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Radiation of optical angular momentum from a dipole source in a magneto-birefringent
disordered environment
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We investigate the radiation of optical angular momentum by a dipole gas under uniform magnetic field with
an unpolarized source at its center. Conservation of angular momentum implies a torque on both the source
and the surrounding environment. We study the separate spin and orbital contributions to the radiated angular
momentum.
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I. INTRODUCTION: TORQUES AND SOURCES

Radiative forces have been studied since Maxwell’s equa-
tions have appeared more than 150 years ago. Radiative
pressure due to light scattering is a major force after gravity
in astrophysics [1]. Today, radiative forces are widely used
to manipulate matter and cool atoms with optical traps and
optical tweezers. Even in the quantum vacuum, new radiative
forces emerge, such as the Casimir force [2] and quantum
vacuum friction [3,4]. They fascinate theoreticians, and after
all these years some controversies still exist in the definition
of photon momentum [5]. Of course, it is well known that
light possesses angular momentum and can transfer angular
momentum when interacting with matter. By conservation of
angular momentum, any emitter of electromagnetic angular
momentum must suffer from a mechanical back reaction.
Magnetized neutron stars radiate electromagnetic angular mo-
mentum and their rotation is slowed down [6].

The classical or quantum emission of electromagnetic
waves is an active field of research. Today it widely ac-
knowledged that the radiative power of a source is not only
determined by its internal structure of moving charges and
currents but also by its direct environment [7]. The emission of
radiation from a dipole source, such as an atom or a quantum
emitter, can be significantly affected by its environment. An
important phenomenon in this context is the Purcell effect [8].
It refers to the modification of the radiative properties of a
source when placed in close proximity to an environment with
specific optical properties. This property must also apply to
sources of optical angular momentum. Well-known emitters
of electromagnetic angular momentum are rotating charges or
magnetic moments, including atoms in quantum states with
high angular momentum. The amount of radiated angular
momentum should depend on the environment and vice versa,
both emitter and environment must be subject to a torque.

The main motivation of this work is to study an ultimate
situation where a classical electric dipole—a source for radia-
tion of energy but not of angular momentum [9]—becomes an
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emitter of angular momentum due to a magneto-birefringent
environment. We will investigate the back reaction to both
environment and source. The radiated angular momentum is
expected to contain both spin and orbital motion. This reveals
that the action and dynamics of source, local environment,
and emitted radiation are intimately connected. In our first
study [10] we considered the emission of electromagnetic
angular momentum and did not address the back reaction of
the scatterers in detail. In our previous study [11] we dealt
with a homogeneous, spherical environment in which the en-
vironment was seen not to be subject to a torque but only the
source. In our present model the environment is disordered
and both source and environment experience a torque due to
light scattering.

II. RADIATION OF OPTICAL ANGULAR MOMENTUM

We consider an unpolarized dipole source in the center of
a spherical environment with radius R containing a gas of N
pointlike electric dipoles (Fig. 1). The electric dipoles have
polarizability [12]:

α(ω, B0) = α(0)ω2
0

ω2
0 − (ω + ωciε · B̂0)2 − iγω

, (1)

where γ is the radiative damping rate of the dipoles, ω0 is
the resonance frequency and ωc = eB0/2mc0 is the cyclotron
frequency; and α(0) is the static polarizability and can be
related to the volume u of the dipoles as α(0) = 3u [13].
The hermitian 3×3 matrix i(ε · B̂0)nm is defined as iεnmkB̂0k .
In a microscopic theory, h̄ωc represents the Zeeman splitting
of an excited state due to the interaction of the atom with
the magnetic field. The continuity equation for the angular
momentum J(r, t ) confined in a sphere of radius r at time t
around the source is given by [9]

d

dt

[
Jmech

k + J rad
k

]
(r, t ) = r3

8π
εklmRe

∫
d r̂′ r̂′

j r̂
′
l (EjĒm

+ BjB̄m)(rr̂′, t )

d

dt
Jmech

k ≡ Mk. (2)
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FIG. 1. Schematic picture of the geometry considered in this
work. An unpolarized dipole source is located at the origin, sur-
rounded by two shells: the first shell is empty to avoid scattering
close to the source, while the second shell contains an on average
homogeneous dipole gas with radius R. The external magnetic field
is directed perpendicular to the plane. The electromagnetic Poynting
vector exhibits an azimuthal component Sφ which is orthogonal to
both the magnetic field and the radial vector. This component induces
the emission of angular momentum into space.

The right-hand side of this equation represents the optical an-
gular momentum (AM) radiated into space. Summation over
repeated vector indices j, l, m has been assumed implicitly.
For r > R the mechanical AM is independent of distance r,
and dJmech/dt gives the torque on both source and environ-
ment. If the source has been stationary for a time much longer
than it takes light to travel a distance equal to the radius r
(t � r/c0), the total electromagnetic AM inside the sphere
of radius r stays constant, so that dJrad(r, t )/dt = 0. In that
case the leakage is independent on the distance r. According
to Eq. (2), matter experiences a torque equal to the emitted
AM. To determine the amount of AM emitted, we can evaluate
the right-hand side of Eq. (2) at a large distance from the
environment (r → ∞). The electric and magnetic fields in
Eq. (2) are determined by solving the Helmholtz equation for
a classical monochromatic source with frequency ω = kc0

[14]. The solutions for the electric and magnetic fields can
be expressed as

E(r) = GE (r) · ( − 4π iω/c2
0

)
jS,

B(r) = GB(r) · ( − 4π iω/c2
0

)
jS. (3)

We define the Green’s functions as GE (R) and GB(R) accord-
ing to

GE (r) = G0(r) +
∑
α,β

G0(r − Rα ) · Tαβ · G0(Rβ ), (4)

GB(r) = G0
B(r) +

∑
α,β

G0
B(r − Rα ) · Tαβ · G0(Rβ ). (5)

To distinguish between the spatial components and the dipole
indices of the tensors, we use Latin and Greek indices, re-
spectively. The dot denotes the contraction of Latin indices
associated with polarization. The Green’s functions G0 and
G0

B describe how the electromagnetic waves generated by the

electric dipole source propagate in free space and can be ob-
tained from [15]. For a monochromatic electric dipole source
at the origin with a dipole moment d, the source current is
jS (r) = −iωdδ(r). The transmission matrix Tαβ , that appears
in both Green’s functions, is a 3N×3N matrix. It describes
how light emanating from a source and interacting with a gas
of electric dipoles propagates through the environment. The
factor 3 corresponds to the three polarization states of light.
The T matrix can be calculated as described in [13]. We will
first put B0 = 0 and treat the external magnetic field later in
perturbation. Without an external magnetic field, the T matrix
is given by

{
T (0)

αβ

} = t0(ω)

{1δαβ − t0(ω)G0(Rα − Rβ )(1 − δαβ )} . (6)

The superscript (0) indicates that this is the T matrix in the
absence of an external magnetic field; t0(ω) is the T matrix
of a single electric dipole and is expressed near its resonance
frequency ω0 = c0k0 as

t0(ω) = −α(ω, B0 = 0)k2 = 3π

k0

1

δ + i/2
1. (7)

We introduced the detuning parameter δ [13], which is the
difference between the frequency ω of the source and the
resonance frequency ω0 of the surrounding dipoles divided
by the decay rate of the dipoles. The frequency ω is assumed
to be near the resonance and γ � ω0, so that we set k = k0

in the Green’s tensor. The T matrix describes a nonabsorbing
medium, and in our numerical implementation we explicitly
verified the optical theorem. The presence of an external mag-
netic field in the polarizability (1) modifies the T matrix [16].
The change is small and can be treated perturbatively. In first
order, the modified T matrix is given by

Tαβ = T (0)
αβ + T (0)

αγ ·
[
δγ δ

(
−i

k0

6π
με · B̂0

)]
· T (0)

δβ . (8)

The dimensionless parameter μ is deduced from the expres-
sion of the polarizability (1) in the presence of the magnetic
field:

μ = 12π

α(0)k3
0

ωc

ω0
. (9)

All torques calculated in this paper will be linearly propor-
tional to μ, itself linear in the external magnetic field. In this
diamagnetic picture, μ ∼ 5×10−5/Gauss is small (calculated,
e.g., for a hydrogen atom and the transition 1S → 2P). The
material parameter μ is the small parameter in our perturba-
tion expansion. Its smallness guarantees that for any realistic
magnetic field, up to Tesla’s, the linear perturbation is valid.

The mechanical torque in Eq. (2) can be split into two
parts: the torque on the source MS and the torque on the
environment. The torque on the source is given by [11]

MS
i = −2π

3
k2|d|2Re εi jkGE

k j (0, 0). (10)

By conservation of AM, the torque on the environment equals
the difference between the torque on the source and the AM
leakage ME = M − MS.
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III. COMPUTATION OF THE RADIATED OPTICAL
ANGULAR MOMENTUM

The right-hand side of Eq. (2) represents the radiation
of optical AM as mentioned, which includes a front factor
proportional to r3. This factor means that the AM emitted at
infinity can be found by keeping only those terms in Ēl Ek and
B̄lBk that are proportional to 1/r3 and that the leading terms
1/r2 vanish. We assume an unpolarized source, facilitated by
a random orientation of the dipole vector d of the source. The
tensor Ē jEm for an unpolarized source is expressed as

Ē j (r)Em(r) = (4π )2

3
k4

0 |d|2
[

G0
js(r)Ḡ0

ms(r)

+
∑
α,β

G0
js(r)Ḡ0

mn(r − Rα )(T̄αβ )nn′Ḡ0
n′s(Rβ )

+
∑
α,β

G0
jn(r − Rα )(Tαβ )nn′G0

n′s(Rβ )Ḡ0
ms(r)

+
∑

α,β,γ ,δ

G0
jn(r − Rα )(Tαβ )nn′G0

n′s(Rβ )

× Ḡ0
mp(r − Rγ )(T̄γ δ )pp′Ḡ0

p′s(Rδ )

]
. (11)

A similar expression for the average tensor B̄ jBm is obtained
by the same procedure. The first term of Eq. (11) corresponds
to the unscattered radiation of the source and does not con-
tribute to the radiated AM. The second and third terms include
the interference of the unscattered electric field emitted by
the source and the electric field scattered by the dipole gas.
The last term accounts for the interference among all multiple
scattering paths inside the dipole gas. When considering the
radiated optical AM at infinity, the angular integral in Eq. (2)
simplifies and can be performed analytically. The general
form of the expression for the radiated AM linear in the
magnetic field is given by

Mk = Xk (R1, . . . , RN ) + Akm(R1, . . . , RN )B̂0,m. (12)

The vector X vanishes when only one dipole is considered
but not for an arbitrary rotationally variant environment. The
second term in Eq. (12) represents the torque linear in the
magnetic field. We restore rotational invariance by averaging
over the orientation of the dipole gas as a whole. This means
that we rotate all position vectors of the scatterers by the
same angle and then calculate the average over all possible
rotations. The average of 〈M · B̂0〉 over the dipole gas distri-
bution orientation is physically equivalent to average over the
direction of the magnetic field B̂0:

〈M · B̂0〉 = 〈M · B̂0〉B̂0
. (13)

Averaging over the orientation of the dipole gas restores ro-
tational symmetry. Consequently, only the direction of the
external magnetic field remains for the radiated AM; this can
be expressed as

〈M〉 = κL(R1, . . . , RN )B̂0. (14)

The real-valued scalar κL refers to total leakage and is easily
related to the second-rank tensor A using Eqs. (13) and (12):

κL = 1
3 Tr A. (15)

The same averaging of Eq. (10) leads to

〈MS〉 = κSB̂0. (16)

The calculation of κL for one single dipole, whose position
is averaged over the same shell, has been done analytically.
We used the analytical expression to calculate κL in the sin-
gle scattering approximation (see Sec. V). After the average
performed in Eqs. (15) and (16), κL and κS still fluctuate
significantly with the exact choice for the N dipole positions.
The full probability distributions functions, obtained for 1000
different sets of dipole positions, will be obtained later.

IV. ORBITAL AND SPIN ANGULAR MOMENTUM

In this section we separate the optical radiated AM into
optical spin and orbital AM, and associate the total torque with
the magneto-transverse component Sφ of the Poynting vector
in the far field. To obtain the latter we assume that the radiative
AM propagates with the speed c0 from the source and locate
our outer surface at distance r > c0t in Eq. (2) outside the light
cone. The leakage through this surface now vanishes, and the
total radiative angular moment for r′ < r evolves like

dJrad

dt
= d

dt

[ ∫ c0t

0
dr′ r′2

∫
d r̂′ r′ × S(r′)

c2
0

]
= −M, (17)

where S(r) is the Poynting vector. This equation shows that
4πr′3〈r̂′×Sφ〉r̂′/c0 for r′ = c0t is equal to −M. Hence, after
averaging over the orientation of the dipole gas distribution,
we get the simple expression∫

d r̂ r̂ × 〈Sφ〉(r) = −κLc0

r3
B̂0. (18)

In this approach we can separate the radiated AM into spin
and orbital AM using [17]

M = r2

8πω
Im

∫
d r̂ [E × Ē + Em(r × ∇)Ēm]

= Mspin + Morbit. (19)

The angular integral in Eq. (19) must be evaluated on an
arbitrary surface outside the environment. We evaluate it at
infinity (r → ∞), which allows us to perform the angular
integral analytically. When evaluating the surface integral at
infinity, only terms in the integrand that are proportional to
1/r2 need to be considered.

In conclusion, the scalar κL associated with total leakage
of AM is related to an azimuthal Poynting vector that decays
as 1/r3 and can be separated either into spin and orbital com-
ponents or into torques exerted on environment and source:

κL = κSp + κO = κS + κE. (20)

V. NUMERICAL RESULTS

In the numerical simulations, we calculate the dimension-
less ratios κω/PSμ. Here PS is the power emitted by the dipole
source, which is also affected by the surrounding environment
(Purcell effect [8]); κ refers to either κL, κSp, etc. This ratio
normalizes the torque to the amount of radiated energy and
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quantifies the amount of emitted AM in units of h̄ per emitted
photon. The power emitted by the source is given by [11]

PS = −2π

3
k3

0c0|d|2ImGE
ii (0, 0). (21)

The different ratios κω/PSμ are computed as a function of
two parameters η and τ0 defined as

η = 4πn

k3
0

, τ0 = R


0
= Rnσsc. (22)

The parameter η is the number of dipoles per cubic of wave-
length, and τ0 is (assuming independent scattering) the optical
thickness, which is the ratio of the radius R of the sphere and
the mean free path 
0 = (nσsc)−1; n is the scatterer density
and σsc is the scattering cross section for one dipole. For
η � 1, the contribution of recurrent scattering and interfer-
ence to multiple scattering is expected to be negligible, but
as η approaches unity, recurrent scattering can no longer be
neglected. The neglect of recurrent scattering and interference
is referred to as the independent scattering approximation
(ISA) [18], so that 
0 is the mean free path in the independent
scattering approximation. For η ∼ 1, the mean free path is
usually larger than 
0 [13]. We will ignore this change of
the mean free path in the optical thickness τ0 and use 
0 to
calculate the optical thickness.

The calculation time of our code increases rapidly as N3

with the number of dipoles N . Apart from detuning, we have
three dimensionless parameters that characterize our medium:
η and τ defined in Eq. (22), and the size parameter of the
sphere x = kR. Around resonance (δ ≈ 0) it can be seen that
τ ∼ N/x2 and η ∼ N/x3 so that η ∼ τ/x. Ideally we would
like to have a medium with large multiple scattering and
small recurrent scattering to avoid unknown complications,
i.e., η � 1 and τ � 1. This requires a large x and an even
larger value for N . Because we are restricted to N � 2000,
curves shown in the different figures stop at different values
for τ . In the present study this prevented us from investigat-
ing τ > 6 and η < 0.03. The last value still largely exceeds
densities of scatterers in real-life environments.

In our numerical simulations we have excluded a small
spherical region with a radius of λ/4 around the dipole source
to avoid divergences due to the singular behavior of the
Green’s function at small r (see Fig. 1). We accounted for
this small exclusion volume to obtain the value of τ0 and η.
However, we did not impose any constraints on the distance
between the dipoles that would induce spatial correlations. We
did not encounter any problems due to close dipoles in the
simulations. To ensure the reliability of our results, we care-
fully ensured that the medium was on average homogeneous.
We performed the full statistics of the value of the various
kappas over at least 103 independent realizations for each data
point, to be discussed later in Fig. 6.

We now present the numerical results. Figure 2 shows that
for η = 0.03 the radiated AM is proportional to τ 2

0 and is
directed opposite to the external magnetic field. This behav-
ior is also expected to hold for smaller values of η that are
more difficult to access numerically. For larger η, however,
the τ 2

0 scaling disappears as τ0 increases, and the radiated
AM decreases as η increases at constant optical thickness.
This figure illustrates the influence of recurrent scattering and

FIG. 2. Numerical results for the total leakage κLω/PSμ per
emitted photon for different values of the parameters η and τ0. The
bars indicate the standard deviation of the full statistic of κL values
and are not error bars. The dashed line denotes the level zero.

interference on the radiated AM. More optical thickness in-
creases the amount of radiated optical AM per photon, but
larger values for η reduce the amount of radiated AM. The
small leak of AM for large η may imply that interference
phenomena suppress the propagation of AM inside the sphere.
The result obtained for η = 0.3 and τ0 ∼ 1.25 is quite remark-
able, since the leak of AM actually vanishes, although the
torque on the source still has a significant value (Fig. 4). This
indicates that a direct transfer of AM exists from the source
to the environment. For these parameters, the radiated spin
and orbital AM are exactly opposite κSp + κO = 0, with no
net leak.

In Fig. 3 we show the numerical results for the spin compo-
nent of the radiated AM. Surprisingly, we can see that the spin
component represents only a small part of the total radiated
AM, showing that the radiated AM is dominated by orbital
AM. Only for η = 0.3, the spin part of total AM becomes
significant.

In Fig. 4 we have plotted the torque acting on the source,
given by the formula (10). It is strictly positive in the applied

FIG. 3. Results of numerical simulations for the spin leakage
κSpω/PSμ per emitted photon as a function of the optical thickness
for various values of the parameter η.
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FIG. 4. Numerical results showing the torque on the source per
emitted photon as a function of the parameters η and τ0.

parameter range. Upon comparing Figs. 4 and 2, it can be seen
that for small values of η, the torque exerted on the source is
relatively insignificant compared to the torque exerted on the
environment. This implies that it is primarily the environment
that acquires AM. However, as η increases, this is no longer
the case. For η = 0.3, the torque on the source becomes
comparable to the torque on the environment, though with
opposite sign, indicating that they acquire opposite AM. It is
worth noting that the curve for η = 0.3 exhibits oscillations.
The cause of these oscillations is not yet fully understood, and
it is possible that they are the result of an imperfect average
over the dipole gas distribution.

The aim of Fig. 5 is to compare the roles of multiple and
single scattering. We compare the radiated AM calculated
with multiple scattering (MS) and the radiated angular mo-
mentum calculated from N single dipole formula:

κSS
L =

∑
α

κL(Rα ), (23)

where κL(Rα ) is the radiated angular momentum in the pres-
ence of a single dipole at Rα . The single dipole formula

FIG. 5. Effect of multiple scattering on the radiated optical AM.
The multiple scattering curves are labeled MS and the single scatter-
ing approximation curves are labeled SS.

FIG. 6. Left: Distribution of the normalized total leakage
κLω/PSμ and the normalized torque on the source κSω/PSμ for
η = 0.03, optical thickness τ0 = 2.074 and detuning δ = 0.1. The
right figure depicts the distribution of the normalized spin leakage
κSpω/PSμ and the normalized κOω/PSμ for the same values of η, τ0,
and δ.

by definition neglects any kind of multiple scattering. As
expected for τ0 > 1, the multiple scattering result deviates
significantly from the single dipole formula.

The full statistics of the different κ are shown in Fig. 6 for
η = 0.03, τ0 = 2.074, and δ = 0.1. The standard deviations
shown earlier in Fig. 2 correspond to the widths of the proba-
bility distribution function for κL for the different values of η

and τ0 and are given by the usual formula:

σ (τ0, η) =
√√√√ 1

N

N∑
i=1

(κi − 〈κ〉)2, (24)

where N is the number of realizations, κi is the value of κ

for the realization i, and 〈κ〉 is the mean value of κ over the
N realizations. It can be seen from Fig. 2 that as either η

or τ increase, the width of the distributions of the radiated
AM increases. Thus both the increase in recurrent scattering
and the increase in multiple scattering tend to broaden the
distributions. The distributions for the spin and orbital AM
are seen to be quite different, again revealing the dominant

FIG. 7. Impact of opposite detunings on the total AM leakage
for the curves η = 0.03 and η = 0.1. The bars indicate the standard
deviation of the distribution of κLω/PSμ values.
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FIG. 8. Single parameter scaling of the normalized angular mo-
mentum leak for η = 0.03, η = 0.06, η = 0.1, and η = 0.3 obtained
by multiplying them by η/0.03. For η = 0.3, the scaling starts to
break down. This figure shows that for values of η up to 0.1, the total
radiated angular momentum is proportional to the mean free path 
0

times f (τ0 ) ∼ τ 2
0 for τ0 � 2.

role of orbital radiated AM. Contrary to κO, the average of κsp

is small because it takes both positive and negative values.
In Fig. 7 we show the effect of taking small opposite detun-

ings on the radiated AM for η = 0.03 and η = 0.1. For small
values of τ0, the radiated angular momentum has opposite
signs for opposite detunings. This is expected from the single
dipole formula, proportional to Im t2

0 . As τ0 approaches unity
and beyond, this is no longer the case, and the curves for
opposite detunings show similar behavior, with only a slight
shift with respect to each other. In Fig. 8 we have made an
attempt to find a single-parameter scaling of the AM leak. To
this end we multiplied all curves by η/0.03. There is a good
agreement for the curves η = 0.06 and η = 0.1, but the curve
η = 0.3 clearly deviates. This figure shows that for values of η

up to 0.1, the total radiated angular momentum is proportional
to the mean free path 
0 for τ0 constant. When η ∼ 1, the mean
free path is no longer given by the ISA formula (22), and the
true value of the optical thickness τ is smaller than τ0.

VI. CONCLUSION AND OUTLOOK

In this paper we have investigated the transfer of angu-
lar momentum radiated by an electric dipole source into a
magneto-birefringent environment. Two parameters have been
considered for this study: η the density of scatterers per cubic

of wavelength and τ0 the optical thickness in the independent
scattering approximation. We have shown that for η � 1 the
total radiated angular momentum is proportional to τ 2

0 and
opposite to the direction of the magnetic field. However, it
is observed that as η approaches unity, the τ 2

0 behavior dis-
appears as τ0 increases. For constant τ0, the radiated angular
momentum is proportional to the mean free path 
0 as long as
the density is small enough (η < 0.1).

The torque on the medium was separated into the torque on
the source and the torque on the environment. Previous work
[13] showed that the torque on a homogeneous environment
vanishes. For small values of η, the torque on the source
is negligible and the torque environment dominates. As η

increases, the torque on the source increases while the total ra-
diated angular momentum decreases. We conclude that there
is more and more transfer of angular momentum from the
source directly to the environment. For τ0 ∼ 1.25 and η = 0.3
we see a special case with no radiated angular momentum
at all; thus the torque on the source is fully compensated by
the torque on the environment. Finally, the impact of small
opposite detunings δ on the total radiated angular momentum
is studied.

We have also separated the total radiated angular mo-
mentum into spin and orbital components. Surprisingly, the
radiated angular momentum turns out to be dominated in most
cases by orbital angular momentum.

This work can be extended to consider a magnetic dipole
field rather than a uniform magnetic field, without much qual-
itative difference. This could be relevant for astrophysical
phenomena such as angular momentum transport in stars.
Future work could also address the role of loss in the envi-
ronment. Even loss conserves angular momentum, and loss of
photons does not necessarily lead to loss of angular momen-
tum leak per emitted photon. A disordered environment with
diamagnetic scatterers facilitates the exact numerical study
using numerical diagonalization. The clear disadvantage is the
weakness of diamagnetism, quantified by the small value for
the material parameter μ in this work. It would be interesting
to perform full-wave simulations with ferromagnetic disorder,
like, e.g., what was done recently to model Anderson local-
ization of light ab initio [19], r. A real-life experiment of this
kind was already proposed in Ref. [10].
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