can be
classified into two cases. The first case of the magnon block-
ade effect requires that there are strong nonlinear interactions
between the magnon modes and the qubit, which result in
the anharmonicity of the dressed states in the hybrid quantum
system [25,32,42], and this magnon blockade effect is defined
as the conventional magnon blockade effect [22,23] similar
to the conventional (nonlinearity-mediated) photon blockade
[37,43]. The second case of the magnon blockade effect can be
achieved under the condition of weak nonlinear interactions
which allow us to utilize the destructive quantum interfer-
ence between different transition pathways to realize the
unconventional magnon blockade [23,25,42,44–46] similar to
the unconventional (interference-mediated) photon blockade
[37,47,48]. The second-order correlation function [49] needs
to be introduced to characterize this nonclassical effect. For a
hybrid quantum system containing multiple modes, one can
employ the second-order autocorrelation function to inves-
tigate the degree of the excitation competition between the
same mode. In addition, one can employ the second-order
cross-correlation function to investigate the correlations be-
tween different modes. For example, in the quantum system
with two phonon modes [50,51], two photon modes [52,53],
the mixed modes of the phonon mode and the photon mode
[54–56], and the mixed modes of the photon mode, the Kittel
mode, and the phonon mode [57], the correlations between
different modes can be quantified by exploiting the second-
order cross-correlation function which needs to be bounded
by the classical inequalities.

As a fundamental multimode inequality, the classical
Cauchy-Schwarz inequality (CSI) [58,59] provides an impor-
tant mathematical tool for the research of quantum optics. It
can be used to explore the nonclassical properties of the cor-
relations between different modes [54,58–63]. The classical
CSI imposes a constraint on the correlations between differ-
ent modes [62], whose violation is a nonclassical behavioral
feature and ranks among the major evidence for the pres-
ence of the nonclassical correlations between different modes.
The violation of the classical CSI was first experimentally
demonstrated in the atomic two-photon cascade radiation in
the 1970s by Clauser [64]. In addition, it can be used to study
the nonclassical property of the two-photon pairs generated
from the collective emission in an atomic ensemble [65], the

second harmonic [66], and optical four-wave mixing [67–69].
It can also be used to prove the existence of the entanglement
in a many-body system [70].

Inspired by existing advances involving the magnon block-
ade effect [22–25,42,44–46,71,72], we consider a hybrid
quantum system consisting of two YIG spheres and one su-
perconducting qubit. The introduction of an additional YIG
sphere provides more nonlinearities that can be exploited to
explore the quantum phenomena. Because the qubit and the
two Kittel modes are coupled to the same cavity mode, the ef-
fective couplings can be established not only between the two
Kittel modes and the qubit, respectively, but also between the
two Kittel modes through the virtual-photon excitation. We
drive the two Kittel modes with the same driving frequency.
We can adjust the system parameters, such as the ratio of cou-
pling strengths, the ratio of driving strengths, the driving de-
tuning, the frequency detuning between the two Kittel modes,
the frequency detuning between the first Kittel mode and the
qubit, the qubit dissipation, and the dissipation ratio between
the two Kittel modes, to modulate and control the magnon
blockade effects characterized by the equal-time second-order
autocorrelation functions. It should be noted that the cou-
pling strengths we adjust here are those between the Kittel
modes and the cavity mode, rather than the effective cou-
pling strengths between the qubit and the two Kittel modes.
Since the hybrid quantum system we consider contains two
Kittel modes, we introduce the equal-time second-order cross-
correlation function to determine whether there are excitation
competitions between them. Finally, we introduce the CSI
which can associate the two equal-time second-order auto-
correlation functions with the equal-time second-order cross-
correlation function to determine whether there are quantum
correlations between different modes. Also, we provide an
approximate analysis which yields further physical insight
into the numerical results. Our study has potential applications
in preparing efficient microwave single-magnon sources and
microwave two-magnon gateways for quantum communica-
tion in sophisticated quantum network architectures.

It should be pointed out that previous works [71,73] also
additionally introduce a YIG sphere, but the magnon blockade
effects of the two Kittel modes are not fully explored, and the
systemic study of the quantum properties of the correlations
between them are also missing. Compared with the previous
works [71,73], our proposal provides more complete infor-
mation for the hybrid ferromagnet-superconductor quantum
system containing multiple YIG spheres to realize the two-
mode magnon blockade effects and the two-magnon gateways
based on a very different operation condition. To be more
specific, several remarks are in order.

(i) Previous works involving two YIG spheres [71,73] or
two qubits [23] use two mutually perpendicular microwave
cavities, and thus only establish effective qubit-magnon
couplings but not effective magnon-magnon or qubit-qubit
coupling. Unlike Refs. [71,73], our proposal establishes the
effective tripartite couplings among the two Kittel modes and
the qubit mediated by a single-cavity mode (see Fig. 1).

(ii) Previous works [22,71,73] only portray the magnon
blockade effect of one of the Kittel modes in the strong
coupling regime, whereas our proposal more comprehensively
investigates the magnon blockade effects of both the Kittel
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FIG. 1. (a) Schematic diagram of the physical model for the hybrid quantum system which consists of two YIG spheres and one
superconducting qubit. The bias magnetic field Bz, which is along the z direction, can be exploited to uniformly magnetize the YIG spheres
and adjust the frequencies of the Kittel modes [34]. The x, y, and z axes are defined as shown in the top left corner. Inset (in the dashed
circle box): Dirac notations |e〉 and |g〉 denote the excited state and the ground state of the two-level qubit, respectively. The red-brown dashed
arrows denote the effective couplings, whose strengths are g1, g2, and gm. The green wavy solid arrows represent the drives acting on the Kittel
modes, whose strengths are η1 and η2. The gray wavy dashed arrows indicate the dissipation of the Kittel modes (κ1 and κ2) and the qubit (γ ).
(b) Schematic diagram of the interactions in the hybrid quantum system. On the left half of this panel, the two-color solid arrows denote the
direct couplings between the cavity mode and the two Kittel modes via a magnetic dipole interaction as well as the direct coupling between
the cavity mode and the qubit via an electric dipole interaction, whose strengths are gm1c, gm2c, and gqc, respectively. Notice that the direct
couplings among the two Kittel modes and the qubit are quite weak [6,26,34], so that they can be safely ignored and are not shown in (b).
After adiabatically eliminating the cavity mode under the large-detuning condition, the indirect effective couplings can be established among
the two Kittel modes and the qubit via the virtual-photon excitation mediated by the cavity mode, which are represented by the red-brown
dashed arrows on the right half of this panel and are parametrized by g1, g2, and gm. See text for more details.

modes in the weak qubit-magnon coupling regime, allowing
both the Kittel modes to achieve the strong antibunching ef-
fects at the same time, i.e., the two-mode magnon blockade
effect can be achieved in the microwave band.

(iii) Aside from this, in our proposal we introduce the CSI
to constrain the correlations between different Kittel modes,
obtaining a maximum CSI violation factor R = 29.31 and thus
confirming the feasibility of generating quantum correlated
magnon pairs with current experimentally accessible param-
eters.

In the remaining chapters, we organize the article accord-
ing to the following arrangements. In Sec. II, we describe the
physical model of the hybrid YIG quantum system that we
consider and gradually provide the total Hamiltonian of this
hybrid quantum system, which are the bases of our work. In
Sec. III, we analytically calculate the equal-time second-order
autocorrelation functions, cross-correlation function, and the
CSI by solving the Schrödinger equation. In Sec. IV, we
elaborate on the basis and focus of the implementation of our
scheme, and set experimentally realistic values for the sys-
tem parameters. In Sec. V, we introduce the quantum master
equation to numerically simulate the equal-time second-order
autocorrelation functions, cross-correlation function, and the
CSI (Sec. V A). Followed by this, we analyze in detail the
modulation of the magnon blockade effects and the quantum
correlations by the system parameters (Sec. V B). In Sec. VI,
we summarize the main results of our work. Appendixes A–D
provide the supplementary details for the derivations which
further support our results but are omitted in the main text for
readability.

II. PHYSICAL MODEL AND EFFECTIVE HAMILTONIAN

As schematically illustrated in Fig. 1(a), in the consid-
ered hybrid ferromagnet-superconductor quantum system,

two YIG spheres and one superconducting qubit are simul-
taneously placed in a three-dimensional microwave cavity.
The two Kittel modes and the qubit are coupled to the same
cavity mode through the magnetic dipole and electric dipole
interactions, respectively. Direct couplings among the qubit
and the two Kittel modes, which are quite weak [6,26,34],
can be negligible. Under the condition that the frequencies
of the two Kittel modes and the qubit are far from the fre-
quency of the cavity mode, the effective couplings among
the qubit and the two Kittel modes can be established via
the virtual-photon excitation that is mediated by the cavity
mode [33]. A clear and intuitive schematic diagram of these
interactions is shown in Fig. 1(b). Such a manipulation is also
allowed by the experiments [13,26,29,33]. So we can simplify
the calculations by eliminating the cavity mode. The detailed
derivation process is provided in Appendix A. In addition,
we also verify the reasonableness of such a manipulation by
confirming the equivalence between the effective Hamiltonian
and the original Hamiltonian in Appendix B. Then we exploit
the external driving field to drive the two Kittel modes and
express the resulting Hamiltonian of the hybrid system as
(presuming h̄ = 1 hereafter)

Ĥsys = Ĥ0 + ĤI + Ĥd, (1)

where

Ĥ0 = ωm1 m̂†
1m̂1 + ωm2 m̂†

2m̂2 + ωqσ̂
†σ̂ , (2a)

ĤI = g1m̂†
1σ̂ + g2m̂†

2σ̂ + gmm̂†
1m̂2 + H.c., (2b)

Ĥd = η1m̂†
1e−iωd t + η2m̂†

2e−iωd t + H.c. (2c)

Here, Ĥ0 denotes the free Hamiltonian of the two Kittel
modes and the qubit. ĤI represents the interaction Hamilto-
nian among the two Kittel modes and the qubit. Ĥd indicates
that the two Kittel modes are pumped by the external driving
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field with the same driving frequency ωd . H.c. denotes the
Hermitian conjugate. m̂†

i (m̂i) (i = 1, 2) represents the creation
(annihilation) operator of the ith Kittel mode with the effective
frequency ωmi . σ̂ † = |e〉〈g| (σ̂ = |g〉〈e|) represents the raising
(lowing) operator of the two-level qubit with the effective
frequency ωq. By the virtual-photon excitation mediated by
the cavity mode, we can obtain the effective coupling strength
gi = 1

2 gmicgqc( 1
δic

+ 1
δqc

) (i = 1, 2) [13,29,32] between the ith
Kittel mode and the qubit, in which gmic (gqc) denotes the di-
rect coupling strength between the ith Kittel mode (the qubit)
and the cavity mode, and δic = ω(0)

mi
− ωc(δqc = ω(0)

q − ωc)
stands for the frequency detuning between the ith Kittel mode
(the qubit) and the cavity mode. ω(0)

mi
(ω(0)

q ) represents the bare
frequency of the ith Kittel mode (the qubit) and ωc denotes
the frequency of the cavity mode. gm = 1

2 gm1cgm2c( 1
δ1c

+ 1
δ2c

)
denotes the effective coupling strength between the two Kittel
modes. More details are shown in Appendix A. ηi (i = 1, 2)
represents the strength of the external driving field acting on
the ith Kittel mode. In addition, we also clarify the reason
why the long-range effective couplings are introduced via
the virtual photon exchange mediated by the cavity mode in
Appendix B.

With respect to Appendixes A and C, we would like to
emphasize three points: (i) The effective Hamiltonian given by
Eq. (1) (see also Appendix A) is accurate in the large-detuning
regime where the cavity photon mode is adiabatically elimi-
nated. (ii) The effective Hamiltonian brings insights into the
underlying physics about strong indirect qubit-magnon and
magnon-magnon couplings that are not normally available
from the original Hamiltonian in Appendix C. In particular,
the indirect magnon-magnon interplay emerges, which does
not exist in the previous works [71,73]. (iii) The effective
Hamiltonian allows us to determine analytical solutions of the
second-order correlation functions easily as will be discussed
later.

It is obvious that the Hamiltonian of the hybrid quantum
system above displays explicit time dependence. In order to
facilitate the subsequent calculations, we utilize the unitary
operator Û (t ) = e−iωd t (m̂†

1m̂1+m̂†
2m̂2+σ̂ †σ̂ ) to rotate Ĥsys into an

interaction picture, thereby removing its dependence on the
time. So, the time-independence Hamiltonian Ĥr can be writ-
ten as

Ĥr = �m̂†
1m̂1 + (� + δm)m̂†

2m̂2 + (� + δq)σ̂ †σ̂

+ (g1m̂†
1σ̂ + g2m̂†

2σ̂ + gmm̂†
1m̂2 + H.c.)

+ η1(m̂†
1 + m̂1) + η2(m̂†

2 + m̂2), (3)

where � = ωm1 − ωd , �m = � + δm, and �q = � + δq de-
fine the frequency detunings between the driving field and
the first Kittel mode, the second Kittel mode, and the qubit,
respectively. δm = ωm2 − ωm1 (δq = ωq − ωm1 ) represents the

frequency detuning between the second Kittel mode (the
qubit) and the first Kittel mode.

Alternatively, by introducing dissipation terms of the hy-
brid quantum system into Ĥr , we can obtain the non-Hermitian
Hamiltonian Ĥtot, with the form

Ĥtot = Ĥr − i
κ1

2
m̂†

1m̂1 − i
κ2

2
m̂†

2m̂2 − i
γ

2
σ̂ †σ̂ , (4)

where κi (γ ) denotes the dissipation of the ith Kittel mode (the
two-level qubit). The starting point for Eq. (4) is to gain ana-
lytical insight into the problem based on Schrödinger equation
for the wave function in Sec. III below. Nevertheless, Eq. (3) is
used for our numerical simulations based on quantum master
equation for the density matrix in Sec. V.

III. ANALYTICAL CALCULATIONS OF EQUAL-TIME
SECOND-ORDER CORRELATION FUNCTIONS AND CSI

UNDER WEAK-DRIVING SCENARIO

A. Solving Schrödinger equation analytically
under weak-driving scenario

In this section, in order to gain physical insights into
the statistical properties of the magnon and the violation of
classical CSI, we present the process of approximate analyti-
cal calculations for the second-order correlation functions by
solving the Schrödinger equation under the condition of the
weak-driving limit.

Following the method introduced in Refs. [47,48], only the
lower-energy levels of the hybrid quantum system can be ex-
cited to the higher-energy levels due to the weak-driving limit.
Under such a condition, therefore we can truncate the magnon
number state (Fock state) into a few excitation subspace, i.e.,
the two-magnon excitation subspace, and the wave function
can be approximately expanded as

|ψ〉 ≈ Cg00|g, 0, 0〉 + Cg10|g, 1, 0〉 + Cg01|g, 0, 1〉
+Cg11|g, 1, 1〉 + Cg20|g, 2, 0〉 + Cg02|g, 0, 2〉
+Ce00|e, 0, 0〉 + Ce10|e, 1, 0〉 + Ce01|e, 0, 1〉, (5)

where |e〉 and |g〉 correspond to the excited and ground states
of the two-level qubit, respectively. |mi〉 (i = 1, 2) represents
the ith Kittel-mode magnon Fock state [29]. When the qubit
is in the | j〉 ( j = g, e) state and the magnon excitation number
of the ith Kittel mode is mi, the occupying probability of the
state | j, m1, m2〉 corresponds to |Cjm1m2 |2 [46].

So far, we have got the total Hamiltonian Ĥtot and the
reasonably approximate wave function |ψ〉 of the hybrid
quantum system. Then, by solving the Schrödinger equation
i ∂|ψ〉

∂t = Ĥtot|ψ〉, we can obtain a set of dynamical evolution
equations of the probability amplitudes Cjm1m2 . The details of
solving the Schrödinger equation are provided in Appendix D.
The analytical solutions of several important probability am-
plitudes are yielded as follows:

Cg10 =
[
dg2

1(p − d ) − gm p�′ + �′2]η1

Λ1
, (6a)

Cg01 =
[
g2

1(d − p) − gm�′ + p�′2]η1

Λ1
, (6b)
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Cg11 = −[
d5g6

1 + d3g4
1χ1 + dg2

1χ2 − (gm p − �′)�′χ3
]
η2

1

Λ1Λ2
, (6c)

Cg20 =
[
d6g6

1 − 2d5g6
1 p + d3g4

1χ4 + (−gm p + �′)χ5 + d2g2
1χ6

]
η2

1√
2Λ1Λ2

, (6d)

Cg02 =
[
g6

1 p2 + 2�′(gm − p�′)χ7 − g4
1 p

(
g2

m p − 2gm�′ + 7p�′2) + d3g4
1χ8 + dg2

1χ9
]
η2

1√
2Λ1Λ2

, (6e)

where

χ1 = −2g2
m + g2

1(1 + p2) + 4gm p�′ − 2(3 + p2)�′2 + d
[−2g2

1 p + �′(p�′ − gm)
]
, (7a)

χ2 = g4
1 p2 − 2g3

m p�′ + 4g2
m(1 + p2)�′2 − 22gm p�′3 + 8(1 + p2)�′4 − 2g2

1

(
g2

m p2 − 2gm p�′ + �′2 + 3p2�′2)
+ d

[−2g4
1 p + g2

1�
′(gm + gm p2 + 10p�′) − 2�′(gm − p�′)

(
g2

m − gm p�′ − 3�′2)], (7b)

χ3 = g4
1 p + 2�′(gm − p�′)

(
g2

m − 4�′2) + 2g2
1

(
g2

m p − gm�′ − 3p�′2), (7c)

χ4 = d
[−g2

m + g2
1(1 + p2) + 2gm p�′ − 7�′2] − 2p

(
g2

1 − g2
m + gm p�′ − 6�′2), (7d)

χ5 = (−gm p + �′)
[
g4

1 − 2(g1 − gm)(g1 + gm)�′2 − 8�′4] − 2dg2
1

[
g2

1(gm − 2p�′) + �′(g2
m p − 3gm�′ + 8p�′2)], (7e)

χ6 = g4
1 p2 + 2(gm p − �′)�′(2g2

m − gm p�′ − 7�′2) + g2
1

[ − g2
m(−1 + p2) − 2(1 + 2p2)�′2], (7f)

χ7 = �′(gm − p�′)
(
g2

m − 4�′2) − g2
1

( − 2g2
m p + gm�′ + 7p�′2), (7g)

χ8 = −2
[
g2

1 p − (gm p − 2�′)(gm − p�′)
] + d

[
g2

1 + (gm − p�′)2
]
, (7h)

χ9 = −2
[
g4

1 p + �′(−gm + p�′)
(
g2

m − 3gm p�′ + 8�′2) + g2
1(−g2

m p + gm�′ − 6p�′2)
]

+ d
{
g4

1(1 + p2) − 2�′2(gm − p�′)2 + g2
1

[
g2

m(−1 + p2) − 2(2 + p2)�′2]}, (7i)

Λ1 = −2dg2
1gm + [

(1 + d2)g2
1 + g2

m

]
�′ − �′3, (7j)

Λ2 = 2dg2
1gm

[
g2

m − (1 + d2)g2
1

] + [
(1 + d2)2g4

1 + 2g4
m

]
�′ + 10dg2

1gm�′2 − [
6(1 + d2)g2

1 + 10g2
m

]
�′3 + 8�′5. (7k)

For the sake of brevity, we further define d = g2/g1 and
p = η2/η1 in Eqs. (6) and (7) above.

The other probability amplitudes can also be iteratively cal-
culated, but their contributions to the equal-time second-order
correlation functions [i.e., Eqs. (10a)–(10c) in Sec. III B later]
can be ignored. Therefore, they are not shown here. As final
remark, we point out that the steady-state solutions (6a)–(6e)
of the probability amplitudes are the central results in this
subsection.

In addition, based on the set of dynamical evolution equa-
tions, i.e., Eqs. (D1a)–(D1h) in Appendix D, we can sketch
the energy levels and the transition pathways of the hybrid
quantum system as indicated in Fig. 2. It is clear that there are
multiple transition pathways that can be adopted to reach the
two-magnon excitation states. The destructive quantum inter-
ference occurs between different excitation pathways, which
can suppress the occupation of the two-magnon excitation
states, i.e., |g, 2, 0〉, |g, 0, 2〉, and |g, 1, 1〉. In the next subsec-
tion, we will make full use of the steady-state solutions of the
probability amplitudes to obtain the analytical expressions of
the equal-time second-order autocorrelation functions, cross-
correlation function, and the CSI of the system, respectively.

B. Normalized equal-time second-order autocorrelation
functions g(2)

11 (0), g(2)
22 (0) and cross-correlation function g(2)

12 (0)

The common tool used to study the statistical characteris-
tics of the magnons and explore the magnon blockade effect is

the second-order correlation function. There are two types of
the normalized equal-time second-order correlation functions,
i.e., the normalized equal-time second-order autocorrelation
function g(2)

aa (0) and the normalized equal-time second-order
cross-correlation function g(2)

ab (0) (a �= b, a, b = 1, 2) for both
Kittel modes of concern, given by [49]

g(2)
aa (0) = 〈ψs|m̂†2

a m̂2
a|ψs〉

〈ψs|m̂†
am̂a|ψs〉2

, (8a)

g(2)
ab (0) = 〈ψs|m̂†

am̂†
bm̂bm̂a|ψs〉

〈ψs|m̂†
am̂a|ψs〉〈ψs|m̂†

bm̂b|ψs〉
. (8b)

On the one hand, as far as the equal-time second-order
autocorrelation function g(2)

aa (0) is concerned, by judging
whether the value of g(2)

aa (0) is less than unity or not, we
can identify three different statistical characteristics of the
magnons: (i) The first magnon statistics occurs when g(2)

aa (0)
exceeds unity. In this case, the statistical characteristics of
the magnons follow a super-Poissonian distribution, indicat-
ing that the behaviors of the magnons exhibit the classical
bunching effect. (ii) The second magnon statistics arises when
g(2)

aa (0) is equal to unity. In this situation, the statistical char-
acteristics of the magnons follow a Poissonian distribution,
indicating that the magnon is in a critical state between the
classical states and the quantum states, i.e., the coherent state.
(iii) The last magnon statistics appears when g(2)

aa (0) is less
than unity, indicating that the statistical characteristics of the
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FIG. 2. Schematic representation of the permissible energy lev-
els (horizontal black short lines without arrows) within the truncated
subspace and the multiple transition pathways (color lines with ar-
rows). The energy level is represented by | j, m1, m2〉, where j is
quantum number in the two-level qubit ( j = e, g) and m1, m2 are
the magnon numbers in the two Kittel modes (m1, m2 = 0, 1, 2).
The unconventional magnon blockade originates from the destruc-
tive interference between different transition pathways. The effective
couplings among the two Kittel modes and the qubit correspond to
the red-brown transition pathways, in which an excitation exchange
occurs among the two Kittel modes and the qubit. The drives acting
on the two Kittel modes correspond to the green transition pathways.

magnons follow sub-Poissonian distribution, and the behav-
iors of the magnons exhibit the nonclassical antibunching
effect. It is worth noting that the values of g(2)

aa (0) approaching
to zero represent the complete magnon blockade. In this case,
the magnons exhibit a tendency to repel or move apart from
each other, which can be used to manufacture a single-magnon
source.

On the other hand, as far as the equal-time second-order
cross-correlation function g(2)

ab (0) is concerned, if this condi-
tion that g(2)

ab (0) is less than unity is satisfied, it indicates that
the state |g, 1, 1〉 is less likely to be occupied. In other words,
the excitation of the first Kittel mode will hinder the excitation
of the second one, so that the two Kittel modes will not be
emitted simultaneously. We can determine that there is an anti-
correlation between the two Kittel modes [50,57]. In contrast,
if this condition that g(2)

ab (0) is larger than unity is satisfied,
it represents the excitation of the two-mode magnon pairs.
Nevertheless, it is important to emphasize that the value of
the equal-time second-order cross-correlation function g(2)

ab (0)
can not be used straightforwardly to determine that whether
the correlations between the two Kittel modes have quantum
properties or not, even if it is less than unity. We need to
impose a constraint on the equal-time second-order cross-
correlation function g(2)

ab (0) with other conditions, such as the
CSI. Details are presented in Sec. III C later.

In the previous subsection, we have arrived at the prob-
ability amplitude of the state | j, m1, m2〉 in the steady state
|ψs〉. Analytical expressions for some physical quantities,
such as the average magnon occupations of the two Kittel
modes, can be approximately expressed by the probability
amplitude Cjm1m2 . To be specific, under the weak-driving limit,
we take the relationship that Cg00 � 1 	 {Cg10,Cg01,Ce00} 	

{Cg11,Cg20,Cg02,Ce10,Ce01} into consideration, which is also
presented by Eq. (D2) in Appendix D. The approximate ana-
lytical expressions for the physical quantities associated with
the normalized equal-time second-order correlation functions
can thus be expressed as

〈ψs|m̂†2
1 m̂2

1|ψs〉 = 2|Cg20|2, (9a)

〈ψs|m̂†2
2 m̂2

2|ψs〉 = 2|Cg02|2, (9b)

〈ψs|m̂†
1m̂1|ψs〉 = |Cg10|2 + |Cg11|2 + 2|Cg20|2 + |Ce10|2

� |Cg10|2, (9c)

〈ψs|m̂†
2m̂2|ψs〉 = |Cg01|2 + |Cg11|2 + 2|Cg02|2 + |Ce01|2

� |Cg01|2, (9d)

〈ψs|m̂†
1m̂†

2m̂2m̂1|ψs〉 = |Cg11|2. (9e)

We can substitute the above approximate analytical expres-
sions into the normalized equal-time second-order autocorre-
lation functions and cross-correlation function [cf. Eqs. (8a)
and (8b)], and approximately write them as

g(2)
11 (0) = 〈ψs|m̂†2

1 m̂2
1|ψs〉

〈ψs|m̂†
1m̂1|ψs〉2

� 2|Cg20|2
|Cg10|4 , (10a)

g(2)
22 (0) = 〈ψs|m̂†2

2 m̂2
2|ψs〉

〈ψs|m̂†
2m̂2|ψs〉2

� 2|Cg02|2
|Cg01|4 , (10b)

g(2)
12 (0) = 〈ψs|m̂†

1m̂†
2m̂2m̂1|ψs〉

〈ψs|m̂†
1m̂1|ψs〉〈ψs|m̂†

2m̂2|ψs〉

� |Cg11|2
|Cg01|2|Cg10|2 , (10c)

where Cg10, Cg01, Cg11, Cg20, and Cg02 are given by Eqs. (6a)–
(6e).

From the above analytical expressions [see, e.g., Eqs. (6a)–
(6e) and (7a)–(7k) together with Eqs. (10a)–(10c)], on the one
hand, it is easy to find that the items related to the statistical
properties of the magnon are sensitively dependent on the con-
trollable parameters of the hybrid system such as the ratio of
coupling strengths, the ratio of driving strengths, the driving
detunings, and the dissipation, etc. On the other hand, from a
mathematical perspective, if we set the probability amplitudes
of the two-magnon states equal to zero, i.e., Cg20 = 0, Cg02 =
0, and Cg11 = 0, the normalized equal-time second-order auto-
correlation functions g(2)

11 (0) and g(2)
22 (0), and cross-correlation

functions g(2)
12 (0) can also be equal to zero, respectively. How-

ever, the closed-form conditions of Eqs. (10a)–(10c) in the
case of g(2)

11 (0) = 0, g(2)
22 (0) = 0, and g(2)

12 (0) = 0 are too cum-
bersome to be given here. This will be discussed in more detail
in Sec. V B.

In the following, we will associate the equal-time second-
order autocorrelation functions g(2)

11 (0), g(2)
22 (0) with the equal-

time second-order cross-correlation function g(2)
12 (0) to look

into the quantum characteristics of the correlations between
the two Kittel modes, such as the violation of classical CSI.

C. Classical CSI and violation of CSI

In this section, we now shift our focus to exploiting
the CSI to bound the correlations between the two Kittel
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modes [58,59,66,74,75]. To be specific, in our hybrid quan-
tum system, the expectation values of the autocorrelation
and cross-correlation magnon numbers follow a relationship
which is bounded by the classical CSI [76]:

〈ψs|n̂1n̂2|ψs〉 �
√

〈ψs|n̂2
1|ψs〉〈ψs|n̂2

2|ψs〉, (11)

where n̂i = m̂†
i m̂i (i = 1, 2). It can be easily seen that by

adding the same denominator 〈ψs|n̂1|ψs〉〈ψs|n̂2|ψs〉 to both
sides of the above inequality, we can directly achieve the
classical CSI expressed with the equal-time second-order au-
tocorrelation functions g(2)

11 (0), g(2)
22 (0) and cross-correlation

function g(2)
12 (0) [59,74], namely,

g(2)
12 (0) �

√
g(2)

11 (0)g(2)
22 (0). (12)

Following Ref. [59], based on Eq. (13), we define a
violation factor R and express it as a ratio of g(2)

12 (0) to√
g(2)

11 (0)g(2)
22 (0), with the form

R = g(2)
12 (0)√

g(2)
11 (0)g(2)

22 (0)
, (13)

which can describe the degree of the violation for the classical
CSI. Specifically, when the value of the violation factor R
is less than or equal to unity (R � 1), the correlations be-
tween the two Kittel modes follow the classical CSI. However,
when the value of the violation factor R is greater than unity
(R > 1), obviously indicating a violation of the classical CSI
(so R called the violation factor), the nonclassical correlations
between the two Kittel modes can be well confirmed. Next,
we plug Eqs. (10a)–(10c) into the expression of R [38,59],
yielding

R � |Cg11|2
2|Cg20||Cg02| , (14)

where Cg11, Cg20, and Cg02 are yielded by Eqs. (6c)–(6e).
From the expression of the violation factor R, we can make

the qualitative conclusions that the values of the violation
factor R will be much larger than unity when the moduli of the
probability amplitudes for the single-mode two-magnon states
(i.e., Cg20 and Cg02) approach to zero. In contrast, the values of
the violation factor R will be much less than unity when the
modulus of the probability amplitude for the two-mode two-
magnon state (i.e., Cg11) approaches to zero. In other words,
in our hybrid quantum system, the nonclassical correlations
between the two Kittel modes exhibit a positive dependence
with the degree of the magnon antibunching effect and a neg-
ative dependence with the degree of anticorrelation between
the two Kittel modes. More detailed descriptions are provided
in Sec. V later.

IV. EXPERIMENTAL FEASIBILITY ASSESSMENT
AND TYPICAL SYSTEM PARAMETER VALUES

In Sec. II, we describe the physical compositions of our
theoretical model as sketched in Fig. 1(a). In this section,
we assess the experimental feasibility of the considered hy-
brid quantum system and determine the typical values of

the relevant system parameters. Based on the available ex-
perimental reports in Refs. [1,13,29,33], at a significantly
low temperature, we can position a superconducting qubit
and two ferromagnetic YIG spheres (Y3Fe5O12) within a
rectangular three-dimensional (3D) microwave cavity [34].
The transmon-type superconducting qubit used in our hy-
brid quantum system consists of a single Josephson junction
(Al/Al2O3/Al) and two large-area aluminum pads, all of
which can be fabricated on a silicon substrate [29]. The
3D microwave cavity can be designed with a combination
of oxygen-free copper component and aluminum component
[32], the former being smaller in size than the latter [34].
The oxygen-free copper component, which is prepared in a
smaller size and exhibits nonsuperconducting property at low
temperatures, can enhance the quality factor of the microwave
cavity [34]. And the YIG spheres with a diameter of 1 mm
should be glued to the oxygen-free copper component [11].
This design facilitates the passage of the applied magnetic
field through the oxygen-free copper component for the mod-
ulation of the magnon frequencies [32]. The YIG spheres
are positioned along the crystal axis 〈110〉, while the static
magnetic field Bz which is applied locally to the magnons
parallel to the crystal axis 〈100〉, i.e., the z axis [11,26]. This
magnetic field is generated by a pair of permanent magnets
placed at the ends of a magnetic yoke, which can be tuned
by controlling the current in the superconducting coil [11,29].
The aluminum component, to which the qubit is affixed, is
additionally enveloped by a pure iron cavity [33,34]. This
double-magnetic shielding structure effectively safeguards the
qubit against the magnetic field interference and enables it
to maintain high coherence [29,34]. In addition, in order to
enhance the interaction between the YIG spheres (the qubit)
and the cavity mode, it is necessary to place the YIG spheres
(the qubit) close to the antinode of the magnetic (electric)
field component of the cavity mode [34]. Then the Kittel
modes (the qubit) can couple with the magnetic (electric) field
component of the cavity mode via a magnetic (an electric)
dipole interaction [33], which is characterized by the direct
coupling strength gmi=1,2c (gqc).

Based on the aforementioned bases and focus of the experi-
mental implementation platform, we set appropriate values for
the system parameters that are permitted by the experiments
[13,29,32–34]. We set the dissipation of the first Kittel mode
(the qubit) to the value of κ1/2π = 1 MHz (γ /2π = 1 MHz)
with κ2/κ1 = l . The coupling strength between the first Kit-
tel mode (the qubit) and the cavity mode, which is in the
strong magnon-photon (or qubit-photon) coupling regime in
the original cavity-qubit-magnon system, is set to the value of
gm1c/2π = 15 MHz (gqc/2π = 189 MHz) with gm2c/gm1c =
d . After the cavity mode is adiabatically eliminated, consider-
ing that in the simplified qubit-magnon system our discussions
and studies are conducted in the weak qubit-magnon coupling
regime, we can take the effective coupling strength between
the first Kittel mode and the qubit to be g1/2π = 0.4 MHz,
which is less than their dissipations. We apply a weak-driving
field whose strength is η1/2π = 0.001 MHz to excite the first
Kittel mode with η2/η1 = p. Unless otherwise noted, we con-
sistently adopt these typical values of the system parameters.

Finally, we briefly comment on the measurement method
of the second-order correlation functions in our scheme. On
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the one hand, by coupling the magnon mode to the photon
mode and encode the magnon correlations onto the pho-
ton correlations, we can exploit a Hanbury Brown–Twiss
interferometer [77,78] to measure the second-order correla-
tion functions of the photons, thus indirectly measuring the
second-order correlation functions of the magnons [5,79].
Similar methods have also been applied to detect the phonon
correlations in optical mechanical systems [39,55] and have
been experimentally implemented [80]. On the other hand,
the energy of the microwave photons is much lower than that
of the optical photons, which makes it difficult to measure
individual microwave photon [81], therefore, the second-order
correlation functions of the microwave photons cannot be
measured by using a usual single-photon detctor. In Ref. [82],
an experimental technique based on a linear detector instead
of single-photon counters has been proposed and has been
successfully developed to measure the second-order correla-
tion functions of the microwave photons in a circuit QED
system [81,83]. And magnon is a spin-excited quantum whose
frequency is in the range of the microwave bands [84], so we
expect that the quantum correlation effects in the magnon-
based hybrid quantum systems can be probed by employing
the same experimental technique which is described in detail
in Ref. [82]. The aforementioned demonstrations indicate the
availability of all fundamental components in our architecture.

V. NUMERICAL CALCULATIONS USING MORE PRECISE
MASTER-EQUATION APPROACH

A. Dissipative dynamical evolution governed
by quantum master equation

In Sec. III, we analytically calculate the normalized equal-
time second-order autocorrelation functions g(2)

11 (0), g(2)
22 (0),

cross-correlation function g(2)
12 (0), and the violation factor

R by solving the Schrödinger equation. In this subsec-
tion, we numerically simulate them by employing the full
quantum master equation, and demonstrate the consistency
between these two methods in the next subsection. With the
Born-Markovian approximation, the Lindblad master equa-
tion governing the evolution of the system density matrix ρ̂

can be written as [85–87]

d ρ̂

dt
= −i[Ĥr, ρ̂] + κ1

2
L̂[m̂1]ρ̂ + κ2

2
L̂[m̂2]ρ̂ + γ

2
L̂[σ̂ ]ρ̂,

(15)

where L̂[Ô]ρ̂ = 2Ôρ̂Ô† − Ô†Ôρ̂ − ρ̂Ô†Ô denotes the
Lindblad term for the given operator Ô (Ô = m̂1, m̂2, and
σ̂ ), κi (i = 1, 2) and γ have been explained previously, and
we have assumed zero-temperature environments. When
the hybrid quantum system evolves into the steady state
ρ̂s, i.e., d ρ̂

dt = 0 on the left side of Eq. (16), we can obtain
the normalized equal-time second-order autocorrelation
functions, cross-correlation function, and the violation factor
R which can be expressed as [49]

g(2)
11 (0) = Tr

(
ρ̂sm̂

†2
1 m̂2

1

)
[Tr(ρ̂sm̂

†
1m̂1)]2

, (16a)

g(2)
22 (0) = Tr

(
ρ̂sm̂

†2
2 m̂2

2

)
[Tr(ρ̂sm̂

†
2m̂2)]2

, (16b)

g(2)
12 (0) = Tr(ρ̂sm̂

†
1m̂†

2m̂2m̂1)

Tr(ρ̂sm̂
†
1m̂1)Tr(ρ̂sm̂

†
2m̂2)

, (16c)

and

R = Tr(ρ̂sm̂
†
1m̂†

2m̂2m̂1)√
Tr

(
ρ̂sm̂

†2
1 m̂2

1

)
Tr

(
ρ̂sm̂

†2
2 m̂2

2

) , (17)

where Tr means the trace. In what follows, we perform direct
numerical simulations of the master equation (16) for our hy-
brid quantum system. For this purpose, we consider a Hilbert
space expanded by the electronic states of the two-level qubit
and the magnon Fock states of both Kittel modes. We express
the magnon operators on an occupation-number Fock basis,
truncated up to 10 magnons to ensure full convergence.

B. Results and discussions about magnon antibunching
effect and violation of CSI

In this section, we begin by discussing the dependence of
the equal-time second-order autocorrelation functions g(2)

11 (0)
and g(2)

22 (0), cross-correlation function g(2)
12 (0), and the viola-

tion factor R on the system parameters, such as the ratio of
coupling strengths gm2c/gm1c, the ratio of driving strengths
η2/η1, the driving detuning �, the frequency detuning δm

between the two Kittel modes, the frequency detuning δq be-
tween the first Kittel mode and the qubit, the qubit dissipation
γ , and the dissipation ratio κ2/κ1 between the two Kittel
modes. The detailed results are given in Figs. 3–9.

First of all, in order to explore the independent modulation
effect of the ratio of coupling strengths gm2c/gm1c and the ratio
of driving strengths η2/η1 on the magnon blockade effects
and the quantum correlations, we consider the same driving
detuning � = �m = �q (i.e., δm = δq = 0) and dissipation
κ1 = κ2 = γ . Based on the above assumption of equal driv-
ing detuning, the ratio of effective coupling strengths g2/g1

between the two Kittel modes and the qubit is equal to the
ratio of coupling strengths gm2c/gm1c between the two Kittel
modes and the cavity mode. As shown in Fig. 3, the color-
scale two-dimensional maps of the equal-time second-order
autocorrelation functions g(2)

11 (0) and g(2)
22 (0), cross-correlation

function g(2)
12 (0), and the violation factor R are exhibited on a

logarithmic scale plotted versus the ratio of coupling strengths
gm2c/gm1c and the ratio of driving strengths η2/η1 simulta-
neously. The optimal antibunching conditions, anticorrelation
conditions, and CSI violation conditions, which can be ob-
tained by setting the analytical solutions Cg20, Cg02, and Cg11

in Eqs. (6c)–(6e) to equal to zero, are highlighted in Fig. 3
with the white dashed line, the white dashed-dotted line, and
the black dotted lines. These results indicate that the ana-
lytical solutions given in Eqs. (10a)–(10c) and (15) are in
agreement with the full numerical solutions obtained from the
master equation (16). In Fig. 3(c), the region where our hybrid
quantum system exhibits a strong anticorrelation is mainly
concentrated in the range where gm2c/gm1c is less than 1.89.
If g(2)

11 (0), g(2)
22 (0), and g(2)

12 (0) are less than unity at the same
time, the output of the whole system can be considered as a
high-quality single-magnon source. If g(2)

11 (0) and g(2)
22 (0) are

less than unity while g(2)
12 (0) is lager than unity, there are no

excitation competitions between the two antibunched Kittel
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FIG. 3. Logarithmic plot of the equal-time second-order autocorrelation functions g(2)
11 (0) and g(2)

22 (0), cross-correlation function g(2)
12 (0),

and the violation factor R versus the ratio of coupling strengths gm2c/gm1c and the ratio of driving strengths η2/η1 in (a), (b), (c), and (d),
respectively. The white dashed and dashed-dotted lines in (a) and (b) represent the analytical solutions given in Eqs. (10a) and (10b) when
g(2)

11 (0) and g(2)
22 (0) are approximately equal to zero, respectively. The black dotted line in (c) represents the analytical solutions from Eq. (10c)

when g(2)
12 (0) is approximately equal to zero. The white dashed and dashed-dotted lines, and the black dotted line in (d) represent the analytical

solutions from Eq. (15) when R reaches its maximal and minimal values, respectively. The point F denotes the intersection of the three lines
mentioned in (d) above. The point E denotes a point in the overlap region where the two Kittel modes can achieve magnon antibunching effects
simultaneously. The values of the system parameters, taken from Refs. [13,29,32–34], are set as � = �m = �q = 0, gm1c/2π = 15 MHz,
η1/2π = 0.001 MHz, and κ1/2π = κ2/2π = γ /2π = 1 MHz

modes. Both of these cases are meaningful, so we need to
further explore the quantum features, for instance, the viola-
tion factor R of the hybrid quantum system with the help of
the CSI.

In Fig. 3(d), we show the violation factor R, whose values
describe the violation degree of the classical CSI, as a function
of the ratio of coupling strengths gm2c/gm1c and the ratio of
driving strengths η2/η1. Comparing with Figs. 3(a), 3(b), and
3(c), we can clearly observe that when the violation factor
R reaches its maximal values [corresponding to the white
dashed and dashed-dotted lines in Fig. 3(d)], there will be
one equal-time second-order autocorrelation function that can
reach its minimal values [corresponding to the white dashed
and dashed-dotted lines in Figs. 3(a) and 3(d)]. In other words,
the optimal CSI violation conditions are the same as the op-
timal antibunching conditions, which is consistent with the
qualitative discussions in Sec. III C. Likewise, when the vi-
olation factor R reaches its minimal values [corresponding to
the black dotted line in Fig. 3(d)], the equal-time second-order

cross-correlation function g(2)
12 (0) can also reach its minimal

values [corresponding to the black dotted line in Fig. 3(c)].
These results remind us that adjusting the ratio of coupling
strengths gm2c/gm1c and the ratio of driving strengths η2/η1 en-
able the two Kittel modes to achieve the magnon antibunching
effects and generate quantum correlations simultaneously.

To gain a more quantitative insight, here we select the
two points of interest [i.e., points E and F in Fig. 3(d)] to
further explore the magnon antibunching effects and the quan-
tum correlations. In Fig. 4(a), the equal-time second-order
autocorrelation functions g(2)

11 (0) and g(2)
22 (0), cross-correlation

function g(2)
12 (0), and the violation factor R are plotted as a

function of gm2c/gm1c with η2/η1 = 6.6 [corresponding to the
point E in Fig. 3(d)]. It is obvious that when gm2c/gm1c is equal
to 2.24, both g(2)

11 (0) (∼0.46) and g(2)
22 (0) (∼2.34 × 10−2) are

less than unity, whereas both g(2)
12 (0) (∼3.05) and R (∼29.31)

are considerably lager than unity, indicating that neither of
the single-mode two-magnon states is occupied (i.e., the
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FIG. 4. (a) Dependence of the equal-time second-order auto-
correlation functions g(2)

11 (0) and g(2)
22 (0), cross-correlation function

g(2)
12 (0), and the violation factor R on the ratio of coupling strengths

gm2c/gm1c with the ratio of driving strengths η2/η1 = 6.6, which
describes the situation at the point E in Fig. 3(d). (b) Dependence
of the equal-time second-order autocorrelation functions g(2)

11 (0) and
g(2)

22 (0), cross-correlation function g(2)
12 (0), and the violation factor R

on the ratio of coupling strengths gm2c/gm1c with the ratio of driving
strengths η2/η1 = 1.46, which describes the situation at the point F
in Fig. 3(d). The values of the violation factor R described by the
red solid lines correspond to the red axis on the right. The black
horizontal dotted lines represent the classical threshold for the equal-
time second-order autocorrelation functions g(2)

11 (0) and g(2)
22 (0), and

the violation factor R. The values of the other parameters remain the
same as those in Fig. 3.

probability amplitudes of the states |g, 2, 0〉 and |g, 0, 2〉 are
nearly equal to zero), but the two-mode two-magnon state is
occupied (i.e., the probability amplitude of the state |g, 1, 1〉
is not equal to zero). Therefore, both of the Kittel modes can
achieve the magnon antibunching effects, and the correlated
magnon pairs highly violate the classical CSI, thus achiev-
ing the quantum correlations. In Fig. 4(b), the equal-time
second-order autocorrelation functions g(2)

11 (0) and g(2)
22 (0),

cross-correlation function g(2)
12 (0), and the violation factor R

are plotted as a function of gm2c/gm1c with η2/η1 = 1.46
[corresponding to the point F in Fig. 3(d)]. The point F is

FIG. 5. Dependence of the equal-time second-order autocorrela-
tion functions g(2)

11 (0) and g(2)
22 (0), cross-correlation function g(2)

12 (0),
and the violation factor R on the driving detuning � with (gm2c/gm1c,
η2/η1) = (2.24, 6.6) in (a) and (gm2c/gm1c, η2/η1) = (1.46, 1.46) in
(b). The values of the other parameters remain the same as those in
Fig. 3.

the intersection of the white dashed line, the white dashed-
dotted line, and the black dotted line. When gm2c/gm1c is equal
to 1.46, g(2)

11 (0) (∼7.28 × 10−4), g(2)
22 (0) (∼1.16 × 10−2), and

g(2)
12 (0) (∼3.65 × 10−3) are less than unity at the same time,

while R is approximately equal to unity, suggesting that all of
the two-magnon states (including the two-mode two-magnon
state) are not occupied. As a consequence, both of the Kittel
modes can achieve strong antibunching effects, and there is a
strong anticorrelation between them [55]. These results can be
utilized to prepare a high-quality single-magnon source. But
the value of the violation factor R is equal to unity, which
means that at the point F , the correlations between differ-
ent Kittel modes reach the maximum value of the classical
correlation.
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b

C
D

FIG. 6. (a) Dependence of the equal-time second-order auto-
correlation functions g(2)

11 (0) and g(2)
22 (0), cross-correlation function

g(2)
12 (0), and the violation factor R on the ratio of coupling strengths

gm2c/gm1c under the conditions of η2/η1 = 1 and gm1c/2π =
15 MHz. (b) Dependence of the equal-time second-order autocorre-
lation functions g(2)

11 (0) and g(2)
22 (0), cross-correlation function g(2)

12 (0),
and the violation factor R on the ratio of driving strengths η2/η1

under the conditions of gm2c/gm1c = 1 and η1/2π = 0.001 MHz.
The values of the violation factor R described by the red solid lines
correspond to the red axis on the right. The uppercase letters (i.e., A,
B, C, D, and H ) correspond to the maximal values of the violation
factor R, and the lowercase letters (i.e., a, b, c, d , and h) correspond to
the minimal values of g(2)

11 (0) or g(2)
22 (0). The black horizontal dotted

lines represent the classical threshold for the equal-time second-order
autocorrelation functions g(2)

11 (0) and g(2)
22 (0), and the violation factor

R. The values of the other parameters remain the same as those in
Fig. 3.

In Fig. 5, we additionally demonstrate the influence of
the driving detuning on the magnon blockade effects and the
quantum correlations between the two Kittel modes under
the conditions of the points E and F in Fig. 3(d). It can
be observed that the unconventional magnon antibunching
effects and the quantum correlations exhibit typical resonance
characteristics, which results from the destructive quantum
interference. Multiple transition pathways, as shown in Fig. 2,
are available for the Kittel modes to choose to reach the
two-magnon states. However, by introducing the destructive

quantum interference between different transition pathways,
the occupations of the two-magnon states can be prevented,
so that the unconventional magnon blockade effect can be
achieved.

In order to further investigate the dependence of the
equal-time second-order autocorrelation functions g(2)

11 (0) and
g(2)

22 (0), cross-correlation function g(2)
12 (0), and the violation

factor R on either the ratio of coupling strengths gm2c/gm1c or
the ratio of driving strengths η2/η1, we divide our discussions
into the following two cases.

The first case is that we set the ratio of driving strengths
to unity, i.e., p = η2/η1 = 1. Under this scenario, we look
at the independent impact of the ratio of coupling strengths
on the modulation of the magnon blockade effects and the
quantum correlations between the two Kittel modes. In
Fig. 6(a), we plot the equal-time second-order autocorrelation
functions g(2)

11 (0) and g(2)
22 (0), cross-correlation function

g(2)
12 (0), and the violation factor R as a function of the ratio

of coupling strengths gm2c/gm1c, under the conditions of
η1/2π = η2/2π = 0.001 MHz and gm1c/2π = 15 MHz. We
primarily focus on the two maximum value points (i.e., points
A and B) of the violation factor R. When the ratio of the
coupling strengths gm2c/gm1c is less than 1.23, the violation
factor R remains greater than unity, that is, the correlations
between the two Kittel modes are genuinely nonclassical.
In addition, when the violation factor R reaches its maximal
values (i.e., at the points A and B), one of the equal-time
second-order autocorrelation functions can reach its minimal
value (i.e., at the points a and b). For example, for the case of
positions (A, a), the first Kittel mode can achieve the magnon
antibunching effect with g(2)

11 (0) approximately reaching its
minimal value (∼0.25), while the equal-time second-order
autocorrelation function g(2)

22 (0) of the second Kittel mode
is close to unity, indicating that it is in a coherent state.
For the case of positions (B, b), the second Kittel mode can
achieve the magnon blockade effect with g(2)

22 (0) reaching
its minimal value (∼2.6 × 10−3), while the equal-time
second-order autocorrelation function g(2)

11 (0) of the first
Kittel mode is close to 0.32. The correlations between the
two Kittel modes violate the classical CSI, which implies
that under suitable conditions, there are quantum correlations
between the two Kittel modes and both of them can realize
the magnon antibunching effects. What is noteworthy is that
the equal-time second-order cross-correlation function g(2)

12 (0)
is also less than unity, which means that the anticorrelation
between the two Kittel modes can be observed. In other
words, the excitation of the first Kittel mode hinders the
excitation of the second one, that is, there is an excitation
competition between the two Kittel modes [88,89].

The second case is that we set the ratio of coupling
strengths to unity, i.e., d = gm2c/gm1c = 1. Under this sce-
nario, we look at the independent impact of the ratio of
driving strengths on the modulation of the magnon blockade
effects and the quantum correlations between the two Kittel
modes. In Fig. 6(b), we plot the equal-time second-order
autocorrelation functions g(2)

11 (0) and g(2)
22 (0), cross-correlation

function g(2)
12 (0), and the violation factor R as a function of

the ratio of driving strengths η2/η1, under the conditions of
gm1c/2π = gm2c/2π = 15 MHz and η1/2π = 0.001 MHz. In
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FIG. 7. Logarithmic plot of the equal-time second-order autocorrelation functions g(2)
11 (0) and g(2)

22 (0), cross-correlation function g(2)
12 (0),

and the violation factor R versus the frequency detuning δm between the two Kittel modes and the frequency detuning δq between the first
Kittel mode and the qubit in (a), (b), (c), and (d), respectively. The black solid lines in all panels above correspond to log10g(2)

11 (0) = 0,
log10g(2)

22 (0) = 0, log10g(2)
12 (0) = 0, and log10R = 0, respectively, which are clear boundaries that separate the classical regime from the pure

quantum regime [i.e., g(2)
11 (0) < 1, g(2)

22 (0) < 1, and R > 1] [22,90]. The values of the system parameters are set as � = 0, gm2c/gm1c = 2.24,
η2/η1 = 6.6, and κ1/2π = κ2/2π = γ /2π = 1 MHz.

this panel, the violation factor R has three maximal values, but
not all of them can meet our requirements. When the violation
factor R reaches its maximal values (i.e., at the points C, D,
and H), the equal-time second-order autocorrelation function
of one Kittel mode can reach its minimal value and the equal-
time second-order autocorrelation function of the other Kittel
mode is also less than unity (i.e., at the points c, d , and h),
which is similar to the results of Fig. 6(a). For example, for
the case of positions (C, c), the second Kittel mode achieves
the magnon antibunching effect [g(2)

22 (0) ∼ 0.2] while the first
Kittel mode is close to the coherent state. At the same time,
the equal-time second-order cross-correlation function g(2)

12 (0)
also tends to unity. For the cases of positions (D, d) and (H , h),
both of the Kittel modes can achieve the magnon antibunch-
ing effects, and one of them exhibits a strong antibunching
effect. Moreover, we can observe an anticorrelation between
the two Kittel modes. When η2/η1 = 0.775 (corresponding to
the point d), it can be found that g(2)

22 (0) reaches its minimal
value (∼5.93 × 10−4), whereas g(2)

11 (0) does not. Neverthe-
less, with the increase of η2/η1, g(2)

11 (0) gradually approaches
to its minimal value (∼5.34 × 10−4) while g(2)

22 (0) begins to

slowly become larger. The reason for this changing trend is
that g(2)

12 (0) is less than unity, which indicates that there is an
excitation competition between the two Kittel modes. In order
to realize that both of the Kittel modes can orderly output
one by one and the quantum correlations can be established
between them, the cases of positions (B, b), (D, d), and (H , h)
are undoubtedly better choices. This also means that we have
more options by adjusting the ratio of drive strengths rather
than the ratio of coupling strengths.

As a side note, the likely reason for this nonmonotonic
behavior of the CSI violation parameter R in Figs. 4 and 6
is that the multiple quantum interferences emerge between
different excitation pathways from the one-magnon to the
two-magnon state (see Fig. 2). However, because of the bulky
and tedious expressions of R for the analytical solutions given
in Eqs. (6c)–(6e) and (14) where high-order variables are
involved, we fail to provide more intuitive physical picture
and insight from a quantitative point of view.

In all of the above discussions, we consider � = �m =
�q (i.e., δm = δq = 0), but it is difficult to produce such
YIG spheres and qubit which have the same frequency in
the manufacturing process. Therefore, it is meaningful to
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δq/2

δq/2

FIG. 8. Dependence of the equal-time second-order autocorrela-
tion functions g(2)

11 (0) and g(2)
22 (0), cross-correlation function g(2)

12 (0),
and the violation factor R on the frequency detuning δm between
the two Kittel modes with δq/2π = −0.2 MHz in (a) and δq/2π =
−0.4 MHz in (b). The gray shadow areas indicate the region where
g(2)

11 (0) and g(2)
22 (0) are less than unity simultaneously. The black hori-

zontal dotted lines represent the classical threshold for the equal-time
second-order autocorrelation functions g(2)

11 (0) and g(2)
22 (0), and the

violation factor R. The values of the other parameters remain the
same as those in Fig. 7.

discuss the influence of the frequency detunings among the
two Kittel modes and the qubit on the magnon blockade
effects and the quantum correlations. To this end, in Fig. 7,
the equal-time second-order autocorrelation functions g(2)

11 (0)
and g(2)

22 (0), cross-correlation function g(2)
12 (0), and the viola-

tion factor R are plotted on a logarithmic scale as a function
of the frequency detuning δm between the two Kittel modes
and the frequency detuning δq between the first Kittel mode
and the qubit. As can be seen in Fig. 7(a), the region, in
which the first Kittel mode can achieve strong magnon an-
tibunching effect, is concentrated in the range of δm/2π > 0.
In Fig. 7(b), the region, in which the second Kittel mode can
achieve strong magnon antibunching effect, is concentrated in
the range of −1 MHz < δm/2π < 1 MHz. And this region
is centrosymmetric about the origin. We can clearly observe
that there is a region where both g(2)

11 (0) and g(2)
22 (0) are less

FIG. 9. Dependence of [(a), (b)] the equal-time second-order
autocorrelation functions g(2)

11 (0) and g(2)
22 (0), [(c)] cross-correlation

function g(2)
12 (0), and [(d)] the violation factor R on the dissipation

ratio κ2/κ1 between the two Kittel modes with different values of the
qubit dissipation γ . The black horizontal dotted lines represent the
classical threshold for the equal-time second-order autocorrelation
functions g(2)

11 (0) and g(2)
22 (0), and the violation factor R. The rele-

vant parameters used here are set as � = �m = �q = 0, gm1/2π =
gm2/2π = 15 MHz, η2/2π = η1/2π = 0.001 MHz, and κ1/2π =
1 MHz.

than unity, indicating that the two Kittel modes can achieve
the magnon antibunching effects at the same time by adjusting
the frequency detunings among the two Kittel modes and the
qubit. In the center of Figs. 7(c) and 7(d), there is a large
region, in which both g(2)

12 (0) and R are greater than unity. In
other words, there is an overlapping region where both g(2)

11 (0)
and g(2)

22 (0) are less than unity, while both g(2)
12 (0) and R are

greater than unity, which means that we can obtain quantum
correlated two-mode magnon pairs.

In order to make the description more intuitive, we choose
the two specific values in the overlap region to illustrate the
aforementioned behaviors. In Fig. 8, we plot the equal-time
second-order autocorrelation functions g(2)

11 (0) and g(2)
22 (0),

cross-correlation function g(2)
12 (0), and the violation factor

R as a function of the frequency detuning δm between the
two Kittel modes with different frequency detunings δq

between the first Kittel mode and the qubit. Specifically,
in Fig. 8(a), under the condition of δq/2π = −0.2 MHz,
g(2)

11 (0), g(2)
22 (0), and R can reach their minimum and maximum

values at the same value of δm/2π , respectively. In addition,
there is no excitation competition between the two Kittel
modes due to g(2)

12 (0) > 1. In Fig. 8(b), under the condition
of δq/2π = −0.4 MHz, g(2)

11 (0), g(2)
22 (0), and R can reach their

minimum and maximum values at different values of δm/2π ,
respectively. And there is also no excitation competition
between the two Kittel modes due to g(2)

12 (0) > 1. In the gray
shadow regions marked in Fig. 8, the two Kittel modes can
simultaneously realize the magnon antibunching effects, and
the two-mode magnon pairs without excitation competition
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but with quantum correlations can be achieved. It should be
pointed out that the frequency detunings among the two Kittel
modes and the qubit (i.e., δm and δq) need to be as small
as possible to achieve the coherent exchange of an efficient
magnon excitation in a millimeter-sized ferromagnetic sphere
and a superconducting qubit. But this is not contradictory to
the large detunings between the cavity mode and the ith Kittel
modes (the qubit), i.e., δic (δqc) which can make this cavity
mode serve as an intermediary for the exchange of virtual
photons among the two Kittel modes and the qubit.

In all the analysis above, we take into account the scenario
that κ1 = κ2 = γ . Next, we focus on how the equal-time
second-order autocorrelation functions g(2)

11 (0) and g(2)
22 (0),

cross-correlation function g(2)
12 (0), and the violation factor R

vary with the dissipation. In Fig. 9, we plot the equal-time
second-order autocorrelation functions g(2)

11 (0) and g(2)
22 (0),

cross-correlation function g(2)
12 (0), and the violation factor R

as a function of the dissipation ratio κ2/κ1 between the two
Kittel modes under different qubit dissipation γ . In Figs. 9(a)
and 9(c), both g(2)

11 (0) and g(2)
12 (0) do not vary monotonically

with the increase of κ2/κ1, so there is always an optimal
value of κ2/κ1, at which the profiles of g(2)

11 (0) and g(2)
12 (0)

exhibit a single dip. In Fig. 9(d), the profile of the violation
factor R always displays a peak and a dip which correspond
to the dips of g(2)

11 (0) and g(2)
12 (0), respectively. And when

γ /2π = 1 MHz, the degree of the magnon antibunching for
the first Kittel mode, anticorrelation between the two Kittel
modes, and the violation of the CSI are all at their highest
levels. Different from the situations of g(2)

11 (0), g(2)
12 (0), and

R, in Fig. 9(b), the equal-time second-order autocorrelation
function of the second Kittel mode g(2)

22 (0) is insensitive to the
variation of the dissipation ratio κ2/κ1. Nevertheless, g(2)

22 (0)
is sensitive to the variation of the qubit dissipation γ . When
γ /2π is 0.8 MHz, the values of g(2)

22 (0) consistently remain
below 0.1, indicating that the second Kittel mode can always
achieve the magnon antibunching effect in the range of
0 < κ2/κ1 < 5. When γ /2π is 1 MHz, the values of g(2)

22 (0)
are always approximately equal to 0.24. However, when
γ /2π increases to 2 MHz, the values of g(2)

22 (0) remain around
0.8 which are greater than 0.5. According to these attainable
analyses, we can conclude that the equal-time second-order
autocorrelation function of the second Kittel mode exhibits
robustness against the variation of the dissipation ratio κ2/κ1

between the two Kittel modes.

VI. CONCLUSIONS

In summary, we have in detail explored the generation
of nonclassical magnon pairs and identified the violation of
the CSI in a hybrid ferromagnetic-superconductor quantum
system containing two YIG spheres and one superconduct-
ing qubit. By the virtual-photon excitation mediated by
the same cavity mode, the effective couplings, including
the qubit-magnon and magnon-magnon couplings, can be
established among the two Kittel modes and the qubit. We ac-
quire the equal-time second-order autocorrelation functions,
cross-correlation function, and the degree of the quantum
correlations by utilizing two different methods, i.e., analyt-

ical calculations via solving the Schrödinger equation and
numerical simulations via solving the full quantum master
equation. These methods agree well with each other. Based on
the destructive quantum interference between different excita-
tion pathways, we start our research with weak qubit-magnon
coupling strengths. The equal-time second-order autocorrela-
tion functions g(2)

11 (0) and g(2)
22 (0), cross-correlation function

g(2)
12 (0), and the violation factor R can be modulated by the

system parameters, such as the ratio of coupling strengths
between the Kittel modes and the cavity mode, the ratio of
driving strengths, the driving detuning, the frequency detuning
between the Kittel modes, the frequency detuning between
the first Kittel mode and the qubit, the qubit dissipation, and
the dissipation ratio between the Kittel modes. This reveals
the dependence of the magnon statistical properties and the
quantum correlations on these system parameters. According
to whether the frequencies of the two Kittel modes and the
qubit are identical, our research can be classified into the
following two cases.

(i) When the frequencies of the two Kittel modes and the
qubit are identical, we can control and modulate the magnon
statistical properties and the quantum correlations by adjust-
ing the ratio of coupling strengths and the ratio of driving
strengths. First of all, there are suitable values for the ratio
of coupling strengths and the ratio of driving strengths which
allow the two Kittel modes to exhibit antibunching effects
simultaneously. Additionally, the correlated magnon pairs vi-
olate the CSI, confirming that the correlations between the two
Kittel modes are nonclassical. These results offer a scheme to
prepare a two-magnon gateway. There are also special values
that enable the degrees of both the antibunching effects for
the two Kittel modes and the anticorrelation between them
to reach their highest levels simultaneously, but the correla-
tions happen not to violate the CSI. These results mean that
our proposal offers a feasible route to prepare a high-quality
single-magnon source. Furthermore, we investigate the in-
dependent modulation effects of either the ratio of coupling
strengths or the ratio of driving strengths on the magnon
statistical properties and the quantum correlations. We find
that by adjusting only one of the two ratios, we enable both of
the Kittel modes to achieve the magnon antibunching effects
with the excitation competitions and the quantum correlations,
which suggests that our hybrid quantum system offers a fea-
sible scheme to prepare a quantum correlated single-magnon
source.

(ii) When the frequencies of the two Kittel modes and
the qubit are not identical to each other, and the ratio of
coupling strengths and the ratio of driving strengths are fixed
at suitable values, it is found that we can regulate the magnon
statistical properties and the quantum correlations by adjust-
ing the frequency detuning between the two Kittel modes and
the frequency detuning between the first Kittel mode and the
qubit. In the same parameter regime, the two Kittel modes can
exhibit strong antibunching effects simultaneously with the
quantum correlations but without excitation competitions. The
quantum correlated two-mode magnon pairs can be utilized
for preparing the two-magnon gateway. In addition, there are
appropriate values for the frequency detunings which enable
the degrees of the magnon antibunching effects for the two
Kittel modes to reach their highest levels simultaneously.
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Last but not least, it is clearly revealed that the statisti-
cal properties of the second Kittel mode exhibit robustness
against the variation of the dissipation ratio. Our results
provide another scheme for achieving the unconventional
single-mode or two-mode magnon blockade and obtaining
the nonclassically correlated two-mode magnon pairs, which
holds potential application value in preparing the high-quality
single-magnon sources and the two-magnon gateways in the
microwave domain.
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APPENDIX A: DERIVATION OF EFFECTIVE COUPLING
STRENGTHS AMONG TWO KITTEL MODES AND ONE

QUBIT VIA VIRTUAL-PHOTON EXCITATION

In our hybrid ferromagnet-superconductor quantum system
[see Fig. 1(a)], there are two Kittel modes and one supercon-
ducting qubit, all of which can be coupled to the same cavity
mode [see the left half of Fig. 1(b)]. In Eq. (2b), gi (i = 1, 2)
and gm represent the effective coupling strengths. Now, we
demonstrate the derivation process of the effective coupling
strengths. The original Hamiltonian, which includes the cavity
mode, can be divided into two parts:

Ĥ (0)
0 = ωcĉ†ĉ + ω(0)

m1
m̂†

1m̂1 + ω(0)
m2

m̂†
2m̂2 + ω(0)

q σ̂ †σ̂ ,

(A1a)

Ĥ (0)
I = gm1cm̂†

1ĉ + gm2cm̂†
2ĉ + gqcσ̂

†ĉ + H.c., (A1b)

where ωc is the frequency of the cavity mode, ω(0)
mi

(i = 1, 2)
is the bare frequency of the ith Kittel mode, and ω(0)

q is the
bare frequency of the qubit. H.c. stands for the Hermitian
conjugate. ĉ† and ĉ represent the ladder operators of the cavity
mode. gαc means the coupling strength between the cavity
mode c and the mode α (α = m1, m2, q). The other symbols
are defined in the text [cf. Eq. (1)].

Below, we can obtain the effective coupling strengths
among the two Kittel modes and the qubit by exploiting
the Fröhlich-Nakajima transformation [91,92]. To do this, we
introduce the unitary operator Û ′ = eŜ which satisfies the
relation Ĥ (0)

I + [Ĥ (0)
0 , Ŝ] = 0 [72]. So, after some tedious cal-

culations, the operator Ŝ can be obtained and written as [93]

S = gm1c

δ1c
(ĉ†m̂1 − ĉm̂†

1) + gm2c

δ2c
(ĉ†m̂2 − ĉm̂†

2 )

+ gqc

δqc
(ĉ†σ̂ − ĉσ̂ †), (A2)

where δαc = ω(0)
α − ωc represents the frequency detuning be-

tween the mode α and the cavity mode c. The Hamiltonian,
which undergoes second-order transformation, can be approx-
imately expressed as

Ĥ s = Û ′†(Ĥ (0)
0 + Ĥ (0)

I

)
Û ′ ≈ Ĥ (0)

0 + 1
2

[
Ĥ (0)

I , Ŝ
]
. (A3)

Substituting Eq. (A2) into (A3), we can obtain the Hamil-
tonian Ĥ s containing the terms of effective coupling, which
reads as

Ĥ s = ωcĉ†ĉ + ω(0)
m1

m̂†
1m̂1 + ω(0)

m2
m̂†

2m̂2 + ω(0)
q σ̂ †σ̂

+ g2
m1c

2δ1c
[2m̂†

1m̂1 + 2ĉ†ĉ(2m̂†
1m̂1 − 1)]

+ g2
m2c

2δ2c
[2m̂†

2m̂2 + 2ĉ†ĉ(2m̂†
2m̂2 − 1)]

+ g2
qc

2δqc
[2σ̂ †σ̂ + 2ĉ†ĉ(2σ̂ †σ̂ − 1)]

+ gm1cgqc

2

(
1

δ1c
+ 1

δqc

)
(m̂†

1σ̂ + m̂1σ̂
†)

+ gm2cgqc

2

(
1

δ2c
+ 1

δqc

)
(m̂†

2σ̂ + m̂2σ̂
†)

+ gm1cgm2c

2

(
1

δ1c
+ 1

δ2c

)
(m̂†

1m̂2 + m̂1m̂†
2 ). (A4)

Here, we emphasize that under the large-detuning limit
between the mode α and the cavity mode c, i.e., |ω(0)

m1
− ωc|,

|ω(0)
m2

− ωc|, and |ω(0)
q − ωc| 	 gm1c, gm2c, and gqc [33,93], the

assumption that the cavity mode c remains in the ground state
is reasonable, i.e., 〈ĉ†ĉ〉 ≈ 0 [72]. For this reason, Eq. (A4)
can be further simplified as

Ĥeff = ωm1 m̂†
1m̂1 + ωm2 m̂†

2m̂2 + ωqσ̂
†σ̂

+ g1(m̂†
1σ̂ + m̂1σ̂

†) + g2(m̂†
2σ̂ + m̂2σ̂

†)

+ gm(m̂†
1m̂2 + m̂1m̂†

2 ), (A5)

where ωm1 = ω(0)
m1

+ g2
m1c

δ1c
, ωm2 = ω(0)

m2
+ g2

m2c

δ2c
, and ωq = ω(0)

q +
g2

qc

δqc
are the corresponding effective frequencies. gi =

1
2 gmicgqc( 1

δic
+ 1

δqc
) (i = 1, 2) stands for the effective coupling

strength between the ith Kittel mode and the qubit. gm =
1
2 gm1cgm2c( 1

δ1c
+ 1

δ2c
) stands for the effective coupling strength

between the two Kittel modes. So far, we successfully elimi-
nate the cavity mode c and establish the effective couplings
among the two Kittel modes and the qubit by the virtual-
photon excitation mediated by the same cavity mode.

APPENDIX B: PHYSICAL PICTURE OF ESTABLISHING
EFFECTIVE COUPLINGS

Although we derive the establishment of the effective
couplings in detail in Appendix A, the physical picture of
establishing the effective couplings may not be particularly
intuitive and clear. In this Appendix, we plan to take the
effective coupling between the first Kittel mode and the qubit
as an example to address the physical essence of establishing
this effective qubit-magnon coupling.

In this case of only considering the first Kittel mode and
the qubit in the cavity, the total excitation number operator
can be written as N̂ = σ̂ †σ̂ + m̂†

1m̂1 + ĉ†ĉ. Below we just
consider a single-excitation subspace with N = 1 for conve-
nience. That is to say, there exist only three categories of
eigenstates, i.e., |e〉q|0〉m1 |0〉c, |g〉q|1〉m1 |0〉c, and |g〉q|0〉m1 |1〉c,
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FIG. 10. Energy-level diagram and scheme of establishing the
effective qubit-magnon coupling by virtually becoming a photon in
the cavity, working in the single-excitation subspace. In the upper
panel, the excited state in the qubit |e〉q|0〉m1 |0〉c interacts with the
excited state in the first Kittel mode |g〉q|1〉m1 |0〉c via the exchange
of a virtual photon |g〉q|0〉m1 |1〉c in the cavity. For convenience, we
have taken the energy of the zero-excitation state |g〉q|0〉m1 |0〉c to
be the zero of energy and ωc > ω(0)

q , ω(0)
m1

. Under the large-detuning
condition, δqc and δ1c are much larger than δq. The definitions of the
relevant parameters in the entire panel are consistent with those in
Appendix A.

where the basis vectors |·〉q, |·〉m1 , and |·〉c, respectively, stand
for the qubit ground or excited state, the Kittel-mode magnon-
number state, and the cavity-mode photon-number state. By
a concise derivation, we can clarify the reason why the long-
range effective qubit-magnon couplings are introduced via the
virtual photon exchange mediated by the cavity mode.

Figure 10 clearly shows that, in the single-excitation mani-
fold, an excitation of the two-level qubit from its excited state
|e〉q|0〉m1 |0〉c can be transferred to the YIG, i.e., a one-magnon
state |g〉q|1〉m1 |0〉c through a virtual transition via the one-
photon intermediate state |g〉q|0〉m1 |1〉c in the cavity, and vice
versa. That is to say, the excited state of the two-level qubit
|e〉q|0〉m1 |0〉c interacts with the one-magnon state of the YIG
|g〉q|1〉m1 |0〉c via the exchange of a virtual photon |g〉q|0〉m1 |1〉c

in the cavity. In this circumstance, no energy is exchanged
with the cavity due to the enough large detuning δ1c (δqc) be-
tween the YIG magnon (the qubit) and the cavity photon, thus
revealing that the cavity mode can be adiabatically eliminated.
More specifically, in the upper panel of Fig. 10, since the
frequencies of the first Kittel mode and the qubit are far from
the frequency of the cavity mode, and the frequency of the first
Kittel mode is tuned to be nearly resonant with the qubit, vir-
tual photons are created and destroyed and a virtual transition

can be achieved via the intermediate state |g〉q|0〉m1 |1〉c [94].
The corresponding transition process depicted in the upper
panel of Fig. 10 can be expressed as

m̂†
1ĉĉ†σ̂ |e〉q|0〉m1 |0〉c = (m̂†

1ĉ) · (ĉ†σ̂ )|e〉q|0〉m1 |0〉c

= m̂†
1ĉ|g〉q|0〉m1 |1〉c

= |g〉q|1〉m1 |0〉c. (B1)

From Eq. (B1), it is clear that through the intermediate state
|g〉q|0〉m1 |1〉c, we can achieve the transition from |e〉q|0〉m1 |0〉c

to |g〉q|1〉m1 |0〉c. And it is also obvious that ĉĉ†|0〉c = |0〉c

which means that this virtual transition process is mediated by
a vacuum field [95]. That is to say, the cavity mode provides
a channel as a medium for the exchange of virtual photons
between the first Kittel mode and the qubit [96,97].

The lower panel of Fig. 10 describes the interaction be-
tween the first Kittel mode and the qubit, which is a transverse
interaction of the effective coupling strength g1. Similarly, the
corresponding transition process depicted in the lower panel
of Fig. 10 can be represented as

m̂†
1σ̂ |e〉q|0〉m1 |0〉c = |g〉q|1〉m1 |0〉c. (B2)

By comparing Eqs. (B1) and (B2), it is intuitive that the
physical picture of the processes depicted in the upper and
lower panels of Fig. 10 are consistent, showing that the cav-
ity mode involving the intermediate virtual transition can be
adiabatically eliminated. In other words, the qubit-magnon
interaction is a result of the virtual exchange of photons via the
cavity mode which is far detuned from both the Kittel modes
and the qubit. In addition, the effective coupling strength g1

can be derived by the second-order perturbation theory.
In short, based on Fig. 10 and the concise derivation above,

it is straightforward to understand the physical essence of
establishing the long-range effective couplings via the virtual
photons exchange mediated by the cavity mode.

APPENDIX C: VERIFICATION OF EQUIVALENCE
BETWEEN EFFECTIVE HAMILTONIAN

AND ORIGINAL HAMILTONIAN

In Appendix A, we present the detailed derivation process
of the effective Hamiltonian [i.e., Eq. (A5)], which contains
the effective coupling strengths among the two Kittel modes
and the qubit. Next, we plan to verify the equivalence between
the effective Hamiltonian which has undergone the Fröhlich-
Nakajima transformation, and the original Hamiltonian.

To begin with, we apply an external driving field with a
frequency of ωd to the two Kittel modes. On the basis of
Eqs. (A1a) and (A1b), we can derive the whole Hamiltonian
of the driven hybrid quantum system in Fig. 1(a) as follows:

Ĥ (0)
sys = Ĥ (0)

0 + Ĥ (0)
I + Ĥd, (C1)

where Ĥd = η1m̂†
1e−iωd t + η2m̂†

2e−iωd t + H.c. denotes the
driving Hamiltonian.

Next, we apply the unitary operator Û (0)(t ) =
e−iωd t (ĉ† ĉ+m̂†

1m̂1+m̂†
2m̂2+σ̂ †σ̂ ) to transform Ĥ (0)

sys into a rotating
reference frame, thereby eliminating its time dependence.
After some calculations, we can rewrite the Hamiltonian of
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FIG. 11. Comparison of (a), (b) the equal-time second-order
autocorrelation functions g(2)

11 (0) and g(2)
22 (0), (c) cross-correlation

function g(2)
12 (0), and (d) the violation factor R obtained from the

original Hamiltonian (represented by the black solid lines) with those
obtained from the effective Hamiltonian (represented by the red
dotted lines). The values of the other parameters remain the same
as those in Fig. 4(b).

the hybrid quantum system as

Ĥ (0)
r = �(0)

c ĉ†ĉ + �(0)
m1

m̂†
1m̂1 + �(0)

m2
m̂†

2m̂2 + �(0)
q σ̂ †σ̂

+ (
gm1cm̂†

1ĉ + gm2cm̂†
2ĉ + gqcσ̂

†ĉ + H.c.
)

+ η1(m̂†
1 + m̂1) + η2(m̂†

2 + m̂2), (C2)

where �(0)
c = ωc − ωd and �(0)

α = ω(0)
α − ωd (α =

m1, m2, q).
Finally, we introduce dissipation terms to obtain a non-

Hermitian Hamiltonian Ĥ (0)
tot which does not undergo the

Fröhlich-Nakajima transformation, with the form

Ĥ (0)
tot = Ĥ (0)

r − i
κc

2
ĉ†ĉ − i

κ1

2
m̂†

1m̂1 − i
κ2

2
m̂†

2m̂2

− i
γ

2
σ̂ †σ̂ . (C3)

In order to confirm the rationality of the operation in
Appendix A, we plan to verify whether the effective Hamil-
tonian [i.e., Eq. (4)] is equivalent to the original one [i.e.,
Eq. (C3)]. Using Fig. 4(b) as an example, we additionally
plot the equal-time second-order autocorrelation functions
g(2)

11 (0) and g(2)
22 (0), cross-correlation function g(2)

12 (0), and the
violation factor R under the same conditions with Fig. 4(b),
which are completely based on the original Hamiltonian. In
Fig. 11, it is evident that the equal-time second-order au-
tocorrelation functions g(2)

11 (0) and g(2)
22 (0), cross-correlation

function g(2)
12 (0), and the violation factor R plotted based on

the effective Hamiltonian can match well with those plotted
based on the original one. Therefore, we can confidently uti-
lize the effective Hamiltonian to solve problems in the hybrid
quantum system which we consider.

APPENDIX D: DYNAMICAL EVOLUTION EQUATIONS
AND STEADY-STATE SOLUTIONS

In this Appendix, our main aim is to provide the detailed
process of solving the Schrödinger equation analytically and
to present the formulas that are omitted in the main text.
By substituting the non-Hermitian Hamiltonian Ĥtot given by
Eq. (4) and the wave function |ψ〉 expressed by Eq. (5) into
the Schrödinger equation i ∂|ψ〉

∂t = Ĥtot|ψ〉, we can arrive at the
dynamical evolution equations of the probability amplitudes:

i
∂Cg10

∂t
= �′Cg10 + η1Cg00 + η2Cg11 +

√
2η1Cg20

+ g1Ce00 + gmCg01, (D1a)

i
∂Cg01

∂t
= �′

mCg01 + η2Cg00 + η1Cg11 +
√

2η2Cg02

+ g2Ce00 + gmCg10, (D1b)

i
∂Cg11

∂t
= (�′ + �′

m)Cg11 + η2Cg10 + η1Cg01 + g2Ce10

+ g1Ce01 +
√

2gm(Cg20 + Cg02), (D1c)

i
∂Cg20

∂t
= 2�′Cg20 +

√
2η1Cg10 +

√
2g1Ce10 +

√
2gmCg11,

(D1d)

i
∂Cg02

∂t
= 2�′

mCg02 +
√

2η2Cg01 +
√

2g2Ce01 +
√

2gmCg11,

(D1e)

i
∂Ce00

∂t
= �′

qCe00 + g1Cg10 + g2Cg01 + η1Ce10 + η2Ce01,

(D1f)

i
∂Ce10

∂t
= (�′ + �′

q)Ce10 + g2Cg11 +
√

2g1Cg20

+ η1Ce00 + gmCe01, (D1g)

i
∂Ce01

∂t
= (�′

m + �′
q)Ce01 + g1Cg11 +

√
2g2Cg02

+ η2Ce00 + gmCe10, (D1h)

where �′ = � − i κ1
2 , �′

m = �m − i κ2
2 , and �′

q = �q − i γ

2 .
Next, by taking the weak-driving limit, i.e., {η1, η2} �

{κ1, κ2, γ , g1, g2}, into consideration, a few energy levels can
be excited and most of the magnons and photons stay in
the ground state |g, 0, 0〉. Based on such a condition, we can
obtain a relationship as follows:

Cg00 � 1

	 {Cg10,Cg01,Ce00}
	 {Cg11,Cg20,Cg02,Ce10,Ce01}. (D2)

After this, we can take advantage of the relationship [i.e.,
Eq. (D2)] above to simplify the dynamical evolution equations
and obtain the equations of the probability amplitudes under
the steady state |ψs〉, i.e., i

∂Cjm1m2
∂t = 0 on the left side of

Eqs. (D1a)–(D1h). Concretely, these steady-state probability
amplitudes read as

0 = �′Cg10 + η1 + g1Ce00 + gmCg01, (D3a)

0 = �′
mCg01 + η2 + g2Ce00 + gmCg10, (D3b)
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0 = (�′ + �′
m)Cg11 + η2Cg10 + η1Cg01 + g2Ce10

+ g1Ce01 +
√

2gmCg20 +
√

2gmCg02, (D3c)

0 = 2�′Cg20 +
√

2η1Cg10 +
√

2g1Ce10 +
√

2gmCg11,

(D3d)

0 = 2�′
mCg02 +

√
2η2Cg01 +

√
2g2Ce01 +

√
2gmCg11,

(D3e)

0 = �′
qCe00 + g1Cg10 + g2Cg01, (D3f)

0 = (�′ + �′
q)Ce10 + g2Cg11 +

√
2g1Cg20

+ η1Ce00 + gmCe01, (D3g)

0 = (�′
m + �′

q)Ce01 + g1Cg11 +
√

2g2Cg02

+ η2Ce00 + gmCe10. (D3h)

It is evident that Eqs. (D3a)–(D3h) are closed, i.e., the num-
ber of the unknowns is equal to the number of the equations,
allowing us to iteratively calculate the steady-state solutions
of all the probability amplitudes. In order to simplify the
form of the probability amplitudes, we set �′ = �′

m = �′
q,

g2/g1 = d , and η2/η1 = p, thereby we can attain the proba-
bility amplitudes of the single-magnon excitation states (i.e.,
Cg10 and Cg01) and the two-magnon excitation states (i.e., Cg20,
Cg02, and Cg11) given by Eqs. (6a)–(6e) in the main text.
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