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In this work, we explore the P7 -symmetric quantum Rabi model, which describes a PT -symmetric qubit
coupled to a quantized light field. By employing the adiabatic approximation (AA), we are able to solve this
model analytically in the parameter regime of interest and analyze various physical aspects. We investigate the
static and dynamic properties of the model, using both the AA and numerical diagonalization. Our analysis
reveals a multitude of exceptional points (EPs) that are closely connected with the exactly solvable points in
the Hermitian counterpart of the model. Intriguingly, these EPs vanish and revive depending on the light-matter
coupling strength. Furthermore, we discuss the time evolution of physical observables under the non-Hermitian
Hamiltonian. Rich and exotic behaviors are observed in both strong and ultrastrong coupling regimes. Our work
extends the theory of P7 symmetry into the full quantum light-matter interaction regime and provides insights
that can be readily enlarged to a broad class of quantum optical systems.
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I. INTRODUCTION

Quantum mechanics assumes Hamiltonians that describe
physical systems to be Hermitian to ensure real energy eigen-
values and unitary time evolution. However, there has been a
recent surge of interest in non-Hermitian systems [1,2], espe-
cially those with parity-time (P7") symmetry that manifest a
transition from purely real to complex-conjugate spectra [3].
PT symmetry not only is of fundamental importance but also
has been applied across myriad fields [4-6].

The P7T -symmetric qubit, a two-level system with bal-
anced gain and loss, is a paradigmatic model to demonstrate
the PT symmetry [7]. This simple solvable model effectively
reveals the essential consequences of P7 symmetry and has
been realized across multiple platforms [8,9]. Further research
has explored the interaction between the P77 -symmetric qubit
and classical light fields [10—12], with detailed analyses of
energy spectra and phase transitions in these semiclassical
models. However, P7 symmetry in pure quantum systems,
particularly in the context of light-matter interactions, has
rarely been visited.

The quantum interaction between light and matter is typi-
cally characterized by the quantum Rabi model (QRM), which
describes a two-level system coupled to a single-mode quan-
tized light field [13-15]. Despite its simplicity, the QRM
exhibits rich physics and has found applications ranging from
quantum optics [16] and condensed matter physics [17], to
molecular physics and state-of-the-art superconducting circuit
quantum electrodynamics [18-20].
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Motivated by the QRM, here we generalize the theory of
PT symmetry into full quantum light-matter interaction sys-
tems. We begin by constructing a P77 -symmetric Hamiltonian
from a realistic physical system and verifying its symmetry.
Next, we interpret the model in the displaced oscillator picture
and solve it analytically using the adiabatic approximation
[21-23]. We then investigate the static properties, includ-
ing energy eigenvalues and eigenstates, both analytically and
numerically. Interestingly, we observe an infinite number of
exceptional points (EPs), which vanish and revive depending
on the coupling strength. Additionally, we study the dynamics
governed by the non-Hermitian Hamiltonian, with a particular
focus on the time evolution of the mean photon number in the
cavity and the qubit population.

II. MODEL HAMILTONIAN

The system we propose to study the P7 symmetry is de-
picted in Fig. 1(a), in which a non-Hermitian qubit is coupled
to a single-mode cavity. This hybrid system can be described
by the Hamiltonian

A i€ ¥ .
H= EGZ—I—EGX—{—wa a+ go(a' +a), (D)

where o, ; are the spin—% Pauli matrices, with A being the
qubit level splitting and € term being the driving or coupling
between the two qubit states. The cavity mode with frequency
w is governed by the bosonic creation and annihilation opera-
tors @' and a. The coupling strength between the qubit and the
cavity is denoted by g. Without loss of generality, all system
parameters in this work are assumed to be non-negative.
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FIG. 1. (a) Schematic of the system consisting of a P7T-
symmetric qubit coupled to a cavity. (b) Two displaced oscillators,
one with gain and the other with balanced loss, are coupled by the
qubit term %crz.

We begin our analysis with the P7 -symmetric qubit

w=§@+§% @)
for which the parity operator is o, and the time-reversal op-
erator is the complex-conjugate operator. The eigenvalues are
simply ++/A? — €2, indicating an exceptional point (EP) at
€/A = 1, where the two eigenvectors coalesce and the eigen-
values become degenerate. When €/A crosses the EP, the
eigenvalues change from real to complex, signaling the phase
transition from P77 symmetric to P77 broken. More details on
the P77 -symmetric qubit are given in the Appendix.

Regarding the light field, the effects of the P7 operators
are equivalent to those of the bosonic parity transformation,
leading to @ — —a and a’ — —a.

Therefore, the combined parity operator for the hybrid
quantum optical system (1) is P = aze"’”’t“, which may be
interpreted as the parity of the total excitation number in the
system [24]. Meanwhile, the time-reversal operation is still
to take the complex conjugation. The symmetry of the full
Hamiltonian can therefore be readily verified as

(PT)'HPT = H. 3)

We thus refer to this system as the P7-symmetric quan-
tum Rabi model (PTQRM). Unlike previous approaches that
change the coupling parameter g of the semiclassical Rabi
model into an imaginary value [10-12], here we have taken
a more physically intuitive route to obtain the pure quantum
model by coupling a P77 -symmetric qubit to a quantized field.

The PTQRM reduces to the well-known asymmetric quan-
tum Rabi model (AQRM) if the imaginary term is replaced
by the real version %ox [14,25-28]. It reduces further to the
standard QRM if € = 0.

III. ADIABATIC APPROXIMATION

The non-Hermitian nature of the system, as described by
Eq. (1), arises from the nonzero value of €. Furthermore, the
interplay between € and A underpins our understanding of
non-Hermitian physics [4,7]. Consequently, neither A /@ nor
€/w need to have large absolute values. Under these condi-
tions, the criteria for the adiabatic approximation (AA), given
by A/w < 1, remains applicable [22,23]. Thus, the physical
phenomena of PTQRM can be explored through the analytical
framework provided by the AA. It is worth noting that when
the system deviates from the AA conditions, specifically when
A/w Z 1, the observed physics remains largely similar. How-
ever, in this regime, analytical treatments become challenging.

The displaced oscillator picture offers a particularly in-
tuitive understanding of the AA. In this representation,
light-matter interactions manifest as qubit-dependent dis-
placements in the light field [21]. Such a representation
becomes feasible by considering the degenerate qubit limit,
where A = 0. In this case, the Hamiltonian becomes

i€
Hyo = wa'a + g(rx(aT +a)+ Eax. 4)

With respect to the basis of |£x), where o, |£x) = £|%x), the
Hamiltonian can be rewritten in the form of displaced creation
and annihilation operators, namely,

mo=of(2fesf]25 -5 ©

It follows that Hy, is diagonalized by a unitary trans-
formation generated by the position displacement operator
D(a) = exp[—a(a’ — a)], with the displacement amplitude
o = +g/w associated with the qubit states. This leads to the
solutions

Y, = |y, £x) = D(Eg)|n) ® |+x), (6)
g e
Ef&:na)—zia, (7)
where [ny) = D(£g/w)|n) are the displaced Fock states, also

known as the generalized or extended coherent states.

At an intuitive level, Eq. (5) describes two displaced
harmonic oscillators. These oscillators have a displacement
amplitude of £+g/w and a gain or loss rate of ie/2, corre-
sponding to the qubit states |+x), as depicted in Fig. 1(b).
This framework, termed the “displaced oscillator picture,” is
a well-established tool in light-matter interaction studies.

Next, we express the QRM Hamiltonian in terms of the
displaced oscillator eigenstates, denoted by Eq. (6), and in-
troduce the parameter A. The qubit term %O’Z facilitates the
coupling of these eigenstates, a process that can be analogized
as tunneling between the two displaced oscillators. Central to
the AA is the assumption that only the tunneling processes
between eigenstates sharing the same quantum number n
are taken into account, effectively disregarding higher-order
terms. By doing so, the PTQRM Hamiltonian is decomposed
into block-diagonal form, consisting of infinitely many 2 x 2

blocks:
g 1fie Q,
Hn—na)—z‘f‘z Q, —ic) ®)
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where

4
Q, = AeZgz/”an(i§>, ©)

w

with L,(x) being the nth-order Laguerre polynomial. The
2 x 2 matrix presented in Eq. (8) resembles a P77 -symmetric
qubit. Yet, it also encompasses a parameter-dependent driving
2, that integrates the effects of the light-matter interaction. It
is important to highlight that the AA essentially effectuates a
change of basis. Specifically, it shifts from the (bare) photon-
qubit basis

n, £) = |n) ® |xz) (10)

as detailed in Eq. (1), transitioning to the displaced oscilla-
tor basis |ny, +x) as described in Eq. (6). Considering the
qubit’s degree of freedom, this basis transformation results
in a m/2 rotation on the Bloch sphere, while maintaining
the P7 symmetry. A more comprehensive discussion on the
‘PT-symmetry postrotation is given in Sec. VI.

To ascertain the eigenvalues of the PTQRM, we diagonal-
ize H,, resulting in the eigenvalues

/P2 _ 2
Ef:na)—g—zzi:"Te.
w

Owing to the transformation from the infinite-dimensional
matrix H to the two-dimensional matrix H,, the energy lev-
els can now be characterized by a multitude of level pairs,
denoted by the eigenvalues EF. In our analysis, we initiate
from the zeroth level (n = 0). The term ,/Q2 — € reveals
the non-Hermiticity of the nth level pair. Notably, exceptional
points (EPs) emerge when € equates to |€2,,].
The eigenstates corresponding to these eigenvalues are

ieta/Q2—€?
) =Ny 2 : (12)
1

Y

which are expressed with respect to the displaced oscillator
basis, as outlined in Eq. (6). The normalization factors for
these eigenstates can be deduced as
1
— Q| > €
ﬁa | nl =z
NE= Q,
2242 [

When € = 0, the derived eigensystem aligns with the AA of
the standard QRM, as detailed in Ref. [22].

Utilizing the AA results, we can derive analytical expres-
sions for various physical observables. For instance, consider
the fidelity between the two eigenstates of the nth-level pair:

1Q,] < €. (13)

ez/Qﬁ,
Qﬁ/ez,

12, > €

14
|2,] < €. (14)

EM = |(y,f 1y = {

Additionally, the mean cavity photon number is described as
(@a)* =n+ g/’ (15)
The qubit expectation value is given analytically by
N ez
0, |2,] < €.

(0,)F

(16)

Using this expectation value, the qubit population can be
determined as

W =31+ (o)) (17)

As depicted in Fig. 3, there is a clear agreement be-
tween the AA expressions and exact results. This consistency
provides deeper insights into the intricate dynamics of PT -
symmetric physics.

IV. SPECTRUM, EXCEPTIONAL POINTS,
AND PHASE TRANSITIONS

In our subsequent analysis, we delve into the spectral
structure and the novel non-Hermitian dynamics inherent in
the PTQRM. We employ both numerical diagonalization and
analytical insights from the AA for a more comprehensive
understanding. Analyzing the spectrum, we discern numerous
EPs, akin to those observed in the P7 -symmetric qubits.
Notably, these EPs exhibit additional modulation attributable
to the cavity. Intriguingly, the cavity introduces an exotic
phenomenon: the vanishing and revival of EPs.

To observe the interesting EP phenomena under light-
matter interaction, we tune the ratio of the qubit parameters A
and €, as shown in Fig. 2. In the decoupled case, all level pairs
behave the same as the spectrum of the P77 -symmetric qubit,
only with the energy raised by the cavity eigenvalues. When
the coupling strength g is increased, EPs are shifted due to
the interaction, and their overall behavior goes through three
stages: vanishing, oscillating revival, and vanishing again. It
can be seen from Fig. 2(b) that EPs at higher levels move
faster. Therefore, EPs from high to low vanish in sequence
with the increase of g. Owing to the light-matter interac-
tion, the EPs may reappear in an oscillatory manner. Finally,
when the interaction approaches a certain strength, all EPs
tend to disappear in sequence, as illustrated in Fig. 2(d) with
g/w = 1.8.

The phenomenon of EPs’ vanishing and revival can be
inferred from the PTQRM spectrum with respect to the cou-
pling strength g, as shown in Fig. 3(b). It is noteworthy that
the majority of EPs stem from the exactly solvable Juddian
points, the level crossings, in the QRM [27], whose spectrum
is depicted in Fig. 3(a). The locations and numbers of Juddian
points on each pair of energy levels are predicted by the
defining polynomials [27,29-32]. In the AQRM, where the
€ term is real, the Juddian points manifest as diabolic points
(DPs) in the three-dimensional parameter space [33,34]. Each
DP bifurcates into a pair of EPs when € assumes an imaginary
value.

In addition to the spectrum, the eigenstates also exhibit
unique P7 -symmetric physics due to the light-matter inter-
action. To explore the eigenstates, we take the second-level
pair, determined by H,, as an example. The eigenspectrum
together with the corresponding fidelity, qubit population, and
mean photon number is shown in Fig. 3, with the AA results
denoted by the dashed lines.

Owing to the intricate modulation induced by the light-
matter interaction, there is no standard overall real-to-complex
phase transition when considering all energy levels [3]. For
a given set of parameter values, there will always be imagi-
nary eigenvalues when photon numbers reach sufficiently high
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FIG. 2. Vanishing and revival of the EPs. (a)—(d) Real (blue thick) and imaginary (red thin) energy spectra of the PTQRM with respect
to the qubit parameter €, with the coupling strength g/w = 0, 0.2, 0.5, and 1.8, respectively. For each figure, A/w is set to 0.5. For clarity,
imaginary parts of the eigenvalues have been rescaled by adding the corresponding level index n. The arrows in the figures denote the moving
directions, blue for vanishing and orange for reviving, of the EPs if g is to be increased.

T " " " " ! " " " " values. Nevertheless, it proves beneficial to delineate “local”

20 >O®- 2.0 phases for individual level pairs of the system’s eigenstates.
st ] sk ] To be precise, for a specified level index n, the system is
N considered to be in the P7T -symmetric (PTS) phase if the
+ 10 >§— 10 eigenvalues EF are real, and in the PT -broken (PTB) phase
% osk 1 ost ] if they are complex. Such a definition becomes particularly

pertinent when the cavity contains only a limited number
of photons and the Hilbert space remains finite dimensional.
These phases can be visualized in Fig. 3, distinguished by blue
(PTS) and red (PTB) backgrounds.
N In Hermitian systems, the eigenstates associated with
different eigenvalues are orthogonal. Contrastingly, in non-
1o Hermitian scenarios, eigenstates are typically nonorthogonal
18 and even parallel at EPs. For two pure states, their fidelity
is defined as Fio = |(y1|¥2)|*. Two states are orthogonal if
Fi; =0 and parallel if Fj, = 1. As illustrated in Fig. 3(d)
that the two eigenstates are generally not orthogonal, with
nonzero fidelity. Remarkably, eigenstates align perfectly at
multiple EPs, with the fidelity being unity, a characteristic
of EPs that does not exist in Hermitian systems. Another
08f N\l intriguing characteristic observed is that the eigenstates are
06f s z s S s S CCI orthogonal at some specific points between the EPs, which is
0.4} < aonz absent in normal non-Hermitian systems. Interestingly, these
02p  Z° orthogonal points coincide with the original Juddian points in
the standard QRM [27], and their positions are independent of
the value of €. The nature of these exotic orthogonal points can
be understood from the perspective of the AA. In the AA for
the standard QRM, Juddian points appear when the Laguerre
polynomials in €2,, vanish. Consequently, the eigenvectors in
Eq. (12) become ;7 = (1,0)7 and v, = (0, 1)7, which are
trivially orthogonal.

Figure 3(e) depicts the qubit population using dashed lines,

FIG. 3. The energy spectra of (a) the QRM and (b) the PTQRM wh.ile t.he analy'tical resglts from Eq. (16) are represented by
with respect to the coupling strength g/w. The real and imaginary Sth lines. Thls behE}V1or 18 s%mllar to the PT.-symmetrlc
parts of the PTQRM eigenvalues are denoted with blue and red qubit dynam.lcs, as discussed in Ref. [7]. .Spemﬁcal.ly, for
lines, respectively. For the third pair levels, the plots are (c) the a zero coupling strength g/w = 0, the qubit and cavity are
energy spectrum, (d) the fidelity, (e) qubit populations, and (f) mean ~ decoupled, with the PTQRM eigenstates manifesting as the
photon numbers for the corresponding two eigenstates, against cou-  bare states |n, &) from Eq. (11). Here, the corresponding qubit
pling strength g/w. Relevant parameter values are A/w = 0.5 and populations are trivially 1 for |[+) states and O for |—) states.
€/w = 0.1. Analytic results of AA are depicted in dashed lines. The Upon introducing nonzero coupling, entanglement between
system is in the P77 -symmetric phase in the blue (dark gray) regions the qubit and cavity states ensues, instigating a blend of the
and the P T -broken phase in the red (light gray) regions. two qubit states and a resultant shift in qubit populations.
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The eigenstates coalesce at the first EP, aligning proximally to
the Bloch sphere’s equator, leading to equal qubit populations
for both eigenstates. In the subsequent PTB phase post this
EP, the qubit states consistently traverse the Bloch sphere’s
equator, maintaining this uniform population distribution. As
g increases, the system passes through several PTS and PTB
zones, all of which exhibit analogous behavior.

In Fig. 3(f), we present the variation of the cavity photon
number as a function of the coupling strength. The associ-
ated AA analytical model is captured by Eq. (15). Consistent
with expectations, the mean photon number within the cavity
grows with increasing coupling strength, aligning with find-
ings from Ref. [35]. It is worth noting that discrepancies arise
between the exact results and the AA photon number, given
by (a'a)* = n + g*/w?, particularly within the PTS regions.
This divergence can be attributed to the inherent assump-
tions within the AA framework. In the reduced subspace, the
photon number is definite for a specific n and displacement
g. Therefore, the deviations in Fig. 3(d) cannot be captured
solely by the AA and require the inclusion of higher-order
tunneling effects [23].

V. DYNAMICS OF PHYSICAL OBSERVABLES

The dynamics of the PTQRM manifests rich physics ab-
sent in its Hermitian or semiclassical counterparts. To reveal
this, we focus on the time evolution of the mean photon
number and qubit population by numerically solving the
time-dependent Schrodinger equation (TDSE) across varied
parameter domains.

A. Dynamics in the strong coupling regime

In our analysis, we begin by focusing on the strong
coupling (SC) regime, wherein the light-matter interaction
strength is substantially lower than both the qubit and pho-
ton frequencies, that is, g < w, A. Traditionally, the SC
regime requires a coupling strength surpassing the system’s
decay rates [16,36]. However, within the context of the non-
Hermitian PTQRM, we still identify this regime as SC even
if the loss rate € could exceed the coupling strength g. This
classification arises from the fact that the gain rate € ensures
sustained dynamics prior the exponential decay [4].

Within the Hermitian SC regime, the rotating wave ap-
proximation (RWA) is typically employed to the QRM,
leading to the well-known Jaynes-Cummings model (JCM)
[16,37,38]. This approximation is valid, given that the ef-
fects of counter-rotating terms (CRTs) (those terms which
do not conserve excitation numbers) are negligible in this
regime. A key consequence of the RWA is that the otherwise
infinite-dimensional Hilbert space is decomposed into in-
finitely many two-dimensional subspaces, thereby facilitating
the analytic solvability [23]. The SC regime’s dynamics are
primarily characterized by Rabi oscillations between various
bare photon-qubit states, signaling the exchange of excitations
between the cavity and the qubit.

In this part, we explore the non-Hermitian dynamics in
the SC regime. Contrasting with the Hermitian case, the non-
Hermitian terms (gain and loss) couple all the basis states,
rendering the Hilbert space undecomposable via the RWA.

To carry out the calculations, we start from the initial bare
photon-qubit state |0, +) = |0) ® |+z), indicating an empty
cavity and a qubit in its excited state. Subsequently, the
non-Hermitian dynamics are examined across a range of €
values, while holding the other system parameters constant at
A/w = 0.5 and g/w = 0.01. Based on Fig. 2(a), the EPs for
the lowest-energy levels should lie proximately at € /w = 0.5.

We begin by investigating the wave function’s norm within
the PTQRM framework. As mentioned before, the norms of
wave functions, defined by

Ol = V¥ @I @)), (18)

deviate from conservation due to the Hamiltonian’s non-
Hermitian nature. However, it is worth noting that the
expectation values of physical observables in non-Hermitian
systems necessitate wave-function norm renormalization,
featuring the norm dynamics as a pivotal indicator of non-
Hermitian effects. The dynamics, after taking logarithms and
capped at 10, are illustrated in Fig. 4(a). The figure distinctly
shows that, in contrast to the Hermitian case where the norms
are inherently conserved, the norm of the wave function os-
cillates in the PTS regime (¢/w < 0.5) and diverges in the
PTB regime (¢/w > 0.5). These behaviors are similar to the
dynamics previously observed in the P77 -symmetric qubit [7].

Proceeding further, we calculate the renormalized cavity
photon number, represented as

(Y @®la’aly (1))
(O @)

which holds significance in the realm of light-matter interac-
tion analysis. Referring to Eq. (19), the associated dynamics,
depicted in Fig. 4(b), deviate noticeably from those in the
Hermitian context. The figure reveals that photon numbers
oscillate across both the PTS and PTB phases. Intriguingly,
while the PTS regime sees the oscillation characteristics, fre-
quency and amplitude, being influenced by the non-Hermitian
term €, they stabilize and remain invariant in the PTB regime.

The qubit population stands as a pivotal quantity in the
domain of quantum information sciences. We compute this
quantity using Eq. (17), and thus its time evolution

W) = 51+ (Y Olocly (1)) (20)

Referring to the outcomes presented in Fig. 4(c), it is evident
that within the PTS regime, the quantity oscillates around the
originating qubit state |+z). This particular state corresponds
to the north pole on the Bloch sphere. Transitioning to the
PTB phase, the population gravitates towards the equatorial
state on the Bloch sphere, registering a population value of
0.5. Notably, subtle oscillations remain manifest in this PTB
phase.

Through the dynamics of the three quantities demonstrated
in Fig. 4, the transition from the PTS phase to the PTB phase
becomes evident, specifically around the point € /w = 0.5. In
detail, the norm shifts from oscillatory behavior to a diver-
gent trajectory; both the photon number and qubit population
evolve from oscillations dependent on € to oscillations that
remain indifferent to variations in €. This transition can be
further elucidated when considering a low-dimensional sub-
system accommodating a maximum of 1 photon. Such a

(n)(t) = (a’a)(t) = : (19)
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FIG. 4. Time evolution of the (a) norm of the wave function (which is rescaled with logarithms and capped at 10), (b) cavity photon
number, and (c) qubit population of the PTQRM in the strong coupling regime, with g/w = 0.05, A/w = 0.5 and the value of €/w ranging

from O to 0.7. The initial state is set as |0, +).

system can be described by the 4 x 4 Hamiltonian matrix

A .
-3 37 0 g
i€ A
ie A g 0
HlOW - 2 2 A ic ’ (21)
0 g o—-5 3
g 0 ‘f o+ %

which is expressed with respect to the basis {|0, £), |1, &)}.
Within this matrix, coupling terms induce transitions across
the basis states. It is noteworthy to mention that this system
encapsulates both Hermitian and non-Hermitian transition
mechanisms. For the Hermitian processes driven by g, the
RWA can be applied, allowing analysis through the JCM.
This typically results in the manifestation of Rabi oscillations.
Conversely, the non-Hermitian mechanisms stemming from €
terms bear similarities to the dynamics of the P77 -symmetric
qubit: they oscillate based on the gain and loss rates in
the PTS phase and stabilize in the PTB phase [7]. In the
PTS regime, the dynamics introduce an intriguing interplay,
with non-Hermitian oscillations challenging the established
JCM behavior. In the PTB phase, however, the non-Hermitian
mechanisms quickly reach a steady state, leaving only the
JCM dynamics active and culminating in oscillations that are
indifferent to variations in €. Drawing a parallel, it is evident
that the PTQRM dynamics in the SC regime share consid-
erable similarities with those of the P7-symmetric qubit [7].
Nonetheless, PTQRM introduces a unique layer of complexity
by fostering competition in non-Hermitian dynamics, primar-
ily by enabling energy exchanges between light and matter.
In the SC regime, while the immediate impact of CRTs,
which couple distinct subspaces, may seem insubstantial,
their cumulative effects can be significant over time. Conse-
quently, with prolonged duration, the probability may escape
from the predominant subspace. For sufficiently high coupling
strengths, even over short timescales, this effect becomes non-
negligible, leading to markedly distinct dynamic behaviors.

B. Dynamics in the ultrastrong coupling regime

Ultrastrong coupling (USC) between light and matter is
reached when the coupling strength g is comparable to the
cavity or qubit frequencies [36,39]. In the USC regime, CRTs

significantly influence the dynamics, making the application
of the RWA infeasible for decomposing the Hamiltonian into
2 x 2 matrices [22,23]. Consequently, any wave function be-
comes a superposition of all eigenstates. Decomposing an
arbitrary wave function with respect to the eigenstate basis re-
veals components both within the PTS and PTB regimes. This
leads to a system evolution that intricately blends PTS and
PTB dynamics in the USC regime, which is sharply different
from the SC regime. Our subsequent analysis will delve into
the time evolution of the cavity mean photon number, deter-
mined numerically via the TDSE, highlighting the profound
effects of the ultrastrong light-matter interaction.

The long-term dynamics of the mean photon number in
the USC regime can be classified into three distinct stages:
first, it exhibits oscillations around the initial state; second,
it converges towards eigenstates characterized by the locally
largest imaginary eigenvalues; and finally, in the long term, it
diverges towards infinite-photon states. Notably, the duration
of the first two stages is modulated by both system parameters
and the chosen initial states.

In the following, we discuss in detail the case g/w = 0.7
as an example. We start from the initial bare state |4, +) =
|4) ® |42z), which represents a system configuration with four
photons in the cavity and the qubit in its excited state. We can
express this initial state in the context of the eigenstate basis.
To determine the component probability amplitudes p,, we
project the initial state onto these eigenstates, yielding

P =14, +lyn) .

Here, eigenstates are denoted |v,,), with n indexed in order of
increasing eigenvalues. For computational considerations, our
analysis includes only the first 101 eigenstates. It is worth not-
ing that expanding the analysis to a broader set of eigenstates
would still result in the observed three-stage behavior.

Figure 5(a) illustrates the real eigenvalues of the lowest 22
eigenstates of the PTQRM. The background colors represent
the respective probabilities of these eigenstates in the initial
configuration |4, 4-). Tracing the line g/w = 0.7 in Fig. 5(a),
we observe several pairs of eigenstates in the PTB phase.
Notably, the ninth pair exhibits the largest imaginary energies.

To further elucidate, Fig. 5(b) presents the probability
distributions across these eigenstates. While the majority of

(22)
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FIG. 5. (a) The real spectrum of the PTQRM, with background
colors indicating the mapping of the initial bare state |4, +) onto
the eigenstates. The vertical dashed green line indicates the coupling
strength g/w = 0.7. (b) Initial probabilities with respect to the basis
of eigenstates with g/w = 0.7, mapped from the initial bare state
|4, +). (c) Imaginary parts of eigenvalues for the lowest 101 eigen-
states with g/w = 0.7. The dashed grid lines denote the max and min
values +¢/2. Time evolution of (d) the cavity photon number and
(e) eigenstate probabilities with |(0)) = |4, +). The inset in (d) is
the long-term dynamics where all three stages are present. Relevant
parameter values are A/w = 0.5 and € /o = 0.1.

probabilities cluster around the lower eigenstates, we empha-
size that none of the higher eigenstates have a strict probability
of 0. This phenomenon follows from above that every wave
function manifests as a superposition of all the eigenstates
in the USC regime. Although these probabilities in higher
eigenstates may initially appear insignificant, their amplifica-
tion by imaginary eigenvalues can propel them to prominence.
Corroborating this, we plot the imaginary eigenvalues Im(E,,)
of the lowest 101 eigenstates in Fig. 5(c). Notably, imaginary
energies are more prominent in higher-level eigenstates, and
their locally maximal imaginary eigenvalues are closer to the
theoretical maximum of €/2. The interplay between these
probability distributions and imaginary eigenvalues gives rise
to the distinct three-stage dynamics, which will be further
explored.

In Fig. 5(d), we present the evolution of the mean pho-
ton number, starting from the bare state |4, +). Initially, the
system exhibits oscillations around its initial state, stemming
from the interplay among dynamics of the high-probability

eigenstate components. As the evolution progresses, the sys-
tem stabilizes, with the mean photon number settling around
9. This plateau arises as the norms of the PTB states amplify
and oscillatory behaviors diminish, notably post 100r. The
stable behavior is sustained until the system eventually di-
verges towards infinite-photon states, which is evident from
the long-term dynamics demonstrated in the inset. In numer-
ical calculations, however, the infinity is unattainable due to
our Hilbert space truncation, and the maximal photon number
caps at approximately 100.

The transition between the first two stages stands out as
particularly interesting. In this process, the imaginary ener-
gies Im(E,) dictate the growth rates of the corresponding
eigenstates |y,). Over time, an eigenstate with the largest
imaginary energy prevails through exponential growth, over-
shadowing their initial probabilities. This phenomenon is
exemplified when projecting the bare state |4, +) onto the
eigenstates. Remarkably, the dominant eigenstate |vg), de-
spite its initial probability being less than 0.01, quickly rises
to prominence, as illustrated in Fig. 5(e).

VI. FURTHER DISCUSSIONS

In the preceding sections, we have proposed the PTQRM
Hamiltonian and analyzed its exotic properties in both stat-
ics and dynamics. Moving forward, we aim to provide a
deeper understanding of the PTQRM Hamiltonian. To this
end, we demonstrate an alternative representation of the
PTQRM to frame the non-Hermitian Hamiltonian within tan-
gible physical contexts. We also juxtapose the non-Hermitian
dynamics against the outcomes derived from the quantum
master equation, which is the standard approach to deal with
open systems. Lastly, we explore the potential experimental
realization of the PTQRM based on superconducting circuits.
By including these aspects, we hope to offer a comprehensive
perspective on the PTQRM Hamiltonian and its potential im-
plications in the realm of quantum physics.

A. Alternative representation of the PTQRM

In this part, we further justify the P7 symmetry of the
PTQRM by drawing parallels with the conventional form
of PT-symmetric qubit in the existing literature [4,5,7,8].
Although the P7T symmetry in the non-Hermitian qubit, as
described by Eq. (2), might not seem obvious at first glance, a
deeper examination reveals its underlying symmetry. Here in
Eq. (2), the superscript z signifies the chosen basis where o, is
diagonalized. Therefore, the two basis states of the qubit are
|£) = |%z). In this framework, A represents the level splitting
between the two states and ie delineates the coupling between
them.

The direct physical interpretation of the imaginary cou-
pling in H; might pose challenges. To render it more intuitive,
we can implement a unitary transformation generated by

50

U'oU = oy,

(23)

with the effects

U'o.U = o,. (24)

053712-7



XILIN LU et al.

PHYSICAL REVIEW A 108, 053712 (2023)

We then arrive at the new qubit Hamiltonian

- A i€ 1/i

H =U'HU = 70t 50 = E(er _Al.6>, 25)
where the superscript x indicates our transition to the eigen-
basis of o,. With Hy, the two states of the qubit are now |+£x).
The term A describes the mutual coupling of these states,
while the imaginary diagonal terms i€ intuitively represent
the gain for the excited state and the corresponding loss for
the ground state.

Conventionally, a P7 -symmetric qubit is expressed in the
form of H; due to the explicit physical interpretation of the
imaginary terms [7]. It is readily seen that H; remains invari-
ant under the transformation

(PT)'H} (P, T) = H, (26)

where P, = o, and 7 is complex conjugation.

To ascertain the P77 symmetry of our original qubit Hamil-
tonian H;, we only need to revert to the o, basis by doing the
U transformation again:

_77tgx
HqZ—UHqU. 27

This implies the parity operator adopts the form P, = o,
whereas the 7 operator remains the same. With this, the
PT symmetry is evident from

(P.T)'H:(P.T) = H;. (28)

The PTQRM Hamiltonian, when expressed in this rotated
representation, becomes

A i€ ; 4
Hprorm = S0t 50t wa'a+ go(a’ +a)

ie
= HéRM + EGZ' (29)

Notably, the Hermitian Hgp,, aligns with the convention of
the QRM within the context of superconducting circuits [22].
Verification confirms that the Hamiltonian (29) has exactly
the same eigenspectrum as the PTQRM. The corresponding
eigenstates, along with other physical properties, remain con-
gruent upon a rotation transformation.

B. Passive P77 symmetry

In experimental realizations, the passive form of
PT symmetry is often favored due to its practicality [8,9].
The passive P7T -symmetric qubit is described by

~ A . . e
Hj = EUX +ieoro_ = H; + EH' 30)
Upon examination, it becomes evident that the passive P7T -
symmetric qubit 1-7; possesses the same topology as its
PT-symmetric counterpart, with the sole difference being a
constant shift ie/2 in eigenvalues. Within the passive PT -
symmetry framework, only loss exists. Nonetheless, it retains
all the salient features inherent to standard P7 symmetry,
including EPs [4,5].

Incorporating a cavity into the qubit as expressed in
Eq. (30) naturally extends to the QRM under passive PT

symmetry, represented by

Aprorm = S0 Hieoo + wa'a + go.(a’ + a)

i€
= Hirgou + 51 (31)
The spectrum now has a constant shift ie /2 in energy, com-
pared to both the PTQRM (1) and its alternative representation
Hprory- Moreover, the non-Hermitian dynamics generated by

the Hamiltonian HE’CTQRM are also identical to those of the
PTQRM, upon undergoing the renormalization outlined in
Eq. (19).

Up to this point, we have delineated several forms of the
PTQRM Hamiltonians as given in Eqs. (1), (29), and (31).
These distinct representations are interrelated as illustrated by
the sequence

rotation

X energy shift
H H, PTQRM

Hprorm- (32)
Crucially, their respective eigenspectra and dynamics coincide
when considering energy offsets or appropriate wave-function
renormalizations.

C. Lindblad master-equation approach

While closed quantum systems evolve according to the
Schrodinger equation, open systems, those that interact with
an external environment, often require a more intricate treat-
ment. In such scenarios, the Lindblad master equation (LME),
a widely accepted formulation of the quantum master equa-
tion, becomes instrumental [40]. This equation offers a
framework to account for effects such as decoherence and
dissipation that arise due to environmental interactions. Here,
we illustrate that the passive PTQRM (31) can be perceived
as the non-Hermitian effective Hamiltonian that emerges from
the underlying dynamics captured by the LME.

To better elucidate the link between the passive PTQRM
and the dynamics driven by environmental effects, we con-
sider a dissipative qubit coupled to a cavity. The dissipative
qubit may be described by a three-level system, and the
corresponding basis states are {|2), |1), |0)} with decreasing
energies [8]. We specify the decay rate, denoted by y, from
[1) to |0). Such dynamics can be accurately captured through
the LME, given by

dp
dt
where Hgpy is the standard QRM Hamiltonian in the ro-
tated frame given in Eq. (29). Here p is the density matrix
of the system, which encapsulates both the state informa-
tion and coherence properties. D[A]p = ApAT — %(A"'A,o +
pATA) defines the Lindblad superoperator.
We then expand the superoperator and rearrange the terms
to obtain

= —i[Hpum. £] + ¥ DLO)(1]1p, (33)

dp - Y
= —I(HQRM —15|1)(1|)p

+ip <H5RM + %mm) +y10pn 0. (34)
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FIG. 6. Possible circuit QED realization, the transmon qubit cir-
cuit is embedded in a cavity (blue box in this diagram) with controls,
for driving and readout, explained in Ref. [8] in detail. The lowest
three energy levels are used for constructing a P77 -symmetric qubit,
which is consistent with the master-equation approach. Decay rates
between these states are controlled by the magnetic flux &.

Upon confining our attention to the subspace span{|1), |2)}
and with the identification y = 2e, the governing dynamics
of the system, in terms of the LME, morphs into

dp . -~ -
T —i(Hp — pH'") + 2€|0) p11(0]. (35
Here, the effective Hamiltonian H = ﬁ]’,‘TQRM is synonymous
with our passive PTQRM (31) in the rotated frame, which
is equivalent to our standard PTQRM Hamiltonian (1). The
last term in Eq. (34), known as the quantum jump oper-
ator, incorporates the transitions from the state space of
the effective Hamiltonian to the larger Hilbert space of the
environment.

Upon neglecting the quantum jump term, the LME reduces
to the von Neumann equation, which is formally equivalent to
the TDSE of the effective Hamiltonian [40]. Consequently, the
system’s dynamics are again governed by the effective non-
Hermitian Hamiltonian I:If,‘TQRM, which parallels the PTQRM
Hamiltonian (1). The distinction between LME and TDSE
arises from the influence of the quantum jump term.

Experimentally, when one solely focuses on the effective
Hamiltonian, a postselection scheme can be applied. This
technique eliminates the effects of quantum jump terms [8],
rendering the system dynamics to be wholly governed by the
non-Hermitian Hamiltonian.

D. Potential physical realizations

From the perspective of circuit quantum electrodynamics
(QED), we could envision a synthesis by merging the real-
ization of QRM in Ref. [19] and the P77 -symmetric qubit in
Ref. [8]. The resulting superconducting circuit is depicted in
Fig. 6, where a transmon qubit contained in a cavity is cou-
pled to an LC resonator. Drawing from the transmon circuit’s
lowest three energy levels, we proceed with the derivation of
the master equation for the passive PTQRM: the ground-state
functions as a sink for the excited (qubit) states. It was shown
in [8] that, by modulating the magnetic flux & through the
transmon circuit, we can control the two decay rates such that
[1) to |0) is much faster than |2) to |1). Given this differential
in decay rates, we can judiciously overlook the latter transi-
tion, leading to a characterization of this system via our master
equation (35) in the absence of the quantum jump term.

In addition to the circuit QED platform, trapped ion
experiments, employing the “°Ca* ion [9], also offer a
prospective avenue for realizing our system, specifically by
incorporating the lasing mode. A noteworthy investigation
has recently delved into this avenue, adding an auxiliary one-
photon state, thus revealing a more intricate landscape of EP
structures [41].

Another possible direction is considering the substitution
of the traditional qubit in QRM experiments [42] with PT -
symmetric ones. This potential pivot points to an interesting
direction in the field.

VII. SUMMARY

In this work, we explored the intricacies of the P7T-
symmetric quantum Rabi model (PTQRM) and formulated an
analytical solution via the adiabatic approximation (AA).

Our exploration of static properties revealed multiple ex-
ceptional points (EPs) within the spectrum. Intriguingly, these
EPs vanish and revive depending on the coupling strength. A
significant observation was the identification of unique points
where distinct eigenstates stand orthogonal, a characteristic
absent in typical non-Hermitian systems. In particular, these
orthogonal points coincide with the level crossing points of
the Hermitian QRM.

We conducted a comprehensive examination of non-
Hermitian dynamics in the strong coupling (SC) and ultra-
strong coupling (USC) regimes. In the SC regime, the intricate
interplay between Hermitian and non-Hermitian couplings
manifests strikingly distinct dynamical phenomena on either
side of the EPs. In contrast, within the USC regime, our
investigation revealed a three-stage evolution pattern in the
cavity photon number: oscillation around the initial state, con-
vergence to nearby eigenstates with large imaginary energies,
and divergence to infinite-photon states.

This work broadens the theoretical horizon of
PTsymmetry, encompassing the comprehensive quantum
light-matter interaction domain. Furthermore, it offers
insights that have the potential to be extrapolated across a
wide spectrum of quantum optical systems [24,43,44]. We are
optimistic about the practical implementation of the PTQRM
across various experimental platforms, such as circuit QED
[8] and trapped ions [9].
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APPENDIX: P7 SYMMETRY

It is straightforward to calculate the eigenstates and eigen-
values of the non-Hermitian qubit defined in the main
text, i.e.,

. A ie
Hq' = EUZ + EO'X. (Al)
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The eigensystem can be divided into two cases, depending on
the values of A and €, as explained below.

Case I: A > €. The eigenvalues and corresponding eigen-
states are

1
E:Zt = :i:i\/ AZ — 62,

—iAFiI/AT—E2
i) = ¢ .

] (A2)

It is easy to verify that [/} ) are also the eigenstates of the
combined P77 operator, namely,

PTIyi) = —Iyi).

Therefore, the system is in the P77 -symmetric phase.
Case II: A < €. The eigenvalues and corresponding eigen-

states are
—iA+VE2—A2
Yi) = i . (Ad)

(A3)

i
Ei=+4-ye— A2,
+ 3 €

which now yields

= —lYL) #clYi), (A5

iA+/E2—A2
PTItﬂi)z( g )

where ¢ € C. This case is termed as P7T broken because the
wave functions do not have P7T symmetry even though the
Hamiltonian still commutes with the combined P77 operator.
An interesting fact is that the combined PT operator flips the
two eigenstates in the P77 -broken case, as shown in Eq. (AS).
The energy spectrum discussed above is depicted in Fig. 7,

0.0~ b

E/A

0.0 0.5 1.0 1.5 2.0
e/A

FIG. 7. The energy eigenvalues of the P7-symmetric qubit H;.
The real part is in blue lines and the imaginary part is in red lines.

with the real part and imaginary part presented in blue and
red lines, respectively. The transition from real to complex
eigenvalues emerges at the exceptional point € /A = 1.

Regarding the P77 symmetry of the light field, we recall the
general effects of parity and time operators P and 7 described
as

P:i—>i, x—>—x, p— —p,

p— —p.

It follows that by applying the P7T transformation to the
bosonic creation and annihilation operators, we have

T:i— —i, x— x, (A6)

a—> —a, d — —da,

(AT)

which is equivalent to the bosonic parity transformation [24].

[1] N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge
University Press, Cambridge, 2014).

[2] Y. Ashida, Z. Gong, and M. Ueda, Non-hermitian physics, Adv.
Phys. 69, 249 (2020).

[3] C. M. Bender, Introduction to PT-symmetric quantum theory,
Contemp. Phys. 46, 277 (2005).

[4] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H.
Musslimani, S. Rotter, and D. N. Christodoulides, Non-
hermitian physics and PT symmetry, Nat. Phys. 14, 11 (2018).

[5]1 S. K. Ozdemir, S. Rotter, F. Nori, and L. Yang, Parity—time
symmetry and exceptional points in photonics, Nat. Mater. 18,
783 (2019).

[6] M.-A. Miri and A. Alu, Exceptional points in optics and pho-
tonics, Science 363, eaar7709 (2019).

[7]1 S. Dogra, A. A. Melnikov, and G. S. Paraoanu, Quan-
tum simulation of parity—time symmetry breaking with a
superconducting quantum processor, Commun. Phys. 4, 26
(2021).

[8] M. Naghiloo, M. Abbasi, Y. N. Joglekar, and K. W. Murch,
Quantum state tomography across the exceptional point in a
single dissipative qubit, Nat. Phys. 15, 1232 (2019).

[9] W.-C. Wang, Y.-L. Zhou, H.-L. Zhang, J. Zhang, M.-C. Zhang,
Y. Xie, C.-W. Wu, T. Chen, B.-Q. Ou, W. Wu, H. Jing, and

P.-X. Chen, Observation of pt-symmetric quantum coherence
in a single-ion system, Phys. Rev. A 103, L020201 (2021).

[10] Y. N. Joglekar, R. Marathe, P. Durganandini, and R. K. Pathak,
PT spectroscopy of the Rabi problem, Phys. Rev. A 90,
040101(R) (2014).

[11] T. E. Lee and Y. N. Joglekar, P7T -symmetric Rabi model:
Perturbation theory, Phys. Rev. A 92, 042103 (2015).

[12] Q. Xie, S. Rong, and X. Liu, Exceptional points in a time-
periodic parity-time-symmetric Rabi model, Phys. Rev. A 98,
052122 (2018).

[13] I. I. Rabi, On the process of space quantization, Phys. Rev. 49,
324 (1936).

[14] D. Braak, Integrability of the Rabi Model, Phys. Rev. Lett. 107,
100401 (2011).

[15] Q. Xie, H. Zhong, M. T. Batchelor, and C. Lee, The quantum
Rabi model: Solution and dynamics, J. Phys. A: Math. Theor.
50, 113001 (2017).

[16] M. Fox, Quantum Optics (Oxford University Press, Oxford,
2006).

[17] E. K. Irish, Generalized rotating-wave approximation for arbi-
trarily large coupling, Phys. Rev. Lett. 99, 173601 (2007).

[18] P. Forn-Diaz, J. Lisenfeld, D. Marcos, J. J. Garcia-Ripoll, E.
Solano, C. J. P. M. Harmans, and J. E. Mooij, Observation of

053712-10


https://doi.org/10.1080/00018732.2021.1876991
https://doi.org/10.1080/00107500072632
https://doi.org/10.1038/nphys4323
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1126/science.aar7709
https://doi.org/10.1038/s42005-021-00534-2
https://doi.org/10.1038/s41567-019-0652-z
https://doi.org/10.1103/PhysRevA.103.L020201
https://doi.org/10.1103/PhysRevA.90.040101
https://doi.org/10.1103/PhysRevA.92.042103
https://doi.org/10.1103/PhysRevA.98.052122
https://doi.org/10.1103/PhysRev.49.324
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1088/1751-8121/aa5a65
https://doi.org/10.1103/PhysRevLett.99.173601

PT-SYMMETRIC QUANTUM RABI MODEL

PHYSICAL REVIEW A 108, 053712 (2023)

the Bloch-Siegert shift in a qubit-oscillator system in the ultra-
strong coupling regime, Phys. Rev. Lett. 105, 237001 (2010).

[19] F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S.
Saito, and K. Semba, Superconducting qubit—oscillator circuit
beyond the ultrastrong-coupling regime, Nat. Phys. 13, 44
(2017).

[20] F. Yoshihara, T. Fuse, Z. Ao, S. Ashhab, K. Kakuyanagi, S.
Saito, T. Aoki, K. Koshino, and K. Semba, Inversion of qubit
energy levels in qubit-oscillator circuits in the deep-strong-
coupling regime, Phys. Rev. Lett. 120, 183601 (2018).

[21] M. D. Crisp, Application of the displaced oscillator basis in
quantum optics, Phys. Rev. A 46, 4138 (1992).

[22] E. K. Irish, J. Gea-Banacloche, I. Martin, and K. C. Schwab,
Dynamics of a two-level system strongly coupled to a high-
frequency quantum oscillator, Phys. Rev. B 72, 195410 (2005).

[23] Z.-M. Li and M. T. Batchelor, Generalized adiabatic approxi-
mation to the quantum Rabi model, Phys. Rev. A 104, 033712
(2021).

[24] Z.-M. Li and M. T. Batchelor, Hidden symmetry and tunneling
dynamics in asymmetric quantum Rabi models, Phys. Rev. A
103, 023719 (2021).

[25] Q.-H. Chen, C. Wang, S. He, T. Liu, and K.-L. Wang, Ex-
act solvability of the quantum Rabi model using Bogoliubov
operators, Phys. Rev. A 86, 023822 (2012).

[26] H. Zhong, Q. Xie, X. Guan, M. T. Batchelor, K. Gao, and C.
Lee, Analytical energy spectrum for hybrid mechanical sys-
tems, J. Phys. A: Math. Theor. 47, 045301 (2014).

[27] Z.-M. Li and M. T. Batchelor, Algebraic equations for the
exceptional eigenspectrum of the generalized Rabi model,
J. Phys. A: Math. Theor. 48, 454005 (2015).

[28] Z.-M. Li and M. T. Batchelor, Addendum to ‘algebraic equa-
tions for the exceptional eigenspectrum of the generalized Rabi
model’, J. Phys. A: Math. Theor. 49, 369401 (2016).

[29] B. R. Judd, Exact solutions to a class of Jahn-Teller systems,
J. Phys. C: Solid State Phys. 12, 1685 (1979).

[30] M. Kus, On the spectrum of a two-level system, J. Math. Phys.
26, 2792 (1985).

[31] M. Wakayama, Symmetry of asymmetric quantum Rabi
models, J. Phys. A: Math. Theor. 50, 174001 (2017).

[32] K. Kimoto, C. Reyes-Bustos, and M. Wakayama, Determinant
expressions of constraint polynomials and the spectrum of the
asymmetric quantum rabi model, Int. Math. Res. Not. 2021,
9458 (2021).

[33] M. T. Batchelor, Z.-M. Li, and H.-Q. Zhou, Energy land-
scape and conical intersection points of the driven Rabi model,
J. Phys. A: Math. Theor. 49, 01LTO1 (2016).

[34] Z.-M. Li, D. Ferri, D. Tilbrook, and M. T. Batchelor, General-
ized adiabatic approximation to the asymmetric quantum rabi
model: Conical intersections and geometric phases, J. Phys. A:
Math. Theor. 54, 405201 (2021).

[35] D. Z. Rossatto, C. J. Villas-Bdas, M. Sanz, and E. Solano,
Spectral classification of coupling regimes in the quantum Rabi
model, Phys. Rev. A 96, 013849 (2017).

[36] A.F. Kockum, A. Miranowicz, S. D. Liberato, S. Savasta, and F.
Nori, Ultrastrong coupling between light and matter, Nat. Rev.
Phys. 1, 19 (2019).

[37] E. T. Jaynes and F. W. Cummings, Comparison of quantum and
semiclassical radiation theories with application to the beam
maser, Proc. IEEE 51, 89 (1963).

[38] B. W. Shore and P. L. Knight, The Jaynes-Cummings model,
J. Mod. Opt. 40, 1195 (1993).

[39] P. Forn-Diaz, L. Lamata, E. Rico, J. Kono, and E. Solano,
Ultrastrong coupling regimes of light-matter interaction, Rev.
Mod. Phys. 91, 025005 (2019).

[40] D. Manzano, A short introduction to the lindblad master eqnar-
ray, AIP Adv. 10, 025106 (2020).

[41] J. Kim, T. Ha, D. Kim, D. Lee, K.-S. Lee, J. Won, Y. Moon, and
M. Lee, Third-order exceptional point in an ion-cavity system,
Appl. Phys. Lett. 123, 161104 (2023).

[42] M.-L. Cai, Z.-D. Liu, W.-D. Zhao, Y.-K. Wu, Q.-X. Mei, Y.
Jiang, L. He, X. Zhang, Z.-C. Zhou, and L.-M. Duan, Obser-
vation of a quantum phase transition in the quantum rabi model
with a single trapped ion, Nat. Commun. 12, 1126 (2021).

[43] Q.-T. Xie, S. Cui, J.-P. Cao, L. Amico, and H. Fan, Anisotropic
Rabi model, Phys. Rev. X 4, 021046 (2014).

[44] Y.-F. Xie, L. Duan, and Q.-H. Chen, Quantum Rabi-Stark
model: Solutions and exotic energy spectra, J. Phys. A: Math.
Theor. 52, 245304 (2019).

053712-11


https://doi.org/10.1103/PhysRevLett.105.237001
https://doi.org/10.1038/nphys3906
https://doi.org/10.1103/PhysRevLett.120.183601
https://doi.org/10.1103/PhysRevA.46.4138
https://doi.org/10.1103/PhysRevB.72.195410
https://doi.org/10.1103/PhysRevA.104.033712
https://doi.org/10.1103/PhysRevA.103.023719
https://doi.org/10.1103/PhysRevA.86.023822
https://doi.org/10.1088/1751-8113/47/4/045301
https://doi.org/10.1088/1751-8113/48/45/454005
https://doi.org/10.1088/1751-8113/49/36/369401
https://doi.org/10.1088/0022-3719/12/9/010
https://doi.org/10.1063/1.526703
https://doi.org/10.1088/1751-8121/aa649b
https://doi.org/10.1093/imrn/rnaa034
https://doi.org/10.1088/1751-8113/49/1/01LT01
https://doi.org/10.1088/1751-8121/ac1fc1
https://doi.org/10.1103/PhysRevA.96.013849
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1080/09500349314551321
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1063/1.5115323
https://doi.org/10.1063/5.0168372
https://doi.org/10.1038/s41467-021-21425-8
https://doi.org/10.1103/PhysRevX.4.021046
https://doi.org/10.1088/1751-8121/ab1cf6

