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Decay and revival dynamics of a quantum state embedded in a regularly spaced band of states
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The dynamics of a single quantum state embedded in one continuum or several (quasi)continua is one of the
most studied phenomena in quantum mechanics. In this paper we investigate its discrete analog and consider
short- and long-time dynamics based on numerical and analytical solutions of the Schrödinger equation. In
addition to derivation of explicit conditions for initial exponential decay, it is shown that a recent model of this
class [L. Guo, A. Grimsmo, A. F. Kockum, M. Pletyukhov, and G. Johansson, Phys. Rev. A 95, 053821 (2017)],
describing a qubit coupled to a phonon reservoir with energy dependent coupling parameters, is identical to a
qubit interacting with a finite number of parallel regularly spaced bands of states via constant couplings. As a
consequence, the characteristic near periodic initial-state revivals can be viewed as a transition of probability
between different continua via the reviving initial state. Furthermore, polynomial decay of the reviving peaks is
present in any system with constant and sufficiently strong coupling.
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I. INTRODUCTION

The decay dynamics of an unstable or excited quantum
state has been one of the most studied topics since the inven-
tion of quantum mechanics. Following the pioneering works
of Dirac and Landau almost 100 years ago [1,2], Wigner and
Weisskopf [3] derived the characteristic Lorentzian line shape
of the final-state probabilities assuming exponential decay of
the initial state. The constant transition rate derived in the
earliest works was later known as Fermi’s “golden rule” with
reference to his ground-breaking description of nuclear β

decay [4]. In the period up till today the number of articles
addressing the topic is probably in the order of thousands or
more, when counting decay phenomena in subatomic, atomic,
molecular, and solid-state physics.

In the time-dependent regime a constant transition rate, as
provided by Fermi’s “golden rule,” immediately leads to an
exponential decay law using basic statistics of independent
events together with a constant rate [5]. However, there exist
numerous cases where nonexponential dynamics is observed,
e.g., in Refs. [6–9]. In the most recent experiment [9] an
artificial two-level atom is set to interact with acoustic phonon
fields with characteristics wavelengths smaller than the atomic
dimension, in sharp contrast to “normal” atoms interacting
with photon fields. The experiment displayed regular revivals
of the initial excited state, i.e., a type of nonexponential
dynamics absent in atom-photon decay.

Indeed, the systems where the Hamiltonian provides an
exact exponential decay law directly from the time-dependent
Schrödinger equation are quite few. The prime example is
decay from initial time t = 0 up to a fixed time t + �t appear-
ing in a model system with constant coupling from the initial
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embedded state to a regularly spaced band of states, some-
times representing a discretized continuum. In its simplest
form there is no coupling between band states [10,11]. Thus,
the interaction matrix contains nonzero elements on a single
row and column which motivates us to refer to this model in
the following as the row-column (RC) model [12]. The RC
model dates back to the the 1930s and was analyzed by Fano
[13] in 1935. Examples of real systems that can be reason-
ably well described by the RC model are excited atoms or
molecules decaying through one-photon transitions to lower
states or electron spins interacting with a bath of nuclear
spins [14]. Very recently, it was shown that initial exponential
decay is a universal phenomenon occurring in a wide range
of related many-body systems [15]. It was also shown [16]
that harmonic energy dependent coupling parameters result
in initial exponential decay of an artificial two-level atom,
interacting with surface acoustic phonon states.

An RC model with regularly spaced energy band, with
energy separation �, reproduces the dynamics of a true con-
tinuum as long as the product of the absolute square of the
coupling parameter |β|2 and density of states �−1 is kept
constant in the limit where � → 0 (� itself represents the
energy separation between the states in the band, which we
assume for now are uniformly distributed). The discrete and
the continuum system then reproduce the same physics up to
a maximum time τ = 2π/�. From then on the dynamics of
the discrete system separates from its continuous counterpart.
A series of revivals of the initial-state probability occur in the
discrete version at times near an integer number of τ . The
revival phenomenon of the RC model was initially discussed
in Ref. [17] and is also well known in other discrete systems,
such as the Jaynes-Cummings model in quantum optics [18].

The origin of the revivals of the RC model can be
understood from the fact that the dynamics of the initial state
may be transformed into a time delay equation [10]. Each
time the system passes through an integer number of τ a
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new term is added to the amplitude which can cause a partial
revival. Alternatively the sequence of imperfect revivals can
be understood from the quasiperiodicity which characterizes
this particular model when an eigenvector basis is applied. In
Ref. [16] it was shown that revivals also occur with harmonic
coupling to a true continuum, in sharp contrast to the infinite
value of τ for constant coupling. In this case the revivals are
occurring at the timescale T of the harmonic modulation of
the coupling. The phenomenon was later confirmed in experi-
ments [9].

In this paper we explore the short- and long-time dynamics
in the RC model for both types of couplings, constant and
harmonic, as well as coupling two distinct bands. The analysis
and computations will be based on the eigenvector basis of the
full Hamiltonian, which gives a completely analytical expres-
sion for the dynamics as long as the energies of the eigenstates
are numerically obtained [11,19]. A coherent theoretical anal-
ysis, based on the Laplace transform method [12], valid for
both coupling types and independent of the inverse density of
states, is outlined in parallel. We will show that there exists
a close connection between constant couplings to parallel
bands and the harmonic coupling to a single continuum. This
observation leads to the identification of a long-time power-
law decay of revival peaks in the constant-coupling system
which is identical to what was discovered in the harmonic
case. By simply including an additional dense background
reservoir to account for, e.g., noise and temperature fluctua-
tions, we obtain excellent agreement with the experiment [9].
The analysis is carried out in the two following sections, one
for each coupling type. The Laplace transform method is pro-
vided in the Appendixes. Atomic units are applied throughout.

II. THE RC MODEL WITH CONSTANT COUPLING

Most theoretical methods for solving the Schrödinger
equation in a true continuum are based on various analytical
methods to obtain a closed form expression of the amplitude
describing the embedded decaying initial state. Two classic
approaches are the ones of Stey and Gibberd [12], utiliz-
ing the Laplace transform, and that of Milonni et al. [10],
based on the Poisson summation formula. In both cases a
delayed time differential equation of the initial amplitude
appears. Our approach is based on a discrete representation of
the continuum, diagonalizing the Hamiltonian and expressing
the initial state in the eigenvector basis. The true continuum
dynamics can be obtained when letting the energy separation
go to zero in the final expression � → 0 while keeping the
ratio |β|2/� = const, where β is the coupling between the
singled-out state a(t ) and the band. This approach has some
advantages since the eigenvector basis is analytical and also
numerically available on almost any computer for 104 states or
more. Computation of time development becomes extremely
efficient since only eigenvectors which have a significant over-
lap with the initial state need to be included in the basis.

A. A single state embedded in a single quasicontinuum

Consider an unstable state |a, 0〉 with energy εa which
decays to the ground state with energy εb via interactions
with a (quasi)continuum. The field free transition frequency

is defined as ωab = εa − εb. Accompanying the initial state
is a vacuum state of the continuum, indicated by the zero in
the initial-state ket vector. Correspondingly, the transition to
the ground state implies that some of the continuum states are
populated by an energy quanta εn = n�. For a slow transition
only εn = ωab gets populated after infinitely long times. For
finite transition times many eigenvectors may overlap with the
initial state. The state vector describing the complete single-
photon (-phonon) transition, |�(t )〉, is then described by the
superposition,

|�(t )〉 = a(t )|a, 0〉 +
∑

n

bn(t )|g, n�〉, (1)

with a(t ) and bn(t ) being time-dependent probability ampli-
tudes. By assuming that the state |a〉 couples with strength βi

only to each of the discretized states and that the latter do not
couple between themselves, the time-dependent Schrödinger
equation is transformed into a set of N coupled first-order
differential equations for the expansion coefficients:

i
d

dt

(
a
b

)
=

(
ωab C†

C �

)(
a
b

)
. (2)

Here the row vector b contains the N − 1 expansion coeffi-
cients bn(t ). The setup is depicted in Fig. 1 (left). The sparse
coupling Hamiltonian is Hermitian with nonzero elements de-
fined by the row vector C† = {β∗

1 , β∗
2 ...β∗

N−1} and the energy
levels of the discretized continuum are given by the diago-
nal matrix, � = diag{ε1, ε2...}. It is straightforward to solve
Eq. (2) numerically even for order of thousands to hundreds
of thousands of equations. Alternatively, and in general more
computationally efficient, we may diagonalize the coupling
matrix once, and obtain the time-dependent amplitudes ex-
plicitly. The survival amplitude takes the form

a(t ) = 〈a|�(t )〉 =
∞∑

n=−∞
|〈a|vn〉|2|vn〉e−iEnt , (3)

where |vn〉 is the nth eigenvector having energy En and
a(0) = 1. The simple structure of the coupling matrix leads
to analytical eigenvectors and eigenenergies which can be
obtained from a simple implicit equation for each eigenvalue:

Em − ωab =
∞∑

n=−∞

|βn|2
Em − εn

. (4)

As the right-hand side has poles at Em = εn, we obtain exactly
one eigenvalue in each interval (εn, εn+1). Furthermore, the
set of energies Em − ωab is symmetrically distributed around
ωab. In the case of an unbounded continuum the effect of
the detuning is simply to shift the distribution populated final
amplitudes bn around center eigenvalues from Em ∼ ωab to
Em ≈ 0. Without loss of generality we therefore ignore the
detuning in the following. The positive eigenenergies can then
be expressed as Em = m + δm for integer m � 0 and we have
E-m = Em [11]. With the eigenvalues at hand, we obtain the
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FIG. 1. Schematic presentation of the models studied in this paper. Left: The state |a, 0〉 embedded in an infinite band of states |g, n�〉
with band energy separation � and coupling βn. Right: The state |a, 0〉 embedded in two (or more) bands of states characterized with different
band energy separations and constant coupling to each state of the band.

eigenvectors

vm = 1

xm

⎛
⎜⎜⎜⎜⎜⎜⎝

1
β1

Em−ε1
β2

Em−ε2

.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5)

with

x2
m = 1 +

∞∑
j=−∞

|β j |2
(Em − ε j )2

. (6)

In Ref. [11] it is shown that when all couplings elements are
identical, β j = β for all j, the summation above can be made,
yielding

∞∑
j=−∞

|β|2
(Em − ε j )2

=
[

πβ

� sin
(
π Em

�

)
]2

. (7)

It follows that the implicit eigenvalue in Eq. (4) can be written
as

Em = πβ2

� tan
(
π Em

�

) . (8)

The normalization factor xm can then be brought to the form

x2
m = 1

β2

[
β2 +

(
πβ2

�

)2

+ E2
m

]
, (9)

which leads to a survival probability expressed as

a(t ) =
∞∑

n=1

2β2

β2 + (γ /2)2 + E2
n

cos(Ent ), (10)

where we introduced the rate γ ≡ 2πβ2/�.
Exponential decay is obtained in the limit of � → 0 while

requiring that the rate γ is kept constant. The first term in

the denominator then vanishes and we can take the continuum
limit of the sum over band energies. The resulting integral
over energy gives exponential decay for all times:

a(t ) = γ

π

∫ ∞

0
dE

cos(Et )

(γ /2)2 + E2
= e−tγ /2. (11)

This corresponds to the Wigner-Weisskopf approximation [3]
for our problem and leads to Fermi’s “golden rule.”

For true discrete systems the replacement of the sum with
an integral is less straightforward. The coupling β may well
be much larger than γ in Eq. (10) which prohibits the tran-
sition to Eq. (11). Thus, one may be lead to the conclusion
that the decay dynamics is entirely nonexponential. How-
ever, there is always a finite time period t ∈ (0, τ ), with τ ≡
2π/�, where the decay follows Eq. (11) exactly. Large �,
or a small rate γ , implies then that the decay is only partial
since |a(τ )|2 > 0.

The proof of the preceding statements is simple: A system
with fixed and finite separation between the energy levels can,
in the period t ∈ (0, τ ), be replaced with a factor k denser
quasicontinuum. The decay dynamics of both systems are
then exactly equal. In the dense band the coupling is given by
βk = β/

√
k. Since k can be taken arbitrarily large the factor

β2
k in the denominator eventually vanishes and the validity of

the transition from Eq. (10) to Eq. (11) is restored up to t = τ .
For t > τ the dynamics of the original (with spacing �) and
dense (with spacing �k) systems diverge.

The general amplitude for the embedded state of a true
discrete system can now be written in terms of t = mτ + tm:

a(t ) =
∑

n

β2

β2 + (
πβ2

�

)2 + E2
n

e−imδnτ e−iEntm , (12)

where 0 < tm < τ . This expression is identical to the solution
based on delayed time differential equations below.

In Fig. 2 we display some characteristics of the solution.
In the upper panel we observe the characteristics of initial
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FIG. 2. The upper panel displays the probability for population of the initial state, |a(t )|2, of Eq. (12) for three sets of coupling parameters:
(β,�) = (0.0035,0.035) (black dashed curve), (β,�) = (0.2496,0.2048) (blue dash-dotted curve), and (β,�) = (1.2480,0.2048) (red full
curve) for a timespan covering the three first revivals. The middle panel shows the exponential decay of the red (dark gray) curve together
with the analytical result of Eq. (11) [green (light gray) line to the left]. The right middle panel displays the value of the first 30 revival peaks
as blue (dark gray) squares connected by a green (light gray) line. A straight black line is augmented for comparison with exact polynomial
decay. The lower panel shows the time development of the red parameter set for a time region after 500 revivals.

dynamics for two different set of coupling parameters and
densities of states, both plotted in scaled time units t/τ . The
revivals occur initially close to integer times, the height of
the peak of the revival probability seems to be independent
of the coupling strength, while the “lifetime” of the revival
region goes from wide to spikelike as the coupling strength
is gradually increased. No matter how large the coupling
becomes, the initial decay is always exponential and given
by Eq. (11), as illustrated in the middle left panel of Fig. 2.
Likewise, collecting the peaks in the strongest-coupling case
(red curves) and plotting them in a log-log plot we observe a
near polynomial decay for a large number of peaks (from the
second revival and outwards in time). Finally, to be discussed
below, we plot the dynamics after a large number of revival
times (500) in the lowermost panel. Here we see an almost
chaotic dynamics building up towards the maximum revival
peak. The position of the peak on the time axis has now been
clearly shifted beyond the integer numbers (500, 501, etc.) of

τ . At even larger numbers of τ , e.g., 104, the signatures of the
revivals get more and more blurred and will, due to the true
nonperiodicity of the system, never return towards their initial
prominence.

In Appendix A, we also derive the time evolution using
directly the coupled set of evolution equations and solving
them using the Laplace transform. In Appendix A1, we obtain
the following solution for the time evolution of state a(t ):

a(t ) = a0(t ) +
∞∑

k=1

ak (t ), (13)

where a0(t ) = e−tγ /2, and

ak (t ) = −γ tk
k

e−tkγ /2L{1}
k−1(γ tk )�(tk ), (14)
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where we defined tk ≡ t − kτ and L{α}
n (x) is the generalized

Laguerre function (see also Ref. [12]). In particular, the first
terms read

a1(t ) = −γ (t − τ )e−(t−τ )γ /2�(t − τ ), (15)

a2(t ) =
[
−γ (t − 2τ ) + γ 2

2
(t − 2τ )2

]

× e−(t−2τ )γ /2�(t − 2τ ), (16)

a3(t ) =
[
−γ (t − 3τ ) + γ 2(t − 3τ )2 − γ 3

6
(t − 3τ )3

]

× e−(t−3τ )γ /2�(t − 3τ ). (17)

At first look, it seems sufficient to demand that

τγ /2 � 1, (18)

in order to ensure that each term decays sufficiently fast, and
in the step nτ < t < (n + 1)τ it is only the nth term that
contributes. We will assume this condition is fulfilled in the
following discussion.

The first contribution a1(t ), that breaks with the expo-
nential decay behavior, sets in at times τ < t < 2τ , and
reaches a peak value at t = τ + 2/γ . Here, the proba-
bility peaks at 4/e2 ≈ 0.54. In the second interval, 2τ <

t < 3τ , a2(t ) starts contributing, leading to two peaks at
times t = 2τ + (3 ± √

5)/γ . At these positions, the prob-
ability peaks at {4(2 − √

5)2e−3+√
5, 4(2 + √

5)2e−3−√
5} ≈

{0.10, 0.38}, respectively. Hence, the smaller peak precedes
the bigger one. Similarly, in the third interval, 3τ < t < 4τ ,
there are three peaks and so on.

There are several features worth pointing out. First, while
the positions of the peaks clearly depend on τ and γ ,
the heights of the peaks are completely independent of the
parameters of the model. Second, at late times the multiple
peaks that occur force the largest, and also latest, peak to be
displaced so that ultimately the condition τγ /2 � 1 is not
sufficient to ensure that only one contribution from the sum
contributes in a certain time interval. This “leakage” effect
inevitable leads to a chaotic behavior at late times, as can be
inferred from the bottom panel of Fig. 2.

B. Two and more parallel bands of states

In nature, several deexcitation processes occur in the pres-
ence of competing and separable continua such as Auger
versus radiative decay processes in atomic physics. The
problem was treated by Fano in 1961 [20] for real continua.
Here we consider the dynamics for parallel energy bands with
focus on the total system behavior when the involved continua
have different isolated revival times. Within the RC model,
two continua in their simplest form have two different con-
stant coupling parameters, β1 and β2, and/or inverse densities
of states �1 and �2. No direct coupling between the bands is
taken into account, nor is coupling between states belonging
to the same band due to interaction with the initial state.
This setup is depicted in Fig. 1 (right). The dynamics is now

described by the expansion

|�(t )〉 = a(t )|a〉 +
∑

n

bn(t )|g, n�1〉 +
∑

m

cn(t )|g, m�2〉.
(19)

Without loss of generality, again we neglect the effect of
detuning. Projecting out on each basis vector we obtain a
coupling matrix which has the same structure as in the case
of a single continuum:

i
d

dt

⎛
⎝a

b
c

⎞
⎠ =

⎛
⎝ωab C†

1 C†
2

C1 �1 0
C2 0† �2

⎞
⎠

⎛
⎝a

b
c

⎞
⎠, (20)

where again the amplitudes and coupling to the bands have
been expressed as vectors b, c. The matrices �1,2 contains the
discrete band energy levels on the diagonal, �n,m

1,2 = δn,mn ·
�1,2. Finally the matrix 0 contains only zeros since the two
continua do not interact directly.

The implicit equation for the eigenvalues now becomes

Em = |β1|2
∑

n

1

Em − n�1
+ |β2|2

∑
k

1

Em − k�2
. (21)

To obtain the decay dynamics, consider the case when �2 >

�1 and replace this continuum with one which has the same
energy separation as the first, i.e., �1. This implies a reduced
coupling strength in the replacement band β̂2 = β2

√
�1/�2.

The new implicit equation for eigenvalues then takes the form

Em = (|β1|2 + |β̂2|2)
∞∑

n=−∞

1

Em − n�1
. (22)

As remarked by Fano [20], this leaves us with exactly the same
identities Eqs. (4)–(11). Therefore, the obtained exponential
decay of the initial channel becomes

Pa(t ) = e−γ12t , (23)

at early times, where the rate constant

γ12

2
= π

|β1|2 + |β̂2|2
�1

= π

( |β1|2
�1

+ |β2|2
�2

)
. (24)

Each band becomes initially populated according to a
weighted fraction:

Pi(t ) = γi

γ12
(1 − e−γ12t ) (25)

where Pi(t ) (i = 1, 2) is the total probability summed over the
total, in principle infinite, number of states within band i and
γi = 2π |βi|2/�i (for further details see Appendix B).

Exponential decay is now limited to the period t ∈
(0, min[τ1, τ2]), where τi = 2π/�i. For integer revival
periods of τ1, τ2 we will expect the system to undergo a
backcoupling of probability to the initial state as long as the
band in question is not empty. In Appendix B we have solved
the analytical case of two continua. In the strong-coupling
region an infinite set of additional revival times occurs,
namely, at integer intervals of τ1 + τ2, as well as arbitrary
multiples of the two, i.e., nτ1 + mτ2, where n, m > 1 and
n = m.
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FIG. 3. Exponential decay and total population probability for two continua coupled to the initial state with the same coupling parameter
β = 0.2496. The continuum represented with the blue (dash-dotted) line has an energy separation �1 = 0.1024 (τ1 = 61.36) while the other
(black dashed) line has �1 = 0.0613 (τ2 = 102.5). The upper panel shows the short-time dynamics with the analytical exponential decay
solution in dashed green (light gray) and the red line (dark gray) is the numerical one. The lower panels display the long-time dynamics.

Another striking feature is that the heights of the revival
peaks now depend on the ratio of the rates γ1/γ2. This is in
contrast to the case of constant coupling, and harmonic as we
will discuss below, where the height of the peak is completely
determined by the “structure” of the system while the peaks
do not depend on the rate. For further details see Appendix B.
In other words, the heights of the peaks can be tuned by the
rates γi, and the revival times are given by τi [21]

In Fig. 3 we display an example. The upper panel shows
the exponential decay into two different continua at short
times. The lower panel shows the redistribution dynamics of
probability at long timescales, first from the “blue” continuum
to the “black,” since the blue ban has the shorter revival time.
The transfer of probability takes place via the initial state man-
ifesting itself as a transient revival of that state accompanying
each partial revival. In the figure the first (blue) revival takes
place around t = 61 a.u., and the second (black) revival takes
place around t = 102 a.u. At t = 2 × 61 a.u. we see a weak
signature in the initial state of the second blue revival time
and then around t = 161 we observe a strong new revival
at t = τ1 + τ2, as expected. At increasing integer number of
linear combinations of the two isolated revival times the two
continua interchange probability each time, and each inter-
change implies, on this timescale and coupling parameter, a
spikelike repopulation of the initial state.

Both methods can be directly expanded to describe more
than two parallel bands, which in general will display even
more complex dynamics as long as the revival times of each
band differ.

III. HARMONIC COUPLING

Another class of atom-field couplings is the class of cou-
pling parameters which are periodic. The periodicity can
originate from partial reflection of the radiation emitted from
an excited atom, where the partially reflected part at some
later time interferes with a later emitted radiation which is
unreflected [22]. Another example is a qubit connected to a
substrate at two points separated a distance 2L. The coupling
from the two-level system to the surface plasmon states was
recently analyzed in detail [16]. Writing βn = β cos (n�T/2),
in the continuum limit one can derive an elegant solution,
which in our notation reads

a(t ) =
∞∑

n=0

[ − γ

4 (t − nT )
]n

n!
e−(t−nT )γ /4�(t − nT ), (26)

where we again have chosen a(0) = 1 and neglected the
detuning energy. This structure is considerably simpler than
the one for a constant coupling [see Eqs. (13) and (14)]. In
particular, note the absence of multiple peaks at later revival
times t > nT [23]. In order to address this “simplicity,” we
set out to analyze specific cases when the band densities,
concretely 2π/�, are multiples of the modulation timescale
T .

We now address the dynamics using the discrete basis
eigenvector approach. Consider Eq. (2) and replace the con-
stant coupling parameter β with an energy dependent coupling
βn = β cos(n�T/2). In the analysis in Ref. [16], the period
T is related to the distance L between two contact points
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between the qubit and the substrate, T = L/vg where vg is the
speed of sound in the acoustic medium. By defining symmet-
ric and antisymmetric discrete phonon states from the basis
applied in Ref. [16], only the symmetric ones couple to the
qubit and we arrive at our Eq. (2). The eigenstates are then
given by the sum of Eq. (4). Let us rewrite the sum in terms of

S =
∞∑

n=−∞

∣∣β cos
(
n�T/2

)∣∣2

E − �n
. (27)

A general solution can be found using special functions. Here,
we consider a few illustrative cases, using increasingly smaller
energy separation between the discrete states.

(a) � = 2π/T : This is equivalent to a constant coupling
βn = β to all the energy levels. The answer is

�

β2
S = π

tan [πz]
, (28)

where z = E/�. Further discussion can be found in Sec. II A.
(b) � = π/T : The constant coupling β is modulated by

the following possible values cos(ωnT/2) = {1, 0,−1, . . .}
for n = {0, 1, 2, . . .}, etc. The sum therefore becomes

�

β2
S =

∞∑
n=−∞

1

z − 2n
= π

2 tan
[

π
2 z

] . (29)

This is equivalent to a constant coupling βn = β to all the
energy levels. This choice of � gives the correct exponential
decay up to t = T with a decay rate constant half the magni-
tude of the decay constant of Eq. (11), namely, γ ′ = πβ2

�
=

γ /2. Further discussion can be found in Appendix A2.
At t = T the backcoupling to the initial state departs from

the correct continuum behavior. From Eq. (15), we find a first
peak at t1 = T + 4/γ reaching P(t1) = 4/e2. This is a factor
4 too large compared to the continuum solution from Eq. (26).
Obviously, the multiple peaks associated with revivals at t >

2T , discussed in detail in Sec. II A, are also not present in the
continuum limit.

(a) � = 2π/(3T ): The constant coupling β is now
modulated by the following possible values cos(ωnT/2) =
{1, 1

2 ,− 1
2 , . . .} for n = {0, 1, 2, . . .}. The sum therefore

becomes

�

β2
S =

∞∑
n=−∞

1

z − 3n

+ 1

4

∞∑
n=−∞

[
1

z − (3n − 1)
+ 1

z − (3n + 1)

]

= π

3 tan
[

π
3 z

] − π

3

sin
[

2π
3 z

]
1 + 2 cos

[
2π
3 z

] . (30)

This representation describes the dynamics up to the revival
time t = 2T . The couplings and energy levels of the discrete
states distribute themselves in what can be viewed as parallel
continua: The first one has coupling strength and energy sep-
aration |β, 3�|; the second has |β/2,�|, in addition making
sure that the overlapping levels are not occupied twice.

We have worked out this case in detail up to times t � 3T
in Appendix A3. For the time interval 0 < t < 2T , we find

that

a(t ) = e−tγ /4 − γ

4
(t − T )e−(t−T )γ /4�(t − T ). (31)

At the first revival at t = T , the peak position remains at
T + 4/γ , but now the height is reduced to P = 1/e2, which is
in agreement with the continuum result in Eq. (26). Strikingly,
as for the case of constant coupling to a single (quasi) continu-
ous band in Sec. II A, the height of the first peak is completely
independent of the coupling or level density spacing. This
also holds for the subsequent peaks. Only their positions are
occurring at intervals nT + c/γ , where c is a number describ-
ing the positions of the multiple peaks. However, at t � 3T
this model starts exhibiting multiple peaks and, thus, does not
agree anymore with the continuum solution (26), so we will
not discuss it further here.

(b) � = π/(2T ): The constant coupling β is now mod-
ulated by the following possible values u cos(ωnT/2) =
{1, 1√

2
, 0, . . .} for n = {0, 1, 2, . . .}, etc. The sum therefore

becomes

�

β2
S =

∞∑
n=−∞

1

z − 4n

+ 1

2

∞∑
n=−∞

[
1

z − (4n − 1)
+ 1

z − (4n + 1)

]
,

= π

4 tan
[

π
4 z

] − π

4
tan

[π

2
z
]
. (32)

Again this is effectively two parallel continua, avoiding any
overlaps, now with parameters |β, 4�| and |β/2,�|. We have
worked this case out in detail in Appendix A4.

This particular discretization gives identical population in
the two continua up to t = T and the redistribution gives the
correct dynamics of the initial state up to t = 3T . Since up
to t = 2T the result is exactly the same as in the previous
cases, let us only write out the additional piece that appears
at t > 2T , namely,

a(2)(t ) = γ 2

32
(t − 2T )2e−(t−2T )γ /4�(t − 2T ). (33)

Now, there is only one peak in the interval 2T < t < 3T ,
located at t2 = 2T + 8

γ
, where the probability peaks at

P(t2) = 4/e4 ≈ 0.073. The agreement with the continuum re-
sult now extends to t < 3T . Again, the height of the second
peak does not depend on the parameters of the model.

In summary, the dynamics of the qubit with harmonic cou-
pling to a substrate can alternative be viewed as the dynamics
of a series of parallel continua with different constant coupling
and density of states. At least one parallel continuum has a
revival at an integer number of T which causes backcou-
pling to the initial state followed by a redistribution of the
population probability of each quasicontinuum. The dynamics
described above is illustrated in Fig. 4.

By taking a sufficiently small � we can effectively sim-
ulate the dynamics for arbitrarily large times. In Fig. 5 this
is done for a case which has τ ≈ 19T . A large number of
initial-state revivals is seen up to the point t = τ where all
parallel continua have a backcoupling to the initial state. As a
consequence this peak is much larger than the partial revivals
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FIG. 4. Dynamics of the initial qubit state (red full line) and
parallel “phonon continua” (dashed blue line and black dash-dotted
line) for varying energy separation, � = 2π/(MT ). Upper panel,
M = 2; middle panel, M = 3; lower panel, M = 4. The thick broken
green (dark gray) curved line is the analytical initial exponential
decay. The red (light gray) line in the lowest panel is identical with
the exact result (see Ref. [16]).

at integer values of t/T . In the lower left panels the initial
decay at very short time again is observed, and in full agree-
ment with the analytical decay rate constant. Finally, as also
shown in the case of constant coupling, the revival peaks
display a polynomial decay up to t = τ .

The use of discrete parallel continua makes it simple to
model experiments as well, for example in the case of Ref. [9]
where a number of other couplings appear due to temperature
fluctuations or other conditions related to the experiment. By
simply augmenting the discrete model (M = 4) with a dense
reservoir which on the timescale of the experiment does not

FIG. 5. The upper panel shows the probability of the initial state
in a simulation with 7000 states in total. Parameters: T = 1, � =
2π/(MT ), M = 20, and β = 2.1859. The lower left panel shows the
simulated and analytical initial time developments of the initial-state
probability and the lower right panel displays the peak values of the
initial-state revivals.

FIG. 6. The upper panel shows the absolute amplitude of the
initial state in a simulation with 1000 states compared with the
experimental results (circles) in Ref. [9]. Parameters: T = 4, � =
2π/(MT ), M = 20, and β = 0.4372. In addition a “heat reservoir”
described by 5000 states and a factor 5 denser energy separation,
�heat = �/5, has been added. The coupling from the excited qubit
state to the heat reservoir is βheat = 0.176. The lower panel shows
the time-dependent probability distributions of the excited qubit state
(red thick line), summed phonon [blue (dark gray) dashed line], and
reservoir state (black dashed line).

undergo any revivals we can simulate a leak of probability due
to heat. The result, shown in Fig. 6, is in excellent agreement
with experimental data from Ref. [9].

IV. CONCLUDING REMARKS

In this paper we have considered the dynamics of a
quantum model which goes back almost to the invention
of quantum mechanics. Inspired by the recent progress
and application of the model relevant for qubit dynamics
of modern quantum computers, we analyzed the general
problem based on a single state interacting with one or
several discrete band(s). The analysis was performed in
an eigenvector basis and with a complementary analytical
method applicable to real as well as discrete “continua.”
A number of properties were identified, in particular, the

following.
(i) A discrete band of states implies well-defined revival

peaks. For a single band the heights of the peaks are indepen-
dent of coupling strengths and the peak strengths show near
polynomial decays on a time interval covering several tens of
revival times.

(ii) The qubit dynamics with harmonic couplings between
the initial state and a true (phonon) continuum is identical
to a qubit coupled by constant factors to a number of par-
allel bands. Revivals in the latter model are understood as a
transient population flow through the initial state and between
different bands.

(iii) Comparison with experiments based on the numerical
approach was straightforward and in excellent overall agree-
ment.

The present approach opens the way for direct modeling of
time-dependent scattering phenomena due to point contacts,
time induced multiphonon (photon) processes, and a num-
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ber of other phenomena relevant for the long research path
towards the realization of stable and effective working quan-
tum computers.
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APPENDIX A: LAPLACE TRANSFORM METHOD

The quantum evolution described above can also be cast as
a system of evolution equations for the state a(t ) coupled to a
quasicontinuum bn(t ):

ȧ(t ) = −i
∞∑

n=−∞
βnbn(t ), (A1)

ḃn(t ) = −iωnbn(t ) − iβ∗
n a(t ), (A2)

where ωn = n�, and � is the level spacing of the quasicon-
tinuum. Integrating out the second equation, yielding

bn(t ) = −iβn

∫ t

0
dt ′ e−iωn (t−t ′ )a(t ′), (A3)

and inserting the solution into the first, we obtain the standard
solution

ȧ(t ) = −
∫ t

0
dt ′ a(t ′)

∞∑
n=−∞

|βn|2e−iωn (t−t ′ ). (A4)

This has the form of a delay differential equation [10].
Instead, we will be interested in keeping a finite � > 0 and

studying the set of discrete modes. This problem can be solved
in Laplace space, where the Laplace transform of a(t ), defined
as

ã(s) =
∫ ∞

0
dt e−st a(t ), (A5)

is given by

ã(s) = a(0)

s + (s)
, (A6)

where (s) = i
∑∞

n=−∞
|βn|2

is−ωn
= iS (is). Note that (−s) =

−(s). The inverse transform, defined as

a(t ) =
∫

C

ds

2π i
est ã(s), (A7)

where the contour C runs along the imaginary axis to the right
of any poles of ã(s), then becomes sensitive to the poles of
ã(s). These are found by solving

s + (s) = 0. (A8)

By identifying is ↔ E , the pole structure is equivalent to the
eigenvalue equations.

1. Constant coupling

As mentioned above, a constant coupling is equivalent to
setting the level spacing � = 2π/T in the harmonic coupling.
Using the sum derived in (28), we find

(s) = i
γ

2
cot(i�s) = γ

2
coth(�s), (A9)

where γ = 2πβ2/� and � = π/�. In order to introduce the
techniques to inverse the Laplace transform [12], we will
review this case in detail.

It is possible to rewrite as

ã(s) = 1 − e−2�s

s + γ /2

[
1 − s − γ /2

s + γ /2
e−2�s

]−1

. (A10)

Since |(s − γ /2)/(s + γ /2)e−2�s| < 1 for sufficiently large �,
or small �, we can expand the last term as an infinite series
(1 − x)−1 = ∑∞

n=0 xn. Then, after further manipulations, we
write the whole expression as

ã(s) = 1

s + γ /2
− γ

∞∑
k=1

(s − γ /2)k−1

(s + γ /2)k+1
e−2k�s. (A11)

This demonstrates that there is only one location of the poles,
i.e., at s∗ = −γ /2. We can therefore safely let the contour
C run along the origin of the complex s plane, i.e., s = iξ
with ξ ∈ [−∞,∞] with a counterclockwise circle at infinity.
Define

a(t ) = a0(t ) +
∞∑

k=1

ak (t ), (A12)

where

a0(t ) =
∫

C

ds

2π i

est

s + γ /2
= e−tγ /2, (A13)

and

ak (t ) =
∫

C

ds

2π i
ãk (s)est , (A14)

with ãk (s) = −γ
(s−γ /2)k−1

(s+γ /2)k+1 e−2k�s. The coefficients ak (t ) can
easily be found using the residue theorem,

ak (t ) = 1

k!
lim
s→s∗

dk

dsk

[
(s + γ /2)k+1 ãk (s)est

]
, (A15)

as long as the function decays fast enough on the circle at
infinity, in this case as long as t > 2k�s. We use the binomial
formula to write

dk

dsk

[
(s − γ /2)k−1e(t−2k�)s

]

=
k−1∑
n=0

(k − 1)!

(k − 1 − n)!
(s − γ /2)k−1−n(t − 2k�)k−ne(t−2k�)s.

(A16)

Finally, after further manipulations, we can recast the answer
as

ak (t ) = −γ (t − kτ )

k
e−(t−kτ )γ /2L{1}

k−1[γ (t − kτ )]�(t − kτ ),

(A17)
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where we defined τ = 2π/� and L{α}
n (x) is the generalized

Laguerre function. Note that in this case we have exactly that
τ = T .

The occupation of the continuum states is found from
Eq. (A3). For instance, up to the first revival time, i.e.,
0 < t < τ , where Pa(t ) = e−tγ , the solution is

bn(t ) = iβ
γ

2 − in�
(e−tγ /2 − e−in�t ). (A18)

The probability for the whole continuum then becomes

Pb(t ) =
∞∑

n=−∞
|bn(t )|2. (A19)

To prove that the total probability is conserved, we use the
following identities:

∞∑
n=−∞

1

z2 + n2
= π

z
coth (zπ ), (A20)

∞∑
n=−∞

cos (xn)

z2 + n2
= π

z

cosh [z(π − x)]

sinh (zπ )
, (A21)

for 0 < x < 2π [24], to derive that

Pb(t ) = 1 − e−tγ . (A22)

This demonstrates that Pa(t ) + Pb(t ) = 1, as expected.

2. Harmonic coupling with � = π/T

Using (29) to obtain that

(s) = γ

4
coth

(
�s

2

)
, (A23)

we realize that the pole structure and therefore also the inverse
Laplace transform are completely equivalent to the previous
case with the replacement γ → γ /2 and the explicit mapping
of τ → T . The first correction therefore reads

a1(t ) = −γ

2
(t − T )e−(t−T )γ /4�(t − T ), (A24)

in this case. Further terms, appearing at t > 2T , can be found
directly from previous formulas.

3. Harmonic coupling with � = 2π/(3T )

In this case, with the help of (30), we found

(s) = γ

6
coth

(
�s

3

)
+ γ

6

sinh
(

2
3�s

)
1 + 2 cosh

(
2
3�s

) . (A25)

Following the same line of arguments as before, and introduc-
ing the shorthand y ≡ e− 2

3 �s, we find that

ã(s) = 1 − y3

s + γ /4

[
1 − (s − γ /4)y3 − (y + y2)γ /4

s + γ /4

]−1

.

(A26)

After further manipulations, we arrive at

ã(s) = 1

s + γ /4
− γ

2

∞∑
k=1

[(s − γ /4)y3 − (y + y2)γ /4]k−1

(s + γ /4)k+1

× (y3 + y2/2 + y/2). (A27)

We identify the emerging multiple poles at s = s∗ = −γ /4,
however the structure of the numerator is much more com-
plicated. It is possible to proceed further by expanding the
numerator by using the binomial formula, but we will not
proceed further.

Instead, let us first have a look at the first term in the
expansion in (A27), which reads

ã1(s) = −γ

2

e−3T s + e−2T s/2 + e−T s/2

(s + γ /4)2
. (A28)

The three terms in the denominator will contribute to the
evolution only at t > 3T , t > 2T , and t > T , respectively.
Similarly, ã2(s) will contain terms that contribute at subse-
quent time intervals, starting at t > 2T and up to t > 6T . We
will currently only be interested in the terms that describe the
evolution in the interval 0 < t < 3T . The contribution that
starts to contribute at times nT < t , we will denote a(n)(t ).
Naturally, a(0)(t ) = e−tγ /4 from the single pole contribution.

Focusing now on the next interval, T < t < 2T , we note
that only ã1(s) contributes. We find

a(1)(t ) = −γ

4

∫
C

ds

2π i

e(t−T )s

(s + γ /4)2

= −γ

4
(t − T )e−(t−T )γ /4�(t − T ). (A29)

This piece reaches a maximal value at t = T + 2/γ , as before,
where the contribution to the probability reaches a maximal
value of e−2 ≈ 0.14. This is a factor 4 smaller than in the
previous cases.

The additional contribution in the next piece, i.e., t > 2T ,
receives contributions from both ã1(s) and ã2(s). We find

a(2)(t ) = −γ

4

∫
C

ds

2π i

e(t−2T )s

(s + γ /4)2
+ γ 2

16

∫
C

ds

2π i

e(t−2T )s

(s + γ /4)3
,

=
[(

−γ

4

)
(t − 2T ) + γ 2

32
(t − 2T )2

]

× e−(t−2T )γ /4�(t − 2T ). (A30)

There are two maxima at t = 2T + 4
γ

(2 ∓ √
2), correspond-

ing to peak values on the level of the probability that are
{(3 − 2

√
2)e−4+2

√
2, (3 + 2

√
2)e−4−2

√
2} ≈ {0.053, 0.006}.

Compared to the continuum limit, � → 0, we find agree-
ment of the height of the peak in the interval T < t < 2T . The
multiple peaks occurring at later times are also not present in
the � → 0 solution.

4. Harmonic coupling with � = π/(2T )

In this case, from Eq. (32), we have

(s) = γ

8
coth

(
�s

4

)
+ γ

8
tanh

(
�s

2

)
. (A31)

After standard manipulations, we arrive at

ã(s) = 1

s + γ /4
− γ

2

∞∑
k=1

[(s − γ /4)y3 + (y − y2)s]k−1

(s + γ /4)k+1

× (y3 − y2/2 + y/2). (A32)

053707-10



DECAY AND REVIVAL DYNAMICS OF A QUANTUM STATE … PHYSICAL REVIEW A 108, 053707 (2023)

Proceeding as before, we find the following behavior for the
early-time evolution:

a(1)(t ) = −γ

4
(t − T )e−(t−T )γ /4�(t − T ), (A33)

a(2)(t ) = γ 2

32
(t − 2T )2e−(t−2T )γ /4�(t − 2T ). (A34)

Now, there is only one peak in the interval 2T < t < 3T ,
located at t = 2T + 8

γ
, where the probability peaks at 4/e4 ≈

0.073. The agreement with the continuum result now extends
to t < 3T .

We end with a few comments. It becomes evident that the
late-time behavior of the system is highly sensitive to the
spacing of the energy levels. The peaks occurring at later-time
intervals are also increasingly shifted upward. For � > 0, at
some late time the subtle cancellations do not hold any longer
and violent, chaotic behavior can occur due to the overlap of
several contributions.

APPENDIX B: COUPLING TO TWO QUASICONTINUA

The evolution equations for a coupling to two quasicon-
tinua bn(t ) and cm(t ) read

ȧ(t ) = −i
∞∑

n=−∞
β (1)

n bn(t ) − i
∞∑

m=−∞
β (2)

m cm(t ), (B1)

ḃn(t ) = −iω(1)
n bn(t ) − iβ (1),∗

n a(t ), (B2)

ċm(t ) = −iω(2)
m cm(t ) − iβ (2),∗

m a(t ), (B3)

where the two energy levels are given by ω(i)
n = n�i (i =

1, 2). The solution in Laplace space is given by

ã(s) = a(0)

s + 1(s) + 2(s)
, (B4)

where  j (s) = i
∑∞

n=−∞ |β ( j)
n |2/(is − ω

( j)
n ). We focus on the

case of constant couplings, i.e., β (i)
n = βi. After, by now, stan-

dard manipulations we finally arrive at

ã(s) = 1

s + γ12

2

−
∞∑

k=1

[(
s − γ1

2

)
e−τ1s + (

s − γ2

2

)
e−τ2s − se−τ12s

]k−1

(
s + γ12

2

)k+1

×
[(

γ1 + γ2

2

)
e−τ1s +

(
γ2 + γ1

2

)
e−τ2s − γ12

2
e−τ12s

]
,

(B5)

where γi = 2π |βi|2/�i and τi = 2π/�i and, finally, γ12 =
γ1 + γ2 and τ12 = τ1 + τ2. The amplitude picks again up
new contributions at multiples of the revival times, and also
allows arbitrary mixing between multiples of τ1 and τ2, e.g.,
nτ1 × mτ2, and so forth. The first few terms in the expansion
are

a0(t ) = e−tγ12/2, (B6)

a1(t ) = −
(
γ1 + γ2

2

)
(t − τ1)e−(t−τ1 )γ12/2�(t − τ1)

−
(
γ2 + γ1

2

)
(t − τ2)e−(t−τ2 )γ12/2�(t − τ2)

+ γ12

2
(t − τ12)e−(t−τ12 )γ12/2�(t − τ12). (B7)

At second order, we get contributions at revival times t >

2τ1, 2τ2, τ12 and also t > 2τ1 + τ2, τ1 + 2τ2, 2τ12. The for-
mer contributions are fully accounted for by the two first
terms, while the latter will receive further contributions from
the third term of the expansion. Let us therefore focus on the
former for now. The contributions read

a3(t ) = −
(
γ1 + γ2

2

)[
(t − 2τ1) − 1

2

(
γ1 + γ2

2

)
(t − 2τ1)2

]

× e−(t−2τ1 )γ12/2�(t − 2τ1)

−
(
γ2 + γ1

2

)[
(t − 2τ2) − 1

2

(
γ2 + γ1

2

)
(t − 2τ2)2

]

× e−(t−2τ2 )γ12/2�(t − 2τ2)

−
[

3γ12

2
(t − τ12) −

(
γ1+ γ2

2

)(
γ2 + γ1

2

)
(t − τ12)2

]

× e−(t−τ12 )γ12/2�(t − τ12). (B8)

There are several distinct features that are worth pointing
out.

The first peaks related to the revival times τi appear at times
ti = τi + 2/γ12 where the probability peaks at | 2γi+γ j

eγ12
|2 (where

γ j refers to the other coupling, i.e., i = j), respectively. Strik-
ingly, the height of these peaks depends on the couplings.

The revival time at τ1 + τ2 involves two peaks. The
position and height of the peak can be found in a straight-
forward manner, but the expressions are complicated and
not illuminating. Instead, focusing on the case when γ1 =
γ2 = γ , we find that the revival times are located at t =
τ1 + τ2 + (13 ± √

97)/(9γ ) where the probability peaks at
| 9±√

97
2 e−(13±√

97)/9|2. Strikingly, this peak is again not depen-
dent on the coupling. However, this statement does not hold
for the general case when γ1 = γ2. We also repeat that these
estimates only hold if the couplings are sufficiently large so
that the previous revival peaks are completely washed out
before the subsequent revival time.

As usual for constant coupling, double peaks also appear
at multiples of the revival times τ1 and τ2, and also at their
mixed multiples.

Finally, we can also find the occupation of the two bands,
using Eq. (A3). In our case,

bn(t ) = iβ1
γ12

2 − in�1
(e−tγ12/2 − e−in�1t ), (B9)

and similarly for cn(t ) by substituting β1 → β2 and �1 →
�2. We define the probabilities:

Pb(t ) =
∞∑

n=−∞
|bn(t )|2, (B10)

Pc(t ) =
∞∑

n=−∞
|cn(t )|2, (B11)

and after some algebra, using Eqs. (A20) and (A21), we obtain
Eq. (25), which proves that Pa(t ) + Pb(t ) + Pc(t ) = 1.
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