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Unconventional saturation effects at intermediate drive in a lossy cavity coupled to few emitters
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Recent technological advancements have enabled strong light-matter interaction in highly dissipative cavity-
emitter systems. However, in these systems, which are well described by the Tavis-Cummings model, the
considerable loss rates render the realization of many desirable nonlinear effects, such as saturation and photon
blockade, problematic. Here we present another effect occurring within the Tavis-Cummings model: A nonlinear
response of the cavity for resonant external driving of intermediate strength, which makes use of large cavity
dissipation rates. In this regime, (N + 1)-photon absorption processes dominate when the cavity couples to
N emitters. We explore and characterize this effect in detail, and provide a picture of how the effect occurs
due to destructive interference between the emitter ensemble and the external drive. We find that a central
condition for the observed effect is large cooperativity; i.e., the product of the cavity and emitter decay rates
is much smaller than the collective cavity-emitter interaction strength squared. Importantly, this condition does
not require strong coupling. We also find an analytical expression for the critical drive strength at which the
effect appears. Our results have potential for quantum state engineering, e.g., photon filtering, and could be
used for the characterization of cavity-emitter systems where the number of emitters is unknown. In particular,
our results open the way for investigations of unique quantum-optics applications in a variety of platforms that
require neither high-quality cavities nor strong coupling.
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I. INTRODUCTION

At the heart of quantum optics lies the interaction of light
with matter at the level of individual quanta. As a result of
the light-matter interaction between a single or an ensemble
of two-level emitters and a resonant single-mode cavity, the
emitters introduce nonlinearity to the otherwise linear cavity
spectrum. This nonlinearity results in a splitting of eigenener-
gies known as the Jaynes- and Tavis-Cummings ladders [1,2].
Under weak cavity and emitter excitation, one effect of these
ladders is vacuum Rabi splitting in the spectrum of the system.
Three other well-known quantum-optical effects also arise
from this nonlinearity: Saturation [3], photon blockade [4],
and unconventional photon blockade [5–7]. These effects are
all of great interest for quantum control of light fields with
important applications such as single-photon switches [8–12]
and transistors [9,11,13,14] and the generation of specific
quantum states [15–22]. In this paper, we demonstrate yet an-
other effect, reminiscent of the saturation effect, which shows
potential for applications in, e.g., quantum state engineering
or the characterization of the number of quantum emitters in
the cavity.
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The saturation effect occurs when an emitter or nonlin-
ear medium in a cavity cannot absorb more photons and
thus has become saturated. In the spectrum, this is revealed
as a merging of the vacuum Rabi doublet into a single
Lorentzian peak at the cavity resonance when increasing the
intracavity field [3]. Ideally, a single photon incident on the
system is needed to saturate a single emitter in the cav-
ity. In this case, single-photon saturation could implement,
e.g., a single-photon transistor [13] or a single-photon sensor
[23,24]. Reference [25] demonstrates experimental progress
approaching the single-photon limit. However, the saturation
effect is typically associated with a very strong drive. The
need for a strong drive is due to the generally low probability
for photon-emitter interaction [26] and, in the many-emitters
case, to the fact that the entire medium must be saturated [27].
This is problematic for applications, especially if the systems
exhibit large dissipation rates.

In photon blockade [4], on the other hand, the anharmonic-
ity in the spectrum blocks the absorption of a subsequent
photon. The effect occurs for a resonant drive on one of the
polariton transitions. A characteristic of photon blockade is
nonclassical photon-counting statistics, which can be probed
via the normalized second-order correlation function g(2) in
the weak-drive regime [28–30]. Two signatures of nonclas-
sical light are photon antibunching [g(2)(τ ) > g(2)(0)] and
sub-Poissonian photon statistics [g(2)(0) < 1] [31,32]. Thus,
photon blockade could be exploited for the generation of
nonclassical photon states, e.g., a single-photon source. The
single-photon blockade has been extensively explored theo-
retically [4,33–37] as well as demonstrated experimentally
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[17,38,39]. Stimulated by the potential for quantum state en-
gineering including more than one photon [26], there have
recently also been several works on the multiphoton blockade
[40–44]. Additionally, a breakdown of the photon blockade
has been observed for strong external driving [37,45,46], and
has been studied with mean-field theory in the limit of large
quantum emitter numbers [47]. One basic condition for both
single- and multiphoton blockade is that the decay rates of the
system should be much smaller than the cavity-emitter inter-
action strength. These conditions require high-quality cavities
as well as small emitter dephasing. For that reason, demon-
stration of photon blockade in dissipative systems remains
difficult.

An alternative approach to the generation of nonclassical
states of light, exploiting the anharmonic Jaynes- or Tavis-
Cummings spectrum, is through the so-called unconventional
photon blockade [5–7]. In contrast to traditional photon block-
ade, the unconventional photon blockade effect relies on
the interference between two transition pathways (see, e.g.,
Refs. [22,48,49]) when the drive is tuned in between the two
polariton transitions. Thus, being an interference effect, the
overlap due to broader transition linewidths can be exploited.
Similar to photon blockade, unconventional photon blockade
displays nonclassical photon statistics in g(2) measurements
in the weak-drive regime. Originally, unconventional pho-
ton blockade was found for coupled Kerr resonators [5,50].
Since then, it has been predicted [22,48,51] and demonstrated
experimentally [42,52] with dissipative cavity-emitter sys-
tems described by the driven Jaynes- and Tavis-Cummings
Hamiltonians. It has also been predicted for large ensembles
of emitters provided large enough individual cavity-emitter
interaction strength [53,54]. Nevertheless, demonstrating un-
conventional photon blockade remains difficult, due to fast
oscillations of g(2) that exceed the resolution of state-of-the-art
detectors and the requirement of fine tuning of intrinsic system
parameters [7].

In this work, we demonstrate a different approach to har-
ness the nonlinearity introduced by one or a few two-level
emitters interacting with a dissipative cavity. Our scheme is
simple, employing a continuous-wave (CW) coherent drive,
requiring only detection of the steady-state cavity population.
We base our analysis on numerical solutions of the corre-
sponding Lindblad master equation. We use the rotating-wave
approximation (RWA) for the drive and coupling terms, but
otherwise no further approximations that would limit us to
the weak-drive regime [48,53,54]. Therefore, we can explore
the intermediate-drive regime, where we find a saturationlike
effect on the cavity population, due to destructive interference
between two excitation pathways. The cavity can be excited
either directly by the drive or by the excited emitters. The
interference between these two transition pathways has sim-
ilarities with the interference that gives rise to unconventional
photon blockade. Therefore, we name the effect observed here
unconventional saturation.

The unconventional saturation effect is revealed in the
cavity response to resonant driving of intermediate strength
and arises due to the intermittent saturation of the destructive
interference, leading to direct cavity excitation. Already vis-
ible in the weak-excitation regime, well before traditional
saturation, the effect leads to a strong nonlinear dependence

of the intracavity field on the drive strength. Moreover, it
is not limited to strong cavity-emitter coupling. Instead, we
find that the basic requirements for observing unconventional
saturation are few quantum emitters, large cooperativity C ≡
4g2

col/γcγe, and intermediate drive strengths. The second con-
dition, large C, is naturally found in many lossy cavities
where the cavity decay rate γc is large compared to the emit-
ter decay rate γe, such that they fulfill γcγe � 4g2

col. Here,
gcol is the collective cavity-emitter interaction strength. In
comparison to unconventional photon blockade, which often
involves systems with small C ≈ 0.5–2 and weak driving, the
unconventional saturation effect becomes notable for C � 10
with intermediate drive strengths and grows more prominent
for higher C.

The signature of unconventional saturation is the domi-
nance of (N + 1)-photon absorption processes in scattering
from an N-emitter-cavity system. Somewhat hand-wavingly,
the emitter ensemble can be seen as a saturable mirror,
which only can reflect states with up to N photons. We iden-
tify the origin of this effect as the same type of quantum
interference that explains unconventional photon blockade.
Nevertheless, the fact that unconventional saturation can be
detected in steady-state scattering could facilitate a more
straightforward experimental demonstration than the more
elaborate photon-correlation measurement g(2) needed for ver-
ifying unconventional photon blockade. Moreover, as opposed
to vacuum Rabi splitting and photon-blockade techniques,
our approach unambiguously differentiates between differ-
ent numbers of emitters with the same collective interaction
strength. This property makes it a promising scheme for char-
acterization of cavity-emitter systems where the number of
emitters is unknown, e.g., counting of nitrogen-vacancy cen-
ters in diamond [55,56], localized emitters in hexagonal boron
nitride [57,58], or molecules in a Fabry-Pérot cavity [59], as
well as for the verification of fundamental differences between
single- and few-quantum-emitter systems. Other possible ap-
plications are within technologies such as quantum imaging
[60], quantum metrology [61], and more, which rely on the
generation of nonclassical light fields.

We also see the potential for the use of unconventional sat-
uration for progressive quantum state engineering that could
find a natural place in hybrid quantum systems, similar to the
setup proposed in Ref. [13]. The generation of specific quan-
tum states of light with dissipative systems has already been
proposed for other setups, including single- [62,63] and multi-
photon [21,22,64] generation. We believe that our work offers
a foundation for further explorations of hitherto unknown
effects that could complement and improve existing schemes.
Our results already suggest a form of photon filtering that can
be achieved using a setup (CW drive and scattering) that is
simpler compared to many other schemes.

A potential platform for demonstrating unconventional
saturation is hybrid light-matter systems using, e.g., broad-
linewidth surface plasmons and narrow-linewidth localized
two-level emitters. Light-matter hybridization is a growing
research field that utilizes hybridized states of light and matter
such as surface plasmons as the carrier of the photonic compo-
nent. Part of the attraction of such setups is the subwavelength
confinement of the light mode that can greatly enhance the
interaction with optical emitters [65–68]. Even ultrastrong
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coupling [69,70] has been demonstrated [71] in these systems.
The potential of hybrid systems for quantum technology has
already been demonstrated in Ref. [13], proposing a single-
photon optical transistor. Last, the fact that strong coupling
between cavities and emitter ensembles can be observed at
room temperature in these dissipative hybrid systems moti-
vates the search for observation and possible application of
quantum-optical phenomena beyond cryogenic temperatures
[72–76].

This article is organized as follows. Our theoretical
framework is presented in Sec. II, including the driven Tavis-
Cummings model (Sec. II A), the master equation used for
numerical calculations (Sec. II B), scattering from the cavity
(Sec. II C), and an analog classical coupled-oscillator model
used for analytical calculations in the weak-drive regime
(Sec. II D). In Sec. III, we present the results from our ex-
plorations of the driven Tavis-Cummings model, which show
a saturationlike response of the cavity population in the in-
termediate drive regime. First, we study the spectrum in
Sec. III A and note that there is a sweet spot for quantum
effects on resonance, which differentiates between different
system sizes. Thereafter, the system response is examined for
resonant driving in the weak- to intermediate-drive regimes
in Sec. III B. The observed nonlinear response is analyzed in
Sec. III C in terms of an effective drive acting on the cavity. In
Sec. III D, we build on this description to derive an analytical
expression for the critical drive strength required for entering
the nonlinear regime. We also find a figure of merit for the
observed effect in Sec. III E and analyze the effect on the
cavity populations in Sec. III F. In Secs. III G–I, we discuss the
connections to related effects and the approximations made
in our modeling. Finally, the conclusions from our investi-
gations are presented in Sec. IV. We give additional details
for some calculations in the Appendixes: Appendix A shows
the mapping between the classical and quantum models used
in Sec. II D, Appendix B reviews the quantum theory for
a propagating laser beam, Appendix C describes in detail
the phenomenological master equation used in Sec. III C,
Appendix D provides numerical calculations with a master
equation without making the RWA, and Appendix E contains
plots further demonstrating the effect of coupling strengths
and cooperativity on the unconventional saturation.

II. THEORETICAL FRAMEWORK

A. Coherently driven Tavis-Cummings model

Figure 1 shows a schematic illustration of the driven dis-
sipative Tavis-Cummings system considered in this work.
The Tavis-Cummings model describes the dynamics of an
ensemble of N identical quantum emitters interacting with
a common single-mode cavity field [2]. No interaction be-
tween the individual emitters is included, which is motivated
in circumstances where the cavity-emitter interaction is the
dominant interaction governing the dynamics. Including a
coherent drive Ē cos(ωdt ), with spatial amplitude Ē and fre-
quency ωd , the driven Tavis-Cummings Hamiltonian can be
written within the RWA as

ĤTC = h̄ωcâ†â + h̄�d

2
(â†e−iωd t + âeiωd t )

FIG. 1. Schematic illustration of the open Tavis-Cummings sys-
tem under investigation.

+
N∑

i=1

[h̄ωeσ̂+iσ̂−i + h̄g(â†σ̂−i + âσ̂+i )]. (1)

Here, â and â† are annihilation and creation operators, respec-
tively, for the cavity mode; ωc is the cavity frequency; σ̂−i and
σ̂+i are the Pauli lowering and raising operators, respectively,
for the ith quantum emitter; ωe is the transition frequency of
the emitters; �d is the strength of the cavity drive; and g is the
strength of the coupling between the cavity mode and a single
quantum emitter.

The cavity drive strength is given by �d = (ā · Ē )/h̄,
where the spatially dependent parameter ā is cavity specific.
Thus, the exact form of �d is determined by the explicit drive
and cavity configuration. No external driving of the emitters is
considered. This assumption is natural for most experimental
setups where the emitters are located inside the cavity, but
works as well for open cavities such as plasmonic nanocavi-
ties that typically have much larger transition dipole moments
than most quantum emitters. Furthermore, spatial variations
of the cavity-emitter dipole interaction is neglected. Thus, we
take g = μ̄e · Ēc/h̄ for all emitters, with the transition dipole
moment μ̄e interacting with the cavity field with amplitude Ēc.
This approximation is sufficient for many situations involving
only a few localized quantum emitters, and in situations where
the emitters are small compared to the cavity mode. With
equal interaction rates g, the structure of the interaction term
in the Tavis-Cummings Hamiltonian [Eq. (1)] leads to the
collective interaction strength gcol = √

Ng between the cavity
and the collective bright mode of the emitter ensemble.

B. Master equation

In this work, the scattering from the system under weak to
intermediate driving is investigated. To solve for the cavity-
emitter state including dissipation, an open-quantum-system
approach is employed, using the master equation

˙̂ρ = − i

h̄
[ĤTC, ρ̂] + γcDâ[ρ̂] +

N∑
i=1

γeDσ̂−i [ρ̂]. (2)

Here the operator Dô[·] = ô · ô† − 1
2 {ô†ô, ·} acting on the

density matrix ρ̂ is the standard Lindblad superoperator for
dissipation associated with the operator ô [77]. With this
master-equation approach, it is also possible to treat the case
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of strong driving, for which the traditional saturation effect
would be found.

The first term in Eq. (2) describes coherent evolution with
the Tavis-Cummings Hamiltonian. The second term describes
radiative and nonradiative dissipation of the cavity mode,
making the total dissipation rate γc = γ r

c + γ nr
c . In the third

term, the individual dissipation rates γe for the emitters are
assumed to be equal. The form of Eq. (2) neglects the con-
tribution of thermal photons to the system dynamics and
is therefore valid for low temperatures or high-frequency
quantum systems with h̄ωc, h̄ωe � kBT , such that thermal
fluctuations do not particularly affect the dynamics. In exper-
imental realizations, this condition is naturally met, e.g., for
optical frequencies at room temperature.

A more compact way of writing Eq. (2) is in terms of the
Liouvillian superoperator:

L[·] = − i

h̄
[ĤTC, ·] + γcDâ[·] +

N∑
i=1

γeDσ̂−i [·]. (3)

Then, the task of finding the steady state is reduced to the
eigenvalue problem

L[ρ̂ss] = 0 (4)

with a Hermitian density operator ρ̂ss satisfying the normal-
ization condition

Tr{ρ̂ss} = 1. (5)

C. Probing the cavity

For applications in quantum photonics, the scattering from
the system is of great interest. In cavity-emitter systems where
the cavity interacts much more strongly with the environment,
the collection of emitted photons from the emitters may be
neglected. This complies with the condition γ r

c � γe, which
is what is considered in this work. Moreover, in most ex-
perimental setups, the collection of emitted photons from the
driven system can be located such that the incident laser field
is filtered out. The collected scattering S from the system will
therefore be proportional to the radiative cavity decay rate and
the average cavity population:

S ∝ γ r
c 〈â†â〉. (6)

D. Analog classical coupled-oscillator model
in the weak-drive regime

For adequately weak drive, much of the phenomenology
associated with coupled cavity-emitter systems can be de-
scribed by a classical coupled-oscillator model [78–80]. Here
a coupled-oscillator model will be used for comparison when
analyzing the quantum effects that arise beyond the weak-
drive regime.

The coupled-oscillator model considered involves N +
1 mechanically coupled masses on springs. The corre-
sponding classical coupling constant and drive strength are
−2g

√
mcmeωcωe and �d

√
2mch̄ωc, respectively. For simplic-

ity, the cavity and emitter masses, mc and me, are set to 1. The
mapping of the quantum parameters to the classical model can
be found Appendix A. Letting index 0 denote the oscillator
representing the cavity mode and index 1, . . . , N the emitters,

the equations of motions for the classical analog of N identical
emitters coupled to a coherently driven cavity mode are

ẍ0 + γcẋ0 + ω2
c x0 +

N∑
i=1

2g
√

ωcωexi = �d

√
2h̄ωc cos (ωdt ),

(7)

ẍi + γeẋi + ω2
e xi + 2g

√
ωcωex0 = 0, i = 1, 2, . . . , N. (8)

The set of coupled equations (7) and (8) is easily solved by
making the ansatz zi = Cieiωd t for all i = 0, . . . , N and noting
that xi = Re{zi} and cos (ωdt ) = Re{eiωd t }. The solutions for
the amplitudes are

C0 = �d
√

2h̄ωc
(
ω2

e − ω2
d + iωdγe

)
(
ω2

c − ω2
d + iωdγc

)(
ω2

e − ω2
d + iωdγe

)− 4Ng2ωcωe
,

(9)

Ci = −2g
√

ωcωe�d
√

2h̄ωc(
ω2

c − ω2
d + iωdγc

)(
ω2

e − ω2
d + iωdγe

)− 4Ng2ωcωe
.

(10)

Equations (9) and (10) can be used to calculate the classical
oscillator energies Ec/e = 1

2ω2
c/e|C0/i|2, which can be com-

pared with the average energies Eqm
c = h̄ωc〈â†â〉 and Eqm

e,i =
h̄ωe〈σ̂+iσ̂−i〉 in the cavity mode and emitter ensemble, respec-
tively, calculated using the Tavis-Cummings model. Since
the average energies in both models must be the same, the
classical analog to the populations is given by

〈nc〉 = ω2
c |C0|2
2h̄ωc

, (11)

〈nens〉 =
N∑
i

ω2
e |Ci|2
2h̄ωe

= Nω2
e |Ci|2

2h̄ωe
. (12)

Equations (11) and (12) will be useful for comparing the
classical and quantum results in this article. Note that Eq. (12)
represents the total ensemble average population.

III. UNCONVENTIONAL SATURATION EFFECT
AT RESONANT DRIVING

A. Steady-state cavity-field intensity as a function
of drive frequency

Large loss rates generally limit experimental investigations
to weak excitation, 〈â†â〉 � 1. In this regime, strong coupling
with the emitter ensemble will lead to vacuum Rabi splitting
in the coupled cavity-emitter eigenspectrum. This effect can
be observed in Fig. 2(a) for the steady-state cavity popu-
lation 〈â†â〉ss = Tr{â†âρ̂ss} under continuous driving within
the weak-excitation regime, with emitters on resonance with
the cavity (ωc = ωe). The steady state ρ̂ss is found from the
master equation by solving Eq. (4) for N = 1, 2, 3, and 4
quantum emitters, and is compared with the classical solution
〈nc〉 given by Eq. (11). As can be seen, there are only small
differences in the plotted spectra between different N and the
classical solution.

On the other hand, examining the spectra on a logarithmic
scale in Fig. 2(b), large deviations (several orders of magni-
tude) from the classical model can be seen when the drive
is resonant with the cavity and the emitters. Despite having
the same collective interaction strength gcol, large differences
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FIG. 2. Master-equation calculations of the cavity populations in
the steady state for coupled cavity-N-emitter systems with the same
collective interaction strength gcol as a function of drive frequency.
These spectra are compared with the analog, classical calculation.
(a) The spectra for N = 1–4 quantum emitters show only minor
differences between different N and the classical coupled-oscillator
model when plotted on a linear scale. (b) The spectra viewed on a
logarithmic scale, on the contrary, show considerable differences of
several orders of magnitude for resonant driving.

can also be seen between the spectra for different numbers of
emitters in the ensemble. The spectrum for N = 1 shows the
largest deviation from the classical case; adding more emitters
yields spectra approaching the classical response. Thus, we
have found a sweet spot for quantitative quantum effects that
differentiate between different emitter-ensemble sizes N in the
weak-excitation regime. In fact, it turns out that a strongly
N-dependent nonlinear response can be accessed for resonant
driving in the steady state, as will be shown in the next section.

For this simulation and throughout the main text, the emit-
ters are taken to be on resonance with the cavity mode, i.e.,
ωe = ωc. The other parameters used in Fig. 2 were γc/ωc =
0.03, γe/ωc = 0.0003, gcol/ωc = 0.03, and �d/gcol = 0.25.

B. Mean cavity response for increasing drive rate

Encouraged by the visible quantum effects on resonance in
the spectrum, we here further explore the optical response of
the Tavis-Cummings model for resonant driving. The spec-
tra in Fig. 2 are calculated with a drive strength that is

FIG. 3. Log-log plots of the average steady-state populations as
a function of the normalized drive strength �d/gcol, calculated with
the master equation for N = 1–4. (a) The cavity population shows
an N-dependent transition through a nonlinear response regime for
intermediate drive strengths between two linear asymptotes 〈nc〉
(dashed black line) and 〈no

c〉 (dotted black line). The dashed vertical
line marks �d/gcol = 0.25, which was used for calculating the spec-
tra in Fig. 2. (b) The total ensemble population for the same range of
drive strengths as in panel (a). This population saturates at N/2 when
the drive is strong.

often considered to be in the weak-drive regime. Nonethe-
less, it is perhaps more instructive to discuss in terms of an
intermediate-drive regime, �d < gcol, prompted by the large
losses that retain the system response in the weak-excitation
regime.

In Fig. 3, we show the evolution of the steady-state cav-
ity population 〈â†â〉ss and the steady-state total ensemble
population 〈σ̂+σ̂−〉ens

ss =∑N
1 〈σ̂+iσ̂−i〉ss as a function of drive

strengths from truly weak-drive conditions to strong drive
(�d > gcol). The populations are calculated for N = 1–4 and
are compared to the corresponding classical populations 〈nc〉
and 〈nens〉 given by Eqs. (11) and (12). Intriguingly, as the
drive strength increases, the results in Fig. 3(a) show the cavity
response entering into a nonlinear regime for each system
size in turn. This effect is visible as an N-dependent break
from the linear, classical response. Contrary to what naively
could be expected in the weak-excitation regime, this implies
that the few-level nature of a quantum-emitter ensemble plays
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an important role for the system dynamics, similar to the
traditional saturation effect, already well before the system
enters the strong-drive regime.

More specifically, Fig. 3(a) shows how the cavity response
transition between two linear regimes at weak and strong
driving, respectively. In the weak-drive regime, the cavity
population follows the classical population 〈nc〉 calculated
with the coupled-oscillator model. Then, depending on the
number of emitters, N , a nonlinear regime is passed before
the cavity again has a linear response described by an un-
coupled driven damped harmonic oscillator with population
〈no

c〉 = �2
d/γ

2
c .

Comparing the cavity population in Fig. 3(a) with the en-
semble population in Fig. 3(b) shows that the nonlinear regime
appears well before the emitter ensemble has saturated, i.e.,
when 〈σ̂+σ̂−〉ens

ss � N/2. It is not until strong-drive conditions
have been reached, �d/gcol > 1, that the ensemble saturates
and the cavity population approaches the response of an un-
coupled driven harmonic oscillator.

A study of the slopes for the cavity population in the
intermediate-drive regime [Fig. 3(a)] shows the first evidence
of the emitter-ensemble origin of the strongly nonlinear be-
havior. In linear response, the cavity population is expected to
have a linear dependence on the driving intensity I ∝ �2

d . This
dependence is precisely what Fig. 3(a) shows for a sufficiently
weak drive, where all systems have a slope of 2 in the log-log
plot. If a multiphoton process of order n is dominant, on the
other hand, the cavity population would instead be propor-
tional to the nth power of the driving intensity: 〈â†â〉ss ∝ In ∝
�2n

d . Simple logarithmic fits of the new slopes in Fig. 3(a)
give the inclines ∼4, 6, 8, and 10, which would correspond to
two-, three-, four-, and five-photon processes for the cases of
N = 1, 2, 3, and 4, respectively. This indicates the dominance
of (N + 1)-photon processes facilitated by the ensemble of N
emitters.

C. Multiphoton processes due to unconventional
saturation effects

To gain a better understanding of the observed dynam-
ics, we study the system for weak external driving. By
applying appropriate weak-drive approximations, the master
equation in Eq. (2) simplifies to the same type of coupled
equations of motion for the density-matrix elements [81] as in
the coupled-oscillator model described in Sec. II D. Therefore,
more insight into the Tavis-Cummings dynamics in the weak-
drive regime can be gained by observing the simple analytical
solutions to the classical equations of motion presented in
Eqs. (7) and (8).

This section includes two parts. In Sec. III C 1, we show
that the observed cancellation of cavity population in the
weak-drive regime can be understood as a destructive inter-
ference between the external drive and the effective driving
from the emitter ensemble due to the cavity-emitter coupling.
Specifically, we formulate an effective drive on the cavity in-
spired by the classical equations of motion, which explain the
cavity response in the weak-drive regime well. In Sec. III C 2,
we discuss how the breakdown of the destructive interfer-
ence leads to the dominance of (N + 1)-photon processes
in the cavity response at intermediate drive strengths. We

also provide a simple phenomenological picture of the cavity
response. In this picture, we neglect the ensemble and describe
the observed (N + 1)-photon process by multiphoton absorp-
tion events followed by cavity decay through single-photon
processes.

1. Destructive interference

In the coupled-oscillator model, an effective drive on the
cavity can be defined by combining the external drive term
with the coupling to the emitters, i.e., rearranging the terms in
Eq. (7):

Dcl
eff = �d

√
2h̄ω0 cos(ω0t ) −

N∑
i

2gω0xi. (13)

The solution for xi is the real part of the ansatz zi = Cieiωd t

with the coefficient Ci given by Eq. (10). Inserting the solution
for xi on resonance (ωd = ωc = ωe ≡ ω0) gives the effective
drive

Dcl
eff

∣∣
res =

(
1 − 1

1 + γcγe

4g2
col

)
�d

√
2h̄ω0 cos(ω0t ). (14)

Equation (14) shows that the external drive and the ensem-
ble oscillator will interfere destructively. For γcγe � g2

col, the
effective amplitude,

�eff =
(

1 − 1

1 + γcγe

4g2
col

)
�d ≈ γcγe

4g2
col

�d , (15)

is much smaller than �d . This result explains the deep dip
observed at resonance in the spectrum presented in Fig. 2(b).
Moreover, it elucidates the suppression of the coupled cavity
population 〈nc〉 compared to the uncoupled cavity population
〈no

c〉 shown in Fig. 3(a).
A similar effective drive can be found in the Heisenberg

picture for coupled quantum oscillators described by the posi-
tion and momentum operators {x̂c, x̂e,i, p̂c, p̂e,i}. The effective
quantum drive has the same form as Eq. (13), but with the
classical position variable xi replaced by the quantum operator
x̂e,i. Since the eigenenergy spectrum of the emitter ensemble
resembles a harmonic oscillator up to the same order of ex-
citations as the number of emitters, N , the validity of this
coupled-oscillator picture is motivated. As such, the emitter
ensemble behaves like a harmonic oscillator for weak excita-
tion where higher-order terms are negligible. By employing
this coupled-oscillator picture in the weak-excitation regime,
a quantum analog to the classical effective drive described
above can be formalized utilizing the properties of coherent
states.

A coherently driven damped harmonic oscillator will also
be in a coherent state. Hence, we can make a coherent-state
approximation of the emitter ensemble to order N in the
weak-excitation regime. In terms of Fock states, omitting a
normalization constant which is ∼1 in this regime, this coher-
ent state can be written as

|αens〉 ≈ e− |αens |2
2

N∑
n=0

αn
ens√
n!

|n〉. (16)
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The complex amplitude αens with |αens|2 ∝ 〈σ̂+σ̂−〉ens
ss is de-

fined by the emitter ensemble.
For this work, a rectangular “time-bin” temporal mode

with duration T is a sufficient description for the mode of the
ensemble state in the weak-drive regime. This mode choice
gives a simple expression for the complex amplitude:

αens = �ensT . (17)

The time duration T is a characteristic timescale set by the
system. For the considered Tavis-Cummings system, the oc-
cupation of the ensemble is related to the cavity field through
the collective coupling gcol. Therefore, the natural choice of T
for the ensemble state is

T = 1

gcol
. (18)

To formulate a quantum analog to the classical effec-
tive drive, we have to relate the approximate coherent state
for the ensemble to the classical external drive on the cav-
ity. The relation can be found by considering an idealized
laser for the external drive. The state of an idealized laser
beam propagating through free space can be represented
as a continuous-mode coherent state. This continuous-mode
coherent state can be partitioned into an infinite set of discrete-
mode coherent states

|αd〉 = e− |αd |2
2

∞∑
n=0

αn
d√
n!

|n〉 (19)

with amplitude αd .
The partitioning into discrete temporal modes can be per-

formed with a large freedom of choice under the condition
that the characteristic mode timescale Td and oscillator fre-
quency ωd obey ωd Td � 1. This freedom of mode choice is
discussed in detail in Appendix B, where we also give the
partitioning into rectangular time bins as a specific example.
Hence, in accordance with Appendix B, we can also choose
rectangular temporal modes for the external drive with a
time duration Td , which can be chosen arbitrarily as long as
the condition ωd Td � 1 is fulfilled. To compare the effects of
the two sources of driving, the same choice of time duration
must be made for the ensemble and the external drive. Thus,
we take Td = T , which gives the coherent-state amplitude

αd = �d T, (20)

with T = 1/gcol as given by Eq. (18) above.
Taken together with the coherent-state approximation for

the ensemble and the mode-matched partitioning of the laser
beam, Eq. (13) suggests that the cavity can be seen as driven
by an effective coherent state in the linear regime. In terms of
Fock states, this effective drive state can be written down as

|αeff〉 ≈
N∑

n=0

(αd − αens)n

√
n!

|n〉 (21)

for small |αd |2 and |αens|2.
For sufficiently weak drive, only lower-order Fock states

(n � N) contribute notably to the scattering dynamics. In this
regime, Eq. (15) gives a classically derived analytical expres-
sion for the effective drive �eff, which agrees well with the

numerical calculations using the master equation. By combin-
ing this picture of classical destructive interference with the
idea of two mode-matched coherent states, it can be seen that
Eq. (21) describes an effective, coherent drive on the cavity
with amplitude

αeff = �effT ≡ (�d − �ens)T, (22)

where T = 1/gcol is the characteristic timescale identified for
the ensemble given in Eq. (18). The validity of this choice of
T is confirmed by the good agreement between our analytical
predictions using Eq. (18) and the exact numerical calcula-
tions in the weak-drive regime presented in Fig. 3.

2. Breakdown of destructive interference at intermediate
drive strengths

Under the weak-drive conditions discussed so far, the clas-
sical and quantum models give the same result for the cavity
field due to external driving. Nevertheless, there are distinct
differences between the classical and quantum models that
become clear in the effective-drive picture. In the classical
picture, the effective drive in Eq. (14) represents two har-
monic fields acting on the cavity with opposite phase, which
therefore cancels. Since both fields are harmonic, the relative
amplitude �eff, written in Eq. (15), will not change when the
drive strength increases. Thus, the classical cavity population
〈nc〉 maintains a linear dependence on the external drive in the
strong-drive regime (�d > gcol ).

The emitter ensemble, on the other hand, only resembles a
harmonic oscillator up to photon number N . This truncation
of the harmonic spectrum is reflected in the effective coher-
ent drive in Eq. (21), where the summation only goes to N .
Hence, the destructive interference between the external drive
and the ensemble breaks down at order N + 1. However, the
breakdown of the destructive interference is only visible when
the (N + 1)th state in the Fock-state expansion in Eq. (19) has
become significant. In Fig. 3(a), the cavity response reveals
this effect as (N + 1)-photon processes for intermediate drive
strengths. For even stronger drive, the emitter ensemble will
saturate, and the uncoupled cavity response 〈no

c〉 will be ap-
proached.

The (N + 1)-photon processes in the intermediate-drive
regime can be seen as a result of an unconventional saturation
effect where the emitter ensemble intermittently saturates on
the cavity-emitter interaction timescale identified above. This
unconventional saturation is not visible in the spectrum since
the emitter ensemble is still weakly populated and has not
saturated in the traditional sense, i.e., cannot absorb more
energy. Instead, the unconventional saturation effect can be
described as the destructive interference between different ex-
citation pathways which occurs on the characteristic timescale
T given in Eq. (18).

In a simplified picture, the unconventional saturation effect
can be understood as a sequence of (N + 1)-photon pulses
driving the cavity due to the intermittent saturation of the de-
structive interference. In Fig. 4(a), we provide a naive sketch
illustrating one cycle of this (N + 1)-photon process. The
portrayed dynamics contain three distinct parts: (i) cancel-
lation, (ii) (N + 1)-photon absorption, and (iii) exponential
decay. First, the cavity is mainly in the ground state with
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FIG. 4. (a) The (N + 1)-photon processes associated with the unconventional saturation effect can be seen as (N + 1)-photon pulses
driving the cavity when the destructive emitter-drive interference breaks down at order N + 1. (b) The dynamics illustrated in panel (a) can
be described with a phenomenological master equation which gives an analytical expression for the steady-state cavity population (dashed red
curves). The analytical results are compared with the exact numerical calculations (solid blue curves). Black stars mark the critical drive for
entering the unconventional saturation regime.

an average population 〈n̂c〉weak due to the emitter-drive in-
terference, which cancels the cavity population. However,
when N + 1 photons arrive from the drive, the destructive
interference breaks down. On the timescale of the cavity-
emitter interaction, the emitters intermittently saturate, which
leads to direct absorption of the (N + 1)-photon state in the
cavity. Following the absorption event is exponential decay,
where the N + 1 photons leak out of the cavity, photon by
photon.

The dynamics, illustrated in Fig. 4(a) can be modeled with
a simple phenomenological master equation for the probabili-
ties Pn(t ) of occupying the nth Fock state in the cavity. Despite
its simplicity, considering only cavity processes, this master
equation qualitatively captures the unconventional saturation
effect for drive strengths approaching the collective coupling
gcol. The details of this approach are shown in Appendix C.
Here we present the main results.

Most importantly, the phenomenological master equa-
tion presented in Appendix C provides analytical solutions to
the time-dependent probabilities Pn(t ). These solutions allow
us to make an analytical prediction of the steady-state cavity
population by calculating the time-averaged contribution from
having a stream of (N + 1)-photon pulses driving the cavity
due to the unconventional saturation effect. The steady-state
cavity population in this naive picture can be found as

〈n̂c〉ss = 〈n̂c〉weak + (N + 1)PT
N+1

T γc
, (23)

where 〈n̂c〉weak is the suppressed cavity population due to the
coupling to the ensemble and PT

N+1 is the probability of having
N + 1 photons in the external drive during the time T given by
Eq. (18). Here we have also introduced the notation 〈n̂c〉ss =
〈â†â〉ss for the steady-state cavity population.

An expression for 〈n̂c〉weak can be found by employing the
coupled-oscillator model explained above. In Fig. 3(a), we
have already seen that the steady-state cavity population is
well described by the classical result 〈nc〉 for a sufficiently
weak drive. Therefore, Eqs. (9) and (11) give an expression
for 〈n̂c〉weak which accurately predicts the cavity population in

the weak-drive regime. On resonance, this expression is

〈n̂c〉weak = �2
dγ

2
e

16g4
col

1(
1 + γcγe

4g2
col

)2 . (24)

The probability PT
N+1 is given by the Poisson distribution for

the external drive with discrete-mode amplitude αd = �d T ,

PT
N+1 = e−|�d T |2 |�d T |2(N+1)

(N + 1)!
. (25)

Figure 4(b) shows the steady-state cavity population for
N = 1–4 emitters obtained with Eq. (23) (dashed red curves).
The analytical results are compared with the exact numerical
calculations using the master equation in Eq. (2) (solid blue
curves). The comparison shows that the simplified dynamics
presented in Fig. 4(a), leading to the analytical prediction for
〈n̂c〉ss given in Eq. (23), captures the unconventional saturation
effect qualitatively. It can be seen that Eq. (23) accurately
captures both the weak-drive behavior and the dominance of
(N + 1)-photon processes in the intermediate-drive regime.
The simple picture of (N + 1)-photon pulses arising from the
breakdown of destructive interference at order N + 1 can thus
give a qualitative intuition for the unconventional saturation
effect.

The analytical prediction overestimates the photon number.
However, this is not surprising since the phenomenological
model employed to derive Eq. (23) entirely neglects all effects
from the coupling to the ensemble beyond the cancellation
effect. For example, the possibility of excitation transfer to the
ensemble during the decay process is completely overlooked.
Nevertheless, the simplified model described in this section is
a good tool that can be used to gain an intuition about the
(N + 1)-photon processes associated with the unconventional
saturation effect.

Equation (23) can also be extended to account for higher-
order photon pulses (n > N + 1). In that case, the last term
becomes a sum of the contributions. See Appendix C for
details. Since the external drive is coherent, the probabilities
PT

n for the higher-order photon states (n � N + 1) follow
a Poisson distribution. Hence, the (N + 1)-photon pulses
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FIG. 5. Calculations of the steady-state cavity population for different [(a)–(d)] emitter decay rates γe and [(e)–(h)] collective interaction
strengths gcol. The remaining parameters were held fixed, using the same values as in Fig. 3. The red stars mark the derived analytical expression
for the critical drive �cr . As can be seen, the analytical results predict exceedingly well the onset of the nonlinear regime.

contribute the most to the cavity response at intermediate drive
strengths (�d < gcol ). Including higher-order photon pulses in
this simplified picture will, therefore, not qualitatively change
the cavity response in this regime. In Appendix C, we show a
calculation including the contribution of photon pulses up to
order N + 5, which confirms our argument above.

D. Critical drive strength

The effective-drive picture, and the breakdown of the de-
structive interference discussed above, can also be used to
write down a condition for entering into the nonlinear regime.
Under the assumption that the emitter ensemble behaves as
a driven harmonic oscillator up to order N , we would expect
the cavity response to enter the nonlinear regime when the
missing (N + 1)th term in the coherent-state approximation
|αens〉 becomes comparable to the cavity population. From
the coupled-oscillator perspective, this condition is easy to
understand. That is, up to N excitations, the system behaves
classically, and the ensemble can interfere destructively to
cancel out excitation of the cavity. On the other hand, when
the ensemble fails to interfere destructively due to its few-level
spectrum, the cavity population becomes comparable to the
missing (N + 1)th term in |αens〉. Formally, this condition for
the critical drive can be written down as

〈n̂c〉ss = (N + 1)Pαens (N + 1). (26)

Here Pα (n) ≈ |α|2n

n! is the Poisson probability distribution for
finding n excitations in the coherent state when |α|2 � 1 and
the factor (N + 1) comes from having N + 1 excitations with
probability Pα (n).

Since we are approaching the nonlinear regime from the
weak-drive regime, we can take 〈n̂c〉ss = 〈n̂c〉weak and use the
expression for 〈n̂c〉weak given in Eq. (24). We can also find an
expression for the effective ensemble drive amplitude αens =

�ensT using �eff in Eq. (15):

αens = �ensT = �d

1 + γcγe

4g2
col

T . (27)

The condition in Eq. (26) thus becomes

〈n̂c〉weak = (N + 1)
|αens|2(N+1)

(N + 1)!
, (28)

which gives the expression

�cr (N ) =
(

N!γ 2
e g2(N−1)

col

16

) 1
2N (

1 + 1

C

)
(29)

for the critical drive strength �cr that indicates the onset of the
unconventional saturation regime.

As can be seen in Fig. 5, the calculation of the critical
drive with Eq. (29) predicts very well the onset of the non-
linear regime. Figures 5(a)–5(d) show the steady-state cavity
response and the calculated �cr for a wide range of emitter
decay rates γe, whereas Figs. 5(e)–5(h) show the same for
several different coupling strengths gcol. In all panels, the
analytically calculated �cr (N ), marked with red stars, lie very
close to the beginning of the nonlinear regime. Thus, we have
not only found an intriguing regime for performing quantum
nonlinearity measurements, but we can also, with high accu-
racy, predict its onset for a wide range of parameters.

E. Figure of merit

So far, we have discussed unconventional saturation as
an effect of the destructive interference (or the competi-
tion of) two distinct excitation pathways: Cavity-drive and
cavity-emitter. That interesting quantum effects can arise in
dissipative Tavis-Cummings-type systems due to quantum
interference has already been shown with the so-called un-
conventional photon-blockade effect [7,22,42,48,52–54]. The
unconventional photon blockade, however, is observed for
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weak excitation and strong-coupling conditions. The uncon-
ventional saturation effect observed here, on the other hand,
is instead present for intermediate drive strengths and appears
for resonant driving in a parameter regime where unconven-
tional photon blockade is absent.

It turns out that a good figure of merit for unconventional
saturation is the cooperativity

C ≡ 4g2
col

γcγe
. (30)

Why Eq. (30) is a good figure of merit can be seen by study-
ing the induced transparency (reduced cavity population) on
resonance due to the effective drive in the classical case. By
taking the ratio between the classically derived coupled- and
uncoupled-cavity populations, it can be seen that the cavity
response will be suppressed with a factor depending on C:

〈nc〉〈
no

c

〉 = 1

(C + 1)2 . (31)

To arrive at this relation, we have used the expression in
Eq. (24) for 〈nc〉, found by solving the classical coupled-
oscillator equations of motion. A similar calculation for an
uncoupled cavity, driven by the same external drive on reso-
nance, gives

〈
no

c

〉 = �2
d

γ 2
c

, (32)

as already mentioned above.
In Fig. 3(a), it can be seen that Eq. (31) governs the region

in which the unconventional saturation effect can be observed.
For small cooperativities, i.e., C ∼ 1 or smaller, the suppres-
sion of the cavity response due to the interaction with the
emitter ensemble is too small for observing unconventional
saturation. However, for C � 10 the unconventional satura-
tion effect starts to become clearly visible, and (as would
be expected) it grows more distinct for increasing C. In Ap-
pendix E, additional simulations that show how the cavity
response changes with the cooperativity can be found.

F. Suppression of the cavity response

Equation (31) in Sec. III E shows a classically derived
expression for the suppression of the coupled-cavity response
in the linear weak-drive regime. This result, together with the
effective drive |αeff〉 found in Eq. (21), underlines the expec-
tation of a transition in the cavity response from a coupled
coherent state to an uncoupled coherent state as the drive is
increased. And indeed, this is what we see in Fig. 3(a). In
Sec. III C, we also identified the timescale T = 1/gcol, which
defines the characteristic time for unconventional saturation.
This timescale provides a simple relationship between the cav-
ity decay time Tc = 1/γc and the effective (suppressed) drive
αeff , which is easily found by rewriting the expression for 〈nc〉
in terms of the effective drive amplitude �eff in Eq. (15) and
employing the relations for αens in Eq. (22):

〈nc〉 = �2
eff

γ 2
c

=
(

Tc

T

)2

|αeff|2. (33)

The arguments above explain the two asymptotical behav-
iors observed and demonstrate the competition of timescales

causing the unconventional saturation effect. In the following
section, we show that the populations of the reduced density
matrix for the cavity lie between the Poissonian distribu-
tions for the two asymptotical coherent states. Moreover, we
discuss how the destructive interference with the N-emitter
ensemble appears in the populations and how they evolve as
the drive increases.

Suppression of populations

As already noted, the nonlinear cavity response will appear
in the transition between the response of a coupled cavity and
that of an uncoupled cavity. In the two linear regimes, at weak
and strong drive, respectively, the cavity will be described by
the two coherent states with amplitudes αc and αo

c . To find the
amplitudes, we can use the well-known property |α|2 = 〈n̂〉
for coherent states and use the classical results derived above.
Thus, we find

|αc|2 = �2
eff

γ 2
c

(34)

for the coupled coherent state and

∣∣αo
c

∣∣2 = �2
d

γ 2
c

(35)

for the uncoupled coherent state.
To gain information on the state inside the cavity, we ex-

amine the populations ρn ≡ 〈n|ρ̂c|n〉 of the reduced density
matrix ρ̂c ≡ Trens{ρ̂ss}. In Fig. 6, the cavity populations for
N = 1, 2, 3, and 4 emitters (symbols) are plotted against the
Poisson distributions for the coherent states with amplitudes
αc (dashed line) and αo

c (solid line) for three different drive
strengths as indicated (dashed vertical lines) in Fig. 6(a).

Because of the destructive interference, we expect the pop-
ulations to approach the coupled Poisson distribution, in the
weak-drive regime. However, due to the truncation of the
ensemble spectra at N excitations, the higher-order photon-
state “tail” will be pulled towards the uncoupled Poisson
distribution. This effect can be viewed as a sequential flow of
excitation from the ρn�N+1 populations, that are not affected
by the cancellation, to the ρn<N+1 populations via decay pro-
cesses.

When the system is not in the unconventional satura-
tion regime, we expect the distribution of the populations
to be “Poisson-like” (ρ0 � ρ1 � ρ2 � · · · ) except for the
truncation-induced crossover explained above. On the other
hand, when the system is in the unconventional saturation
regime, the breakdown of the destructive interference at or-
der N + 1 will facilitate direct (N + 1)-photon excitation of
the cavity [see Fig. 4(a)]. Following the absorption is cav-
ity decay, which is again a single-photon process. Thus, in
the unconventional saturation regime, we expect the ρN+1

population to be comparable to the lower-order populations
ρn<N+1, that is, (N + 1)ρN+1 ≈ NρN ≈ · · · ≈ ρ1. This picture
agrees well with the breakdown of destructive interference
discussed in Sec. III C 2 and is confirmed by the data presented
in Figs. 6(b)–6(d). In Appendix C, we show that the simple
phenomenological master equation discussed in Sec. III C 2
also predicts the populations qualitatively.
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FIG. 6. Visualization of the evolution of [(b)–(d)] the multiphoton populations ρn as the drive strength �d is increased; the total
population is shown in panel (a). The dashed and solid lines mark the Poisson distributions P(n) calculated with the coherent-state amplitudes
corresponding to a coupled, |αc|2 = �2

eff/γ
2
c , and uncoupled, |αo

c |2 = �2
d/γ

2
c , cavity, respectively. As can be seen for all system sizes N = 1–4,

the emitter ensemble behaves as a true coherent state in the coupled system only up to first order. Then, for increasing drive strength, each
system saturates in turn, visible as the higher-order photon states approach the uncoupled-cavity distribution. The red circles illustrate when
ρN+1 have become comparable to ρ1, i.e., ρ1 ∼ (N + 1)ρN+1, which is a signature of the unconventional saturation regime.

G. Relation to exciton-induced transparency

The underlying destructive interference effect, giving rise
to the observed suppression of the cavity population on res-
onance, can in the weak-drive regime be understood as a
classical analog to electromagnetically induced transparency
(EIT) [80]. Indeed, the coupled set of equations presented
in Eqs. (7) and (8) is the same as those used for modeling
classical EIT. EIT is more commonly discussed in systems
with more moderate light-matter coupling than illustrated in
Fig. 2. In Fig. 7, the cavity population spectrum is plotted for
N = 1, 2, and 3 emitters together with the classical analog for
increasing interaction strength gcol. At the top, in Figs. 7(a)
and 7(b), the typical EIT regime with a rather moderate in-
teraction strength gcol < γc/2 is shown. As is clearly visible
throughout the logarithmic-scale plots in the lower panel, the
N-dependent quantum interference effect at resonance persists
for a wide range of interaction strengths.

For a system with one emitter, a semiclassical analog to
classical EIT, treating the emitter quantum mechanically and
the cavity classically, has already been referred to as “exciton-
induced transparency” (ExIT). ExIT has been discussed
within the context of plasmon-exciton coupling [51,82,83]
and demonstrated with a plasmonic nanocavity and quantum-
dot system [84]. The saturation of the ExIT effect has been
discussed in Ref. [85], although the exact power dependence
was not analyzed. The regime with dominant two-photon pro-
cesses for this single-emitter system was thus not identified.

However, the systems exhibiting ExIT should indeed be suit-
able for demonstrating unconventional saturation.

H. Relation to dressed-state polarization

In Fig. 3(a), two critical points can be identified. The first
point, at weak drive, marks the onset of the unconventional
saturation effect, and it depends strongly on the emitter num-
ber, as discussed in Sec. III D. The second point, at strong
drive, marks the conventional saturation of the emitter en-
semble, as can be evidenced by also studying the steady-state
ensemble population in Fig. 3(b). This point is related to the
collective coupling strength. Thus, it is primarily the same for
all system sizes with the same collective coupling.

In a resonantly driven Jaynes-Cummings model (N = 1),
the critical point at strong drive has additionally been iden-
tified as a first-order phase transition for a strongly coupled
system [37,45,46]. Due to the strong cavity-emitter coupling,
the Jaynes-Cummings system can be seen as an atom-cavity
“molecule” that becomes dressed by the resonant external
drive. Beyond the critical drive strength, which in our pa-
rameters translates to �d/gcol = 1, the system exhibits phase
bimodality in the steady state. This effect is known as
dressed-state polarization and has been analyzed in detail in
Refs. [45,46]. The dressed-state polarization effect has also
been connected to the breakdown of the photon-blockade ef-
fect [37], and it has been studied with mean-field theory in the
limit N → ∞ [47].
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FIG. 7. Spectra of the average cavity population 〈â†â〉 for N = 1, 2, and 3 emitters plotted against the classical analog 〈nc〉 on [(a)–(c)]
linear and [(d)–(f)] logarithmic scales. As is clearly seen throughout the logarithmic-scale plots, the quantum interference effect is present for
a wide range of interaction strengths below and at the strong-coupling limit gcol � γc/2.

Unlike the unconventional saturation effect, the dressed-
state polarization effect is a strong-coupling effect in the
strong-drive regime, that relies on climbing the dressed
Jaynes-Cummings ladder. The unconventional saturation ef-
fect, on the other hand, is present in, but not limited to, the
strong-coupling regime. Instead, as discussed in Sec. III E, the
relevant figure of merit for unconventional saturation is large
cooperativity. By virtue of the single-emitter decay rate in the
denominator in Eq. (30), a large cooperativity can be obtained
even though the cavity loss is large (i.e., weak coupling) if the
emitter decay is small. Thus, unconventional saturation can
be present in systems which are prohibited from displaying
dressed-state polarization in the strong-drive regime due to the
large cavity dissipation. Moreover, in contrast to dressed-state
polarization, the unconventional saturation effect appears at
intermediate drive strengths, well before the critical point,
�d/gcol = 1, marking the phase transition to the dressed-state
polarization phase in the resonantly driven Jaynes-Cummings
model.

I. Limitations of the model

The results presented in this paper have been obtained
considering resonance between the cavity, emitters, and ex-
ternal drive, i.e., ωd = ωc = ωe. Hence, the identified effect
is in essence described as a resonance effect, meaning that
the underlying physical processes giving rise to it are most
efficient when the resonance condition is fulfilled. However,
it is clear that the strong cavity damping makes the effect
robust towards small cavity detuning. Detuning between the
drive and the quantum emitters reduces the efficiency of the
destructive interference between them. As can be seen in
Fig. 2, this leads to a larger weak-drive steady-state popula-
tion, which in turn reduces the drive strength regime showing
unconventional saturation. Initial numerical studies indicate
that there are no other qualitative changes. However, to

describe this quantitatively, as well as considering other types
of detuning, e.g., inhomogeneous broadening, a systematic
study is required, which is beyond the scope of the current
paper.

Since our investigations are performed in an unusual pa-
rameter regime, it is also important to discuss some of the
standard quantum optics approximations we use. With the
aim of formulating the simplest model that predicts the main
physical phenomena arising with small emitter ensembles
coupled to a cavity in an environment, the master equation em-
ployed in this work is derived under two important conditions:
(i) the cavity and emitters interact with the environment inde-
pendently of the cavity-emitter coupling, and (ii) each emitter
interacts with local environments. This approach follows a
criterion of simplicity and is appealing since it keeps the
discussion of the physics simple. Below, we discuss the lim-
itations of conditions (i) and (ii). Moreover, we also discuss
how small changes to these conditions do not change the effect
presented in this work.

In the following, we refer to the eigenstates of the coupled
cavity-emitter system as dressed states, and we refer to the
eigenstates of the cavity and emitter subsystems as bare states.

1. The rotating-wave approximation

Condition (i) states that the dissipative part of the mas-
ter equation is derived without taking into account the
cavity-emitter interaction. The dissipators [Dâ and Dσ̂− in
Eq. (2)] obtained through this method will induce transitions
between the bare cavity and emitter states. The master equa-
tion obtained in this fashion can accurately describe many
cavity-QED experiments in regimes where the RWA can
safely be applied.

Generally, the RWA is justified for systems with gcol/ωc <

0.1, which is the conventional limit for the ultrastrong-
coupling (USC) regime [69]. In this article, we demonstrate
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an unconventional saturation effect with a set of parameters
giving gcol/ωc = 0.03, which is clearly below the limit of
USC. Moreover, as discussed in Sec. III E, the effect is also
present for lower gcol provided that the cooperativity C is large
enough. Thus, the RWA should, in general, be justified in the
regimes where the unconventional saturation effect typically
appears.

However, the limit gcol/ωc < 0.1 is merely a historical
convention, not a strict boundary for when the RWA can
safely be used. Therefore, when a high degree of accuracy
is demanded, e.g., in the case of low photon numbers, the
validity of the RWA may have to be reevaluated. When the
RWA is not applied, the system Hamiltonian is no longer
excitation-number conserving. The mixing of the bare ground
state with higher-order states leads to virtual excitations in
the dressed ground state (see, e.g., Ref. [69] for a review on
USC discussing virtual excitations in the ground state). For
cavity-emitter systems that are not ultrastrongly coupled, the
effects from the mixing of states containing different numbers
of excitations are typically negligible, but the effect demon-
strated in this paper appears at very low excitation numbers.
The change of the ground state when the RWA is not applied
could therefore be important.

The retraction of the RWA requires proper adjustments
to the master equation in Eq. (2), which would otherwise
give unphysical excitation out of the coupled ground state
even without driving at zero temperature. In Appendix D, we
provide a master equation that induces transitions between
the dressed states and accurately brings the system to the
dressed ground state, including the counter-rotating terms in
the Hamiltonian. Employing this master equation, we find that
the counter-rotating terms do not qualitatively affect the un-
conventional saturation effect. For a comparison of the results
obtained with the different master equations, see Fig. 10 in
Appendix D.

2. Local emitter environments

Condition (ii) neglects any effects of collective interaction
between the emitter ensemble and the environment. For ex-
ample, in optical bistability, which also appears within the
drive-dissipative Tavis-Cummings model, the individual dis-
sipation approach is the textbook procedure [86,87]. Optical
bistability was also recently studied with the individual-
emitter-decay master equation in a low-photon-density regime
[88] similar to ours. Thus, individual emitter decay seems to
be an adequate method to model the central physical phe-
nomena in the driven-dissipative Tavis-Cummings model. The
connections between optical bistability and unconventional
saturation in this regime also remain an interesting question
for future study.

Nevertheless, the work of Dicke [89] highlighted the im-
portance of collective dissipation for atoms contained in a
small volume compared to the wavelength, which interacts
with a single mode in free space. In that setting, the col-
lectiveness of the interaction gives rise to the well-known
superradiance effect [90]. Since then, the concept of collective
decay has been transferred to cavity-QED systems, where
quantum emitters are confined to a small volume inside the
cavity.

In this work, all emitters interact uniformly with the cavity
mode. This approximation is strictly only valid for emitter en-
sembles that are localized in a small volume compared to the
mode wavelength, but it serves as a good first approximation
for many other experimental configurations. Because of small
emitter confinement, the collectiveness of the interaction with
the environment could be non-negligible for accurately de-
scribing the system dynamics. However, with the current set
of parameters that show the unconventional saturation effect,
the interaction between the emitters and the environment is
weak and much smaller than the cavity dissipation (γe � γc).
Therefore, the main decay channel for the emitters is through
the cavity. Under these circumstances, where emitter emis-
sion is a rare event mainly shielded by the cavity, it is not
unreasonable to assume that the remaining dissipation from
the emitters will appear through local decay channels. Another
situation where individual emitter dissipation would be a good
approximation is for localized emitters, e.g., on a substrate.

Another important aspect is the treatment of only a few
emitters. In the few-emitter regime, the difference between
collective and individual dissipation for the emitters is mini-
mal. So, a collective-dissipation picture does not qualitatively
change the unconventional saturation effect (see Fig. 10 in
Appendix D). The exact limits to the validity of individual
versus collective dissipation is an interesting question that
would require further theoretical work.

IV. CONCLUSIONS

In this work, the stationary response from a coherently
driven cavity coupled to an ensemble of N quantum emitters,
described by the Tavis-Cummings model, has been studied.
The steady-state density matrix was calculated numerically
using a master-equation approach without making the fre-
quently applied weak-drive approximation. Additionally, a
classical coupled-oscillator model was applied to give analyt-
ical insight into the dynamics in the linear regimes.

For resonant drive frequency and intermediate drive
strength, our results show strongly N-dependent nonlinear
scattering. Specifically, we see the dominance of (N + 1)-
photon processes in the nonlinear regime of the cavity
response when it couples to an ensemble of size N . In contrast
to observing Rabi splitting in the spectrum, this effect clearly
differentiates between different ensemble sizes N with the
same collective interaction strength gcol.

Exploiting analytical results from a classical coupled-
oscillator model, and properties of coherent states, we found
that the origin of this effect could be explained by the de-
structive interference between the ensemble and the coherent
drive up to the order N . Thus, the ensemble behaves as a
saturable mirror that can only reflect photon states up to or-
der N . This unconventional saturation effect occurs due to a
competition of interaction rates and arises for weak ensemble
population, well before traditional saturation. We also derived
an analytical expression for the critical drive �cr that to good
accuracy predicts the onset of the nonlinear regime. Moreover,
we find that a basic condition for the observed unconventional
saturation effect is large cooperativity C. This condition can
be met without the requirement of strong coupling, if the
decay rates of the emitters are not too large.
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The observed effect implies a simple continuous-wave
method that could characterize dissipative cavity-emitter sys-
tems where the number of quantum emitters is unknown.
The N-dependent interference effect and the resulting (N +
1)-photon processes in the cavity response could also be
exploited for photon filtering. Thus, our results show great
promise for the use of dissipative cavity-few-emitter systems
for quantum state engineering. For this, further theoretical
work that investigates the specific output state for different
input states would be of interest.

Last, we note that a first-order expansion of the Holstein-
Primakoff transformation (HPT) [91] for weakly excited
two-level emitters would give the same coupled-oscillator
model as employed in this paper. Thus, the investigation into
higher-order expansions of the HPT could be an interesting
continuation of the present work.
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APPENDIX A: CLASSICAL COUPLED-OSCILLATOR
MODEL

In the main text, we compare the results from our quantum
model with simulations using a classical coupled-oscillator
model which is extensively used in the literature for describing
strong coupling. In this Appendix, we show the details of how
the mapping between the classical model and the quantum
model is found.

1. Mapping for an undriven system

The classical model involves N + 1 coupled oscillators
when N emitters interact with the cavity mode. If all emitters
are assumed identical, we may take ωi = ω, mi = m, and
ki = k for all emitters with index i = 1, 2, . . . , N . Letting in-
dex 0 denote the cavity oscillator, the corresponding classical
Hamiltonian is written

Hcl = m0

(
p2

0

2m2
0

+ 1

2
ω2

0x2
0

)
+

N∑
i=1

m

(
p2

i

2m2
+ 1

2
ω2x2

i

)

+ k

2
(x0 − xi )

2 (A1)

= m0

[
p2

0

2m2
0

+ 1

2

(
ω2

0 + k

m0

)
x2

0

]

+
N∑

i=1

m

[
p2

i

2m2
+ 1

2

(
ω2 + k

m

)
x2

i

]
− kx0xi. (A2)

In the classical model, no RWA is applied. To compare with
the quantum model, we therefore start with the quantum Rabi

Hamiltonian with N identical quantum emitters,

ĤR = h̄ωc

(
â†â + 1

2

)

+
N∑

i=1

[
h̄ωe

(
σ̂+iσ̂−i − 1

2

)
+ h̄g(â† + â)(σ̂−i + σ̂+i )

]
,

(A3)

which simplifies to the Tavis-Cummings Hamiltonian when
applying the RWA. In a weak-drive approximation, we may
replace σ̂−i → b̂i, σ̂+i → b̂†

i with b̂i and b̂†
i being the annihi-

lation and creation operators, respectively, of the ith quantum
oscillator. Then, introducing quantum position and momen-
tum operators {x̂c, p̂c, x̂e,i, p̂e,i}, the annihilation operators can
be written

â =
√

mcωc

2h̄

(
x̂c + i

p̂c

mcωc

)
, b̂i =

√
meωe

2h̄

(
x̂e,i + i

p̂e,i

meωe

)
.

Using these relations, we can write the quantum Hamiltonian
in the x̂ p̂ representation:

Ĥx̂ p̂ = mc

(
p̂2

c

2m2
c

+ 1

2
ω2

c x̂2
c

)
+

N∑
i=1

me

(
p̂2

e,i

2m2
e

+ 1

2
ω2

e x̂2
e,i

)

+ 2g
√

mcmeωcωex̂cx̂e,i. (A4)

Comparing Eqs. (A2) and (A4), we can directly identify m0 =
mc, m = me, and

k = −2g
√

mcmeωcωe, (A5)

ω2
0 = ω2

c − k

mc
= ω2

c + 2g

√
meωcωe

mc
, (A6)

ω2
i = ω2

e − k

me
= ω2

e + 2g

√
mcωcωe

me
. (A7)

2. Coherent drive terms

Finding the classical analog for the strength of an external
drive is done in the same manner by comparing the interaction
Hamiltonians. Considering a semiclassical model where the
quantized cavity mode is driven via dipole interaction with a
classical coherent drive Ē (t ) cos(ωdt ), the quantum and clas-
sical interaction Hamiltonians are

Ĥd,q = −qcĒ (t ) cos (ωdt )x̂c

= −μ̄cĒ (t ) cos (ωdt )(â† + â), (A8)

Hd,cl = −qcĒ (t ) cos (ωdt )xc. (A9)

In Eq. (A8), the dipole interaction is rewritten in terms of the
transition dipole moment for the cavity oscillator, which in the

single-excitation manifold is μ̄c = qc

√
h̄

2mcωc
êk , where êk is a

unit vector along the polarization direction. Then, defining the
drive amplitude �d ≡ μ̄cĒ (t )

h̄ , we can write

Ĥd,q = −h̄�d (t ) cos (ωdt )(â† + â), (A10)

Hd,cl = −
√

2h̄mcωc�d (t ) cos (ωdt )xc. (A11)
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APPENDIX B: QUANTUM THEORY FOR THE
PROPAGATING LASER BEAM

Inside the laser cavity, the light field is well defined and
can readily be quantized. In typical experiments, on the other
hand, a beam of light has to travel through free space over
distances that are much longer than the characteristic length
scales of the studied system. The quantum theory for such
a propagating light beam traveling in a straight line in free
space can be found in, e.g., Chap. 6 of Ref. [29] and will be
presented briefly below.

Consider a single propagating laser beam under cir-
cumstances where transversal effects are irrelevant to the
experiment. Then, the quantization geometry can be taken as
a finite cross-section area A (defined by the experiment) per-
pendicular to the propagation axis and a quantization axis of
infinite length parallel to the propagation axis. This geometry
corresponds to a one-dimensional continuous-mode variable
that can be taken as the frequency ωk with a mode spacing
	ω = 2πc/L that goes to zero as the quantization length L
tends to infinity, L → ∞. In this limit, the conversion from
sum to integral is ∑

k

→ 1

	ω

∫
dω (B1)

and the discrete Kronecker delta is related to a continuous
Dirac δ distribution as

δk,k′ → 	ωδ(ω − ω′). (B2)

It follows that the continuous-mode annihilation and creation
operators are related to the discrete operators as

âk →
√

	ωâ(ω), (B3)

â†
k →

√
	ωâ†(ω), (B4)

which fulfill the continuous-mode commutation relation,

[â(ω), â†(ω′)] = δ(ω − ω′). (B5)

Under the assumption of a narrow-bandwidth laser, i.e.,
the excitation bandwidth is much smaller than its central fre-
quency, the lower integration bound can be extended from 0 to
−∞ to cover the entire frequency axis in the integrals above.
Thus, the corresponding time-domain operators are obtained
as the Fourier transform of â†(ω) and â(ω):

â(t ) = 1√
2π

∫ ∞

−∞
dωâ(ω)e−iωt , (B6)

â†(t ) = 1√
2π

∫ ∞

−∞
dωâ†(ω)eiωt , (B7)

which have the commutation relation

[â(t ), â†(t ′)] = δ(t − t ′). (B8)

The quantized continuous-mode electromagnetic field opera-
tor can then be written as

Ê (z, t ) = i
∫ ∞

0
dω

√
h̄ω

4πε0cA
â(ω)e−iω(t− z

c ) + H.c., (B9)

where H.c. denotes Hermitian conjugate.

The state of the laser field inside the laser cavity can be
taken as a coherent state [92]. The output field from the laser
will then be a one-dimensional continuous-mode coherent
state due to the lack of confinement along the propagation
axis. Such a state can be represented using the Fock-space
basis kets {|n〉} and is created from the vacuum state |0〉
with the continuous-mode annihilation and creation operators
according to

|{α(t )}〉 = e
∫

dωα(ω)â†(ω)−α∗(ω)â(ω)|0〉. (B10)

Here α(ω) is the continuous-mode spectral amplitude. The
corresponding time-domain state with wave-packet amplitude
α(t ) is found via Fourier transform as

|{α(t )}〉 = e
∫

dt[α(t )â†(t )−α∗(t )â(t )]|vac〉. (B11)

The coherent-state mode functions satisfy the normalization
condition ∫

dω|α(ω)|2 =
∫

dt |α(t )|2 = 〈n̂〉, (B12)

where n̂ is the number operator

n̂ =
∫

dωâ†(ω)â(ω) =
∫

dt â†(t )â(t ′). (B13)

1. Idealized continuous-wave laser

In the following, a continuous-wave single-mode laser in
a coherent state as described above will be considered. In
typical optical experiments, the linewidth of the laser mode
is much narrower than the other components of the observed
quantum system. Therefore, the spectral amplitude can be
taken as

α(ω) =
√

2παeiϕδ(ω − ωd ). (B14)

Here α is the coherent-state amplitude, ϕ the phase, and ωd the
center frequency. The corresponding wave-packet amplitude
α(t ) is obtained via the Fourier transform of α(ω) and is thus
a propagating plane wave,

α(t ) = αe−iωd t+iϕ. (B15)

For an ideal stationary beam in a coherent state, the mean
photon flux, f (t ) = 〈â†(t )â(t )〉, will be time independent:

f (t ) = |α(t )|2 ≡ α2. (B16)

As is expected for a stationary beam, with a constant photon
flux for all times, the mean photon number 〈n̂〉 defined in
Eq. (B13) is infinite, and the spectral amplitude cannot be
normalized. These facts make calculations using the quantum
representation of the stationary beam problematic.

2. Partitioning infinite temporal modes

The infinite mean photon number is problematic for calcu-
lations as it makes the photons in the external drive field ill
defined. A solution to this problem is to define a complete
set of discrete, orthonormal basis functions {�i(t )}, which
partition the continuous-mode coherent laser beam into an
infinite tensor product state of discrete-mode coherent states
[93].
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If the basis functions {�i(t )} satisfy the orthogonality and
completeness relations∫

dt �i(t )�∗
j (t ) = δi j (B17)

and ∑
i

�i(t )�∗
i (t ′) = δ(t − t ′), (B18)

they form a noncontinuous basis set with which a discrete set
of annihilation operators may be created according to

ĉi =
∫

dt�∗
i (t )â(t ). (B19)

Equation (B18) gives the inverse relation

â(t ) =
∑

i

�i(t )ĉi. (B20)

Naturally, an eigenstate of â(t ) with eigenvalue α(t ) is also an
eigenstate of ĉi with eigenvalue

αi =
∫

dt �∗
i (t )α(t ). (B21)

It follows that a continuous-mode coherent state can be
equivalently expressed as an infinite tensor product of
discrete-mode coherent states:

|{α(t )}〉 =
∏

i

eαi ĉ
†
i −α∗

i ĉi |0〉 ≡ |{αi}〉. (B22)

The result in Eq. (B22) is an important property for mode
matching the continuous-mode coherent state to a discrete
mode. The freedom in choosing the set of basis functions {�i}
is large. This facilitates mode matching of the discrete-mode
coherent states |{αi}〉 with a large variety of mode functions.

One of the simplest examples is the partitioning into rect-
angular time bins with duration T , which are described by the
set of functions {�m(t )} defined as [94]

�m(t ) =
{

1√
T

for
∣∣t − z0

c − mT
∣∣ < T

2

0 otherwise.
(B23)

Above, the label z0 denotes an arbitrarily chosen reference
point along the propagation axis. The set of functions in
Eq. (B23) can be extended to form a complete set that satisfies
Eqs. (B17) and (B18). The corresponding eigenvalue for each
of these discrete-mode coherent states can be obtained from
Eq. (B21) as

αm =
∫

dt �m(t )α(t ) ≡ α0. (B24)

The duration T can be chosen arbitrarily as long as it is
much larger than 1/ωd . Thus, the continuous-wave laser de-
scribed by the traveling plane wave α(t ) can be expressed as
a sequence of M → ∞ copies of the discrete-mode coherent
states |α0〉 defined by the functions in Eq. (B23).

The benefit of going through all the trouble of reaching this
representation is that we now have a well-defined wave-packet
amplitude α0 for each partitioned piece of the laser beam.

APPENDIX C: PHENOMENOLOGICAL
MASTER EQUATION

In this Appendix, we write down a phenomenological mas-
ter equation for the probabilities Pn(t ) of occupying the nth
Fock state in the cavity. This master equation provides an ana-
lytical approach to gaining an intuition for the (N + 1)-photon
processes associated with the unconventional saturation ef-
fect. The solution to this master equation was used to obtain
the analytical results presented in Fig. 4(b) in the main text.

The setting for the phenomenological master equation is
the effective-drive picture described in Sec. III C. In summary,
the cavity population becomes suppressed in the weak-
excitation regime due to the coupling to the emitter ensemble.
This suppression can be understood by an effective drive,
where the external drive and the effective driving from the
ensemble interfere destructively and thus cancel the cavity
population. However, the ensemble can only cancel photon
numbers up to order N . Hence, the destructive interfer-
ence breaks down at order N + 1. The higher-order photon
states (n > N ) in the external drive can be seen as multi-
photon pulses driving the cavity. The effects of such pulses
on the cavity dynamics can be studied with a simple phe-
nomenological master equation, which only considers direct
cavity absorption and exponential decay. Even though this
model neglects all effects from the coupling to the emit-
ters beyond the cancellation of population, it qualitatively
captures the unconventional saturation effect, as shown in
Fig. 4(b).

Consider a cavity in the unconventional saturation regime,
which is approximately in the ground state because of the
destructive interference. Additionally, consider a single pulse
with k photons, which is directly absorbed into the cavity due
to the intermittent saturation of the destructive interference.
Neglecting further effects from the coupling to the emitters,
the k photons will subsequently leak out of the cavity through
single-photon processes with the rate γc. In this scenario, the
dynamics for the probabilities Pn to occupy the nth Fock state
can be described by the master equation in vector form

∂t P̄(t ) = �P̄(t ), (C1)

where P̄ = (P0, P1, . . . , Pk )T is a column vector with the Fock
states {|n〉, n ∈ [0, k]} and

� = γc

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0

0 −1 2

0 0 −2

. . .

−(k − 1) k

0 −k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C2)

is a matrix describing the in- and outflow of probability to
occupy each state. The general solution to Eq. (C1) is

P̄(t ) = e�t P̄(0), (C3)
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which for P̄(0) = Pk = 1 gives

P̄(t ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−kγct (−1 + eγct )k(k
1

)
e−kγct (−1 + eγct )(k−1)(k

2

)
e−kγct (−1 + eγct )(k−2)

...( k
k−1

)
e−kγct (−1 + eγct )1

e−kγct

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C4)

Equation (C4) describes the dynamics of the exponential de-
cay of k photons from the kth Fock state to the ground state.

1. Prediction of the total cavity population in the steady state

The time-averaged contribution from a stream of indepen-
dent k-photon pulses to the total cavity population in the
steady state can be calculated according to

〈n̂c〉ss = 〈n̂c〉weak + 1

Tss

∫ Tss

0
dt

Tss

T
PT

k

k∑
n

Pn(t ). (C5)

The first term is the steady-state cavity population in the weak-
drive regime, given by Eq. (24). The probability PT

k of having
a k-photon pulse during the time T is given by the Poisson
distribution for the external drive with amplitude αd = �d T ,

PT
k = e−|�d T |2 |�d T |2k

k!
. (C6)

The factor Tss/T gives the number of time bins with duration
T in the time Tss, over which we average. Taken together,
the term (Tss/T )PT

k gives the fraction of k-photon pulses that
contributes to the time average. Using the explicit forms for
the time-dependent probabilities Pn(t ) given in Eq. (C4), the
sum in Eq. (C5) can be evaluated as

∑k
n=0 nPn(t ) = ke−γct .

Additionally, we can assume that the time it takes to reach the
steady state is much longer than the timescale for the decay
dynamics, Tss � 1/γc. Thus, we can take the limit Tss → ∞,
which yields the expression

〈n̂c〉ss = 〈n̂c〉weak + kPT
k

T γc
. (C7)

When N emitters couple to the cavity, the destructive inter-
ference between the emitters and the external drive breaks
down at order N + 1. Hence, the lowest-order photon pulses
contributing to the cavity population in the steady state will
be N + 1. Taking k = N + 1 in Eq. (C7) gives the expres-
sion for the cavity population given in Eq. (23) in the main
text.

Equation (C7) can easily be generalized to include the
contribution from independent k-photon pulses up to order M,

〈n̂c〉ss = 〈n̂c〉weak +
M∑

k=N+1

kPT
k

T γc
. (C8)

FIG. 8. Comparison of the steady-state cavity population calcu-
lated with Eq. (C7), including the contribution of multiphoton pulses
up to order M = N + 5, and the cavity population obtained with the
Lindblad master equation from the main text.

The cavity populations for N = 1–4, calculated with Eq. (C8)
and M = N + 5, are plotted as dashed red curves in Fig. 8.
Solid blue curves show the results calculated with the Lind-
blad master equation from the main text. A comparison of
Fig. 8 with Fig. 4(b) in the main text shows that including
a few more orders of multiphoton absorption in the simple
model described in this section qualitatively captures the un-
conventional saturation effect for drive strengths close to the
traditional saturation point �d ∼ gcol. The extension does not,
however, change the behavior in the intermediate-drive regime
(�d > gcol ).

2. Prediction of the cavity populations in the steady state

Using the analytical solutions in Eq. (C4), we can also find
an expression for the probability of occupying the nth Fock
state in the steady state. Including only the contribution from
(N + 1)-photon pulses, the expression is

〈Pn〉ss = (1 − PT
N+1

)〈Pn〉weak

+ 1

Tss

∫ Tss

0
dt

Tss

T
PT

N+1Pn(t ). (C9)

Performing the integral with Pn(t ) given by the solution to
the master equation given in Eq. (C4), and taking the limit
Tss → ∞, gives

〈Pn〉ss = (1 − PT
N+1

)〈Pn〉weak + Ppulse, (C10)

where

Ppulse = PT
N+1 ×

⎧⎪⎪⎨
⎪⎪⎩
(
1 −∑N+1

k=1
1

kT γc

)
, n = 0

1
nT γc

, 1 � n � N + 1

0, n > 0.

(C11)
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FIG. 9. Comparison of the multiphoton populations ρn presented in Figs. 6(b)–6(d) (left panel) with the analytical prediction based on the
phenomenological master equation for (N + 1)-photon driving (right panel).

The probability PT
N+1 is given by Eq. (C6) with k = N + 1

and 〈Pn〉weak is given by the Poisson distribution for a coherent
population with amplitude |αweak|2 = 〈n̂c〉weak,

〈Pn〉weak = e−|αweak |2 |αweak|2n

n!
. (C12)

The second term in Eq. (C10) is proportional to �
2(N+1)
d .

Thus, this term explains the crossover from the coupled dis-
tribution to the uncoupled distribution [Pαc (n) and Pαo

c
(n) in

Fig. 6, respectively] at n = N + 1. In the weak-drive regime,
before the system has entered the unconventional saturation
regime, the first term 〈Pn〉weak will be much larger than the
contribution from the (N + 1)-photon pulses for n < N + 1.
Therefore, the 〈Pn〉ss will still have a Poisson-like distribution,
but will deviate from the coupled distribution because of the
contribution from the (N + 1)-photon pulses given by the sec-
ond term in Eq. (C10). On the other hand, when the system is
in the unconventional saturation regime, the probability PT

N+1
of having N + 1 photons in the drive has become large enough
for the second term in Eq. (C10) to dominate, hence giving
〈P1〉ss ≈ 〈P2〉ss ≈ · · · ≈ 〈PN+1〉ss. Thus, Eq. (C10) explains
the observation of the relationship (N + 1)ρN+1 ≈ NρN ≈
· · · ≈ ρ1 between the populations in the unconventional satu-
ration regime.

In Fig. 9, we compare the 〈Pn〉ss given in Eq. (C10) (right-
hand panel) with the cavity populations ρn ≡ 〈n|ρ̂c|n〉 from

Figs. 6(b)–6(d) (left-hand panel). This comparison shows that
the simple phenomenological master equation described in
this Appendix gives a good analytical intuition to the cavity
response to external driving observed in the main text. The
analytical results also confirm the expectations on the popula-
tions ρn discussed in Sec. III F.

APPENDIX D: MASTER EQUATIONS INCLUDING
COUNTER-ROTATING TERMS AND COLLECTIVE

EMITTER DECAY

Section III I of the main text discussed the validity of the
master equation employed in this work. In Fig. 10, we show
how the mentioned alternative master equations affect the
cavity response to external driving with the current set of
parameters. To better facilitate the comparison, we again write
down the master equation in Eq. (2):

˙̂ρ = − i

h̄
[ĤTC, ρ̂] + γcDâ[ρ̂] +

N∑
i=1

γeDσ̂−i [ρ̂]. (D1)

Which master equation is correct when the RWA is re-
tracted strongly depends on the set of parameters. Because of
the secular approximation, the commonly used master equa-
tion in the USC regime [95] is suitable for the good-cavity
regime (gcol � γc), where the transitions of the system can
be assumed nonoverlapping. The secular approximation is,
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FIG. 10. Visualization of the effects of counter-rotating terms
(diamonds and dotted red curves) and collective emitter dissipation
(dotted red curves) on the unconventional saturation effect. Solid
curves reproduce the results of Fig. 3(a) from the main text.

however, not suitable for the lossy-cavity regime studied in
this paper. Because of the cavity dissipation, the overlap of
the transitions in this regime cannot be neglected. Instead,
we have performed a similar derivation as in Refs. [96,97] to
obtain the following master equation:

˙̂ρ = − i

h̄
ĤTC +

N∑
i=1

h̄g(â†σ̂+i + âσ̂−i )ρ̂

+ γcDX̂ +
c

[ρ̂] +
N∑

i=1

γeDX̂ +
ei

[ρ̂]. (D2)

Here, the counter-rotating terms â†σ̂+i and âσ̂−i are in-
cluded in the Hamiltonian, and Dô[·] = ô · ô† − 1/2{ô†ô·}.
The positive-frequency operators X̂ +

c and X̂ +
ei are defined as

X̂ +
c ≡

∑
j,k> j

〈 j|â† + â|k〉| j〉〈k|, (D3)

X̂ +
ei ≡

∑
j,k> j

〈 j|σ̂+i + σ̂−i|k〉| j〉〈k|, (D4)

where | j〉 and |k〉 are eigenstates to the undriven Tavis-
Cummings Hamiltonian before making the RWA. This master
equation brings the system to the correct dressed ground state,
including counter-rotating terms, and is suitable for systems
with overlapping transitions.

The derivation of a collective dissipator, including counter-
rotating terms, is analogous to the derivation of Eq. (D4). The
result can be directly written down by replacing σ̂+i and σ̂−i

with the collective pseudospin operators S+ ≡∑N
i=1 σ̂+i and

S− ≡∑N
i=1 σ̂−i. The corresponding collective dissipation rate

is γcol = γe/N .
In Fig. 10, we compare the cavity response to external

driving obtained with the different master equations presented
above. Solid blue and grey curves show the cavity response to
external driving for N = 1–4 quantum emitters obtained with
Eq. (D1), which is suitable for the Tavis-Cummings model
and individual emitter decay as presented in the main text. Red
diamonds show the cavity response calculated with counter-
rotating terms in the cavity-emitter interaction and individual
decay of the emitters. Last, dotted red curves show the cavity
response calculated with counter-rotating terms and collective
decay of the emitters. As can be seen, the presented changes
to the master equation do not affect the unconventional sat-
uration effect qualitatively. Thus, the RWA captures all the
essential physics we demonstrate in our paper.

Note that the quantity plotted on the y axis is
〈X̂ −X̂ +〉ss and not directly 〈â†â〉ss. The operators X̂ + =∑

j,k> j〈 j|â† + â|k〉| j〉〈k| and X̂ − = (X̂ +)† correspond to the
positive and negative frequency components of the photonlike
field inside the cavity, respectively. With a correct treatment
of input-output theory, the field emitted from the cavity is pro-
portional to X̂ + [69,98]. Thus, X̂ + is the relevant field operator
for experiments. When the RWA is applied, X̂ + = â when the
cavity and emitters are on resonance. On the other hand, when
the RWA is not applied, X̂ + = X̂ +

c , with X̂ +
c given in Eq. (D3).

Thus, the notation 〈X̂ −X̂ +〉ss allows us to compare the results
obtained with the different master equations. Following this

FIG. 11. The critical-drive panels from the main text with the corresponding cooperativities C. [(a)–(d)] gcol and γc have been held fixed
while γe has been varied from 0.5% to 5% of γc going left to right. [(e)–(h)] γc and γe have been held fixed while gcol has been varied from 2γc

to 0.25γc going left to right.
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FIG. 12. Steady-state cavity populations as a function of drive strength for cavity loss rate γc ≈ 0.03ωc and varying emitter loss rate and
collective coupling.

note, Fig. 10 further tells us that the unconventional saturation
effect appears in the excitation of the photonlike field (counted
with the operator X̂ −X̂ +) that leaks out of the cavity and not
directly in the population of the cavity Fock states (counted
with the operator â†â). Therefore, there is no distinction be-
tween applying or not applying the RWA for experiments.

To obtain the cavity response with counter-rotating terms
in the Hamiltonian (diamonds and dotted curves in Fig. 10),
we have slightly changed the drive frequency ωd . Including
the counter-rotating terms in the Hamiltonian, we find a minor
shift of the transparency dip observed in Fig. 2(b). This shift
slightly changes the drive frequency at which the effect is most
pronounced. With the current set of parameters, we find that
this shift is less than 0.5 % for N = 1 and less than 0.3 % for
N = 4. Since this shift is so small, not correcting the drive

frequency will still show the effect and we do not find any
qualitative changes in the unconventional saturation effect.

APPENDIX E: COOPERATIVITY

The cooperativity is defined as

C ≡ 4g2
col

γcγe
. (E1)

In Fig. 11, the panels with break-point predictions from Fig. 5
in the main text are shown together with the corresponding
cooperativities. As can be seen, the observed saturation effect
and our analytical expression for the critical drive are both
robust to a wide range of cooperativities, 25 � C � 1600.
It is also evident from Fig. 11 that a large cooperativity
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FIG. 13. Steady-state cavity populations as a function of drive strength for cavity loss rate γc ≈ 0.17ωc and varying emitter loss rate and
collective coupling.

facilitates the observation of the saturation effect as it pushes
the emergence of the nonlinear effect to lower drive strengths.

To find out how robust the observed effect is at low co-
operativity, we performed a few simulations with one and
two emitters in the cavity for different C. The results from
these investigations are presented below and are structured
as follows. First, a set of plots with a semilossy cavity, i.e.,
γc ≈ 0.03 ωc, is presented in Fig. 12. This cavity loss rate
is the same as was used to produce the plots in Fig. 11.
After that, a second set of plots, where γc ≈ 0.17ωc, is
presented in Fig. 13. This loss rate corresponds, e.g., to

a localized surface plasmon mode in a metal nanoparticle.
Moreover, both Figs. 12 and 13 have two columns. The
first column shows the response with low-loss emitters, γe =
0.01 γc, and the second column shows intermediate-loss emit-
ters with γe = 0.1 γc. According to Eq. (E1), a more lossy
emitter ensemble can be compensated to have the same
cooperativity as a less lossy one (γc fixed) by increasing
the cavity-emitter interaction strength. Therefore, the two
columns could also be regarded as corresponding to very weak
coupling in the left column, and weak coupling in the right
column.
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Tanji-Suzuki, and V. Vuletić, All-optical switch and transistor
gated by one stored photon, Science 341, 768 (2013).

[10] I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G.
Guendelman, and B. Dayan, All-optical routing of single pho-
tons by a one-atom switch controlled by a single photon,
Science 345, 903 (2014).

[11] S. Sun, H. Kim, Z. Luo, G. S. Solomon, and E. Waks, A single-
photon switch and transistor enabled by a solid-state quantum
memory, Science 361, 57 (2018).

[12] G. Muñoz-Matutano, M. Johnsson, J. Martínez-Pastor, D. Rivas
Góngora, L. Seravalli, G. Trevisi, P. Frigeri, T. Volz, and M.
Gurioli, All optical switching of a single photon stream by
excitonic depletion, Commun. Phys. 3, 29 (2020).

[13] D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, A
single-photon transistor using nanoscale surface plasmons, Nat.
Phys. 3, 807 (2007).

[14] J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn,
S. Götzinger, and V. Sandoghdar, A single-molecule optical
transistor, Nature (London) 460, 76 (2009).

[15] C. K. Law and J. H. Eberly, Arbitrary control of a
quantum electromagnetic field, Phys. Rev. Lett. 76, 1055
(1996).

[16] M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, Cavity-
loss-induced generation of entangled atoms, Phys. Rev. A 59,
2468 (1999).

[17] J. Kim, O. Benson, H. Kan, and Y. Yamamoto, A single-photon
turnstile, Nature (London) 397, 500 (1999).

[18] M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J.
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