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Bottom-up approach to room-temperature quantum systems
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We demonstrate a key ingredient in a bottom-up approach to building complex quantum matter using thermal
atomic vapors. We isolate and track very slowly moving individual atoms without the aid of laser cooling.
Passive filtering enables us to carefully select atoms whose three-dimensional velocity vector has a magnitude
below v/20, where v is the mean velocity of the ensemble. Using a photon correlation technique, we can extract
the velocity distributions. We can also follow the trajectory of slowly moving single atoms for more than 1 µs
within a 25-µm field of view, with no obvious limit to the tracking ability while simultaneously observing
Rabi oscillations of these single emitters. In addition, we measure the third-order correlation function of single
thermal atoms. Our results demonstrate the power and scalability of thermal ensembles for utilization in quantum
memories, imaging, and other quantum information applications through bottom-up approaches.
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I. INTRODUCTION

In recent years there has been a surge of interest in
room-temperature atomic vapors for applications in quantum
information science. In contrast to laser-cooled samples, they
are straightforward to fabricate, highly scalable, and can be
operated continuously. One can define two broad thrusts to
this research: a top-down and a bottom-up approach. The
former, which has been adopted in four-wave-mixing exper-
iments [1–4], seeks to engineer collective quantum behavior
within the vapor and ignores the discrete nature of the con-
stituent particles. The latter approach seeks to construct a
complex quantum system from individual atomic building
blocks, for example, optical tweezer arrays [5,6] and trapped
ions [7,8]. For thermal vapors, this approach is relatively
undeveloped. At issue is the rapid and random thermal motion
of the atoms that makes it difficult to track them without the
aid of a meter-long atomic beam apparatus [9–11]. If one
could address this issue using more modern methods such
as a compact and simple vapor cell [12], the possibilities are
clearly enormous: A typical rubidium ensemble at 100 ◦C con-
tains O(109) completely indistinguishable quantum systems
within a 1 mm3 volume. Even a small fraction of such a large
ensemble constitutes a huge and readily available resource for
quantum information, if it can be harnessed, while simultane-
ously requiring much lower experimental overhead compared
with analogous cold-atom systems. Figure 1(a) illustrates an
array of mesoscopic cells within a thermal vapor. The atomic
density has been lowered so that each cell contains at most
one atom. In our experiment each cell’s linear dimension is
25 µm. With negligible double occupancy, one effectively has
an ensemble of spatially resolved single emitters. However, at
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typical thermal velocities of 300 m/s atoms cannot be inter-
rogated for more than approximately 83 ns within one cell,
which is too short for most purposes. Moreover, atoms move
in random directions and cannot be tracked once they leave
their respective cells. Coherence times of quantum memories
in thermal vapors are therefore well below 1 µs due to this
motion-induced dephasing [4].

Figure 1(b) shows the approach taken in this experimental
work to address motion-induced dephasing. By selecting a
subensemble of atoms from an atomic beam whose three-
dimensional velocity vector is 20 times smaller in magnitude
than the mean, we extended the observation time to more
than 1 µs. We simultaneously tracked a single atom across
more than one cell, which was possible since all the atoms
traveled in the same direction. However, since these atoms
continue to move undisturbed along the axis for many cen-
timeters before colliding with either background gas or the
vacuum wall, the potential exists to increase the interaction
time by several orders of magnitude beyond what has been
achieved thus far with thermal vapors [4]. As a proof of our
method, we measured quantum-mechanical antibunching and
the correlated photon emission from a single atom. We also
observed large values of the second-order g(2)(τ ) and third-
order coherences g(3)(τ1, τ2). This indicates the potential for
this system to be a simple source of photon pairs or triplets
when suitably selected and prepared.

This tracking method is the key resource needed to en-
vision a bottom-up approach to quantum information. The
key point is that tracking allows us to gain precise classical
information about where the atoms are and thus to utilize
them downstream. Even tracking two atoms can provide a
significant utility. For example, in Fig. 1(c) we show a proto-
col whereby tracking generates indistinguishable photon-pair
states with a relatively simple setup that requires minimal
resources. In the first step, we illuminate cells a and b.
Slowly moving atoms in these cells then emit light via reso-
nance fluorescence. Heralded detection of a pair of photons at
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FIG. 1. Concept of the bottom-up approach to room-temperature quantum information processing with neutral atoms. Shown are arrays of
mesoscopic cells of volume V containing less than one atom per cell on average. The average cell occupancy f = n/V , where n is the atomic
density, should be adjusted to be the same for scenarios (a) and (b). (a) Ordinary vapor with mean thermal velocity v. (b) Three-dimensional
velocity selection of atoms with v � v that has been accomplished in this work. Atoms are tracked from one cell to the next. (c) Application of
tracked slow atoms to photon-pair generation. Upon receiving a pair of heralding photons (H), the occupation probability of two cells a and b
by one atom each becomes 1. Tracking is then used to determine the exact time when these atoms will enter cells 1 and 2. Single-photon pairs
are then generated and used to generate a quantum image of a target (the hourglass) onto two signal detectors (S). Additional optical elements
used for imaging are not shown.

detectors marked H confirms the presence of one atom in each
cell. Tracking can then be used to determine the arrival time
of the two atoms at two downstream cells 1 and 2. Due to
the atoms’ low velocity, the timing accuracy requirements can
be considerably relaxed, around 1 µs. A short excitation pulse
of light then generates a correlated two-photon state |11, 12〉.
Here 1i, for i = 1, 2, indicates a single photon transversely
localized to cell i and propagating toward the detector.

Using a single-photon camera for detection [13,14], these
photon pairs can be used for image reconstruction of a target
[the hourglass-shaped object in Fig. 1(c)] similar to single-
photon down-conversion sources [15]. The quantum advan-
tage of such single-photon Fock states has been discussed
extensively in the literature. Minimizing sample exposure and
sub-shot-noise detection are key improvements that can be
achieved [16]. Our approach can in principle even be scaled
up to larger photon-number states n (e.g., one photon from
each atom in n cells), which would be a very intriguing and
novel light source. Finite detection efficiency will have to be
considered for such applications. In Appendix C we show
details of how the tracking procedure can create high-purity
photon pairs in the state |11, 12〉.

II. SLOW SINGLE ATOMS IN THERMAL ATOMIC BEAMS

The schematic of the experimental setup for demonstrating
tracking is shown in Fig. 2(a). We employ a miniature atomic
beam device based on the chip-scale cascaded collimator [17],
a two-dimensional passive collimation device. This miniature
device can be inserted directly into a 12×12×42 mm3 cuboid
shape glass vacuum cell. The collimator consists of 20 chan-
nels, each with a cross section of 100×100 µm2, resulting in a
beam with a narrow divergence angle (θ1/2 = 0.013 rad, cor-
responding to a transverse velocity spread of only ±4 m/s).

With an atomic beam, we can select atoms whose longi-
tudinal velocity is substantially lower than the average. The
velocity selection combined with the two-dimensional passive
filtering with the collimator can isolate atoms with a small
three-dimensional velocity vector. To achieve single emitter
dynamics, we ensure that the mean number of atoms in the
detection region 〈N〉 � 1 by reducing the oven temperature.

The 87Rb D2 line transition diagram and experimental pro-
cedure are shown in Fig. 2(b). A Doppler-free pump beam

FIG. 2. Selecting and measuring single slow atoms.
(a) Schematic of the experiment. The angle between the repump and
the atomic beam is θ = 47◦. Two cleaved fiber tips are placed on
the image plane of the imaging system with a numerical aperture
of 0.42. (b) Energy levels involved. The repump is detuned by � to
select a certain group of atoms. (c) Raw coincidences with different
time delays from two SPCMs at � = −80 MHz.
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first pumps all atoms into the hyperfine F = 1 state, while
an angled repump beam then selectively pumps atoms back
to F = 2 depending on their longitudinal velocity. Finally, a
Doppler-free probe beam perpendicular to the atomic beam
couples the F = 2 → F ′ = 3 transition to detect the selected
atoms. The selected atoms are expected to have a velocity
center at vc = −�

k cos θ
, where � < 0 and k are the linear detun-

ing and the wave number of the repump beam, respectively,
and θ is the angle between the repump and the atomic beam.
Low velocities were selected by decreasing the detuning |�|
toward 0.

The ratio of atoms with a velocity below 30 m/s in a
thermal rubidium atomic beam is very small (approximately
equal to 10−5). It is hard to observe these atoms with nor-
mal Doppler-sensitive spectroscopy, as it will be limited by
electronic noise, vapor contributions, and the fluorescence
from 85Rb. Here we demonstrate a single-atom photon corre-
lation method to track their motion across two cells defined
in Fig. 1(b). In our work we utilize optical fibers for light
collection over a small distance, an approach that can more
easily be scaled up to multiple zones.

Two bare fibers are cleaved and fixed on a plastic holder
to keep their distance at 450 µm. This holder is then fixed on
the image plane of the microscope and forms two detection
regions separated by d ≈ 55 µm in the plane of the atoms, as
shown in Fig. 2(a). The other end of each fiber is connected to
a single-photon counting module (SPCM) where the detected
photons are time tagged and analyzed.

When a single atom passes through two detection regions,
the photons collected from the two fibers will contribute to
time-ordered coincidences with a delay τ = d

v
. The acciden-

tal coincidences from laser scattering, detector dark counts,
etc., do not depend on time delay and can be subtracted
later. The focused probe beam has a beam diameter of 2w ≈
120 µm that overlaps both detection regions. Figure 2(c)
shows the raw coincidence data for � = −80 MHz. The peak
around +500 ns is the contribution from velocity-selected
atoms with a center velocity v = d

τ
≈ 100 m/s. Some fast

atoms in the atomic beam escape the pumping process and
contribute to the small bump at around +100 ns. During the
data acquisition time, a small rubidium vapor gradually builds
up and contributes to coincidences with both positive and
negative time delays around zero. This vapor could be re-
moved in future experiments by adding some graphite to the
vacuum cell.

We can analyze the second-order temporal coherence
between SPCM A and SPCM B:

g(2)
AB(τ ) = 〈IA(t )IB(t + τ )〉

〈IA(t )〉〈IB(t + τ )〉 . (1)

Here g(2)
AB(τ ) measures the distribution of coincidences with

time delay τ and g(2)
AB(∞) → 1 represents accidental coinci-

dences. The correlated part g(2)
AB(τ ) − g(2)

AB(∞), after normal-
ization, is the coincidence probability density in the time
domain nAB(τ ). Given nAB(τ )dτ = nAB(v)dv and τ = d

v
, we

can derive nAB(v), which is the number density of coinci-
dences contributed by atoms whose velocity is v.

The coincidences generated by each atom are proportional
to the square of transit time through a single fiber’s detec-

tion region, whose diameter is d f . Then the atom probability
density ρ(v) for the flux is derived from coincidence data by

using nAB(v) ∝ ρ(v)
d2

f

v2 (check Appendix B for details).

For � = −80 MHz and an oven temperature of 100 ◦C, the
data for nAB(v) are shown in Fig. 3(a). It shows the photon
coincidences contributed by atoms with velocities from 0 to
250 m/s. Figure 3(d) shows the calculated atom probability
density distribution ρ(v). Compared with the original ther-
mal atomic beam velocity distribution [Fig. 3(d) inset], the
selected atoms have a much lower velocity: The peak is at
106 m/s, which agrees reasonably well with the theoretical
expectation of 92 m/s.

To select even slower atoms, we use � = −20 and
−10 MHz, whose data for nAB(v) are shown in Figs. 3(b) and
3(c). The coincidences have shifted to lower velocities, with
the peak occurring at 30 and 20 m/s, respectively. The corre-
sponding ρ(v) are shown in Figs. 3(e) and 3(f). Compared
with the coincidence nAB(v), the atom probability density
distribution is broader and has bigger tails at high velocities.
The reason is that slower atoms contribute more coincidences.
Thus, the peak locations for nAB(v) are closer to 0 and the
peaks are narrower. The expected peak of the atom probability
density is at 23 and 12 m/s for Figs. 3(e) and 3(f), while the
actual peak locations are both around 50 m/s.

Several nonidealities limited the velocity selection purity.
The imperfection in imaging can cause a small probabil-
ity of detecting photons from atoms between two fiber tips,
creating spurious coincidences similar to ultrafast atoms.
Some fast atoms managed to avoid being optically pumped
through the pump beam, and the background rubidium vapor
within the small glass chamber increased with time during the
experiment. After averaging for several hours, the correlation
method could distinguish the small correlated signals, but
some faster atoms inevitably shifted the peak location and
caused the long tail in Figs. 3(e) and 3(f). Nonetheless, atoms
with velocities around 15 m/s can clearly be observed, as
shown in the insets of Figs. 3(e) and 3(f). This demonstrates
that we can isolate and directly observe slow atoms with a
velocity less than v/20, where v is the mean velocity of the
unselected atomic beam.

III. PHOTON STATISTICS

We now demonstrate the unique photon statistics of single
atoms in the atomic beam. A key signature of single atoms is
the photon antibunching effect [18]. In order to measure the
second-order correlation function g(2)(τ ), the collector with
two fiber tips is replaced by a single fiber tip that is connected
to a 50:50 fiber splitter and two SPCMs to achieve a Hanbury
Brown–Twiss configuration. The field of view has a diameter
d f ≈ 25 µm.

The g(2)(τ ) of an unfiltered thermal atomic beam was first
measured by removing the pump and repump beams and
reducing the oven temperature to 78 ◦C to achieve 〈N〉 < 1.
The data are shown in Fig. 4(a). For classical light the condi-
tion g2(τ ) � g2(0) must be met [19]. Therefore, the observed
dip around τ = 0 is the quantum-mechanical antibunching
effect from single atoms [18,20]. After an emission event,
an atom needs time to be reexcited to emit a second photon,
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 3. Atomic velocities measured by correlations. Coincidence distributions in the velocity domain are shown for detunings (a) � =
−80 MHz, (b) � = −20 MHz, and (c) � = −10 MHz. The peak velocity shifts from 93 m/s to 30 m/s to 20 m/s. (d)–(f) Corresponding atom
probability density distributions. In (d) the peak velocity is 106 m/s, while the inset shows the original thermal distribution at 100 ◦C. The
insets in (e) and (f) are zoomed-in plots of the low-velocity region.

and therefore the maximum of g(2)(τ ) occurs around the first
half Rabi cycle. At zero time delay, g(2)(0) = 1 rather than 0
because the atomic beam follows the Poisson distribution, and
the single emitter condition is not always satisfied [20].

In comparison with trapped-atom systems [21–23], the
peak value of g(2)(τ ) observed at τ = τmax ≈ 12 ns is much
larger, as high as 10 for the unfiltered thermal atom data. Such
a large value is comparable to correlated photon pairs using
four-wave mixing in vapor cells [1,24] and much larger than
collective effects in thermal vapor [25]. This is because the
accidental coincidences scale with 〈N〉2, while the correlated
coincidences scale with 〈N〉. Thus, in an atomic beam where
〈N〉 � 1, the ratio of correlated coincidences is much higher.
With the Poisson process averaging and transit time correc-
tion, the g(2)(τ ) for a thermal atomic beam can be written as

(see Appendix A for derivation)

g(2)(τ ) = ξ (τ )
g2

single(τ )

〈N〉 + 1, (2)

where ξ (τ ) is the transit time correction factor whose full
expression is given in Appendix A, g(2)

single(τ ) is the second-
order coherence function of a single stationary atom, and
〈N〉 is the mean number of atoms in the field of view. We
can learn two things from Eq. (2). One is that g(2)(τ ) − 1
is inversely proportional to the average atom number 〈N〉
and the high g(2)(τ ) value only appears when 〈N〉 < 1.
Second, the small ratio g(2)(0)/g(2)(τmax) ≈ 0.1 indicates a
high purity of single-atom emission and low contamination
by multiatom events. For an ideal single emitter, this ratio
is zero.
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(a) (b)

(c)

FIG. 4. (a) Plot of g(2)(τ ) with the thermal atomic beam at 78 ◦C. The time bin size is 2 ns. The red line is the theory curve with 〈N〉 = 0.138
and L = 25 µm. (b) Plot of g(2)(τ ) with selected atoms at 100 ◦C. The selected atoms are more confined in space and suffer less intensity
variance in the probe beam. Thus, the second Rabi peak is more visible. The time bin size is 4 ns. (c) Plot of g(2)(τ ) for thermal and selected
atoms together with long time delays.

To confirm and compare this effect, the velocity selection
scheme was used to measure the g(2)(τ ) for slow atoms at a
repump detuning � = −20 MHz [see Fig. 4(b)]. The g(2)(τ )
peak is even higher, reaching 17, due to a smaller averaged
atom number, with g(2)(0)/g(2)(τmax) ≈ 0.06. Since the tran-
sit time for slow atoms is much longer, g(2)(τ ) also decays
more slowly at long τ . Figure 4(c) shows the comparison
between the g(2)(τ ) of thermal atoms and selected atoms.
The correlated photons can be seen for τ > 1000 ns, coming
from atoms with v < 25 m/s. This shows that we can observe
correlated photons from a single atom for longer than 1 µs.

The time delay between the photon pairs can be tuned
by the probe laser intensity. With the thermal beam at 78 ◦C
and a probe laser power of 7 µW, the collected photon pairs
have a rate of 0.16 pairs per second per fiber. The rate
can be improved quadratically with the collecting efficiency
and the simplicity and small size of the source should not
be overlooked. One can also readily multiplex the output
of several cells, for example, by adding more fibers. More-
over, unlike spontaneous parametric down-conversion sources
[15,26], this system has a very narrow linewidth and is ideally
suited for interaction with rubidium atoms.

Multiphoton generation has been a longstanding challenge
in the quantum optics field [27–29]. Cold atoms in optical
cavities have been shown to generate multiphoton streams
[30]. We expect our system to sequentially generate correlated
photons that are indistinguishable from one another and that
could be useful for quantum applications such as multiphoton
interference [31]. Here we demonstrate the generation of three

photons in short succession to one another. The third-order
correlation function g(3)(τ1, τ2) measures the temporal corre-
lation of three photons:

g(3)(τ1, τ2) = 〈IA(t )IB(t + τ1)IC (t + τ2)〉
〈IA(t )〉〈IB(t + τ1)〉〈IC (t + τ2)〉 . (3)

A high g(3)(τ1, τ2) value means a high probability of detect-
ing three photons with time delays τ1 and τ2 compared with
other time delays. The g(3) was measured using two detectors
in the Hanbury Brown–Twiss configuration. We recorded the
arrival time of photons from SPCM A and SPCM B with an
accuracy of 350 ps and a dead time � ≈ 45 ns. Then, since
photons do not distinguish SPCM A and SPCM C, the time
tags from SPCM A were used as the time tags for SPCM C.
We removed the spurious coincidences at τ2 ≈ 0 and a partial
function g(3)(τ1, τ2 > �) was measured. Due to detector dead
time, our measurements were sensitive only to the bunching
of the triplets g(3)

max > 1 occurring at finite delays and not to
the antibunching effect near zero.

Figures 5(a) and 5(b) show the data for the thermal atomic
beam and � = −20 MHz selected atoms, respectively. The
time bin size is 100×100 ns2 to reduce the shot noise and
g(3)(τ1, τ2 < �) is left blank. The peak around zero results
from the three consecutive photons emitted during the transit
of single atoms. When τ1 ≈ τ2, channel B and channel C will
have more coincidences as shown in the g2(τ ) measurements,
resulting in a higher value of three-photon coincidences and a
diagonal line in Fig. 5(a). When τ1 or τ2 is close to zero, the
same reason leads to the brighter lines close to the axis. For
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(a) (b)

FIG. 5. Measured g(3)(τ1, τ2 > �). (a) Thermal atomic beam at 78 ◦C. The maximum g(3) is around 39. (b) Atoms selected using a detuning
of � = −20 MHz. The maximum g(3) is around 280.

Fig. 5(b), the number of three-photon coincidences is not large
enough, and this pattern is blurred by shot noise. Comparing
Fig. 5(b) to Fig. 5(a), stronger third-order correlations from
slow atoms are detected for large time delays, showing the
capability of collecting photon triplets from a single atom for
more than 1 µs.

The maximum values of g(3)(τ1, τ2 > �) reach 39 and
280 for each case, showing great potential as a photon-triplet
source. For the thermal beam, we collected approximately
0.166 triplets per minute. The rate of photon triplets is pro-
portional to the collecting efficiency cubed. Improving the
collecting efficiency and adding more fibers in the imaging
plane can create bright, narrow-linewidth photon triplets that
are compatible with rubidium-based systems.

IV. SUMMARY

We have isolated and detected single slow atoms within
a thermal atomic beam and measured their unique photon
statistics, showing the possibilities inherent in a bottom-up
approach to thermal quantum systems. Improved velocity
selectivity can be achieved in the future by adding graphite
and using a two-photon Raman transition for pumping.
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APPENDIX A: EXPERIMENTAL SETUP
AND SECOND-ORDER CORRELATION THEORY

As shown in Fig. 6(c), the science chamber is a
12×12×42 mm3 cuboid glass cell. Both sides of it are bonded
to stainless steel bellows to reduce stress. The right port is
connected to a Pfeiffer HICUBE 80 ECO pumping station to
maintain a pressure of 10−7 Torr. The left port is connected
to a three-way cross, in which one way is used to insert
the atomic oven. The other way is also connected to the
same pumping station and assists with pumping the off-axis
vapor away. The copper oven delivers rubidium vapor into our
silicon cascaded collimator [Fig. 6(a)]. The principle of this

collimator is described in Ref. [17]. The off-axis vapor leaves
through the gaps in the collimator while the on-axis atomic
beam travels toward the right port. A small box surrounds the
collimator to keep the off-axis vapor away from the interaction
region.

Two multimode fibers (with a numerical aperture of 0.22
and spaced 105 µm apart) are stripped and cleaved to have
a clean flat end. They are then attached to a fiber holder,
which sets their distance to around 450 µm [Fig. 6(b)]. The
two-fiber holder is placed at the image plane of our imaging
system and aligned to the direction of our atomic beam. The
output of each fiber is fed into a single-photon detection mod-
ule (SPCM-AQRH-15). The generated transistor-transistor
logic pulses are sent into a time interval analyzer (Guidetech
GT668) to be time tagged and stored in the hard disk. The
time tags are later used to calculate coincidences.

The second-order correlation function g(2)(τ ) is defined as

g(2)(τ ) = 〈IA(t )IB(t + τ )〉
〈IA(t )〉〈IB(t + τ )〉 = 〈[nA(t )/�t][nB(t + τ )/�t]〉

〈nA(t )/�t〉〈nB(t + τ )/�t〉 ,

(A1)

where nA,B(t ) is the number of detected photons from detector
A or B in time bin �t at time t and the intensity I (t ) ∝ n(t )

�t .
The effect of g(1)(τ ) can be negligible in our system. For our
thermal atomic beam experiment, the background counts are
negligible (less than 1%). Thus, we ignore the background
counts and only consider photons from the atoms.

For an effusive thermal atomic beam with a given output
flux, we define a normalized velocity distribution of the flux
ρ(v),

ρ(v) = 2
v3

v4
0

e−v2/v2
0 , (A2)

where v0 =
√

2kBT
m , kB is the Boltzmann constant, m is the

mass of the atom, and
∫
v
ρ(v)dv = 1. This distribution is

related to the mean number of atoms that transit our collection
region per second FN [see Fig. 6(d)] through the formula
n(v)vA = FNρ(v), where n(v) is the density of atoms with
velocity between v and v + dv and A is the cross-sectional
area of the collection region. The relationship between FN

and the average atom number in the field of view 〈N〉 is then

053710-6



BOTTOM-UP APPROACH TO ROOM-TEMPERATURE … PHYSICAL REVIEW A 108, 053710 (2023)

Pump

D 450 m

(a) (b)

(c)

(d)

L
Atomic beam

Off-axis vapor

FIG. 6. (a) Image of the cascaded collimator (see Ref. [17] for more details). (b) Microscope image of two fiber tips in the two-fiber
detector. (c) Three-dimensional model of the vacuum chamber. (d) Diagram of the collection region of a single fiber showing individual atom
transits.

straightforward to calculate,

〈N〉 =
∫

v

ALn(v) dv = FN

∫
v

ρ(v)
L

v
dv, (A3)

where L is the field of view length in the atomic beam direc-
tion.

We calculate the right-hand side of Eq. (A1) by separately
evaluating the numerator and denominator, starting with the
latter. Here we need the average number of photons detected,
which is the product of the mean atom number 〈N〉, scattering
rate Rs, and collection efficiency Ceff:

〈nA(t )/�t〉 = CeffRsFN

∫
v

ρ(v)
L

v
dv. (A4)

Moreover, since this average is time independent, the denom-
inator becomes

〈nA(t )/�t〉〈nB(t )/�t〉 =
(

CeffRsFN

∫
v

ρ(v)
L

v
dv

)2

. (A5)

To calculate the numerator correctly, we must consider the
fluctuating number of atoms in the volume. If p(Nf ) is the
probability to have Nf atoms in the field of view, then 〈N〉 =∑

Nf
p(Nf )Nf . Thus, we can write the numerator as

∑
Nf

p(Nf )〈[n1A(t ) + n2A(t ) + · · · + nNf A(t )]/�t{[n1B(t + τ )

+ n2B(t + τ ) + · · · + nNf B(t + τ )]/�t}〉, (A6)

where niA(t ) represents the number of photons emitted by the
ith atom in time bin �t at time t that reach detector A and
similarly for B. Here niA(t )n jB(t + τ ) are uncorrelated unless
i = j. Therefore, we can write (A6) as the sum of a correlated

term and an uncorrelated term:

∑
Nf

p(Nf )
i=Nf∑
i=1

〈[niA(t )/�t][niB(t + τ )/�t]〉

+
∑
Nf

p(Nf )
∑
i �= j

〈[niA(t )/�t][n jB(t + τ )/�t]〉. (A7)

Since all atoms are equivalent, we may write 〈ni(t )〉 = 〈n j (t +
τ )〉. Therefore, we may calculate everything in terms of just
atom 1′s emission:∑

Nf

p(Nf )Nf 〈[n1A(t )/�t][n1B(t + τ )/�t]〉

+
∑
Nf

p(Nf )Nf (Nf − 1)〈n1A(t )/�t〉〈n1B(t + τ )/�t〉.

(A8)

The relationship between 〈n1A(t )/�t〉 and 〈nA(t )/�t〉 can be
derived:

〈nA(t )/�t〉 =
∑
Nf

p(Nf )〈[n1A(t )+n2A(t )+ · · · + nNf A(t )]/�t〉

=
∑
Nf

p(Nf )Nf 〈n1A(t )/�t〉

= 〈N〉〈n1A(t )〉. (A9)

Using (A5) and (A9) with (A8), the numerator can be
written as∑

Nf

p(Nf )Nf 〈[n1A(t )/�t][n1B(t + τ )/�t]〉

+
∑
Nf

p(Nf )
Nf (Nf − 1)

〈N〉2

(
CeffRsFN

∫
v

ρ(v)
L

v
dv

)2

.

(A10)
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Next we are going to solve the first, correlated term, which
is generated by the same atom and is related to its second-
order correlation function. We will also calculate the required
transit time correction for atoms moving through the field
of view. From (A1) we know that for a stationary single
atom g(2)

single(τ ) = 〈[n′
A(t )/�t][n′

B (t+τ )/�t]〉
〈n′

A(t )〉〈n′
B (t+τ )/�t〉 . Here 〈n′

A〉 = 〈n′
BA〉 =

CeffRs�t is the mean number of photons received from a
stationary atom without transit time correction. If we then
introduce the conditional probability P(B(τ )|A)�t of detect-
ing the second B photon within a time interval �t at time delay
τ given that the first A photon was detected, we obtain

g(2)
single(τ ) = 〈[n′

A(t )/�t][n′
B(t + τ )/�t]〉

CeffRsCeffRs

= 〈n′
A(t )/�t〉P(B(τ )|A)

CeffRsCeffRs
= P(B(τ )|A)

CeffRs
. (A11)

For one atom transiting the field of view L with velocity v, if
a coincidence with a time delay τ is to be detected, the first
photon must have been emitted within a distance L − vτ to
allow the second photon at τ to be detected. Thus the transit
length for the first photon 〈n1(t )/�t〉 is effectively reduced
to L − vτ , resulting in a correction factor of L−vτ

L provided
that τ < L/v. No coincidences can be found from the same
atom when v > L/τ . Combining g(2)

single(τ ), the transit time
correction factor, and Eq. (A4), we finally obtain

〈[n1A(t )/�t][n1B(t + τ )/�t]〉

=
∫ v=L/τ

v=0
dv CeffRs

FN

〈N〉ρ(v)
L

v

L − vτ

L
CeffRsg

(2)
single(τ ).

(A12)

In this equation we may substitute the textbook formula for
g(2)

single(τ ) = 1 − e−(3�/4)τ [cos(	�τ ) + 3�
4	�

sin(	�τ )] [32],

where 	� =
√

	2 − ( �
4 )2, with 	 and � the Rabi frequency

and spontaneous decay rate, respectively.
Now we put Eq. (A12) back into (A10). We also assume a

Poisson distribution of atom numbers in the field of view, for
which ∑

Nf

p(Nf )Nf = 〈N〉 (A13)

and ∑
Nf

p(Nf )N2
f = 〈N〉2 + 〈N〉. (A14)

With these formulas, Eq. (A10) becomes

C2
effR

2
s FN

∫ v=L/τ

v=0
ρ(v)

L − vτ

v
dv g(2)

single(τ )

+
(

CeffRsFN

∫
v

ρ(v)
L

v
dv

)2

. (A15)

Combining the denominator (A5) and the numerator (A15),
we get g(2)(τ ):

g(2)(τ ) =
( ∫ v=L/τ

v=0

(
1 − vτ

L

)
ρ(v)

v
dv∫

v
FNρ(v) L

v
dv

∫
v

ρ(v)
v

dv

)
g(2)

single(τ ) + 1. (A16)

From (A3) we can see that the first term in the denominator is
actually 〈N〉. This yields the final expression for g2(τ ):

g(2)(τ ) =
(∫ v=L/τ

v=0

(
1 − vτ

L

)
ρ(v)

v
dv∫

v

ρ(v)
v

dv

)
g(2)

single(τ )

〈N〉 + 1. (A17)

The transit time correction ξ (τ ) defined in the main text is
the term in large parentheses. It includes an extra factor of
1/v in the integrand compared with the transit time correction
derived in Ref. [20]. Conceptually, it is because slower atoms
contribute more photons per transit and thus have a higher
weight in the g(2)(τ ). Monte Carlo wave-function simulation
is also implemented, and our transit time correction factor fits
well with the simulation result (see Fig. 9 in Appendix B).

We then fit this formula to our 78 ◦C thermal atomic beam
data. The averaged atom number 〈N〉, the field of view L, and
the Rabi frequency 	 in g(2)

single(τ ) are fitted to the data, while
ρ(v) is the 78 ◦C atomic beam Maxwell-Boltzmann velocity
distribution. Because of the intensity variance in the collecting
region, the g(2)

single(τ ) is averaged over a Gaussian-distributed
Rabi frequency 	. The fitted parameters are 〈N〉 = 0.138 and
L = 25 µm and 	 is a Gaussian distribution with μ = 6�

and σ = 1.5� (here � is the spontaneous decay rate and μ

and σ are the mean and standard deviations of the Gaussian
distribution). The theory curve together with the experimental
data is shown in Fig. 4(a) in the main text.

APPENDIX B: TWO-FIBER DETECTOR DATA
PROCESSING AND MONTE CARLO

WAVE-FUNCTION SIMULATION

Similar to the single-fiber second-order correlation theory,
here we start with a formula for the coincidence distribution
C(τ )dτ in the time domain and convert the coincidences into
the velocity domain later. As before, we ignore the back-
ground counts and only consider photons from the atomic
beam. We set the field of view of the fiber to be d f and the
distance between two fibers in the objective plane to be d .
We make the approximation that d f /d � 1. Two components
contribute to the coincidences:

C(τ )dτ = (uncorrelated term) + (correlated term). (B1)

The first uncorrelated term is the accidental coincidences
generated by randomly having atoms at fiber A and atoms at
fiber B at the same time. This term has no relationship to time
delay τ and can be written as

(uncorrelated term) =
∫

v

CeffRsFNρ(v)
d f

v
dv

∫
v

CeffRsFNρ(v)
d f

v
dv dτ, (B2)

where dτ is the size of time bins for coincidences. The corre-

lated term comes from atoms with velocity vτ = d±d f

τ
≈ d

τ
.

We ignore d f here since d f

d is small; these atoms emitted
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FIG. 7. Plot of the 70 ◦C thermal atomic beam experimental data
after processing versus theory. The distance between the two fibers
in the objective plane d = 55 µm.

photons in fiber A and in fiber B at τ later:

CeffRs
d f

vτ

CeffRs
d f

vτ

FNρ(vτ )dvτ . (B3)

Since vτ = d
τ

, putting dvτ = dτ
v2

τ

d into (B3), we get

(correlated term) = C2
effR

2
s

d2
f

d
FNρ(vτ )dτ. (B4)

If we divided the uncorrelated term (B2) on both sides of
(B1) and combine the definition of average atom number 〈N〉
[Eq. (A3)] we get

C′(τ ) = 1 +
d f

d ρ(vτ )

〈N〉 ∫
v

ρ(v)
v

dv
. (B5)

This formula shows that it needs to be in the single-atom
regime (〈N〉 � 1) so that the second correlated term is large
enough to be detected.

We can also see that when τ → ∞, C′(τ ) → 1. Since
g(2)

AB(τ ) is also the coincidence distribution normalized to the
infinite time delay, C′(τ ) equals the cross correlation g(2)

AB(τ ).

Next, as we mentioned in the main text, that value g(2)
AB(τ ) −

g(2)
AB(∞), after normalization, is the coincidence probability

density from atoms in time domain nAB(τ ), which is propor-
tional to ρ(vτ ). Given nAB(τ )dτ = nAB(v)dv and τ = d

v
, we

can get the coincidence probability density in velocity space
nAB(v) = nAB(τ ) d

v2 . Finally, we can get nAB(v) ∝ ρ(v) 1
v2 .

To calibrate our theory with data, we measured the
unfiltered thermal atomic beam at 70 ◦C with our two-fiber
detector. The result is shown in Fig. 7. The circles are the
experimental data after processing and the red curve is the the-
oretical curve for the 70 ◦C atomic beam Maxwell-Boltzmann
distribution. The theory fits very well for velocities below 300
m/s, which is the range we focused on. The error becomes

larger when the velocity is higher because d f /d ≈ 0.45 and it
could have an uncertainty error around 22.5%. Also, because
of the imperfect imaging, some atoms can emit photons into
both fibers during the transit from fiber A to fiber B, which
causes some spurious population at high velocity.

For � = −20 and −10 MHz, as mentioned in the main
text, the contribution from fast unpumped atoms and vapor
is more than that from the selected atoms. Thus we also mea-
sured g(2)

b (τ ) with the pump beam and probe beam only to get
the contributions from fast unpumped atoms and vapor. Then
we subtracted the background contribution when calculating
ρ(v) with the selected atoms according to (B5) and assuming∫
v

ρ(v)
v

dv has roughly the same value.

The Monte Carlo wave-function (MCWF) simulation is
also implemented to test our theory. The MCWF simulation
was designed to mimic what happened in our experimental
system to calculate the g(3)(τ1, τ2). The atoms are gener-
ated according to the Poisson distribution, and the velocities
are chosen from the 78 ◦C atomic beam Maxwell-Boltzmann
distribution. The atoms then fly into a laser beam and
interact with it. The wave functions are evolved according
to the MCWF procedure [33]. When atoms are within the
field of view of the fiber, their emitted photons’ time tags
are registered and stored. Then the same algorithm used to
calculate experimental g(3)(τ1, τ2) is used on the simulation
data.

The result is shown in Fig. 8. The color bar is in linear scale
and the simulation fits the data quite well. Because of the lim-
ited three-photon coincidence rate, Fig. 8 and the g(3)(τ1, τ2)
in our main text all used 100×100 ns2 time bins to have more
averaging effect to overcome the shot noise. The resolution
is limited, and the dynamics inside the 100×100 ns2 is aver-
aged out. Thus, MCWF simulations were done to calculate
the g(3)(τ1, τ2) with no dead time and with 1×1 ns2 time
resolution near zero time delay [Fig. 9(a)]. We can see that
similar to g(2)(0), g(3)(0, 0) = 1 and when τ1 = 0, τ2 = 0, or
τ1 = τ2, g(3)(τ1, τ2) equals 1. Then g(3)(τ1, τ2) has a huge
peak where three consecutive photons from the same atom
create coincidences. With 100-ns resolution, this dynamics is
averaged into one bunching peak around zero time delay. One
can put some graphite in the system to absorb the accumu-
lated vapor and average for a much longer time to reduce
the three-photon-coincidence shot noise. Then one can use
three detectors to eliminate the dead-time constraint and use
a smaller time bin (4 ns) to see the dynamics near zero time
delay.

Similar simulations are also done for g(2)(τ ); the result
agrees well with our theory in Appendix A (see Fig. 9).

APPENDIX C: CONCATENATED SINGLE-PHOTON
STATES FROM TRACKED ATOMS

Here we propose a method to generate photon pairs by the
concatenation protocol described in the Introduction. We refer
the reader to Fig. 1(c). As described earlier, we first choose
two source cells, 1 and 2, and then apply the tracking method
to herald the occupation of both cells by atoms at a known
instant of time. This can be accomplished by detecting a pair
of photons from two detectors placed upstream of the cells
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(a) (b)

FIG. 8. (a) Experimental g(3)(τ1, τ2) value for the 78 ◦C unfiltered thermal atomic beam. This figure is the same as Fig. 5(a) in linear scale.
(b) Simulated g(3)(τ1, τ2). The time bin size is 100×100 ns2.

and then waiting a fixed amount of time before the atoms
enter the cells. Since the atoms move slowly, this should be
feasible with microsecond update times, and the single-photon
camera itself could potentially be used for both heralding
and measurement. Once the atoms have entered the cells, a
short excitation pulse of light of duration τp will cause each
of these atoms to spontaneously generate a single photon. If
|ni〉 is a Fock state of ni photons emitted from cell i, then
the state |11, 12〉 will be a concatenation of single-photon
states, one each from cells 1 and 2. This state has a nontrivial
spatial distribution since each origination cell corresponds to
a different spatial mode for the propagating photon. In this
way it is similar to spontaneous down-conversion sources
that are frequently used in quantum imaging and informa-
tion processing [34]. We consider applications of our light
source to illuminating a target [see Fig. 1(c)], where we detect
correlations between the two photons. Apart from being a
general purpose quantum light source, it may prove espe-
cially well suited to targets consisting of trapped ultracold
Rb atoms.

To establish the feasibility of our proposal as a proof
of concept, we show below that the probability of pair

generation in the state |11, 12〉 exceeds that of spurious two-
photon generation from one cell, |21, 02〉 and |01, 22〉, as well
as unpaired single-photon states |11, 02〉 and |01, 12〉 that rep-
resent background Poisson noise. Thus the density matrix of
the pair will have a high degree of purity. This can be quan-
tified and benchmarked using the usual methodologies, for
instance, Hong-Ou-Mandel interference performed by recom-
bining the output of both cells using a beam splitter and two
SPCMs [31]. For the purpose of this paper, we simply wish
to demonstrate that such a quantum light source is feasible.
Hence, we establish bounds on the purity by calculating the
probabilities classically.

We define Qi(ni ) to be the probability to collect ni photons
from cell i within an observation time window Tw after the
excitation pulse τp. For a perfect single-photon source
Qi(1) = 1. We assume that τp is a Rabi π pulse, with τp �
1/� and Tw  1/�. The former condition ensures that no
more than one photon is emitted by an atom, while the latter
condition ensures that zero-photon emission is not a possibil-
ity. Very similar conditions are employed for single-photon
sources such as quantum dots [35], although here our atom
sources have a built-in indistinguishability that is not present

(a) (b)

FIG. 9. (a) Simulated g(3)(τ ) with 1×1 ns2 time bins to see the dynamics near zero time delay. (b) Simulated g(2)(τ ) with the same parameter
we used to fit our experimental data, plotted together with our theoretical curve. Here 〈N〉 = 0.138, L = 25 µm, and 	 is a Gaussian distribution
with μ = 6� and σ = 1.5�.
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in any solid-state system. Thus we may assume that each atom
is a perfect single-photon emitter, although we still maintain a
finite photon collection efficiency 0 < η < 1 that is assumed
to be the same for each cell. The probability to receive k
photons from a cell containing m atoms is given by the bino-
mial formula Cmkη

k (1 − η)m−k , where Cmk = m!/k!(m − k)!.
If Pi(m) is the probability that cell i is occupied by m atoms,
then the probabilities of collecting zero, one, and two photons
from cell i are then easily expressed as

Qi(0) =
∞∑

m=0

Pi(m)Cm0(1 − η)m,

Qi(1) =
∞∑

m=1

Pi(m)Cm1η(1 − η)m−1,

Qi(2) =
∞∑

m=2

Pi(m)Cm2η
2(1 − η)m−2.

It is straightforward to simplify the above as

Qi(0) =
∞∑

m=0

Pi(m)(1 − η)m,

Qi(1) = − ∂

∂η
Qi(0),

Qi(2) = η2

2

∂2

∂η2
Qi(0). (C1)

We now define the signal-to-noise ratios

(
S

N

)
22

= Q1(1)Q2(1)

Q1(0)Q2(2) + Q1(2)Q2(0)
,

(
S

N

)
21

= Q1(1)Q2(1)

Q1(0)Q2(1) + Q1(1)Q2(0)
. (C2)

A large value of (S/N )22 signifies a high purity for the pair
state |11, 12〉 and low probability of occupying spurious two-
photon states. Moreover, a large value of (S/N )21 is needed to
suppress unpaired single-photon states. For the distributions
concerned here, all quantities can be analytically evaluated,
but to illustrate the physics we will present many of the results
only to leading order in the mean atom occupation probability
p � 1.

Without heralding, we have a Poisson distribution of atom
occupancy probabilities Pi(m) = e−p pm/m! with mean occu-
pancy p. Putting this expression into Eqs. (C1) and (C2), we

obtain (
S

N

)
22

= 1,

(
S

N

)
21

= pη

2
. (C3)

Without heralding, the two photons are equally likely to
come from two atoms in one cell as they are to come
from one atom in each cell; hence (S/N )22 = 1. Moreover,
for p � 1 the probability of singles far exceeds the pair
rate; hence (S/N )21 � 1. This unheralded regime makes
for a good single-photon source, but not a great source
of pairs.

With heralding, the situation changes considerably for pair
production. No longer is it possible to have an unoccupied
cell, so Pi(0) = 0. This considerably reduces the likelihood of
receiving no photons at all and therefore also the probability of
generating the spurious two-photon states |21, 02〉 and |01, 22〉.
We conservatively assume that the heralding yields no new
information on the probability distribution for Pi(m > 1),1 in
which case the new distribution is simply a renormalization of
the original Poisson distribution with the m = 0 component
removed, i.e.,

Pi(0) = 0, Pi(m > 0) =
(

1

ep − 1

)
pm

m!
, (C4)

with
∑∞

m=1 Pi(m) = 1. Putting this expression into Eqs. (C1)

and (C2) yields(
S

N

)
22

= 1

p(1 − η)
+ 1

2
+ O(p),

(
S

N

)
21

= η

2(1 − η)
+ O(p), (C5)

and if p � 1, ( S
N )22 > 1/p  1, so the pair state |11, 12〉

is much more likely than either of the spurious two-photon
states |21, 02〉 and |01, 22〉. The intuitive explanation for the
suppression is that both sites contain at least one atom. More-
over, for high collection efficiency η → 1, ( S

N )21  1, so the
probability of receiving unpaired photons diminishes. We note
that finite detection efficiency is not unique to our system, as it
affects all types of pair sources, including spontaneous down-
conversion sources. It should not unduly affect the utility of
our source. This shows that the tracking features will allow
one to realize novel, spatially resolved photon-pair states with
utility in quantum information applications.

1In fact, the probability that m > 1 is reduced by heralding, which
only improves the outcome. Using Poisson statistics, we can infer
that the probability that one heralding photon was received from
one atom is approximately equal to pη, while the probability it was
received from two atoms is approximately equal to p2η(1 − η), i.e.,
smaller by the factor p(1 − η) < 1.
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