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Coherent states of photonic dimers
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The concept of coherent states of single photons is generalized to the scenario wherein the fundamental build-
ing blocks are entangled two-photon states rather than single-photon states. To provide a concrete discussion,
the case of photonic dimers (two-photon bound states) is explored. The coherent states of photonic dimers are
defined. The correlation functions are calculated and expressed in terms of series expansion which is suitable for
computational investigations. The quadrature properties and the squeezing effects are computed and compared
with the experimental results at suitable regimes. Finally, the statistical properties of the coherent states of
photonic dimers in the BEC and BCS limits are investigated. The correlation functions are shown to exhibit
a BEC-BCS crossover behavior when the two-photon pairing correlations (i.e., the size of photonic dimers) are
comparable to the average spacing between the dimer pairs.
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I. INTRODUCTION

Photon-photon correlations have long been recognized to
play a fundamental role in the concept of optical coher-
ence [1]. Techniques for both generation and manipulation
of various types of interphoton correlations at few-photon
levels have advanced rapidly in the past decades and photonic
quantum technologies, in particular, are expected to provide
extraordinary applications in quantum information science
[2,3]. At a separate forefront, the developments of masers and
lasers have led to the generation of coherent electromagnetic
radiation in a wide range of frequencies, wherein an ensemble
of single photons are made to work coherently. To date, the
laser remains the dominant coherent many-photon quantum
light source. Nonetheless, it is of its intrinsic interest to dis-
cuss the possibilities of new many-photon quantum photonic
states becuase laser light represents only one of the simplest
forms of possible many-photon quantum photonic states. Such
new states, if they exist, in addition to enabling unprecedented
applications in quantum information science, will also shed
light on our understanding of the collective behavior of the
quantum nature of many-photon systems [4].

In recent years, the bound states of light quanta were
theoretically proposed in engineered nonlinear optical media
[5–10], and have since been experimentally confirmed in ul-
tracold atom systems [11,12]. The simplest realization of the
photonic bound states is a two-photon dimer. Inspired by the
remarkable optical properties of lasers and the penetrating
insights into the role played by photons in the description of
light beams offered by the coherent states [13], the present
paper is devoted to investigating the scenarios of a different
type of coherent many-photon quantum light source which,
instead of single photons, outputs a coherent state of photonic
dimers, and to the optical coherence properties of the photonic
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dimers. We do so by first describing the generation of the
coherent states of dimers from an idealized quantum optical
system, which consists of a pumped spontaneous parametric
down-conversion (SPDC) crystal in a resonant cavity, and the
consequences of certain assumptions about their properties.
We then provide a comprehensive discussion of the quan-
tum statistical properties of such coherent states. Finally, we
discuss, from a theoretical point of view, the generalizations
of the coherent states of dimers when the overlaps between
the dimers are varied via the controlled parameters of the
system. In particular, we discuss the two limits which are of
great scientific interests, namely, Bose-Einstein condensation
(BEC) and the Bardeen-Cooper-Schrieffer (BCS) limit, re-
spectively. In our approach, the field of light quanta is treated
fully quantum mechanically while the pumping field is treated
classically. We construct the evolution operator of the system
and calculate the state of the system at the large-time limit for
the case when initially the system contains no photons. We
show that the final output state is a coherent state of dimers
when certain conditions are met. As a partial assurance, we
also apply the same approach to a collection of classical oscil-
lating dipoles in a cavity and show that our approach yields the
desired final output state as a coherent state of single photons.

This paper is constructed as follows: Section II intro-
duces the properties of a photonic dimer and defines a set
of operators to describe the photonic dimer as an entity.
In this section, it is also shown that photonic dimers ex-
hibit bosonic nature under the so-called condensation limit.
Section III introduces the basic Hamiltonians and discusses
the generation of single-photon coherent states from oscil-
lating dipoles. We detail our approach in diagonalization
of the Hamiltonian and describe the steps in construct-
ing the evolution operator and calculating its large-time
limit. We then apply the approach to the case of single-
photon lasers. Section IV describes the generation of the
coherent states of photonic dimers. Section V provides a
detailed calculations of the correlation functions. In Sec. VI
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we discuss the quadrature properties of the coherent states
of photonic dimers. In Sec. VII we estimate the experi-
mental conditions for creating the coherent states of dimers.
Section VIII discusses the statistical properties of the co-
herent states of dimers in the BEC and BCS limits. Finally,
Section IX summarizes the work of the coherent states of
photonic dimers. Several aspects of the approach presented
in this work are considered; in particular, the time-ordering
effect, the undepletion assumption, and the comparison with
the input-output formalism and the quantum Langevin ap-
proach are discussed.

II. BASIC PROPERTIES OF PHOTONIC DIMERS

Photons, despite being electrically neutral, have been
shown to form bound states wherein the relative wave function
between any two photons decays exponentially when the in-
terphoton distance increases [8–10]. The simplest realization
of the photonic bound states is a photonic dimer consisting of
two entangled photons and is mathematically described by the
following two-photon wave function [8,9]:

|Bμ〉 =
√

�

4πv2
g

∫∫
dx1dx2ei μ

2vg
(x1+x2 )− �

vg
|x1−x2|ĉ†(x1)ĉ†(x2)|∅〉.

(1)

The relative wave function is described by the exponentially
decaying term exp(− �

vg
|x1 − x2|) in Eq. (1), with a spatial

width of vg/�, which gives rise to photonic bunching behav-
ior. It follows from the form of the relative wave function that
the two photons are energy anticorrelated. When the photonic
dimer is formed via interacting with an intermediary two-
level atom, � is the reciprocal of the spontaneous emission
lifetime of the atom. The center of mass degree of freedom
is described by the term exp[i μ

2vg
(x1 + x2)], where μh̄ denotes

the total energy of the two-photon state. vg is the group veloc-
ity of the photons. ĉ†(x) is the creation operator of a single
photon at location x and ĉ(x) is the adjoint single-photon
annihilation operator, following the bosonic commutation
relation [ĉ(x), ĉ†(x′)] = δ(x − x′). |∅〉 is the zero-photon vac-
uum state.

Figure 1(a) plots the modulus of the dimer state,
|〈x1, x2|Bμ〉|, which distributes uniformly along the diagonal
axis x1 = x2 and decays exponentially away from the diagonal
axis. A time scale metric, namely, the correlation time of
a photonic dimer, is defined as 1/2� to characterize such
time difference of detecting two photons of a photonic dimer,
which provides the information of the width for |〈x1, x2|Bμ〉|2.
Thus a larger � yields a shorter correlation time and corre-
spondingly a shorter temporal spread of the dimer relative
wave function.

The formation of individual photonic dimers has recently
been demonstrated in ultracold atoms [11] and has the poten-
tial to open up new possibilities for nonlinear quantum optical
physics. For example, the unusual temporal and frequency
entanglement properties between the constituent photons in
photonic dimers endow multiphoton excitation processes with
the enhanced efficiency necessary for many scientific and
industrial applications, including three-dimensional optical
memory [14], sensitivity enhancement in the molecular Stark

FIG. 1. (a) The modulus of the dimer state, |〈x1, x2|Bμ〉|. The
distance between grid points equals vg/�. The maximum of the
plot is normalized to a value of 1. (b) The relative wave function
of the dimer. The full width at 1/e equals vg/�. (c) Single-photon
frequency spectrum in a dimer. The full width at half maximum
equals �.

effect [15], coherent quantum control of multiphoton tran-
sitions [16], and quantum biophotonics. By exploiting the
energy anticorrelation and the temporal proximity between the
constituent photons in the photonic dimers, it has been shown
that the two-photon excitation efficiency of a fluorophore by
photonic dimers can be improved by orders of magnitude
[17]. It is of great interest to go beyond the individual-dimers
regime to investigate the scenario when the optical excitation
is a coherent states of photonic dimers.

Before we embark on the development of the theory of
an ensemble of photonic dimers, in the following section we
digress momentarily to discuss the theory of an ensemble
of single photons so as to introduce the machinery and the
notations that are used later.

III. GENERATION OF SINGLE-PHOTON
COHERENT STATES

In the semiclassical treatment of the light-matter interac-
tions, light is described as a classical Maxwell field while
the medium is described as a collection of atoms whose dy-
namic evolution is governed by the Schrödinger equation. The
semiclassical theory is sufficient to describe a rich variety
of phenomena. However, questions regarding the quantum
nature of the optical field, e.g., the photon statistics and
linewidth of the output optical field, require a fully quantized
theory of the radiation. For example, the density-matrix for-
malism and the Heisenberg-Langevin approach are developed
as the full quantum theories of a laser [18]. Nonetheless, the
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FIG. 2. Schematic of single-mode cavity system. The cavity
mode â† is coupled to the free-space modes ĉ†

η with the coupling
strength V .

complexities of these full quantum theories make it challeng-
ing to investigate the various single- and two-photon processes
in the atomic medium. In the following, we develop a phe-
nomenological theory to describe the generation of the photon
field in a real-space formalism. One feature of the effective
theory is that the medium is treated classically as a collection
of oscillating dipoles while the optical field is fully quantized.
We start with the full quantum theory for the single-photon
processes and derive the effective Hamiltonian to justify the
approach. Similar approaches have been employed in describ-
ing the parametric amplification and squeezing via nonlinear
optical processes [18,19].

A. Single-mode cavity without the gain medium

Our starting point is the Gardiner-Collett Hamiltonian
[20,21], which describes the case when there is no nonlinear
medium but only discrete cavity modes coupled to the contin-
uum of modes of the output (hereafter we restrict ourselves to
the single-cavity-mode case with a mode frequency ω0):

Ĥ0 = h̄ω0â†â + h̄
∫

dη ηĉ†
ηĉη + h̄

∫
dη(V â†ĉη + V ∗âĉ†

η ),

(2)

as shown in Fig. 2. In this Hamiltonian, â (â†) is the anni-
hilation (creation) operator of the cavity-mode photons with
the frequency ω0. The output channel here is treated simply as
free space, with the mode annihilation (creation) operator of
frequency η defined as ĉη (ĉ†

η). The coupling strength between
the cavity mode and the free-space modes is denoted V .

The coupling creates a linear superposition between the
cavity photons and the free-space photons. Taking into ac-
count of the superposition, H0 can be diagonalized in terms
of the dressed operators which incorporate the superposition
states of photons [22]. To proceed, the diagonalized H0 is
assumed to follow the form:

Ĥ0 =
∫

dω h̄ωÂ†(ω)Â(ω), (3a)

Â(ω) = α(ω)â +
∫

dη β(ω, η)ĉη, (3b)

where the dressed operator Â describes the linear superposi-
tion, and α(ω) and β(ω, η) are the coefficients of the cavity
and the free-space modes, respectively. After imposing the

following commutation relations:

[Â(ω), Ĥ0] = h̄ωÂ(ω), (4a)

[Â(ω), Â†(ω′)] = δ(ω − ω′), (4b)

the coefficients α(ω) and β(ω, η) can be determined as

α(ω) = V ∗

ω − ω0 + iπ |V |2 , (5a)

β(ω, η) =
[
|V |2P

1

ω − η
+ (ω − ω0)δ(ω − η)

]
× 1

ω − ω0 + iπ |V |2 , (5b)

where P denotes the Cauchy principal integral. Moreover,
using the fact that the mode operators â and ĉη commute,
the cavity mode operator can be expressed in terms of the
diagonalized operator:

â =
∫

dω α∗(ω)Â(ω). (6)

As shown below, Eq. (6) plays an important role in deriving
the quantum optical states of the interacting system.

The effective cavity mode strength is proportional to

|α(ω)|2 = |V |2
(ω − ω0)2 + π2|V |4 .

Compared with the classical result where in the mode strength

∝ 1

(1 − r)2 + 4r sin2(kL)

(r is the reflection coefficient of the semitransparent mirror),
the coupling strength V can be expressed as 	B = 2π |V |2 =
2[(1 − r)2c2]/4rL2, so that V = (1−r)c

2
√

πrL
eiφ , in the good cavity

limit (i.e., high Q factor). This also yields directly that the
transmission coefficient |T |2 = (2L/c)2π |V |2, which is also
given in Ref. [23].

It is often advantageous to describe the output photons in a
real-space representation:

ĉ†
η = 1√

2πvg

∫ ∞

−∞
dx eikηxĉ†(x), (7)

where η = vgkη. The real-space Hamiltonian for single-mode
cavity case is

Ĥ0 = h̄ω0â†â + h̄
∫ ∞

−∞
dx(−ivg)ĉ†(x)

∂

∂x
ĉ(x)

+ h̄
∫ ∞

−∞
dxV δ(x)[ĉ†(x)â + â†ĉ(x)], (8)

where ĉ†(x) is the creation operator for a right-going photon at
position x. Here δ(x) indicates the photon generation position
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FIG. 3. Schematic of single-mode cavity with the gain medium
system. The cavity mode â† is coupled to the gain medium which
is treated as a collection of dipoles oscillating at frequency �.
The dipoles are resonant with the cavity (� = ω0). The cavity-gain
medium interaction is described by Eq. (11).

(position the semitransparent mirror of the cavity) is x0 = 0.
The configuration is effectively a chiral system where only
one-way propagating photons are allowed [24].

H0 can also be diagonalized by Â(ω), which now takes the
following form:

Â(ω) = α(ω)â +
∫

dxβ̄(ω, x)ĉ(x), (9)

where

α(ω) = V ∗

ω − ω0 + iπ |V |2 ,

β̄(ω, x) = 1√
2π

e−iωx/vg

[
(x) + ω − ω0 − iπV 2

ω − ω0 + iπV 2
(−x)

]
.

(10)

B. Single-mode cavity with the gain medium

When the gain medium is embedded and is pumped far
above threshold, the atoms behave as dipoles oscillating at the
pumping field frequency �, as depicted in Fig. 3. Such an
approach has been employed in the literature; we also provide
a heuristic derivation in Appendix A. In this regime, the inter-
action Hamiltonian describing the gain medium-cavity photon
field is given by the following effective form:

Ĥmc = h̄[χei�t â + χ∗e−i�t â†], (11)

where χ is the Rabi frequency and the dipoles are resonant
with the cavity (� = ω0).

Writing Ĥmc in the interaction picture and using Eq. (6):

ĤI (t ) = e
i
h̄ Ĥ0t Ĥmce− i

h̄ Ĥ0t

= h̄χ

∫ ∞

−∞
dωei�t−iωtα∗(ω)Â(ω) + H.c.

= h̄χ

∫ ∞

−∞
dωei�t−iωt

(
|α(ω)|2â +

∫ ∞

−∞
dηα∗(ω)β(ω, η)ĉη

)
+ H.c.

= h̄χ

∫ ∞

−∞
dωei�t−iωt

( |V |2
(ω − ω0)2 + π2|V |4 â + (ω − ω0)V

(ω − ω0)2 + π2|V |4 ĉω+
∫ ∞

−∞
dη

|V |2
(ω − ω0)2 + π2|V |4 P

V

ω − η
ĉη

)
+H.c.,

(12)

which governs the system dynamics of a laser cavity containing pumped gain medium. At the large-t limit (t → ∞), the system
reaches a steady state; thus we shall be interested in the same limit of the evolution operator Û (t ) = e− i

h̄

∫ t
0 dt ′ĤI (t ′ ), especially the

exponential term:

lim
t→∞ − i

h̄

∫ t

0
dt ′ĤI

(
t ′) = lim

t→∞ −iχ
∫ ∞

−∞
dω

e−i(ω−�)t − 1

−i(ω − �)

( |V |2
(ω − ω0)2 + π2|V |4 â + (ω − ω0)V

(ω − ω0)2 + π2|V |4 ĉω

+
∫ ∞

−∞
dη

|V |2
(ω − ω0)2 + π2|V |4 P

V

ω − η
ĉη

)
− H.c.

= −i
χ

π |V |2 â − χ

V ∗ ĉω0 + iχ

πV ∗

∫ ∞

−∞
dη P

1

ω0 − η
ĉη − H.c. (13)

The first three terms in Eq. (13) correspond to the cavity mode,
the output free-space mode at the cavity resonance, and the
cross-talk to other weaker free-space nonresonant modes due
to interactions. Together with the complex-conjugate terms,
the evolution operator at the large-t limit thus has the form of
the product of the Glauber displacement operators of the cav-
ity mode and the free-space modes, which can be symbolically
represented as

lim
t→∞ Û (t ) = D̂(â)�ηD̂(ĉη ), (14)

where η includes both resonant and nonresonant frequencies.
It follows immediately that when the initial state is a vacuum
state, the steady state which the system evolves into is a
product of the coherent states over the cavity mode and the
free-space modes. By using a suitable filter, the output field
contains only the resonant mode

e
χ∗
V ĉ†

ω0
− χ

V ∗ ĉω0 |∅〉, (15)

which is a coherent state with an average photon number of
|χ/V |2.
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FIG. 4. Schematic of single-mode cavity with the SPDC nonlin-
ear crystal system. The cavity mode â† is coupled to the gain medium
which is treated as a collection of dipoles oscillating at frequency ωp.
The cavity-SPDC interaction is described by Eq. (16).

As has been shown above, the approach of treating the gain
medium as oscillating dipoles and the optical field quantum-
mechanical reproduces the well-known results for an ideal
laser operating above the threshold. We also note that a semi-
classical approach of the same spirit has been employed to
show that the radiation emitted by a classical current distribu-
tion is a coherent state of single photons [25].

In the following, we apply the same strategy to the genera-
tion of the coherent states of photonic dimers.

IV. GENERATION OF COHERENT STATES
OF PHOTONIC DIMERS

The prerequisite of the generation of coherent states of
photonic dimers is a gain medium that produces dimers. To
date, although efficient generation of individual dimers has
been suggested [17], a medium that generates an ensemble of
dimers has yet to be engineered. Nonetheless, many electronic
transitions lead to the generation of correlated photon pairs. In
this section, we show that, under certain conditions, an optical
cavity can shape the optical spectrum of the correlated photon
pairs and creates coherent states of photonic dimers.

Specifically, here we describe a mechanism to generate
coherent states of photonic dimers using a degenerate type-0
spontaneous parametric down-conversion (SPDC) nonlinear
crystal in a single-mode resonant cavity, as depicted in Fig. 4.
In the configuration, both the pumping light and the SPDC

photons are blocked by the left wall of the cavity and can
only pass through via the right wall. The configuration and
operating scheme is equivalent to the optical parametric os-
cillator (OPO) scheme where the parametric down conversion
process takes place inside a cavity and the optical gain is from
parametric amplification rather than from stimulated emission
of radiation. The oscillation wavelength is determined by the
phase-matching details, which offers the potential for wave-
length tuning with extremely wide tuning ranges.

The degenerate collinear SPDC Hamiltonian in a single-
mode cavity is given by [26,27]

ĤSPDC =
∑
k,k′

�k,k′Lh(L	k,k′ )e−iωpt â†
k â†

k′ + H.c.

= �0,0Le−iωpt â†â† + H.c., (16)

where the summation of k represents the photons with differ-
ent momentum generated in the nonlinear medium. Here the
parameter �k,k′ = EkEk′2πε0χ

(2)E0A, where

Ek = i

√
h̄ωk

2ε0n2Vc

is the electric field of generated photon state, Vc is the volume
of the cavity, n is the effective refractive index of the non-
linear crystal for SPDC photon pairs, h(x) = (1 − e−ix )/ix,
and 	k,k′ = kp − k − k′ is the momentum difference between
pump photon and the sum of two degenerate SPDC photons.
In the single-mode cavity scheme, h(L	k,p−k ) ≈ 1. �0,0 is the
parameter when both signal and idler photons have the same
frequency ω0. The pumping light is treated as a classical op-
tical field with an electric-field amplitude E0 and a frequency
ωp = 2ω0.

Below, we solve for the output states using both the inter-
action picture and the Schrödinger picture.

A. The interaction picture of the photonic states

In the interaction picture, the SPDC Hamiltonian becomes
(the SPDC subscript is omitted)

ĤI (t ) = �0,0Le−iωpt ei Ĥ0
h̄ t â†â†e−i Ĥ0

h̄ t + H.c.

= �0,0L
∫

dω1dω2e−iωpt+iω1t+iω2tα(ω1)α(ω2)Â†(ω1)Â†(ω2) + H.c.

= �0,0L
∫

dω1dω2e−iωpt+iω1t+iω2tα(ω1)α(ω2)

[
α∗(ω1)â† +

∫
dη1β

∗(ω1, η1)ĉ†
η1

]
×

[
α∗(ω2)â† +

∫
dη2β

∗(ω2, η2)ĉ†
η2

]
+ H.c., (17)

where α(ω) = V ∗/(ω − ω0 + iπ |V |2), β(ω, η) = [|V |2P 1
ω−η

+ (ω − ω0)δ(ω − η)](ω − ω0 + iπ |V |2)−1. The optical state of
the system in the interaction picture is

|ψ〉 = T̂ e− i
h̄

∫ t
0 ĤI (t ′ )dt ′ |∅〉I , (18)

where |∅〉I is the vacuum state with zero cavity-mode photon and zero free photon in the interaction picture. The time-ordering
operator T̂ takes any product of operators and changes the order so that operators with a later time variable are placed to
the left. As the Hamiltonians at different times in general do not commute, the time-ordering operator cannot be neglected.
Nonetheless, retaining the time-ordering operator greatly increases the computational complexities. In the following, we omit
the time-ordering operator and discuss the limitations and validity of the results thus obtained in Sec. IX.
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Following Eq. (17), there are three terms in the exponent − i
h̄

∫ ∞
0 ĤI (t ′)dt ′.

(1) The first term contains only the cavity-mode operators,

− i

h̄

∫ ∞

0
dt ′

[
�0,0L

∫
dω1dω2e−iωpt ′+iω1t ′+iω2t ′ |α(ω1)|2|α(ω2)|2â†â† + H.c.

]
= −i

�0,0L

2π h̄V 2
â†â† − i

�0,0L

2π h̄V 2
ââ = ξ â†â† − ξ ∗ââ,

(19)

where ξ = −i(�0,0L)/2π h̄V 2. This term represents a two-photon coherent state.
(2) The second term contains both the cavity-mode operator and free-space operator,

− i

h̄

∫ ∞

0
dt ′�0,0L

∫
dω1dω2e−iωpt ′+iω1t ′+iω2t ′

[
|α(ω1)|2α(ω2)

∫
dη2β

∗(ω2, η2)â†ĉ†
η2

+ |α(ω2)|2α(ω1)
∫

dη1β
∗(ω1, η1)â†ĉ†

η1

]

− H.c.

= i
�0,0L

π h̄V

∫
dη

1

η − ω0 + iπV 2
â†ĉ†

η − H.c. =
∫

dη fηâ†ĉ†
η − H.c., (20)

where

fη = i
�0,0L

π h̄V

1

η − ω0 + iπV 2
.

(3) The third term contains only the free-space operator,

− i

h̄

∫ ∞

0
dt ′�0,0L

∫
dω1dω2e−iωpt ′+iω1t ′+iω2t ′

α(ω1)α(ω2)
∫

dη1dη2β
∗(ω1, η1)β∗(ω2, η2)ĉ†

η1
ĉ†
η2

− H.c.

= −i
�0,0L

h̄

∫
dη1dη2

V 2

(η1 − ω0 − iπV 2)(η2 − ω0 − iπV 2)

×
[
πδ(η1 + η2 − ωp) + iP

1

η1 + η2 − ωp
− i

η1 − ω0 + iπV 2
− i

η2 − ω0 + iπV 2
+ 1

2πV 2

]
ĉ†
η1

ĉ†
η2

− H.c.

=
∫

dη1dη2φη1,η2 ĉ†
η1

ĉ†
η2

− H.c., (21)

where

φη1,η2 = −i
�0,0L

h̄

V 2

(η1 − ω0 − iπV 2)(η2 − ω0 − iπV 2)

[
πδ(η1 + η2 − ωp) + iP

1

η1 + η2 − ωp

− i

η1 − ω0 + iπV 2
− i

η2 − ω0 + iπV 2
+ 1

2πV 2

]
.

Combining the three terms together, the state of the system
can be written as

|ψ〉I = eξ â†â†+∫
dη fη â† ĉ†

η+
∫

dη1dη2φη1 ,η2 ĉ†
η1

ĉ†
η2

−H.c..|∅〉I

= eF̂ †−F̂ |∅〉I , (22)

where F̂ † = ξ â†â† + ∫
dη fηâ†ĉ†

η + ∫
dη1dη2φη1,η2 ĉ†

η1
ĉ†
η2

.

Here [â, â†] = 1 and [ĉη, ĉ†
η′ ] = δ(η − η′). Due to the second

term, the system cannot be separated as a product of the cavity
mode and free-space mode. In other words, the cavity-mode
photons and free-space-mode photons are entangled and
cannot be written as a product state.

Nonetheless, the frequency representation of the state, as
shown above, masks some important information regarding
the entangled term between the cavity-mode photons and free-
space-mode photons. By Fourier transforming the state into
the real-space representation, it is shown that the amplitude of
this entangled term fη decays exponentially, which indicates

that the photonic state described by this term is spatially
localized in space.

The Fourier transformation ĉ†
η = 1√

2πvg

∫
dxeikηxĉ†(x)

gives rise to the following commutation relations:

[ĉ(x), ĉ†(x′)] = δ(x − x′),

[ĉη, ĉ†
η′ ] = 1

2πvg

∫
dxdx′e−ikηx+ikη′ x′

[ĉ(x), ĉ†(x′)]

= 1

2πvg

∫
dxe−i(kη−kη′ )x

= δ(η − η′).

Thus, in the real-space representation, the state is given by

|ψ〉I = eξ â†â†+∫
dη fη â† ĉ†

η+
∫

dη1dη2φη1 ,η2 ĉ†
η1

ĉ†
η2

−H.c..|∅〉I

= eξ â†â†+∫
dx f̄ (x)â† ĉ†(x)+∫

dx1dx2φ̄(x1,x2 )ĉ†(x1 )ĉ†(x2 )−H.c..|∅〉I

(23)
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where

f̄ (x) = 1√
2πvg

∫
dη fηeiηx

= 1√
2πvg

2κVei ω0
vg

x+ πV 2

vg
x
(−x), (24)

φ̄(x1, x2) = 1

2πvg

∫
dη1dη2φη1,η2 eiη1x1+iη2x2

= iκV 2

vg
ei ω0

vg
(x1+x2 )− πV 2

vg
|x1−x2|(−x1)(−x2). (25)

Detailed calculations will be discussed in Appendix C. Here
κ = �0,0L/h̄V 2 is a real number characterizing the configura-
tion and will be discussed in detail later when we estimate the
values in experiment. Thus, the photonic state described by
the â†ĉ†(x) term is an evanescent wave that is localized to the
wall of the cavity. This term can be regarded as a localized

bound state of the cavity-mode photon and the free-space
photon. The ĉ†(x1)ĉ†(x2) term describes a two-photon bound
state, or photonic dimers that travels afar, and the output
state in the interaction picture is a coherent state of photonic
dimers.

B. The Schrödinger picture of the photonic state

1. Frequency representation

To obtain a direct expression of the photonic state in
the laboratory frame, here we calculate the state in the
Schrödinger picture. It turns out that it is rather involving to
transform the state in the interaction picture, Eq. (22), to the
Schrödinger picture of the state. Here we employ the dressed
operator Â [Eq. (3b)] that the diagonalized Hamiltonian Ĥ0

[Eq. (3b)] to get the final state in the Schrödinger picture. The
relation of the state between the two pictures yields

|ψ (t )〉S = e−i Ĥ0
h̄ t e− i

h̄

∫ t
0 dt ′ĤI (t ′ )ei Ĥ0

h̄ t |∅〉S, (26)

where

Ĥ0 = h̄
∫

dωωÂ†(ω)Â(ω),

ĤI (t ) = �0,0L
∫

dω1dω2e−iωpt+iω1t+iω2tα(ω1)α(ω2)Â†(ω1)Â†(ω2) + H.c. (27)

The exponent of the time-evolution operator in the Schrödinger picture now becomes

ln[ÛS (t )] = e−i Ĥ0
h̄ t

(
− i

h̄

∫ t

0
dt ′ĤI

(
t ′))ei Ĥ0

h̄ t = ξ Sâ†â† +
∫

dη f S
η â†ĉ†

η +
∫

dη1dη2φ
S
η1,η2

ĉ†
η1

ĉ†
η2

− H.c., (28)

where

ξ S = iκe−i2ω0t

2π
, f S

η = −iκe−i2ω0t

π

V

η − ω0 − iπV 2
,

φS
η1,η2

= iκV 2e−2iω0t V 2

(η1 − ω0 + iπV 2)(η2 − ω0 + iπV 2)

[
πδ(2ω0 − η1 − η2) + iP

1

2ω0 − η1 − η2
+ i

η1 − ω0 − iπV 2

+ i

η2 − ω0 − iπV 2
+ 1

2πV 2

]
.

Thus the state of the system in the Schrödinger picture in the frequency representation takes the following form:

|ψ (t )〉S = exp

[
ξ Sâ†â† +

∫
dη f S

η â†ĉ†
η +

∫
dη1dη2φ

S
η1,η2

ĉ†
η1

ĉ†
η2

− H.c.

]
|∅〉. (29)

The details are provided in Appendix B.

2. Real-space representation

To better understand the state, we perform the Fourier transform [ĉ†
η = 1√

2πvg

∫ ∞
−∞ dxeiηx/vg ĉ†(x)] to get the wave function in

the real-space representation.
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For the second term
∫

dη f S
η â†ĉ†

η:∫
dη f S

η â†ĉ†
η − H.c. = 2i�0,0Le−iω0t√

2πvgh̄
â†

∫
dx

−i

V
eiω0(x/vg−t )−πV 2x[1 − e−πV 2(t−x/vg)−πV 2|t−x/vg|](x)ĉ†(x) − H.c.

≡ a†
∫

dx f̄ S (x, t )ĉ†(x) − H.c., (30)

where

f̄ S (x, t ) = 2�0,0Le−iω0t√
2πvgh̄V

eiω0(x/vg−t )−πV 2x/vg[1 − e−πV 2(t−x/vg)−πV 2|t−x/vg|](x)

≈ 2κVe−iω0t√
2πvg

eiω0(x/vg−t )−πV 2x/vg(x) (t → ∞). (31)

The causality factor (t − x/vg) indicates that photons can only exist in the region behind the wave front. In the third line, as
we are only interested in the steady case, the large-t limit (t → ∞) is taken. At the large-t limit, the wave function of the output
single-photon f̄ S (x, t ) decays exponentially away from the cavity and becomes an evanescent wave with a width of vg/πV 2.
At time t = 0, the amplitudes are zero at all positions, due to the causality factor (t − x/vg). At later times, the amplitude
at position x = 0+ increases as f̄ S (0+, t ) = 2κV√

2πvg
e−2iω0t (1 − e−2πV 2t ). For any x, | f̄ S (x, t )|2 becomes stationary at the large-t

limit.
For the third term

∫
dη1dη2φ

S
η1,η2

ĉ†
η1

ĉ†
η2

in Eq. (B4):∫
dη1dη2φ

S
η1,η2

ĉ†
η1

ĉ†
η2

− H.c. = − iκV 2

vg

∫
dx1dx2ei2ω0( x1+x2

2vg
−t )−πV 2|x1−x2|/vg(x1)(x2)ĉ†(x1)ĉ†(x2) − H.c.

≡
∫

dx1dx2φ̄
S (x1, x2)ĉ†(x1)ĉ†(x2) − H.c., (32)

where

φ̄S (x1, x2, t ) = − iκV 2

vg
ei2ω0( x1+x2

2vg
−t )−πV 2|x1−x2|/vg(x1)(x2).

(33)

In the above calculation, the large-t limit is also taken. (x)
factors are contributed by the last four terms of the wave func-
tion in the frequency domain. Figure 5 plots the probability
distribution of the two-photon dimer state.

FIG. 5. Spatial distribution of two-photon state |φ̄S (x1, x2)|2.

In the real-space domain, the state of the system is

|ψ (t )〉S = exp

[
ξ Sâ†â† +

∫
dx f̄ S (x, t )â†ĉ†(x)

+
∫

dx1dx2φ̄
S (x1, x2, t )ĉ†(x1)ĉ†(x2) − H.c.

]
|∅〉,
(34)

where

ξ S = iκe−i2ω0t

2π
,

f̄ S (x, t ) = 2κVe−iω0t√
2πvg

eiω0(x/vg−t )−πV 2x/vg(x),

φ̄S (x1, x2, t ) = − iκV 2

vg
ei2ω0( x1+x2

2vg
−t )−πV 2|x1−x2|/vg(x1)(x2).

Since we are only interested in the region far away from
the cavity, the (x) factors in the two-photon term can be
neglected. After a sufficiently long time, the system tends
to be steady and the emitted two-photon state amplitude is
only a function of the distance between two photons. Writing
φ̄S (x1, x2, t ) as φ̄S (x1, x2)e−i2ω0t , the spatial part of the wave
function of the two-photon part is

φ̄S (x1, x2) = − iκV 2

vg
ei2ω0

x1+x2
2vg

−πV 2 |x1−x2 |
vg , (35)

which indicates that the output two-photon wave function is
exactly that of the photonic dimer.
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C. Coherent states of photonic dimers

From Eq. (B12), it thus follows immediately that at the
large-t and large-x limits (away from the cavity but is nonethe-
less subject to the causality condition t − x/vg > 0), the
spatial part of the stationary output state becomes

|ψ〉 = e
∫

dx1dx2φ̄
S (x1,x2 )ĉ†(x1 )ĉ†(x2 )−H.c..|∅〉, (36)

which is the coherent state of the photonic dimers. In the
weak-pumping limit, κV 2/vg is a small number, the state can
be expanded in a Taylor series where we keep the lowest
order:

|ψ〉 ≈
(

1 +
∫

dx1dx2φ̄
S (x1, x2)ĉ†(x1)ĉ†(x2) − H.c.

)
|∅〉,

(37)
which, apart from an additive term, represents a dimer state.
Using the normalized dimer state

|Bμ〉 = b̂†(μ)|∅〉 =
√

�

4πv2
g

∫
dx1dx2ei μ

2vg
(x1+x2 )− �

vg
|x1−x2|

× ĉ†(x1)ĉ†(x2)|∅〉

[where 〈Bμ′ |Bμ〉 = δ(μ − μ′)], the state in Eq. (36) can be
written in the following compact form:

|ψ〉 = eβBb̂†(2ω0 )−β∗
Bb̂(2ω0 )|∅〉, (38)

where βB = −i2κVe−i2ω0t and � = πV 2. The coherent state
of photonic dimers is a superposition with even number pho-
tons. The expectation of the electric field 〈ψ |Ê+(x, t )|ψ〉 is
zero for all positions and time.

V. CORRELATION FUNCTIONS

The correlation functions characterize the statistical prop-
erties of the optical fields. In this section, we calculate the

correlation functions of the photons in the cavity, and of the
coherent state of dimers [Eqs. (36) and (38), respectively].

A. Correlation functions of the intracavity photons

The average intracavity photon number is

〈ψ (t )|â†â|ψ (t )〉 = 1

3
sinh2

(√
3κ

π

)
+ 1

2
sinh2

(√
2κ

π

)
,

(39)

which exponentially increases with a strong pumping power.
This growth is expected to saturate when sufficient energy is
drawn from the pump so that the assumption of an undepleted
pump no longer holds.

B. Correlation functions of the coherent state of dimers

The unnormalized first- and second-order correlation func-
tions are given by

G(1)(x) = 〈ψ |ĉ†(x)ĉ(x)|ψ〉

= |ĉ(x)e
∫

dx1dx2φ̄
S (x1,x2 )ĉ†(x1 )ĉ†(x2 )−H.c..|∅〉|2,

G(2)(x1, x2) =〈ψ |ĉ†(x2)ĉ†(x1)ĉ(x1)ĉ(x2)|ψ〉
= |ĉ(x1)ĉ(x2)e

∫
dx1dx2φ̄

S (x1,x2 )ĉ†(x1 )ĉ†(x2 )−H.c..|∅〉|2,
(40)

where |ψ〉 is the coherent state of dimers given by Eq. (36).
To simplify the calculation, similar to the previous case, we
also define an auxiliary operator

ϕ̂c(x) ≡ eF̂−F̂ †
ĉ(x)eF̂ †−F̂ , (41)

where F̂ † = ∫
dx1dx2φ̄

S (x1, x2)ĉ†(x1)ĉ†(x2). Using the fol-
lowing formula:

eαABe−αA = B + α[A, B] + α2

2!
[A, [A, B]] + · · · , (42)

one then can calculate each terms in the expansion of ϕ̂c(x) in
the order of φ̄S (x1, x2); the first few terms are given below:

0th order: ĉ(x);

1st order: [F̂ − F̂ †, ĉ(x)] =
∫

dx12φ̄S (x1, x)ĉ†(x);

2nd order: [F̂ − F̂ †, [F̂ − F̂ †, ĉ(x)]] =
∫

dx2

[∫
dx1[2φ̄S (x1, x2)]∗2φ̄S (x1, x)

]
ĉ(x). (43)

Then the ϕ̂c(x) operator is a combination between single-photon creation and annihilation operators. If we further define

Fn(x0, x) =
∫ ∞

−∞
dx1 · · · dxne− �

vg
(|x0−x1|+|x1−x2||x2−x3|+···+|xn−1−xn|+|xn−x|) (n � 0),

F−1(x0, x) = δ(x − x0), (44)

where � = πV 2, then ϕ̂c(x) can be cast as

ϕ̂c(x0) =
∫

dx

[
ei ω0

vg
(x0−x)

∞∑
n=0

1

(2n)!

(
2κV 2

vg

)2n

F2n−1(x0, x)ĉ(x) + iei ω0
vg

(x0+x)
∞∑

n=0

1

(2n + 1)!

(
2κV 2

vg

)2n+1

F2n(x0, x)ĉ†(x)

]
(45)

=
∫

dx[�(x0, x)ĉ(x) + �(x0, x)ĉ†(x)], (46)
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where

�(x0, x) = ei ω0
vg

(x0−x)
∞∑

n=0

1

(2n)!

(
2κV 2

vg

)2n

F2n−1(x0, x),

�(x0, x) = iei ω0
vg

(x0+x)
∞∑

n=0

1

(2n + 1)!

(
2κV 2

vg

)2n+1

F2n(x0, x). (47)

These series expansions, as we shall see below, not only enable a perturbative calculations in the weak-pumping limit, but also
an efficient computational means in the strong-pumping limit.

In terms of the auxiliary operators, the correlation functions are

G(1)(x0, x′
0

) = 〈∅|ϕ̂†
c

(
x′

0

)
ϕ̂c(x0)|∅〉 =

∫
dx�∗(x′

0, x
)
�(x0, x),

(48)

G(1)(x0) = |ϕ̂c(x0)|∅〉|2 =
∫

dx|�(x0, x)|2,

G(2)(x0, x′
0) = |ϕ̂c(x0)ϕ̂c(x′

0)|∅〉|2

=
∣∣∣∣∫ dx[�(x0, x)ĉ(x) + �(x0, x)ĉ†(x)]

∫
dx′�(x′

0, x′)ĉ†(x)|∅〉
∣∣∣∣2

=
∣∣∣∣∫ dx�(x0, x)�(x′

0, x)

∣∣∣∣2

+
∫

dx1dx2|�(x0, x1)|2|�(
x′

0, x2
)|2

+
∫

dx1dx2�
∗(x0, x2)�∗(x′

0, x1)�(x0, x1)�
(
x′

0, x2
)
, (49)

g(2)(x0, x′
0) = 1 +

∣∣∫ dx�(x0, x)�(x′
0, x)

∣∣2 + ∣∣∫ dx�∗(x′
0, x)�(x0, x)

∣∣2(∫
dx|�(x0, x)|2)(∫ dx|�(x′

0, x)|2) . (50)

We now apply these exact expressions to the weak-pumping limit and to the scenarios beyond the weak-pumping limit,
respectively.

1. Correlation functions in the weak-pumping limit

In the weak-pumping limit, the higher-order term of ϕ̂c(x) can be neglected. Up to the order of κ ,

�(x0, x) = δ(x − x0),

�(x0, x) = i
2κV 2

vg
ei ω0

vg
(x0+x)− πV 2

vg
|x0−x|

,

ϕ̂c(x0) = ĉ(x0) +
∫

dxi
2κV 2

vg
ei ω0

vg
(x0+x)− πV 2

vg
|x0−x|ĉ†(x). (51)

Under this approximation,

G(1)(x0, x′
0) =

∫
dx�∗(x′

0, x)�(x0, x) = 4κ2V 2

πV 2
ei ω0

vg
(x0−x′

0 )− πV 2

vg
|x0−x′

0|
(

1 + πV 2

vg
|x0 − x′

0|
)

,

G(1)(x0) =
∫

dx|�(x0, x)|2 = 4κ2V 2

πvg
,

g(1)(x0, x′
0) = ei ω0

vg
(x0−x′

0 )− πV 2

vg
|x0−x′

0|
(

1 + πV 2

vg
|x0 − x′

0|
)

,

G(2)(x0, x′
0) =

(
2κV 2

vg

)2

e− 2πV 2

vg
|x0−x′

0| + (
4κ2V 2

πvg
)2

[
1 +

(
1 + πV 2

vg
|x0 − x′

0|
)2

]
,

g(2)(x0, x′
0) = 1 +

[(
1 + πV 2

vg
|x0 − x′

0|
)2

+ π2

4κ2

]
e− 2πV 2

vg
|x0−x′

0|. (52)
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Thus the first-order correlation is a constant. The second-order
correlation is

g(2)(τ ) = 1 +
[

π2

4κ2
+ (1 + πV 2|τ |)2

]
e−2πV 2|τ |, and thus

(53)

g(2)(0) = 2 + π2

4κ2
. (54)

In the weak-pumping limit, κ  1 so that (1 + πV 2|τ |)2 
π2/4κ2,

g(2)(τ ) = 1 + π2

4κ2
e−2πV 2|τ |. (55)

Omitting the (1 + πV 2|τ |)2 term leads to a different g(2)(0),
but as π2/4κ2 is a large number, this will only have a negli-
gible change to the result. In the weak-pumping limit, g(2)(τ )
is an exponentially decaying function from 2 + π2/4κ2 to 1
with a decay rate of 2πV 2. Figure 6 plots g(2)(τ ) as a function
of πV 2τ for various values of κ .

We note that the correlation functions are identical to
those of a two-photon dimer state |Bμ〉 in Eq. (1). That is,
in the weak-pumping limit, g(2)(τ ) exhibits the correlation
signatures of individual photonic dimers. The photon gener-
ation rate, the probability to find a photon per unit time, is
R ≡ vgG(1)(x) = 4κ2V 2

π
(see Appendix C for details), then the

second-order correlation function is

g(2)(τ ) = 1 + 1

2Rτc
e− |τ |

τc , (56)

where τc, the coherence time, is the inverse of the bandwidth
τc = 1/	B = 1/2πV 2. The identical result has been reported
in the literature [28,29], albeit using a different approach. The
behaviors of the correlation functions are also in agreement
with recent biphoton experiments [30].

C. Beyond the weak-pumping limit

For a pumping power that is beyond the weak-pumping
limit, all orders of κ must be considered. The series expan-
sion of the auxiliary operator ϕ̂c(x) in Eq. (46) facilitates an
efficient computational approach, as detailed in Appendix D.
Here we present and discuss the numerical results.

FIG. 6. In the weak-pumping limit, g(2)(τ ) as a function of πV 2τ

when κ = 0.1, 0.07, 0.05.

1. Numerical results of G(1)(x)

Figure 7 plots G(1)(x) of the coherent state of dimers as a
function of β, where β = 2κV 2/� = 2κ/π is a dimensionless
quantity proportion to the electric field of the pumping optical
field.

When β is small (�0.1), the numerical results are in
good agreement with that from the weak-pumping limit in
Sec. V B 1. In this regime, G(1)(x) is proportional to β2 (i.e.,
proportional to the pumping power). When β is increased
further, G(1)(x) increases exponentially (i.e., ln G(1)(x) pro-
portional to β), as shown in Fig. 7.

Figure 7 also plots G(1)(x)/( �
vg

) and 2ncavity versus various

values of β. When β is small (β � 0.2), G(1)(x) = 2 �
vg

ncavity.
The physical picture is that each dimer consists of two photons
and is released from the cavity in a timescale of 1/�. When
β is increased, G(1)(x) increases faster than 2ncavity, although
both functions increase exponentially.

2. Numerical results of g(2)(x0, x′
0 ) function

Figure 8 plots the numerical g(2)(x0, x′
0) as a function of

�
vg

(x0 − x′
0) for various values of β. When β is small, the

g(2) function is in good agreement with that calculated in the
weak-pumping limit.

Figure 9 plots the numerical g(2) for increasing β (∝ the
squared root of the pumping power). When β is increased, the
qualitative behavior of g(2) transitions from a pronounced cusp
peak (signatures of individual dimers) to a lower and rounded
shape. In the small β weak-pumping regime, g(2)(0) is pro-
portional to 1

β2 and the full width at half maximum (FWHM)
is proportional to the cavity bandwidth, which is independent
of β. When β is increased beyond the weak-pumping regime,
numerically it is found that g(2)(0) decreases and eventually

FIG. 7. Numerical G(1)(x) function (black), the weak-pumping
limit result G(1)

weak (x) (blue) and average cavity photon number n̄
(yellow) with β = 0–1.
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FIG. 8. Numerical g(2)(x0, x′
0 ) (black) as a function of �

vg
(x0 −

x′
0) for β = 0.4 and β = 0.05. Also plotted is the weak-pumping

results (blue).

stabilizes to the value of three. The width of g(2) function also
increases, indicating multidimer scenarios.

As will be discussed in Sec. VIII, the above results show
that increasing pumping power makes the dimer-dimer over-
lap increases and influences the statistical property. As the
overlaps can be characterized by comparing average interpho-
ton distance,

d̄ = Length of any section (vg	t )

Average photon number in this length [G(1)(t )	t]

= vg

G(1)(t )
,

and dimer spatial width (vg/�), we can also increase dimer
spatial width to change the overlaps. Figure 10 plots the
numerical g(2) for decreasing � with a fixed pumping power
(2κV 2). When � is decreased, the similar behavior of g(2)

is observed, which transitions from a pronounced peak to a

FIG. 10. Numerical g(2)(x0, x′
0 ) as a function of x0 − x′

0 [in units
of 1/(2κV 2)] for various values of � (in units of 2κV 2) with a fixed
pumping power κV 2.

lower and rounded shape. With a smaller and smaller �, it is
found that g(2) stabilizes to the value of three. Analytically, by
taking the limit �

vg
|x0 − x′

0|  1, it is found that

g(2)(x0, x′
0) = 3 + 1

sinh2
(

2κV 2

vg

∫
dx

) = 3

is a constant. In fact, with this limit, the exponentially de-
caying relative function [exp(− �

vg
|x1 − x2|)] of the photonic

dimer can be neglected and the coherent state of photonic
dimers approaches a squeezed vacuum state.

VI. THE QUADRATURE PROPERTIES

In this section, we provide a detailed discussion of the
quadrature properties of the coherent state of dimers and com-
pare our results to those in the literature.

FIG. 9. Numerical g(2) in the weak-pumping limit (left, β = 0.2, 0.4, 0.6, 0.8) and beyond the weak-pumping limit (right, β = 1, 2, 3,
4). Two figures have different scales where g(2)-axis scales from 0 to 30 in the weak-pumping limit and scales from one to four beyond the
weak-pumping limit.
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Recall the form of the dimer coherent state,

|ψ〉 = eβBb̂†(2ω0 )−β∗
Bb̂(2ω0 )|∅〉

= exp

[
βBV

∫
dω

�

(ω − ω0)2 + �2
ĉ†
ωĉ†

2ω0−ω − H.c.

]
|∅〉

= exp

(
βBV

∫
dω

�

ω2 + �2
ĉ†
ω0+ωĉ†

ω0−ω − H.c.

)
|∅〉,

(57)

where βB = −i2κVe−2iω0t and � = πV 2.

A. Compare with the definition of Collett and Gardiner [20]

Similar to Eq. (31) in Ref. [20], we transform to a ro-
tating frame with a → eiω0t a. The coherent state of dimers
becomes

|ψ〉 = exp

(
−2iκV 2

∫
dω

�

ω2 + �2
ĉ†
ω0+ωĉ†

ω0−ω − H.c.

)
|∅〉.

(58)

The single-frequency quadrature is a Hermitian operator de-
fined by

X̂1(ω) = e−iθ/2ĉω + eiθ/2ĉ†
ω

2
,

X̂2(ω) = e−iθ/2ĉω − eiθ/2ĉ†
ω

2i
. (59)

To characterize the squeezing effect, the normal-ordered vari-
ances and the normal-ordered spectrum of the quadrature are
defined, respectively, as

〈:X̂i, X̂i:〉 =
∫

dωdω′〈:X̂i(ω0 + ω), X̂i(ω0 + ω′):〉,

:Si(ω): =
∫

dω′〈:X̂i(ω0 + ω), X̂i(ω0 + ω′):〉. (60)

Here, the normal-ordered (also called the Wick-ordered) op-
erator is defined so that all creation operators are to the left
of all annihilation operators in the product. This definition
yields that the normal-ordered variance of the vacuum or the
coherent state of single photons is zero. Any state with a nega-
tive normal-ordered variance is a nonclassical squeezed state.
As the quadrature operator has a unit [ω]−

1
2 , the quadrature

variance 〈:X̂i, X̂i:〉 has a unit [ω].
The covariances for creation and annihilation operators are

given by

〈
ĉ†
ω0+ω, ĉω0+ω′

〉 = sinh2

(
2β�2

ω2 + �2

)
δ
(
ω − ω′), 〈

ĉω0+ω, ĉ†
ω0+ω′

〉 = cosh2

(
2β�2

ω2 + �2

)
δ(ω − ω′),

〈
ĉω0+ω, ĉω0+ω′

〉 = −i sinh

(
2β�2

ω2 + �2

)
cosh

(
2β�2

ω2 + �2

)
δ(ω + ω′),

〈
ĉ†
ω0+ω, ĉ†

ω0+ω′
〉 = i sinh

(
2β�2

ω2 + �2

)
cosh

(
2β�2

ω2 + �2

)
δ(ω + ω′). (61)

More details can be found in Appendix E. The normal-ordered quadrature variances with two modes can be computed:

〈:X̂1(ω0 + ω), X̂1(ω0 + ω′):〉 = 1

2
sinh

(
2β�2

ω2 + �2

)[
−2 sin θ cosh

(
2β�2

ω2 + �2

)
δ(ω + ω′) + sinh

(
2β�2

ω2 + �2

)
δ(ω − ω′)

]
.

(62)

The normal-ordered variance of the full-bandwidth quadrature and the spectrum are

〈:X̂1, X̂1:〉 =
∫ ∞

∞
dω

1

4

[
−2 sin θ sinh

(
2β�2

ω2 + �2

)
cosh

(
2β�2

ω2 + �2

)
+ 2 sinh2

(
2β�2

ω2 + �2

)]
,

:S1(ω): = 1

4

[
−2 sin θ sinh

(
2β�2

ω2 + �2

)
cosh

(
2β�2

ω2 + �2

)
+ 2 sinh2

(
2β�2

ω2 + �2

)]
. (63)

As the coefficient
∫

dx sinh( 2β

x2+1 ) cosh( 2β

x2+1 ) > 0, the maximum squeezing occurs in the direction θ = π
2 and thus yields the

following results:

〈:X̂1, X̂1:〉 = �

∫ ∞

∞
dx

1

4

[
−2 sinh

(
2β

x2 + 1

)
cosh

(
2β

x2 + 1

)
+ 2 sinh2

(
2β

x2 + 1

)]
, (64)

:S1(ω): = 1

4

[
−2 sinh

(
2β�2

ω2 + �2

)
cosh

(
2β�2

ω2 + �2

)
+ 2 sinh2

(
2β�2

ω2 + �2

)]
= 1

4

(
e− 4β�2

ω2+�2 − 1

)
, (65)

:S1(0): = 1

2
sinh (2β )[sinh (2β ) − cosh (2β )] = 1

4
(e−4β − 1). (66)
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In their seminal paper, Collett and Gardiner (CG) employed
the input-output formalism to compute the quadrature proper-
ties [20]. We note that our definitions are slightly different
from theirs: In their paper, they used the X̂2 operator with
θ = 0, which is the same as X̂1 with θ = π . Expressed in
terms of our notations, their results are

〈:X̂2(ω0 + ω), X̂2(ω0 + ω′):〉CG

= − β�2

ω2 + (� + β�)2 δ(ω + ω′), (67)

〈:X̂2, X̂2:〉CG = −�

2

β

1 + β
� �

4
, (68)

:S2(ω)th:CG = − �2

ω2 + 4�2
, (69)

:S2(0)th:CG = −1

4
. (70)

The maximum squeezing is attained at the threshold (β = 1),
which is exactly the same as our prediction, although the
numerical squeezing factors differ. Figure 11 plots the vari-
ances in the two approaches, Eq. (68) in the CG approach
and Eq. (E10) in our approach, respectively, as a function of
β. The numerical results indicate that the coherent states of
dimers provides a larger squeezing factor; equivalently, for the
same level of squeezing, the dimer coherent states requires a
smaller β values (i.e., weaker pumping).

Figure 12 further illustrates the behavior of the normal-
ordered variance of the full-bandwidth quadrature of the dimer
coherent state, Eq. (E8). The left figure plots the variance as
a function of β for various local oscillator directions θ , and
the right figure plots variance as a function of θ for various
pumping power β. The squeezing occurs when the variance
becomes negative.

B. Compare with the definition of Scully and Zubairy [18]

Other widely cited quadrature variance results for describ-
ing squeezing are those of Scully and Zubairy (SZ) [18]. They
considered the quadrature variance at the resonant frequency,
instead of the full-bandwidth variance. Another distinction is
that their definition of the variance is not normal-ordered, and
thus the vacuum (coherent) state has a quadrature variance
1
4 > 0.

The following SZ result of the ratio of the variances is
derived using the input-output formalism:

[	X̂1,out (ω0)SZ ]2

[	X̂1,in(ω0)]2
=

(
1 − β

1 + β

)2

, (71)

while in our approach, the ratio is given by (at the maximum
squeezing direction θ = π

2 )

[	X̂1,out (ω0)]2

[	X̂1,in(ω0)]2
= 1 + 2 sinh (2β )[sinh (2β ) − cosh (2β )]

= e−4β. (72)

Figure 13 compares the ratios of the variances between the
SZ result [Eq. (71)] and our result for the dimer coherent state
[Eq. (72)] as a function of β. For 0 � β � 1 (upper figure),
the two results are in numerically agreement with each other.

The SZ result shows a perfect OPO squeezing at the threshold
β = 1,

[	X̂1,out (ω0)SZ ]2

[	X̂1,in(ω0)]2
β=1

= 0,

while our results yields a nearly perfect squeezing at the
threshold,

[	X̂1,out (ω0)]2

[	X̂1,in(ω0)]2
β=1

= 0.0183.

On the other hand, when β > 1, the SZ result increases as the
input-output formalism does not reach a steady state in this
range, while the dimer coherent state remains squeezed (both
approaches assuming the undepleted pumping field).

The squeezing factor for Eqs. (71) and (72) can be com-
puted using

R = −10 log10

(
[	X̂1,out (ω0)]2

[	X̂1,in(ω0)]2

)
,

RSZ = −20 log10

(
1 − β

1 + β

)
(dB),

Rour = −10 log10(e−4β ) (dB)

= 17.4β (dB). (73)

At threshold (β = 1), the SZ result employing the input-
output formalism predicts a squeezing factor of +∞, while
our approach predicts a squeezing factor for the dimer coher-
ent state which is linearly dependent of β and yields a value of
17.4 dB at the threshold. The input-output formalism yields no
stationary states above the threshold (thus the extension part
of the curve of the SZ result beyond the threshold is indicated
by a dashed line in the lower figure in Fig. 13).

VII. EXPERIMENTAL COMPARISONS
AND REALIZATIONS

In this section, we apply the results that are developed in
the previous sections to compare with the experimental re-
sults and to estimate the required pumping power in different
regimes.

FIG. 11. Comparison of the normal-ordered quadrature vari-
ances in the maximal squeezing direction between the CG result (68)
and our result (E10). The variances are plotted in units of �.
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FIG. 12. Normal-ordered variance of the full-bandwidth quadrature of the dimer coherent state, Eq. (E8). The variances are plotted in unit
of �. (left) The variance as a function of β for various local oscillator directions θ . (right) The variance as a function of θ for various pumping
power β.

A. Small-β regime

We first compare the quadrature variances at small-
β regime between our theoretical results and that of the
squeezed states of the electromagnetic field generated by de-
generate parametric down conversion in an optical cavity [31].

Using the quadrature definition in Ref. [31],

X̂ (θ ) = (ĉ + ĉ†) cos θ − i(ĉ − ĉ†) sin θ, (74)

the ratio of the variances by our approach is given by

[	X̂ (θ )]2

[	X̂vac]2
= 1 + 2 sinh (2β )[sinh (2β ) − sin (2θ ) cosh (2β )].

(75)

Here the ratio is evaluated at the resonant frequency due to
the narrow bandwidth of ≈100 kHz of the detector. Figure 14
plots the quadrature variance as a function of the local oscil-
lator direction θ . The experimental result (blue curve) and the
theoretical result (red curve, with a choice of β = 0.16) are

FIG. 13. Comparison of the ratios of the variances between the
SZ result [Eq. (71)] and our result for the dimer coherent state
[Eq. (72)] as a function of β for 0 � β � 1 (upper) and β > 1
(lower).

in good agreement and provide the same qualitative behavior:
The period of the phase is π , the average quadrature variance
is above the vacuum state, and the squeezing only occurs
within a small range of θ .

B. Large-β regime

We start by expressing the parameter κ ,

κ = �0,0L

h̄V 2

= L

h̄V 2

h̄ω0

2ε0n2
effVcrystal

2πε0χ
(2)EpAcrystal, (76)

where neff is the effective refractive index for signal or
idler photons in nonlinear crystal. χ (2) is the second-order
nonlinear coefficient of the crystal. Acrystal and Vcrystal are
the cross-sectional area and the volume of the crystal,
respectively. ω0 is the frequency of single-mode cavity or
signal or idler photons. It follows that the pumping electric
field and pumping power can be written as

Ep = κn2
effAcavity|T |2c

4π2χ (2)ω0Vcrystal
, and

Ppump = ε0

2
|Ep|2Abeam, (77)

0 1 2 3 4 5 6
0

0.5

1

1.5

2

experiment
theory
vacuum

FIG. 14. Quadrature variances as a function of the local oscil-
lator direction θ , for extracted experimental data (blue), theoretical
predictions (red, with β = 0.16), and the vacuum (yellow).
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TABLE I. Experimental values from the literature.

Crystal type [31] Crystal size [31] χ (2) [32] neff [32] T [31] Wavelength [31] Beam radius [33]

MgO:LiNbO3 8 mm × 9 mm × 25 mm 4.4 pm/V 2.20 4.3% 1.06 μm 64 μm

where Acavity is the cross-sectional area of the cavity, T is the
transmittance, and Abeam is the cross-sectional area of the laser
beam. We take Acavity = Acrystal.

Recall that the average photon number inside the cavity
is given by n̄ = 1

3 sinh2(
√

3κ
π

) + 1
2 sinh2(

√
2κ
π

). With the ex-
perimental values from the literature (see Table I), the exact
values of our results can be estimated. When the average in-
terphoton distance [vg/G(1)(t ) � vg/2�n̄] is comparable with
single dimer spatial width (vg/�), the average cavity pho-
ton number is about 0.5. It is estimated numerically that
when n̄ = 0.5 (κ = 1.44 and β = 0.92), the pumping power
is approximately 1.44 × 10−14 W. For photons in the visible
spectrum (λ = 533 nm), average cavity photon n̄ = 0.5 re-
quires 3.87 × 104 pumping photons per second. The output
photon number per unit time is G(1)(t ) = 1.70� = 9.38 × 106

photon/s. Here � = πV 2 = 5.5 × 106 s−1 represents a corre-
lation time [width of g(2)(τ )] of ≈10 ns. The estimates for the
KTP crystal are of the same orders of magnitude.

In the weak-pumping limit, as both G(1) and the pump-
ing power is proportional to κ2, the output photon number
per unit time is proportional to the pumping photon num-
ber (n̄out = αn̄pump). Using the above values, when n̄ = 0.005
(κ = π/20), the output photon number is 1.11 × 105 s−1 and
the pumping power is 1.71 × 10−16 W (4.6 × 102 s−1 pho-
tons). Then the ratio between output photons and pumping
photons is α = 241. Numerically we found that this ratio is
sensitive to some experimental values. The ratio depends on
all experimental parameters. For example, the ratio is pro-
portional to the square of the beam radius and changes from
α = 9.9 × 105 (beam radius 1 μm) to α = 0.99 (beam radius
1 mm).

VIII. STATISTICAL PROPERTIES OF COHERENT
STATES OF DIMERS IN BEC AND BCS LIMIT

An important element of the discussion in this paper will be
the two-photon operators that create and annihilate the dimers,
which are introduced by rewriting the dimer state in Eq. (1) as

|Bμ〉 =
∫

dx√
2πvg

ei μ

vg
xb̂†

x(x)|∅〉, (78a)

b̂†
x(x) ≡

∫
dxd

√
�

vg
e−2 �

vg
|xd | 1√

2
ĉ†

(
x + xd

2

)
ĉ†

(
x − xd

2

)
,

(78b)

with x ≡ (x1 + x2)/2 denoting the center of two photons and
xd ≡ x1 − x2 the relative position of two photons.

To explore the properties of the photonic states in the re-
ciprocal frequency space, the relevant single-photon operators

are represented by the Fourier integral:

ĉ†
ω ≡

∫
dx√
2πvg

ei ω
vg

xĉ†(x), (79a)

ĉω ≡
∫

dx√
2πvg

e−i ω
vg

xĉ(x). (79b)

These two operators satisfy the commutator relation:
[ĉω, ĉ†

ω′ ] = δ(ω − ω′). Accordingly, the two-photon dimer op-
erators in the frequency representation for a dimer mode with
a total frequency μ (the energy is h̄μ) are introduced as
follows:

|Bμ〉 =
√

�

π

∫
dω

�(
μ

2 − ω
)2 + �2

ĉ†
ωĉ†

μ−ω|∅〉 (80a)

≡ b̂†(μ)|∅〉, (80b)

b̂†(μ) ≡
√

�

π

∫
dω

�(
μ

2 − ω
)2 + �2

ĉ†
ωĉ†

μ−ω. (80c)

It follows from the frequency dependence of the two
single-photon operators in the integrand that the energies of
the two photons in the dimer are anticorrelated, and that the
dimer has a frequency bandwidth ≈�. For each individual
photon, its frequency spectrum follows a Lorentzian form,
which is plotted in Fig. 1(c).

We shall be interested in the quantum statistical properties
of an ensemble of photonic dimers. As the two photons in a
dimer stay apart with a finite distance that is described in the
relative wave function, the statistical properties depend on the
degree of overlap between dimers in the ensemble. Similar
scenarios occur for the systems of interacting fermions. In the
context of attractively interacting Fermi gases, the properties
of the gases, e.g., the ground-state energy, momentum distri-
bution, and low-energy excitations, all depend on the degree
of overlap of the diatomic molecules. By varying the length
scale of the pair correlations (or the size of the fermion pairs),
the gases can transition from the Bardeen-Cooper-Schrieffer
(BCS) limits of Cooper-like pairs to the Bose-Einstein con-
densation (BEC) limit of diatomic molecules. The crossover
can be driven by fixing the interactions and changing the par-
ticle density (density-driven), or by tuning the interactions at
a fixed density (interaction-driven), and has been observed in
dilute atomic gases [34–37] and recently in two-dimensional
superconductors [38].

Although the many-body system is in principle described
by the same wave function in both BCS and BEC limits, the
theoretical descriptions are however rather different. In this
paper, we confine our attention to an ensemble of photonic
dimers in the BEC limit and formulate the theory from the
outset. In photonic gases, even though the fundamental statis-
tics of the constituent particles are different from that in the
Fermi gases, the descriptions of the two systems in the BEC
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(condensation limit)

overlap

increasing

FIG. 15. The spatial overlap of three photonic dimer relative
wave functions. When bunching factor � is not sufficiently large
compared with average distance between photons, the overlap of rel-
ative wave functions is significant. With increasing �, such overlaps
gradually decrease, and eventually disappear at condensation limit
when � → ∞. The two strictly collocated photons now behave like
a grouped giant particle.

limit however are similar as the building blocks in both gases
are bosons in the BEC limit. As shown in the following, in
the BEC limit, the quantum optical field of a many-dimer
system is described by a coherent state of dimers, which is
a natural generalization of conventional lasers outputting a
coherent state of single photons. In the BEC limit, the optical
field also possesses unique optical properties, such as strong
quantum optical nonlinearity. Figure 15 shows schematically
the transition of the many-dimer system from the BCS limit
to the BEC limit by varying the interaction strength �.

The information of the dimer-dimer overlap is captured by
the commutator of the dimer operators:

[b̂x(x), b̂†
x

(
x′)] = δ(x − x′) + 2

∫
dx

�

vg
e− �

vg
|xd |

× (
e− �

vg
|2x′−2x−xd | + e− �

vg
|2x′−2x+xd |)ĉ†

×
(

2x′ − x + xd

2

)
ĉ

(
x + xd

2

)
, (81)

whereas the second term describing the dimer correlation is
due to the overlap of the dimer relative wave functions with a
finite spatial range and becomes significant when � is small
(� � vg/|x − x′|). When � increases, the overlap between the
relative wave functions becomes less and the dimer correlation
between the neighboring dimers becomes weaker. When � is
further increased (� � vg/|x − x′|), the spatial extension of
the relative wave functions reduces to a sufficiently small size
compared with the average distance between dimers and the
overlap is negligible. In this BEC limit, the two photons in the
dimer bind tightly and the dimers become the building blocks
of the many-photon system.

To further simplify the description so that the theory
becomes tractable, we investigate the dimer operators and

commutator at the large-� limit:

lim
�→∞

b̂†
x(x) =

∫
dxd lim

�→∞

√
�e−2 �

vg
|xd |

/vg
1√
2

ĉ†

(
x + xd

2

)
× ĉ†

(
x − xd

2

)
=

∫
dxd

√
δ(xd )

1√
2

ĉ†
(

x + xd

2

)
ĉ†

(
x − xd

2

)
= 1√

2	ω

ĉ†(x)ĉ†(x), (82)

where lim�→∞ �e−2 �
vg

|x|
/vg = δ(x) is used and the normal-

ization factor 	ω ≡ ∫
dωeiωx/vg/(2πvg)|x=0 is proportional

to the available bandwidth. The commutation relation of the
dimer creation operator and its adjoint annihilation operator
follows:

[b̂x(x), b̂†
x(x′)] = 1

2	ω

[ĉ(x)ĉ(x), ĉ†(x′)ĉ†(x′)]

= δ(x − x′)
(

1 + 2

	ω

ĉ†(x)ĉ(x)

)
. (83)

The second term in the parentheses is O( 1
	ω

) as 	ω → ∞.
In the BEC limit (� → ∞), the frequency representations

of the dimer operator and the commutator can be obtained
straightforwardly:

b̂†(μ) =
∫

dω√
2π

1√
2	ωvg

ĉ†
ωĉ†

μ−ω. (84a)

[b̂(μ), b̂†(μ′)] = δ(μ − μ′) +
∫

dω

2π

1

	ωvg
(ĉ†

μ′−μ+ωĉω

(84b)

+ ĉ†
μ′−ωĉμ−ω ). (84c)

Similarly, the second term in the integral is O( 1
	ω

) as
	ω → ∞ and the commutator [b(μ), b†(μ′)] = δ(μ − μ′) in
the BEC limit.

IX. CONCLUSION AND OUTLOOK

In this section, we discuss the major approximations and
the consequences of the approach presented in this work,
followed by a brief comparison with the approach of others.

A. Neglecting time ordering

In Eq. (18) and the calculations followed, the time-ordering
operator T̂ is neglected for mathematical simplicity. The time-
ordering operator T̂ determines the order of Hamiltonian
operators of different times in the expansions. As the Hamil-
tonians at different times do not commute, the time-ordering
operator cannot be neglected in general. The effects of time
ordering in quantum nonlinear optics have been discussed in
details in Ref. [39] using the Magnus expansions.

Specifically, for an interacting Hamiltonian involving a
bosonic quadratic term,

Ĥ (t ) = κ

∫
dω1dω2e−i(ωp−ω1−ω2 )φ(ω1, ω2)Â†(ω1)Â†(ω2)

+ H.c. (85)
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As shown above, the output state without time ordering con-
tains only the dimer Lorentzian amplitude in the exponent. In
contrast, the evolution operator with the proper time-ordering
consists of contributions from the frequency-conversion part
and the squeezed state part, respectively. For the initial vac-
uum state in the current problem, the frequency-conversion
corrections disappear; the only correction is an additional
two-photon amplitude of higher-order in κ in the exponent.
Consequently, in the weak-pumping limit (κ  1), the time-
ordering effect indeed can be neglected. In Ref. [39], it is also
indicated that the time-order corrections vanish for a broad
bandwidth amplitude φ(ω1, ω2) in the Hamiltonian, which is
exactly the conditions for the BEC limit in the photonic dimer
laser. In the strong-pumping limit (κ � 1), the correction
cannot be neglected.

B. Undepleted assumption

The formalism developed in this work is in the undepleted
pump regime, so that the pumping field remains the same.
Here we briefly discuss some of the artifacts due to the un-
depleted pump assumption. In the undepleted pump regime,
beyond the weak-pumping limit, the input photon number is
proportional to κ2, while the output photon number and the
average cavity photon number increase exponentially when κ

increases. In contrast, as shown in Ref. [40], in the depleted
pump regime, it is found that the number of the output photons
eventually becomes proportional to the input power (∝κ2). We
note that it is possible to extend the formalism to the depleted
regime of the pumping field [41]; nonetheless, we shall leave
this endeavor to future work. The general observation is that
the range of agreement in both regimes is relatively wide (spe-
cific range of agreement for this work would require working
out the depleted-pump case).

C. Comparison with the input-output formalism
and quantum Langevin approach

The input-output formalism and quantum Langevin ap-
proach have provided viable predictions below the threshold.
Above the threshold, however, both approaches yield the
results that the average cavity photon number (and G(1))
increases exponentially over time and that steady states no
longer exist. In our formalism, however, an OPO can always
reach a steady state. The average cavity photon number of the
steady states in our approach also increases exponentially with
increasing pumping field. In the input-output formalism and
quantum Langevin approach, it has been argued that the cav-
ity photon number is ultimately constrained by the depletion
effect and the time-ordering effect and reaches a steady state.

With an understanding of the limitations in our approach,
we show that a new class of quantum photonic states, namely,
the coherent states of photonic dimers, can be emerged in
the cavity-SPDC system. As a final remark, we would like
to emphasize that the coherent states of photonic dimers may
also be engineered in different physical platforms, just like the
coherent states of single photons can be created in different
systems. For example, our preliminary results indicate that
the coherent states of dimers can also be created when an
ensemble of biexcitons is coupled to a cavity [42]. The unique

quantum statistical properties of these new states, as detailed
in this work, may open up new opportunities in nonlinear
quantum optic researches.

ACKNOWLEDGMENTS

J.-T.S. thanks Chih-Sung Chuu for many fruitful discus-
sions on the SPDC experiment. This project has been made
possible in part by Grant No. 2020-225832 from the Chan
Zuckerberg Initiative DAF, an advised fund of the Silicon
Valley Community Foundation.

APPENDIX A: EFFECTIVE INTERACTIONS
OF GAIN MEDIUM

Consider an ensemble of two-level atoms inside a cavity.
The Hamiltonian for the interaction of the active atoms with
the single-mode optical field and the state of the system in the
interaction picture and the rotating-wave approximation are

V̂ (t ) = h̄g(âσ̂+ei(ω−�)t + â†σ̂−e−i(ω−�)t ), (A1a)

|�(t )〉 =
∑

n

An,−(t )|n,−〉 +
∑

n

An,+(t )|n〉, (A1b)

where g denotes the atom-cavity photon interaction strength,
and a† is the annihilation (creation) operator of the cavity
photons. ω and � are the cavity-mode frequency and the atom
transition frequency, respectively. |+〉 and |−〉 denote the ex-
cited and ground state of the atom, respectively. The damping
of the optical field can be accounted for by the interaction
of the radiation field inside the cavity with a reservoir of
vacuum modes representing the outside world (modes of the
universe) as seen through the partially transmitting mirrors at
cavity boundary, or by including a phenomenological decay
factor in the in density-matrix approach [18]. This dissipation
mechanism will be considered in the later discussions.

At well above threshold, when the quantum fluctuation
of the atom states can be neglected, the atomic degrees of
freedom are replaced by the average values:

V̂p(t ) = h̄g(â〈σ̂+〉ei(ω−�)t + â†〈σ̂−〉e−i(ω−�)t )

= h̄g
∑

n

A∗
n,+(t )An,−(t )âei(�−ω)t

+ h̄g
∑

n

A∗
n,+(t )An,−(t )â†ei(ω−�)t . (A2)

We are interested when the system is on resonance ω = �.
Under the resonance condition, the oscillation terms e±i(ω−�)t

vanish and the amplitudes are

An,+(t ) = Bn,1ei
√

n+1gt + Bn,2e−i
√

n+1gt , (A3a)

An,−(t ) = Cn,1ei
√

ngt + Cn,2e−i
√

ngt , (A3b)

with complex coefficients Bn,1, Bn,2, Cn,1, and Cn,2. The coef-
ficients in Eq. (A2) become

A∗
n,+(t )An,−(t )

= B∗
n,1Cn,1ei(

√
n−√

n+1)gt + B∗
n,2Cn,1ei(

√
n+√

n+1)gt

+ B∗
n,1Cn,2e−i(

√
n+1+√

n)gt + B∗
n,2Cn,2ei(

√
n+1−√

n)gt .

(A4)
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For strongly pumped materials, the average photon number n in the cavity is large so that n � n. Average over a short period
�1/ng, we have ∑

n

A∗
n,+(t )An,−(t ) =

∑
n�n

B∗
n,1Cn,1 + B∗

n,2Cn,2. (A5)

The overbar denotes a temporal average over the period 1/ng. The effective interaction now takes the following form:

V̂p(t ) = h̄(χ âei(ω−�)t + χ∗â†e−i(ω−�)t ), (A6)

where χ ≡ g(
∑

n�n B∗
n,1Cn,1 + B∗

n,2Cn,2).

APPENDIX B: FREQUENCY REPRESENTATION AND REAL-SPACE REPRESENTATION IN THE
SCHRÖDINGER PICTURE

To obtain a direct expression of the photonic state in the laboratory frame, here we calculate the state in the Schrödinger
picture. It turns out that it is rather involved to transform the state in the interaction picture, Eq. (22), to the Schrödinger picture
of the state. Here we employ the dressed operator Â [Eq. (3b)] that the diagonalized Hamiltonian Ĥ0 [Eq. (3b)] to get the final
state in the Schrödinger picture. The relation of the state between the two pictures yields

|ψ (t )〉S = e−i Ĥ0
h̄ t |ψ (t )〉I = e−i Ĥ0

h̄ t e− i
h̄

∫ t
0 dt ′ĤI (t ′ )|∅〉I = e−i Ĥ0

h̄ t e− i
h̄

∫ t
0 dt ′ĤI (t ′ )ei Ĥ0

h̄ t |∅〉S, (B1)

where

Ĥ0 = h̄
∫

dωωÂ†(ω)Â(ω),

ĤI (t ) = �0,0L
∫

dω1dω2e−iωpt+iω1t+iω2tα(ω1)α(ω2)Â†(ω1)Â†(ω2) + H.c. (B2)

Inserting identity operator 1̂ = e−i Ĥ0
h̄ t ei Ĥ0

h̄ t into the evolution operator,

ÛS (t ) = e−i Ĥ0
h̄ t e− i

h̄

∫ t
0 dt ′ĤI (t ′ )ei Ĥ0

h̄ t

= e−i Ĥ0
h̄ t

[
1 − i

h̄

∫ t

0
dt ′ĤI (t ′) + 1

2

(
− i

h̄

∫ t

0
dt ′ĤI (t ′)

)(
− i

h̄

∫ t

0
dt ′ĤI (t ′)

)
+ · · ·

]
ei Ĥ0

h̄ t

= 1 + e−i Ĥ0
h̄ t

(
− i

h̄

∫ t

0
dt ′ĤI (t ′)

)
ei Ĥ0

h̄ t + 1

2
e−i Ĥ0

h̄ t

(
− i

h̄

∫ t

0
dt ′ĤI (t ′)

)
ei Ĥ0

h̄ t e−i Ĥ0
h̄ t

(
− i

h̄

∫ t

0
dt ′ĤI (t ′)

)
ei Ĥ0

h̄ t + · · ·

= exp

[
e−i Ĥ0

h̄ t

(
− i

h̄

∫ t

0
dt ′ĤI (t ′)

)
ei Ĥ0

h̄ t

]
(B3)

The exponent of the time-evolution operator in the Schrödinger picture now becomes

ln[ÛS (t )] = e−i Ĥ0
h̄ t

(
− i

h̄

∫ t

0
dt ′ĤI (t ′)

)
ei Ĥ0

h̄ t

= − i�0,0L

h̄

∫ t

0
dt ′

∫
dω1dω2e−iωpt ′+iω1(t ′−t )+iω2(t ′−t )α(ω1)α(ω2)Â†(ω1)Â†(ω2) − H.c.

= i�0,0Le−iωpt

h̄

∫ t

0
dt ′

∫
dω1dω2ei(ωp−ω1−ω2 )t ′

α(ω1)α(ω2)Â†(ω1)Â†(ω2) − H.c.

= i�0,0Le−iωpt

h̄

∫ t

0
dt ′

∫
dω1dω2ei(ωp−ω1−ω2 )t ′

α(ω1)α(ω2)

[
α∗(ω1)â† +

∫
dη1β

∗(ω1, η1)ĉ†
η1

]
×

[
α∗(ω2)â† +

∫
dη2β

∗(ω2, η2)ĉ†
η2

]
− H.c.

= ξ Sâ†â† +
∫

dη f S
η â†ĉ†

η +
∫

dη1dη2φ
S
η1,η2

ĉ†
η1

ĉ†
η2

− H.c. (B4)
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(1) The first term contains two cavity-mode photons,

ln[ÛS (t )]1 = i�0,0Le−iωpt

h̄

∫ t

0
dt ′

∫
dω1dω2ei(ωp−ω1−ω2 )t ′ |α(ω1)|2|α(ω2)|2â†â† − H.c.

= i�0,0Le−iωpt

h̄

∫ t

0
dt ′e−πV 2t ′ × e−πV 2t ′

â†â† − H.c.

= i�0,0Le−i2ω0t

2π h̄V 2
â†â† − H.c.

= ξ Sâ†â† − H.c.

where

ξ S = i�0,0Le−i2ω0t

2π h̄V 2
= iκe−i2ω0t

2π
.

(2) The second term contains both cavity-mode operator and free-space operator,

ln[ÛS (t )]2 = i�0,0Le−iωpt

h̄

∫ t

0
dt ′

∫
dω1dω2ei(ωp−ω1−ω2 )t ′

α(ω1)α(ω2)

×
∫

dη[α∗(ω1)β∗(ω2, η) + α∗(ω2)β∗(ω1, η)]â†ĉ†
η − H.c.

= 2i�0,0Le−iωpt

h̄

∫ t

0
dt ′

∫
dω1ei(ω0−ω1 )t ′ |α(ω1)|2

∫
dω2dηei(ω0−ω2 )t ′

α(ω2)β∗(ω2, η)â†ĉ†
η − H.c.

= 2i�0,0Le−iωpt

h̄

∫ t

0
dt ′e−πV 2t ′

∫
dη

V

η − ω0 + iπV 2
[ei(ω0−η)t ′ − e−πV 2t ′

]â†ĉ†
η − H.c.

= −i�0,0Le−i2ω0t

π h̄V

∫
dη

1

η − ω0 − iπV 2
â†ĉ†

η − H.c.

=
∫

dη f S
η â†ĉ†

η − H.c., (B5)

where

f S
η = −i�0,0Le−i2ω0t

π h̄V

1

η − ω0 − iπV 2
= −iκe−i2ω0t

π

V

η − ω0 − iπV 2
.

(3) The third term contains only the free-space operator,

ln[ÛS (t )]3 = i�0,0Le−iωpt

h̄

∫ t

0
dt ′

∫
dω1dω2ei(ωp−ω1−ω2 )t ′

α(ω1)α(ω2)
∫

dη1dη2β
∗(ω1, η1)β∗(ω2, η2)ĉ†

η1
ĉ†
η2

− H.c.

= i�0,0Le−iωpt

h̄

∫ t

0
dt ′

[∫
dω1dη1ei(ω0−ω1 )t ′

α(ω1)β∗(ω1, η1)ĉ†
η1

][∫
dω2dη2ei(ω0−ω2 )t ′

α(ω2)β∗(ω2, η2)ĉ†
η2

]
− H.c.

= i�0,0Le−iωpt

h̄

∫
dη1dη2

∫ t

0
dt ′ V 2

(η1 − ω0 + iπV 2)(η2 − ω0 + iπV 2)
[ei(ω0−η1 )t ′ − e−πV 2t ′

]

× [ei(ω0−η2 )t ′ − e−πV 2t ′
]ĉ†

η1
ĉ†
η2

− H.c.

= i�0,0Le−2iω0t

h̄

∫
dη1dη2

V 2

(η1 − ω0 + iπV 2)(η2 − ω0 + iπV 2)

×
[
πδ(2ω0 − η1 − η2) + iP

1

2ω0 − η1 − η2
+ i

η1 − ω0 − iπV 2
+ i

η2 − ω0 − iπV 2
+ 1

2πV 2

]
ĉ†
η1

ĉ†
η2

− H.c.

=
∫

dη1dη2φ
S
η1,η2

ĉ†
η1

ĉ†
η2

− H.c., (B6)

where

φS
η1,η2

= i�0,0Le−2iω0t

h̄

V 2

(η1 − ω0 + iπV 2)(η2 − ω0 + iπV 2)

×
[
πδ(2ω0 − η1 − η2) + iP

1

2ω0 − η1 − η2
+ i

η1 − ω0 − iπV 2
+ i

η2 − ω0 − iπV 2
+ 1

2πV 2

]
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= iκV 2e−2iω0t V 2

(η1 − ω0 + iπV 2)(η2 − ω0 + iπV 2)

×
[
πδ(2ω0 − η1 − η2) + iP

1

2ω0 − η1 − η2
+ i

η1 − ω0 − iπV 2
+ i

η2 − ω0 − iπV 2
+ 1

2πV 2

]
.

To better understand the state, we perform the Fourier transform [ĉ†
η = 1√

2πvg

∫ ∞
−∞ dxeiηx/vg ĉ†(x)] to get the wave function in

the real-space representation.
For the second term

∫
dη f S

η â†ĉ†
η:∫

dη f S
η â†ĉ†

η − H.c. = 2i�0,0Le−i2ω0t

h̄

∫
dη

V

η − ω0 + iπV 2

[
ei(ω0−η)t−πV 2t − 1

i(ω0 − η) − πV 2
+ e−2πV 2t − 1

2πV 2

]
â†ĉ†

η − H.c.

= 2i�0,0Le−iω0t

h̄
â†

∫
dη

V

η − ω0 + iπV 2

[
e−iηt − e−iω0t

i(ω0 − η) − πV 2
+ e−iω0t−2πV 2t − e−iω0t

2πV 2

]
ĉ†
η − H.c.

= 2i�0,0Le−iω0t√
2πvgh̄

â†
∫

dx
∫

dη
Veiηx/vg

η − ω0 + iπV 2

[
e−iηt − e−iω0t

i(ω0 − η) − πV 2
+ e−iω0t−2πV 2t − e−iω0t

2πV 2

]
ĉ†(x) − H.c.

= 2i�0,0Le−iω0t√
2πvgh̄

â†
∫

dx

[
i

V
eiω0(x/vg−t )−πV 2t−πV 2|x/vg−t | + −i

V
eiω0(x/vg−t )−πV 2|x|

+ −i

V
eiω0(x/vg−t )−πV 2(2t−x)(−x) + i

V
eiω0(x/vg−t )+πV 2x(−x)

]
ĉ†(x) − H.c.

= 2i�0,0Le−iω0t√
2πvgh̄

â†
∫

dx

[
i

V
eiω0(x/vg−t )−πV 2t−πV 2|x/vg−t | + −i

V
eiω0(x/vg−t )−πV 2|x|

]
(x)ĉ†(x) − H.c.

= 2i�0,0Le−iω0t√
2πvgh̄

â†
∫

dx
−i

V
eiω0(x/vg−t )−πV 2x[1 − e−πV 2(t−x/vg)−πV 2|t−x/vg|](x)ĉ†(x) − H.c.

≡ a†
∫

dx f̄ S (x, t )ĉ†(x) − H.c., (B7)

where

f̄ S (x, t ) = 2�0,0Le−iω0t√
2πvgh̄V

eiω0(x/vg−t )−πV 2x/vg[1 − e−πV 2(t−x/vg)−πV 2|t−x/vg|](x)

= 2�0,0Le−iω0t√
2πvgh̄V

eiω0(x/vg−t )−πV 2x/vg[1 − e−2πV 2(t−x/vg)](x)(t − x/vg) (B8)

≈ 2�0,0Le−iω0t√
2πvgh̄V

eiω0(x/vg−t )−πV 2x/vg(x) (t → ∞)

= 2κVe−iω0t√
2πvg

eiω0(x/vg−t )−πV 2x/vg(x) (t → ∞). (B9)

For the third term
∫

dη1dη2φ
S
η1,η2

ĉ†
η1

ĉ†
η2

in Eq. (B4):∫
dη1dη2φ

S
η1,η2

ĉ†
η1

ĉ†
η2

− H.c.

= 1

2πvg

∫
dx1dx2

∫
dη1dη2φ

S
η1,η2

eiη1x1/vg+iη2x2/vg ĉ†(x1)ĉ†(x2) − H.c.

= iκV 2

2πvg

∫
dx1dx2

∫
dη1dη2

V 2e−2iω0t+iη1x1/vg+iη2x2/vg

(η1 − ω0 + iπV 2)(η2 − ω0 + iπV 2)

×
[
πδ(2ω0 − η1 − η2) + iP

1

2ω0 − η1 − η2
+ i

η1 − ω0 − iπV 2
+ i

η2 − ω0 − iπV 2
+ 1

2πV 2

]
ĉ†(x1)ĉ†(x2) − H.c.
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= iκV 2

2πvg

∫
dx1dx2

∫
dη1

e−2iω0t+iη1x1/vg

η1 − ω0 + iπV 2

{
−πV 2ei(2ω0−η1 )x2/vg

η1 − ω0 − iπV 2
+ −πV 2ei(2ω0−η1 )x2/vg

η1 − ω0 − iπV 2
(x2)

+ πV 2ei(2ω0−η1 )x2/vg

η1 − ω0 − iπV 2
(−x2) + −2πV 2ei(ω0−iπV 2 )x2/vg

η1 − ω0 − iπV 2
(−x2) + 2πV 2ei(ω0−iπV 2 )x2/vg

η1 − ω0 − iπV 2
(−x2)

+ ieiω0x2/vg−πV 2|x2|/vg−ieiω0x2/vg+πV 2x2/vg(−x2)

}
ĉ†(x1)ĉ†(x2) − H.c.

= iκV 2

2πvg

∫
dx1dx2

∫
dη1

e−2iω0t+iη1x1/vg

η1 − ω0 + iπV 2

{−2πV 2ei(2ω0−η1 )x2/vg

η1 − ω0 − iπV 2
(x2) + ieiω0x2/vg−πV 2x2/vg(x2)

}
ĉ†(x1)ĉ†(x2) − H.c.

= iκV 2

2πvg

∫
dx1dx2

[
−2πei2ω0( x1+x2

2vg
−t )−πV 2|x1−x2|/vg(x2) + 2πei2ω0( x1+x2

2vg
−t )+πV 2(x1−x2 )/vg(x2)(−x1)

]
ĉ†(x1)ĉ†(x2) − H.c.

= − iκV 2

vg

∫
dx1dx2ei2ω0( x1+x2

2vg
−t )−πV 2|x1−x2|/vg(x1)(x2)ĉ†(x1)ĉ†(x2) − H.c.

≡
∫

dx1dx2φ̄
S (x1, x2)ĉ†(x1)ĉ†(x2) − H.c., (B10)

where

φ̄S (x1, x2, t ) = − iκV 2

vg
ei2ω0( x1+x2

2vg
−t )−πV 2|x1−x2|/vg(x1)(x2). (B11)

In the above calculation, the large-t limit is also taken. (x) factors are contributed by the last four terms of the wave function
in the frequency domain. Figure 5 plots the probability distribution of the two-photon dimer state.

In the real-space domain, state of the system is

|ψ (t )〉S = exp

[
ξ Sâ†â† +

∫
dx f̄ S (x, t )â†ĉ†(x) +

∫
dx1dx2φ̄

S (x1, x2, t )ĉ†(x1)ĉ†(x2) − H.c.

]
|∅〉, (B12)

where

ξ S = iκe−i2ω0t

2π
,

f̄ S (x, t ) = 2κVe−iω0t√
2πvg

eiω0(x/vg−t )−πV 2x/vg(x),

φ̄S (x1, x2, t ) = − iκV 2

vg
ei2ω0( x1+x2

2vg
−t )−πV 2|x1−x2|/vg(x1)(x2).

APPENDIX C: CORRELATION FUNCTIONS
IN THE INTERACTION PICTURE

In this section, we discuss the correlation functions calcu-
lated in the interaction picture. As the physically measurable
quantities are identical in different pictures, we expect
the same result in this section as we calculated in the
Schrödinger’s picture.

1. Interaction picture (frequency domain)

In the interaction picture, the state is

|ψ〉 = eξ â†â†+∫
dη fη â† ĉ†

η+
∫

dη1dη2φη1 ,η2 ĉ†
η1

ĉ†
η2

−H.c..|∅〉
= eF̂ †−F̂ |∅〉,

where F̂ † = ξ â†â† + ∫
dη fηâ†ĉ†

η + ∫
dη1dη2φη1,η2 ĉ†

η1
ĉ†
η2

. In
the experiment, only free-space photons will be measured:

G(1)(t + τ, t )

= 1

2π

∫
dkdk′eiωk′ (t+τ )−iωkt 〈∅|eF̂−F̂ †

ĉ†
k′ ĉkeF̂ †−F̂ |∅〉,

G(2)(t + τ, t )

=
∣∣∣∣ 1

2π

∫
dk1dk2e−iωk1 (t+τ )−iωk2 t ĉk1 ĉk2 eF̂ †−F̂ |∅〉

∣∣∣∣2

.

(1) Here the coefficient 1/2π does not influence the value
of normalized correlation but is important because it makes
the photon count

∫
dtG(1)(t, t ) = 1 for a one-photon state.

(2) The time variable t in G(2)(t + τ, t ) cannot be chosen
as 0 before doing the integration.
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If we define ϕ̂Ô(s) = es(F̂−F̂ † )Ôes(F̂ †−F̂ ), and let ϕ̂Ô =
ϕ̂Ô(1). Inserting the identity operator 1̂ = eF̂−F̂ †

eF̂ †−F̂ ,

G(1)(t + τ, t ) = 1

2π

∫
dkdk′eiωk′ (t+τ )−iωkt 〈∅|ϕ̂ĉ†

k′
ϕ̂ĉk |∅〉,

G(2)(t + τ, t ) =
∣∣∣∣ 1

2π

∫
dk1dk2e−iωk1 (t+τ )−iωk2 t ϕ̂ĉk1

ϕ̂ĉk2
|∅〉

∣∣∣∣2

.

Based on the experience in previous calculation, we may
guess that ϕ̂ĉk is a linear combination of ĉk , ĉ†

k , â, and â†. Once
we get the form of ϕ̂ĉk operator, we can use it to calculate
the g(2) function. Similar to the previous calculation, first
differentiate s,

d

ds
ϕ̂Ô(s) = es(F̂−F̂ † )[Ô, F̂ † − F̂ ]es(F̂ †−F̂ ). (C1)

Using the following commutation relations:

[ĉk, F̂ † − F̂ ] = fk â† +
∫

dη(2φη,k )ĉ†
η,

[ĉ†
k , F̂ † − F̂ ] = f ∗

k â +
∫

dη(2φ∗
η,k )ĉη,

(C2)

[â, F̂ † − F̂ ] = 2ξ â† +
∫

dη fηĉ†
η,

[â†, F̂ † − F̂ ] = 2ξ ∗â +
∫

dη f ∗
η ĉ†

η,

we have a set of differential equations for ϕ̂Ô(s) operators,

d

ds
ϕ̂ĉk (s) = fkϕ̂â† (s) +

∫
dη(2φη,k )ϕ̂ĉ†

η
(s),

d

ds
ϕ̂ĉ†

k
(s) = f ∗

k ϕ̂â(s) +
∫

dη(2φ∗
η,k )ϕ̂ĉη

(s),

d

ds
ϕ̂â(s) = 2ξ ϕ̂â† (s) +

∫
dη fηϕ̂ĉ†

η
(s),

d

ds
ϕ̂â† (s) = 2ξ ∗ϕ̂â(s) +

∫
dη f ∗

η ϕ̂ĉη
(s). (C3)

The first-order differential equations transfer each ϕ̂Ô operator
into other operators, which makes it difficult to calculate.

Then we take the second-order differentiation,

d2

ds2
ϕ̂ĉk (s) = α∗

k ϕ̂â(s) +
∫

dηβ∗
k,ηϕ̂ĉη

(s),

d2

ds2
ϕ̂ĉ†

k
(s) = αkϕ̂â† (s) +

∫
dηβk,ηϕ̂ĉ†

η
(s),

(C4)
d2

ds2
ϕ̂â(s) = γ ∗ϕ̂â(s) +

∫
dηζ ∗

η ϕ̂ĉη
(s),

d2

ds2
ϕ̂â† (s) = γ ϕ̂â† (s) +

∫
dηζηϕ̂ĉ†

η
(s),

where

αk = 2 f ∗
k ξ +

∫
dη(2φ∗

η,k ) fη,

βk,η = f ∗
k fη +

∫
dη′(2φ∗

η′,k )(2φη′,η ),

γ = |2ξ |2 +
∫

dη| fη|2,

ζη = 2ξ ∗ fη +
∫

dη′ f ∗
η′ (2φη′,η ). (C5)

In principle, we are able to write arbitrary-order equations.
Expanding the ϕ̂Ô(1)

ϕ̂Ô(1) = ϕ̂Ô(0) + d

ds
ϕ̂Ô(0) + 1

2!

d2

ds2
ϕ̂Ô(0) + · · · . (C6)

Using the fact ϕ̂Ô(0) = Ô,

ϕ̂ĉk (0) = ĉk,

d

ds
ϕ̂ĉk (0) = fk â† +

∫
dη(2φη,k )ĉ†

η,

d2

ds2
ϕ̂ĉk (0) = α∗

k â +
∫

dηβ∗
k,ηĉη.

... .

From the above two sets of differential equations, all the
odd-order (1/n!)(dn/dsn)ϕ̂ĉk (0) terms are simply a linear
combination of ĉk and â, while all the even terms are a linear
combination of ĉ†

k and â†. A general form of ϕ̂ĉk operator can
be written as

ϕ̂ĉk =
∫

dη(�k,ηĉη + �k,ηĉ†
η ) + μkâ† + λkâ. (C7)

The above calculation is nothing but using the formula

eXYe−X = Y + [X,Y ] + 1

2!
[X, [X,Y ]] + 1

3!
[X, [X, [X,Y ]]] + · · · . (C8)

In the strong-coupling or weak-pumping limit, notice that ξ , fk , and φη,k are all of order O[�0,0L
h̄V 2 ]. Then αk , βk,η, γ , and ζη are

of order O[(�0,0L/h̄V 2)2]. Here we only consider the order of O[�0,0L/h̄V 2]. Then,

ϕ̂ĉk = ĉk +
∫

dη(2φk,η )ĉ†
η + fk â†, (C9)
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where

fη = i
�0,0L

π h̄V

1

η − ω0 + iπV 2
, φη1,η2 = −i

�0,0L

h̄

V 2

(η1 − ω0 − iπV 2)(η2 − ω0 − iπV 2)

×
[
πδ(η1 + η2 − ωp) + iP

1

η1 + η2 − ωp
− i

η1 − ω0 + iπV 2
− i

η2 − ω0 + iπV 2
+ 1

2πV 2

]
.

The ϕ̂ĉk operator indicates that expected value of annihilation operator is zero:

〈ψ |ĉk|ψ〉 = 〈∅|ϕ̂ĉk |∅〉 = 0,

which is because the state is two-photon coherent state. The photons can be in cavity or in free space, and photon number is
always even. As the cavity-mode photons cannot be separated, the state is different from e

∫
dη fη ĉ†

η+
∫

dη1dη2φη1 ,η2 ĉ†
η1

ĉ†
η2

−H.c..|∅〉, where
expected value of annihilation operator is not zero.

This approximation is similar to the expansion of wave function,

|ψ〉 = eξ â†â†+∫
dη fη â† ĉ†

η+
∫

dη1dη2φη1 ,η2 ĉ†
η1

ĉ†
η2

−H.c..|∅〉 =
(

1 + ξ â†â† +
∫

dη fηâ†ĉ†
η +

∫
dη1dη2φη1,η2 ĉ†

η1
ĉ†
η2

)
|∅〉. (C10)

Here we can use the first-order expansion to calculate G(1). But we have to use the second-order expansion to calculate G(2) to
get the same result under our approximation. In the first-order expansion, G(2)(τ ) is only related the φη1,η2 term and this term is
the leading one in the weak-pumping limit. Under our approximation,

G(1)(t + τ, t ) = 1

2π

∫
dkdk′eiωk′ (t+τ )−iωkt 〈∅|ϕ̂ĉ†

k′
ϕ̂ĉk |∅〉

= 1

2π

∫
dkdk′eiωk′ (t+τ )−iωkt 〈∅|

[∫
dη′(2φ∗

k′,η′ )ĉη′ + f ∗
k′ â

][∫
dη(2φk,η )ĉ†

η + fk â†

]
|∅〉

= 〈∅|
[∫

dη′φ̃∗
η′ (t + τ )ĉη′ + f̃ ∗(t + τ )â

][∫
dηφ̃η(t )ĉ†

η + f̃ (t )â†

]
|∅〉

=
∫

dηφ̃∗
η (t + τ )φ̃η(t ) + f̃ ∗(t + τ ) f̃ (t ), (C11)

G(1)(t, t ) = | f̃ (t )|2 +
∫

dη|φ̃η(t )|2. (C12)

Here we define φ̃η(τ ) = 1√
2π

∫
dke−iωkτ (2φk,η ) and f̃ (τ ) = 1√

2π

∫
dke−iωkτ fk .

G(2)(t + τ, t ) =
∣∣∣∣ 1

2π

∫
dk1dk2e−iωk1 (t+τ )−iωk2 t ϕ̂ĉk1

ϕ̂ĉk2
|∅〉

∣∣∣∣2

=
∣∣∣∣ 1

2π

∫
dk1dk2e−iωk1 (t+τ )−iωk2 t

[
ĉk1 +

∫
dη(2φk1,η )ĉ†

η + fk1 â†

][∫
dη(2φk2,η )ĉ†

η + fk2 â†

]
|∅〉

∣∣∣∣2

= 1

2π

∣∣∣∣∫ dηφ̃η(t )e−iη(t+τ )

∣∣∣∣2

+
∫

dη1dη2[|φ̃η1 (t + τ )|2|φ̃η2 (t )|2 + φ̃∗
η2

(t + τ )φ̃∗
η1

(t )φ̃η1 (t + τ )φ̃η2 (t )]

+
∫

dη| f̃ (t + τ )φ̃η(t ) + f̃ (t )φ̃η(t + τ )|2 + 2| f̃ (t + τ ) f̃ (t )|2

= 1

2π

∣∣∣∣∫ dηφ̃η(t )e−iη(t+τ )

∣∣∣∣2

+
(∫

dη1

∣∣φ̃η1 (t + τ )
∣∣2
)(∫

dη2

∣∣φ̃η2 (t )
∣∣2
)

+
∣∣∣∣∫ dηφ̃∗

η (t + τ )φ̃η(t )

∣∣∣∣2

+ | f̃ (t + τ )|2
∫

dη|φ̃η(t )|2 + | f̃ (t )|2
∫

dη|φ̃η(t + τ )|2 +
(

f̃ ∗(t ) f̃ (t + τ )
∫

dηφ̃∗
η (t + τ )φ̃η(t ) + H.c.

)
+ 2| f̃ (t + τ )|2| f̃ (t )|2 (C13)

= G(1)(t + τ )G(1)(t ) + 1

2π

∣∣∣∣∫ dηφ̃η(t )e−iη(t+τ )

∣∣∣∣2

+
∣∣∣∣∫ dηφ̃∗

η (t + τ )φ̃η(t )

∣∣∣∣2

+ | f̃ (t + τ )|2| f̃ (t )|2

+
(

f̃ ∗(t ) f̃ (t + τ )
∫

dηφ̃∗
η (t + τ )φ̃η(t ) + H.c.

)
, (C14)

g(2)(τ ) = G(2)(t + τ, t )

G(1)(t + τ, t + τ )G(1)(t, t )
. (C15)
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To calculate φ̃η(τ ) and f̃ (τ ) only terms with singularities on the x axis or the lower half have contributions. Let κ = �0,0L/h̄V 2,

f̃ (t ) = 1√
2π

∫
dηe−iηt i

�0,0L

π h̄V

1

η − ω0 + iπV 2
= 2κV√

2π
e−iω0t−πV 2t . (C16)

f̃ (t ) is the effect of the “single-photon part:”

φ̃η(t ) = −i
2�0,0L√

2π h̄

∫
dke−iωkt V 2

(ωk − ω0 − iπV 2)(η − ω0 − iπV 2)

×
[
πδ(ωk + η − 2ω0) + iP

1

ωk + η − 2ω0
− i

ωk − ω0 + iπV 2
− i

η − ω0 + iπV 2
+ 1

2πV 2

]
= −i

2κV 2

√
2π

[I1 + I2 + I3 + 0 + 0],

where

I1 =
∫

dke−iωkt V 2

(ωk − ω0 − iπV 2)(η − ω0 − iπV 2)
πδ(ωk + η − 2ω0) = −πV 2

(η − ω0)2 + π2V 4
e−i(2ω0−η)t ,

I2 =
∫

dke−iωkt V 2

(ωk − ω0 − iπV 2)(η − ω0 − iπV 2)
iP

1

ωk + η − 2ω0
= −πV 2

(η − ω0)2 + π2V 4
e−i(2ω0−η)t ,

I3 =
∫

dke−iωkt V 2

(ωk − ω0 − iπV 2)(η − ω0 − iπV 2)

−i

ωk − ω0 + iπV 2
= −i

e−iω0t−πV 2t

η − ω0 − iπV 2
.

Here we can see that the first two terms (photon bound state) play an important role in the φ̃η function:

φ̃η(t ) = −i
2κV 2

√
2π

[
−2πV 2

(η − ω0)2 + π2V 4
e−i(2ω0−η)t − i

e−iω0t−πV 2t

η − ω0 − iπV 2

]
. (C17)

To calculate correlation functions, we need to use the following results,∫
dηφ̃η(t )e−iη(t+τ ) = −i

2κV 2

√
2π

∫
dη

[
−2πV 2

(η − ω0)2 + π2V 4
e−iητ−i2ω0t − i

e−iω0t−πV 2t−iη(t+τ )

η − ω0 − iπV 2

]

= −i
2κV 2

√
2π

[−2πe−iω0τ−πV 2|τ |−i2ω0t + 0]

= i
4πκV 2

√
2π

e−iω0τ−πV 2|τ |−i2ω0t , (C18)∫
dη|φ̃η(t )|2 = 2κ2V 4

π

∫
dη

[
−2πV 2

(η − ω0)2 + π2V 4
ei(2ω0−η)t + i

eiω0t−πV 2t

η − ω0 + iπV 2

]

×
[

−2πV 2

(η − ω0)2 + π2V 4
e−i(2ω0−η)t − i

e−iω0t−πV 2t

η − ω0 − iπV 2

]

= 2κ2V 4

π

∫
dη

[
4π2V 4

[(η − ω0)2 + π2V 4]2
+ 2iπV 2ei(ω0−η)t−πV 2t

[(η − ω0)2 + π2V 4](η − ω0 − iπV 2)

+ −2iπV 2e−i(ω0−η)t−πV 2t

[(η − ω0)2 + π2V 4](η − ω0 + iπV 2)
+ e−2πV 2t

(η − ω0)2 + π2V 4

]

= 2κ2V 4

π

[
2

V 2
− e−2πV 2t

V 2
− e−2πV 2t

V 2
− e−2πV 2t

V 2

]

= 2κ2V 2

π

(
2 − e−2πV 2t

)
, (C19)
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∫
dηφ̃∗

η (t + τ )φ̃η(t ) = 2κ2V 4

π

∫
dη

[
−2πV 2

(η − ω0)2 + π2V 4
ei(2ω0−η)(t+τ ) + i

e−iω0(t+τ )−πV 2(t+τ )

η − ω0 + iπV 2

]

×
[

−2πV 2

(η − ω0)2 + π2V 4
e−i(2ω0−η)t − i

e−iω0t−πV 2t

η − ω0 − iπV 2

]

= 2κ2V 4

π

[
2(1 + πV 2|τ |)

V 2
eiω0τ−πV 2|τ | − eiω0τ−πV 2(2t+τ )

V 2
× 2 + eiω0τ−πV 2(2t+τ )

V 2

]

= 2κ2V 2

π

[
2(1 + πV 2|τ |) − e−2πV 2t

]
eiω0τ−πV 2|τ |. (C20)

Using these result, the G(1) and G(2) functions are

G(1)(t + τ, t ) =
∫

dηφ̃∗
η (t + τ )φ̃η(t ) + f̃ ∗(t + τ ) f̃ (t )

= 2κ2V 2

π

[
2(1 + πV 2|τ |) − e−2πV 2t

]
eiω0τ−πV 2|τ | + 2κ2V 2

π
eiω0τ−πV 2(2t+τ )

= 4κ2V 2

π
(1 + πV 2|τ |)eiω0τ−πV 2|τ |, (C21)

G(1)(t, t ) = 4κ2V 2

π
, (C22)

G(2)(t + τ, t ) = G(1)(t + τ )G(1)(t ) + 1

2π

∣∣∣∣∫ dηφ̃η(t )e−iη(t+τ )

∣∣∣∣2

+
∣∣∣∣∫ dηφ̃∗

η (t + τ )φ̃η(t )

∣∣∣∣2

+ ∣∣ f̃ (t + τ )
∣∣2| f̃ (t )|2

+
(

f̃ ∗(t ) f̃ (t + τ )
∫

dηφ̃∗
η (t + τ )φ̃η(t ) + H.c.

)

=
(

4κ2V 2

π

)2

+ 1

2π

(4πκV 2)2

2π
e−2πV 2|τ | +

(
2κ2V 2

π

)2

[2(1 + πV 2|τ |) − e−2πV 2t ]2e−2πV 2|τ |

+
(

2κ2V 2

π

)2

e−2πV 2(2t+τ ) +
(

2κ2V 2

π

)2[
2(1 + πV 2|τ |) − e−2πV 2t

]
e−2πV 2(t+τ )

≈
(

4κ2V 2

π

)2[
1 + π2

4κ2
e−2πV 2|τ | + (1 + πV 2|τ |)2e−2πV 2|τ |

]
. (C23)

The only difference between these results and the correlation functions in the main text is the vg factor. Here G(1)(t ) is the
probability per unit time (t), while G(1)(x) is the probability per unit distance (x). The probability to detect one photon is a
constant. The second-order correlation is

g(2)(τ ) = 1 +
[

π2

4κ2
+ (1 + πV 2|τ |)2

]
e−2πV 2|τ |. (C24)

g(2)(0) = 2 + π2

4κ2
. (C25)

Here κ is very small. Then the π2

4κ2 e−2πV 2|τ | term from | ∫ dηφ̃η(t )e−iη(t+τ )|2 dominates the behavior of g(2)(τ ). As mentioned
before, the photon bound-state term is a major part in φ̃η(t ). We can say that g(2)(τ ) exhibits the correlation signatures of the
photon bound state component.

2. Interaction picture (real-space domain in the weak-pumping limit)

In the real-space domain in the interaction picture, the state is

|ψ〉 = eξ â†â†+∫
dη fη â† ĉ†

η+
∫

dη1dη2φη1 ,η2 ĉ†
η1

ĉ†
η2

−H.c..|∅〉 = eξ â†â†+∫
dx f̄ (x)â† ĉ†(x)+∫

dx1dx2φ̄(x1,x2 )ĉ†(x1 )ĉ†(x2 )−H.c..|∅〉, (C26)
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where

f̄ (x) = 1√
2πvg

∫
dη fηeiηx = 1√

2πvg
2κVei ω0

vg
x+ πV 2

vg
x
(−x), (C27)

φ̄(x1, x2) = 1

2πvg

∫
dη1dη2φη1,η2 eiη1x1+iη2x2 = iκV 2

vg
ei ω0

vg
(x1+x2 )− πV 2

vg
|x1−x2|(−x1)(−x2). (C28)

In the weak-pumping limit, the state can be written as

|ψ〉 = |∅〉 +
[
ξ â†â† +

∫
dx f̄ (x)â†ĉ†(x) +

∫
dx1dx2φ̄(x1, x2)ĉ†(x1)ĉ†(x2)

]
|∅〉, (C29)

which contains a one-photon state f̄ (x) and a two-photon state φ̄(x1, x2). Obviously we get the similar correlation functions as
in the last section:

G(1)(x) = |ĉ(x)|ψ〉|2 = ∣∣ f̄ (x)
∣∣2 +

∫
dx1|2φ̄(x, x1)|2

= 2κ2V 2

πvg
e

2πV 2

vg
x
(−x) +

∫ 0

−∞
dx1

4κ2V 4

v2
g

e− 2πV 2

vg
|x−x1|(−x)(−x1)

= 2κ2V 2

πvg
e

2πV 2

vg
x
(−x) + 2κ2V 2

πvg

(
2 − e

2πV 2

vg
x)

(−x) = 4κ2V 2

πvg
(−x),

G(2)(x1, x2) = |ĉ(x1)ĉ(x1)|ψ〉|2 = |2φ̄(x1, x2)|2 = 4κ2V 4

v2
g

e− 2πV 2

vg
|x1−x2|(−x1)(−x2),

g(2)(x1 − x2) = G(2)(x1, x2)

G(1)(x1)G(1)(x2)
= π2

4κ2
e− 2πV 2

vg
|x1−x2|. (C30)

APPENDIX D: CORRELATION FUNCTIONS IN THE SCHRÖDINGER PICTURE

1. Correlation function for intracavity photons

Here we calculate the average photon number inside the cavity. Let F̂ † = ξ Sâ†â† + ∫
dx f̄ S (x, t )â†ĉ†(x) +∫

dx1dx2φ̄
S (x1, x2, t )ĉ†(x1)ĉ†(x2), the state of the system. Then,

|ψ (t )〉S = exp

[
ξ Sâ†â† +

∫
dx f̄ S (x, t )â†ĉ†(x) +

∫
dx1dx2φ̄

S (x1, x2, t )ĉ†(x1)ĉ†(x2) − H.c.

]
|∅〉 (D1)

can be written as |ψ (t )〉S = eF̂ †−F̂ |∅〉. The average photon number inside the cavity is

n̄ = 〈ψ (t )|â†â|ψ (t )〉 = 〈∅|eF̂−F̂ †
â†eF̂ †−F̂ eF̂−F̂ †

âeF̂ †−F̂ |∅〉.
Expand eF̂−F̂ †

âeF̂ †−F̂ = â + [F̂ − F̂ †, â] + 1
2! [F̂ − F̂ †, [F̂ − F̂ †, â]] + · · · . The first few terms are computed as follows (here

we consider only the weak-pumping limit):

0th term: â;

1st term: [F̂ − F̂ †, â] = 2ξ Sâ† +
∫

dx f̄ S (x, t )ĉ†(x);

2nd term: [F̂ − F̂ †, [F̂ − F̂ †, â]]

=
[

F̂ , 2ξ Sâ† +
∫

dx f̄ S (x, t )ĉ†(x)

]
=

(
4|ξ S|2 +

∫
dx| f̄ S|2

)
â + 2ξ S

∫
dx

(
f̄ S

)∗
ĉ(x);

3rd term: [F̂ − F̂ †, [F̂ − F̂ †, [F̂ − F̂ †, â]]]

=
[
−F̂ †,

(
4|ξ S|2 +

∫
dx| f̄ S|2

)
â + 2ξ S

∫
dx

(
f̄ S

)∗
ĉ(x)

]
=

(
4|ξ S|2 + 2

∫
dx| f̄ S|2

)
2ξ Sâ† +

(
4|ξ S|2 +

∫
dx| f̄ S|2

)∫
dx f̄ S (x, t )ĉ†(x). (D2)
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To calculate average photon number, we note that the even-numbered terms can be omitted as 〈∅|â†â|∅〉 = 0. Thus,

eF̂−F̂ †
âeF̂ †−F̂ |∅〉 =

{
1

1!
2ξ S + 1

3!

(
4|ξ S|2 + 2

∫
dx| f̄ S|2

)
2ξ S + 1

5!

(
4|ξ S|2 + 2

∫
dx| f̄ S|2

)2

2ξ S + · · ·
}

â†|∅〉

+
{

1

1!
+ 1

3!

(
4|ξ S|2 +

∫
dx| f̄ S|2

)
+ 1

5!

(
4|ξ S|2 +

∫
dx| f̄ S|2

)2

+ · · ·
}∫

dx f̄ S (x, t )ĉ†(x)|∅〉. (D3)

Using |ξ S|2 = κ2/4π2 and ∫
dx| f̄ S|2 =

∫ ∞

0
dx

4κ2V 2

2πvg
e− 2πV 2

vg
x = κ2

π2

from Eq. (C1), one has

eF̂−F̂ †
âeF̂ †−F̂ |∅〉 = 2ξ S

{
1

1!
+ 1

3!

(
3κ2

π2

)
+ 1

5!

(
3κ2

π2

)2

+ · · ·
}

â†|∅〉

+
{

1

1!
+ 1

3!

(
2κ2

π2

)
+ 1

5!

(
2κ2

π2

)2

+ · · ·
}∫

dx f̄ S (x, t )ĉ†(x)|∅〉

= 2ξ S sinh
(√

3κ
π

)
√

3κ
π

â†|∅〉 + sinh
(√

2κ
π

)
√

2κ
π

∫
dx f̄ S (x, t )ĉ†(x)|∅〉. (D4)

In the above, we have used the relation

∞∑
n=0

αn

(2n + 1)!
= sinh(

√
α)√

α
.

The average intracavity photon number is

〈ψ (t )|â†â|ψ (t )〉 = 4|ξ S|2
(

sinh
(√

3κ
π

)
√

3κ
π

)2

+
∫

dx| f̄ S|2
(

sinh
(√

2κ
π

)
√

2κ
π

)2

= 1

3
sinh2

(√
3κ

π

)
+ 1

2
sinh2

(√
2κ

π

)
, (D5)

which will exponentially increase with a strong pumping power. This growth is expected to saturate when sufficient energy is
drawn from the pump so that the assumption of an undepleted pump no longer holds.

2. Beyond the weak-pumping limit

For an arbitrary pumping power beyond the weak-pumping limit, all orders of κ must be considered. Recall the expression
for ϕ̂c(x) operator,

ϕ̂c(x0) =
∫

dx

[
ei ω0

vg
(x0−x)

∞∑
n=0

1

(2n)!

(
2κV 2

vg

)2n

F2n−1(x0, x)ĉ(x) + iei ω0
vg

(x0+x)
∞∑

n=0

1

(2n + 1)!

(
2κV 2

vg

)2n+1

F2n(x0, x)ĉ†(x)

]
(D6)

=
∫

dx[�(x0, x)ĉ(x) + �(x0, x)ĉ†(x)]. (D7)

First we need to derive a general expression for Fn(x0, x) function. Let 	 = |x − x0| and � = πV 2,

Fn(x0, x) =
∫

dx1dx2 · · · dxne− �
vg

|x0−x1|− �
vg

|x1−x2|−···− �
vg

|xn−x|
,

F−1(x0, x) = δ(x − x0),

F0(x0, x) = e− �
vg

	
,

F1(x0, x) =
(vg

�
+ 	

)
e− �

vg
	
,

... (D8)
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for n � 1,

Fn(x0, x) =
∫

dx1 · · · dxn−1e− �
vg

|x0−x1|− �
vg

|x1−x2|−···− �
vg

|xn−2−xn−1|
∫

dxne− �
vg

(|xn−1−xn|+|xn−x|)

=
∫

dx1 · · · dxn−1e− �
vg

|x0−x1|− �
vg

|x1−x2|−···− �
vg

|xn−1−x|(vg

�
+ |xn−1 − x|

)
=

∫
dx1 · · · dxn−1e− �

vg
|x0−x1|− �

vg
|x1−x2|−···− �

vg
|xn−1−x|

[
vg

�
+ 1

n
(|x0 − x1| + · · · + |xn−1 − x|)

]
=

(
vg

�
− vg

n

d

d�

)∫
dx1 · · · dxn−1e− �

vg
|x0−x1|− �

vg
|x1−x2|−···− �

vg
|xn−1−x|

,

Fn(	) =
(

vg

�
− vg

n

d

d�

)
Fn−1(	). (D9)

Then we get an iteration equation for Fn(x0, x) function. Given F0(	) = e− �
vg

	,

Fn(	) =
(

vg

�
− vg

n

d

d�

)(
vg

�
− vg

n − 1

d

d�

)
· · ·

(
vg

�
− vg

d

d�

)
e− �

vg
	
. (D10)

To avoid the integration in numerical calculation, here I write Fn in the form of

Fn(	) =
n∑

k=0

ak,n

vn
g

�k

dn−k

d�n−k
e− �

vg
	
. (D11)

The coefficients are given by the following equations:

a0,n+1 = − 1

n + 1
a0,n, an+1,n+1 = 2n + 1

n + 1
an,n,

ak,n+1 =
(

1 + k − 1

n + 1

)
ak−1,n − 1

n + 1
ak,n (1 � k � n), (D12)

with the initial coefficient a0,0 = 1, we have a0,n = (−1)n/n! and an,n = (2n − 1)!!/n!, but the arbitrary ak,n is numerically
calculated in my code. Given a general expression for Fn, G(1) can be written in the following way,

G(1)(x) =
∣∣∣∣∣
∫

dxiei ω0
vg

(x0+x)
∞∑

n=0

1

(2n + 1)!

(
2κV 2

vg

)2n+1

F2n(x0, x)ĉ†(x)|∅〉
∣∣∣∣∣
2

=
∣∣∣∣∣
∫

dxei ω0
vg

(x0+x)
∞∑

n=0

1

(2n + 1)!

(
2κV 2

vg

)2n+1 2n∑
k=0

ak,2n
−|x − x0|2n−k

(�/vg)k
e− �

vg
|x−x0|ĉ†(x)|∅〉

∣∣∣∣∣
2

=
∫

dx

∣∣∣∣∣
∞∑

n=0

1

(2n + 1)!

(
2κV 2

vg

)2n+1 2n∑
k=0

ak,2n
−|x − x0|2n−k

(�/vg)k

∣∣∣∣∣
2

e−2 �
vg

|x−x0|

=
∫

dx

∣∣∣∣∣
∞∑

n=0

1

(2n + 1)!

(
2κV 2

vg

)2n+1 2n∑
k=0

a2n−k,2n
−|x − x0|k
(�/vg)2n−k

∣∣∣∣∣
2

e−2 �
vg

|x−x0|

=
(

�

vg

)2 ∫ ∞

−∞
dx

∣∣∣∣∣
∞∑

n=0

(
2κV 2

�

)2n+1 2n∑
k=0

a2n−k,2n
−�k|x − x0|k
vk

g (2n + 1)!

∣∣∣∣∣
2

e−2 �
vg

|x−x0|

= 2
�

vg

∫ ∞

0
dy

∣∣∣∣∣
∞∑

n=0

β2n+1

(2n + 1)!

2n∑
k=0

a2n−k,2n(−y)k

∣∣∣∣∣
2

e−2y

= 2
�

vg

∫ ∞

0
dy

∣∣∣∣∣∣
∞∑

k=0

⎛⎝ ∞∑
n=k/2

β2n+1

(2n + 1)!
a2n−k,2n(−1)k

⎞⎠yk

∣∣∣∣∣∣
2

e−2y

= 2
�

vg

∫ ∞

0
dy

∣∣∣∣∣
∞∑

k=0

c(1)
k yk

∣∣∣∣∣
2

e−2y = 2
�

vg

∞∑
k=0

bk

(∫ ∞

0
dyyke−2y

)
= �

vg

∞∑
k=0

bk
k!

2k
. (D13)
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Here

c(1)
k =

∞∑
n=k/2

β2n+1

(2n + 1)!
a2n−k,2n(−1)k,

bk are the coefficients of the squared polynomial, and β = 2κV 2/� = 2κ/π is a dimensionless quantity proportion to the electric
field of the pumping light. In the last equal sign, we used an integral,∫

dxxnex =
[

n∑
k=0

(−1)n−k n!

k!
xk

]
ex + C,

∫ ∞

0
dyyke−2y = 1

(−2)k+1

∫ −∞

0
dyykey = 1

(−2)k+1
(−1)k+1k! = k!

2k+1
. (D14)

In the code, we only need to use the iteration equations to get the ak,n coefficients and do the polynomial operations. Below is the
G1(x) (units of �/vg) as a function of β in different pumping scales. In the weak-pumping limit, the G1 function is proportional
to β2, which is in agreement with the result in last section. Under the large pumping power, G(1) function grows exponentially
with β [ln[G(1)(x)] ∝ β].

Similarly, we can calculate the two other integrals in the second-order correlation function

g(2)(x0, x′
0) = 1 + | ∫ dx�(x0, x)�(x′

0, x)|2 + | ∫ dx�∗(x′
0, x)�(x0, x)|2

[
∫

dx|�(x0, x)|2][
∫

dx|�(x′
0, x)|2]

.

(a) Define I1 = | ∫ dx�(x0, x)�(x′
0, x)|2

I1 =
∣∣∣∣∣
∫

dx

[
ei ω0

vg
(x0−x)

∞∑
n=0

1

(2n)!

(
2κV 2

vg

)2n

F2n−1(x0, x)

][
iei ω0

vg (x′
0+x)

∞∑
m=0

1

(2m + 1)!

(
2κV 2

vg

)2m+1

F2m(x′
0, x)

]∣∣∣∣∣
2

=
∣∣∣∣∣
∫

dx

[
δ(x − x0) +

∞∑
n=1

1

(2n)!

(
2κV 2

vg

)2n 2n−1∑
k=0

ak,2n−1
(−|x − x0|)2n−1−k

(�/vg)k

]
e− �

vg
|x−x0|

×
⎡⎣ ∞∑

m=0

1

(2m + 1)!

(
2κV 2

vg

)2m+1 2m∑
j=0

a j,2m

(−|x − x′
0|
)2m− j

(�/vg) j

⎤⎦e− �
vg

|x−x′
0|
∣∣∣∣∣∣
2

=
∣∣∣∣∣∣ �

vg

∞∑
m=0

1

(2m + 1)!

(
2κV 2

�

)2m+1 2m∑
j=0

a j,2m

(
− �

vg
|x0 − x′

0|
)2m− j

e− �
vg

|x0−x′
0|

+
∫

dx

[
�

vg

∞∑
n=0

β2n

(2n)!

2n−1∑
k=0

a2n−1−k,2n−1

(
− �

vg
|x − x0|

)k
]

e− �
vg

|x−x0|

×
⎡⎣ �

vg

∞∑
m=0

β2m+1

(2m + 1)!

2m∑
j=0

a2m− j,2m

(
− �

vg
|x − x′

0|
) j

⎤⎦e− �
vg

|x−x′
0|
∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
�

vg
I11 +

∫
dx

⎡⎢⎣ �

vg

∞∑
k=0

⎛⎜⎝ ∞∑
n= k+1

2

β2n

(2n)!
a2n−1−k,2n−1

⎞⎟⎠(
− �

vg
|x − x0|

)k

⎤⎥⎦e− �
vg

|x−x0|

×

⎡⎢⎣ �

vg

∞∑
j=0

⎛⎜⎝ ∞∑
m= j

2

β2m+1

(2m + 1)!
a2m− j,2m

⎞⎟⎠(
− �

vg
|x − x′

0|
) j

⎤⎥⎦e− �
vg

|x−x′
0|

∣∣∣∣∣∣∣
2

=
(

�

vg

)2
∣∣∣∣∣∣I11 +

∫
dy

⎡⎣ ∞∑
k=0

c(2)
k

∣∣∣∣ �

vg
x0 − y

∣∣∣∣k ∞∑
j=0

c(1)
j

∣∣∣∣ �

vg
x′

0 − y

∣∣∣∣ j
⎤⎦e−| �

vg
x0−y|−| �

vg
x′

0−y|
∣∣∣∣∣∣
2

=
(

�

vg

)2
∣∣∣∣∣∣I11 +

∞∑
k=0

∞∑
j=0

c(2)
k c(1)

j

∫ ∞

−∞
dy

∣∣∣∣ �

vg
x0 − y

∣∣∣∣k∣∣∣∣ �

vg
x′

0 − y

∣∣∣∣ j

e−| �
vg

x0−y|−| �
vg

x′
0−y|

∣∣∣∣∣∣
2

=
(

�

vg

)2
∣∣∣∣∣∣I11 +

∞∑
k=0

∞∑
j=0

c(2)
k c(1)

j

∫ ∞

−∞
dy|y|k

∣∣∣∣ �

vg
(x′

0 − x0) − y

∣∣∣∣ j

e−|y|−| �
vg (x′

0−x0 )−y|
∣∣∣∣∣∣
2

, (D15)
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where

I11 =
∞∑

m=0

β2m+1

(2m + 1)!

2m∑
j=0

a j,2m

(
− �

vg
|x0 − x′

0|
)2m− j

e− �
vg

|x0−x′
0|.

Here the coefficients

c(2)
k =

∞∑
n= k+1

2

β2n

(2n)!
a2n−1−k,2n−1(−1)k

and

c(1)
j =

∞∑
m= j

2

β2m+1

(2m + 1)!
a2m− j,2m(−1) j

are functions of β. The integral
∫ ∞
−∞ dy|y|k| �

vg
(x′

0 − x0) − y| je−|y|−| �
vg

(x′
0−x0 )−y| is a function of (�/vg)|x0 − x′

0|, and is numerically
calculated.

(b) Define I2 = | ∫ dx�(x0, x)�∗(x′
0, x)|2

I2 =
∣∣∣∣∣
∫

dx

[
iei ω0

vg
(x0+x)

∞∑
n=0

1

(2n + 1)!

(
2κV 2

vg

)2n+1

F2n(x0, x)

][
−ie−i ω0

vg
(x′

0+x)
∞∑

m=0

1

(2m + 1)!

(
2κV 2

vg

)2m+1

F2m(x′
0, x)

]∣∣∣∣∣
2

=
∣∣∣∣∣
∫

dx

[ ∞∑
n=0

1

(2n + 1)!

(
2κV 2

vg

)2n+1 2n∑
k=0

ak,2n
(−|x − x0|)2n−k

(�/vg)k

]
e− �

vg
|x−x0|

×
[ ∞∑

m=0

1

(2m + 1)!

(
2κV 2

vg

)2m+1 2m∑
k=0

a j,2m
(−|x − x′

0|)2m− j

(�/vg) j

]
e− �

vg
|x−x′

0|
∣∣∣∣∣
2

=
∣∣∣∣∣
∫

dx

[
�

vg

∞∑
n=0

β2n+1

(2n + 1)!

2n∑
k=0

a2n−k,2n

(
− �

vg
|x − x0|

)k
]

e− �
vg

|x−x0|

×
[

�

vg

∞∑
m=0

β2m+1

(2m + 1)!

2m∑
k=0

a2m− j,2m

(
− �

vg
|x − x′

0|
) j

]
e− �

vg
|x−x′

0|
∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
∫

dx

⎡⎢⎣ �

vg

∞∑
k=0

⎛⎜⎝ ∞∑
n= k

2

β2n+1

(2n + 1)!
a2n−k,2n

⎞⎟⎠(
− �

vg
|x − x0|

)k

⎤⎥⎦e− �
vg

|x−x0|

×

⎡⎢⎣ �

vg

∞∑
j=0

⎛⎜⎝ ∞∑
m= j

2

β2m+1

(2m + 1)!
a2m− j,2m

⎞⎟⎠(
− �

vg
|x − x′

0|
) j

⎤⎥⎦e− �
vg

|x−x′
0|

∣∣∣∣∣∣∣
2

=
(

�

vg

)2
∣∣∣∣∣∣
∫

dy

⎡⎣ ∞∑
k=0

c(1)
k

∣∣∣∣ �

vg
x0 − y

∣∣∣∣k ∞∑
j=0

c(1)
j

∣∣∣∣ �

vg
x′

0 − y

∣∣∣∣ j
⎤⎦e−| �

vg
x0−y|−| �

vg
x′

0−y|
∣∣∣∣∣∣
2

=
(

�

vg

)2
∣∣∣∣∣∣

∞∑
k=0

∞∑
j=0

c(1)
k c(1)

j

∫ ∞

−∞
dy

∣∣∣∣ �

vg
x0 − y

∣∣∣∣k∣∣∣∣ �

vg
x′

0 − y

∣∣∣∣ j

e−| �
vg

x0−y|−| �
vg

x′
0−y|

∣∣∣∣∣∣
2

=
(

�

vg

)2
∣∣∣∣∣∣

∞∑
k=0

∞∑
j=0

c(1)
k c(1)

j

∫ ∞

−∞
dy|y|k| �

vg
(x′

0 − x0) − y| je−|y|−| �
vg (x′

0−x0 )−y|
∣∣∣∣∣∣
2

. (D16)

The calculation is similar to I2, with the coefficients

c(1)
j =

∞∑
m= j

2

β2m+1

(2m + 1)!
a2m− j,2m(−1) j .

Based on these results, we are able to numerically calculate the correlation functions.
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APPENDIX E: QUADRATURE PROPERTIES

To evaluate the variance and spectrum of quadrature, we first calculate the following quantities:〈
ĉ†
ω0+ω, ĉω0+ω′

〉 = 〈∅|eF̂−F̂ †
ĉ†
ω0+ωĉω0+ω′eF̂ †−F̂ |∅〉 = 〈∅|ϕ̂†(ω)ϕ̂(ω′)|∅〉, (E1)

where F̂ † = −2iκV 2
∫

dω �
ω2+�2 ĉ†

ω0+ωĉ†
ω0−ω and ϕ̂(ω) = eF̂−F̂ †

ĉω0+ωeF̂ †−F̂ . As the two-photon amplitude contains a δ function
in the dimer coherent state, the ϕ̂(ω) operator can be simplified as

ϕ̂(η) = eF̂−F̂ †
ĉω0+ηeF̂ †−F̂ = ĉω0+η + [F̂ − F̂ †, ĉω0+η] + 1

2!
[F̂ − F̂ †, [F̂ − F̂ †, ĉω0+η]] + · · · , (E2)

[
F̂ − F̂ †, ĉω0+η

] = 2iκV 2
∫

dω
�

ω2 + �2

[
ĉ†
ω0+ωĉ†

ω0−ω, ĉω0+η

] = −4iκV 2 �

η2 + �2
ĉ†
ω0−η = −2iβ

�2

η2 + �2
ĉ†
ω0−η, (E3)

[
F̂ − F̂ †, ĉ†

ω0−η

] = 2iκV 2
∫

dω
�

ω2 + �2

[
ĉω0+ωĉω0−ω, ĉ†

ω0−η

] = 4iκV 2 �

η2 + �2
ĉω0+η = 2iβ

�2

η2 + �2
ĉω0+η, (E4)

where β = 2κ/π . Using the above commutator relations,

ϕ̂(η) = ĉω0+η − i

(
2β�2

η2 + �2

)
ĉ†
ω0−η + 1

2!

(
2β�2

η2 + �2

)2

ĉω0+η + 1

3!
(−i)

(
2β�2

η2 + �2

)3

ĉ†
ω0−η + · · ·

= ĉω0+η

[
1 + 1

2!

(
2β�2

η2 + �2

)2

+ 1

4!

(
2β�2

η2 + �2

)4

+ · · ·
]

− iĉ†
ω0−η

[(
2β�2

η2 + �2

)
+ 1

3!

(
2β�2

η2 + �2

)3

+ 1

5!

(
2β�2

η2 + �2

)5

+ · · ·
]

= cosh

(
2β�2

η2 + �2

)
ĉω0+η − i sinh

(
2β�2

η2 + �2

)
ĉ†
ω0−η,

ϕ̂†(η) = cosh

(
2β�2

η2 + �2

)
ĉ†
ω0+η + i sinh

(
2β�2

η2 + �2

)
ĉω0−η. (E5)

In terms of the ϕ̂(η) operator, the covariances for creation and annihilation operators are given by〈
ĉ†
ω0+ω, ĉω0+ω′

〉 = 〈∅|ϕ̂†(ω)ϕ̂
(
ω′)|∅〉

= i sinh

(
2β�2

ω2 + �2

)
(−i) sinh

(
2β�2

ω′2 + �2

)
〈∅|ĉω0−ωĉ†

ω0−ω′ |∅〉

= sinh2

(
2β�2

ω2 + �2

)
δ(ω − ω′),

〈
ĉω0+ω, ĉ†

ω0+ω′
〉 = cosh2

(
2β�2

ω2 + �2

)
δ(ω − ω′),

〈
ĉω0+ω, ĉω0+ω′

〉 = −i sinh

(
2β�2

ω2 + �2

)
cosh

(
2β�2

ω2 + �2

)
δ(ω + ω′),

〈
ĉ†
ω0+ω, ĉ†

ω0+ω′
〉 = i sinh

(
2β�2

ω2 + �2

)
cosh

(
2β�2

ω2 + �2

)
δ(ω + ω′). (E6)

The normal-ordered quadrature variances with two modes can be computed:

〈:X̂1(ω0 + ω), X̂1(ω0 + ω′):〉 = 1

4

(
e−iθ

〈
ĉω0+ω, ĉω0+ω′

〉 + eiθ
〈
ĉ†
ω0+ω, ĉ†

ω0+ω′
〉 + 〈

ĉ†
ω0+ω, ĉω0+ω′

〉 + 〈
ĉ†
ω0+ω′ , ĉω0+ω

〉)
= 1

4

[
i(eiθ − e−iθ ) sinh

(
2β�2

ω2 + �2

)
cosh

(
2β�2

ω2 + �2

)
δ(ω + ω′) + 2 sinh2

(
2β�2

ω2 + �2

)
δ
(
ω − ω′)]

= 1

2
sinh

(
2β�2

ω2 + �2

)[
−2 sin θ cosh

(
2β�2

ω2 + �2

)
δ(ω + ω′) + sinh

(
2β�2

ω2 + �2

)
δ(ω − ω′)

]
.

(E7)
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The normal-ordered variance of the full-bandwidth quadrature and the spectrum are

〈:X̂1, X̂1:〉 =
∫ ∞

∞
dω

1

4

[
−2 sin θ sinh

(
2β�2

ω2 + �2

)
cosh

(
2β�2

ω2 + �2

)
+ 2 sinh2

(
2β�2

ω2 + �2

)]

= �

∫ ∞

∞
dx

1

4

[
−2 sin θ sinh

(
2β

x2 + 1

)
cosh

(
2β

x2 + 1

)
+ 2 sinh2

(
2β

x2 + 1

)]
, (E8)

:S1(ω): = 1

4

[
−2 sin θ sinh

(
2β�2

ω2 + �2

)
cosh

(
2β�2

ω2 + �2

)
+ 2 sinh2

(
2β�2

ω2 + �2

)]
. (E9)

As the coefficient
∫

dx sinh( 2β

x2+1 ) cosh( 2β

x2+1 ) > 0, the maximum squeezing occurs in the direction θ = π/2 and thus yields the
following results:

〈:X̂1, X̂1:〉 = �

∫ ∞

∞
dx

1

4

[
−2 sinh

(
2β

x2 + 1

)
cosh

(
2β

x2 + 1

)
+ 2 sinh2

(
2β

x2 + 1

)]
= �

∫ ∞

∞
dx

1

4

(
e− 4β

x2+1 − 1
)
, (E10)

:S1(ω): = 1

4

[
−2 sinh

(
2β�2

ω2 + �2

)
cosh

(
2β�2

ω2 + �2

)
+ 2 sinh2

(
2β�2

ω2 + �2

)]
= 1

4

(
e− 4β�2

ω2+�2 − 1
)
, (E11)

:S1(0): = 1

2
sinh (2β )[sinh (2β ) − cosh (2β )] = 1

4
(e−4β − 1). (E12)

APPENDIX F: COHERENT STATES
OF PHOTONIC DIMERS

At well above threshold, the steady-state photon statistical
distribution is Poissonian, and the state of the optical field
of the laser output is a coherent state [18]. The single-mode
coherent state |α〉 at frequency ω has the form

|α〉 = eαĉ†
ω−α∗ ĉω |∅〉 (F1a)

= e− |α|2
2

∞∑
n=0

αn

√
n!

|n〉, (F1b)

|n〉 = (ĉ†
ω )n

√
n!

|∅〉, (F1c)

where |n〉 is the n-photon Fock state and the complex number
α is an eigenvalue of ĉω. The commutator of the mode creation
and annihilation operators takes the form [ĉω, ĉ†

ω′ ] = δω,ω′

(Kronecker δ function). As the dimer requires a finite band-
width to form, and also for the mathematical convenience, in
the continuous frequency ω limit (which is the same as the
large-volume limit), we obtain the following various expres-
sions: [ĉω, ĉ†

ω′ ] = δ(ω − ω′) (Dirac δ function), and

|n(ω)〉 = (ĉ†
ω )n√

n!	n−1
x

|∅〉, (F2a)

〈n(ω)|n(ω′)〉 = δ(ω − ω′), (F2b)

ĉω′ |n(ω)〉 = √
n
δ(ω − ω′)√

	x
|(n − 1)(ω)〉 for n � 1.

(F2c)

Here the normalization factor 	x ≡∫
dxeiωx/vg/(2πvg)|ω=0, which is proportional to the volume.
Based on the definition in Eq. (F2a), the number state of

photonic dimers can be similarly defined as

|nd (μ)〉 = (b̂†(μ))nd√
nd !	nd −1

x

|∅〉. (F3)

In the BEC limit, it can be shown that the dimer number
states have the following properties which are the natural
generalizations of the single-photon number states:

〈nd (μ)|nd (μ′)〉 = δ(μ − μ′), (F4a)

b̂(μ′)|nd (μ)〉 = √
nd

δ(μ − μ′)√
	x

|nd − 1(μ)〉. (F4b)

We note that the relations in Eqs. (F4) hold only in the
BEC limit while the definition of the dimer number states in
Eq. (F3) always remains valid.

The photon counting rates are determined by the relevant
field averages. For example, the first-order photon counting
rate for an nd -dimer Fock state in the BEC limit is proportional
to

〈nd (μ)|
∫∫

dωdω′ĉ†
ωĉω′ |nd (μ)〉

= 1

nd !	nd −1
x

〈∅|(b̂(μ))nd −1
∫∫

dωdω′ĉ†
ωĉω′ (b̂†(μ))nd −1|∅〉

= 2

(nd − 1)!	nd −1
x

〈∅|(b̂(μ))nd −1(b̂†(μ))nd −1|∅〉

+ 〈(nd − 1)(μ)|
∫∫

dωdω′ĉ†
ωĉω′ |(nd − 1)(μ)〉

= 2nd . (F5)

As expected, the first-order photon counting rate for a Fock
state of dimers is twice the number of the dimers. Following
Glauber [1], here we assume an ideal photon detector that has
a negligible size and a frequency-independent photoabsorp-
tion probability (quantum efficiency is 1).

The second-order correlation for an nd -dimer Fock state in
the BEC limit is given by the following average:

G(2)(x, x + d ) = 〈nd (μ)|ĉ†(x)ĉ†(xd )ĉ(x + d )ĉ(x)|nd (μ)〉

= nd

πvg
δ(d ) + nd (nd − 1)

π2v2
g	x

, (F6)
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where d denotes the relative distance between the two de-
tected photons (i.e., d/vg is the difference of the arrival times
of the photons). The first term describes the probability of the
detection of the two photons from the same dimer, while the
second term describes the detection of the two photons from
different dimers.

Thus we are motivated to introduce the coherent state of
the dimers in the BEC limit. The mathematical definition, not
surprising, parallels to that for single photons. Possible phys-
ical realizations of the dimer coherent states will be discussed
in the following sections. The single-mode coherent state of
photonic dimers of total frequency μ is defined as

|β〉 ≡ e− |β|2
2

∞∑
nd =0

βnd

√
nd !

|nd (μ)〉, (F7)

which is characterized by a complex parameter β. The follow-
ing field averages can be calculated straightforwardly:

〈β|
∫∫

dωdω′ĉ†
ωĉω′ |β〉 = 2|β|2, (F8a)

G(2)(x, x + d ) = 〈β|ĉ†(x)ĉ†(x + d )ĉ(x + d )ĉ(x)|β〉

= |β|2
πvg

δ(d ) + |β|4
π2v2

g	x
. (F8b)

The average photon number for a dimer coherent state |β〉
is 2|β|2, a result that is similar to that for a single-photon

coherent state. The dimer coherent state, by construction, also
has a Poissonian distribution of the number of dimers. The
second-order correlation has a peak at coincidence d = 0 due
to the single-photon contribution from the same dimer, and is
proportional to the “intensity” |β|2; the background value is
due to the due to the single-photon contribution from different
dimers and is proportional to the square of the intensity.

For a general optical dimer field described by a density
operator ρ, the field correlations in the BEC limit are obtained
by augmenting the above expressions by taking the trace of the
product of ρ and relevant photon operators.

APPENDIX G: SECOND-ORDER CORRELATION
OF PHOTONIC DIMER NUMBER STATE

When we apply coincidence measurement to a light pulse
containing multiple photonic dimers, the result correlation
curve records the probability of detecting a second photon
relatively to a first arriving photon at the photodetector. Intu-
itively, the strong bunching nature of photonic dimers and the
independence between different dimers should yield a with an
intense peak near relative distance between detected photons
d = 0, or even a Dirac delta peak under condensation limit.
In the following, a calculation provides the mathematical evi-
dence:

〈nd (μ)|ĉ†(x)ĉ†(x + d )ĉ(x + d )ĉ(x)|nd (μ)〉 = 〈nd (μ)|
∫

dx1dx2 · · · dxnd

ei μ

vg
(x1+x2+x3+...+xnd )

(2
√

π	ωvg)nd (
√

	x )nd −1
√

nd !

× ĉ†(x)ĉ†(x + d )ĉ(x + d )ĉ(x)ĉ†(x1)ĉ†(x1) · · · ĉ†(xnd

)
ĉ†(xnd

)|∅〉

= 〈nd (μ)|
∫

dx1dx2 · · · dxnd

ei μ

vg
(x1+x2+x3+...+xnd )

(2
√

π	ωvg)nd (
√

	x )nd −1
√

nd !

×
(

nd∑
i=1

2δ(d )δ(x − xi )ĉ
†(x1)ĉ†(x1) · · · ĉ†

(
xnd

)
ĉ†

(
xnd

)

+
nd∑

i=1

nd∑
j=1, j �=i

4δ(x − xi )δ(x + d − x j )ĉ
†(x1)ĉ†(x1) · · · ĉ†(xnd )ĉ†

(
xnd

)⎞⎠|∅〉. (G1)

The first term in the parentheses above denotes that the two detected photons are from a common photonic dimer. By
summarizing all the possibilities, it can be further calculated as

2δ(d )〈nd (μ)|
nd∑

i=1

ei μ

vg
x

2
√

π	x	ωvgnd
ĉ†(x)ĉ†(x)

(b̂†(μ))nd −1√
(nd − 1)!	nd −2

x

|∅〉

= 2δ(d )〈nd (μ)|
nd∑

i=1

ei μ

vg
x√

2πvg	xnd
b̂†

x(x)|(nd − 1)(μ)〉

= 2δ(d )〈nd (μ)|
nd∑

i=1

ei μ

vg
x√

2πvg	xnd

∫
dμ′√
2πvg

e−i μ′
vg

xb̂†(μ′)|(nd − 1)(μ)〉

= ndδ(d )

πvg

∫
dμ′ei μ−μ′

vg
x〈nd (μ)| b̂†(μ′)√

nd	x
|(nd − 1)(μ)〉 = ndδ(d )

πvg

∫
dμ′ei μ−μ′

vg
x
δ(μ − μ′) = ndδ(d )

πvg
. (G2)
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The other term in Eq. (G1) denotes the case where the two register photons are from different photonic dimers. It only exists
when the dimer number nd � 2, and it yields the result

4〈nd (μ)|
nd∑

i−1

nd∑
j=1, j �=i

ei μ

vg
(2x+d )

2πvg	x
√

nd (nd − 1)
b̂†

x(x)b̂†(x + d )
(b†(μ))nd −2√

(nd − 2)!	nd −3
x

|∅〉

= 4nd (nd − 1)〈nd (μ)| eiK (2x+d )

2πvg	x
√

nd (nd − 1)

∫∫
dμ′dμ′′

2πvg
ei μ

vg
(2x+d )−i μ′

vg
x−i μ′′

vg
(x+d )b̂†(μ′)b̂†(μ′′)|(nd − 2)(μ)〉

=
√

nd (nd − 1)

π2v2
g	x

∫∫
dμ′dμ′′ei μ

vg
(2x+d )−i μ′

vg
x−i μ′′

vg
(x+d )

√
nd (nd − 1)

	x
δ(μ − μ′)δ(μ − μ′′)〈(nd − 2)(μ)|(nd − 2)(μ)〉

= nd (nd − 1)

π2v2
g	x

. (G3)

Clearly, the result in Eq. (G3) is an infinitesimal value compared with that in Eq. (G2). Because different photonic dimers are
uncorrelated, the probability of detecting two photons from two dimers is uniform throughout the entire space, giving a value
of 1/	x, while the probability of detecting two photons together is extremely high because a peak due to the strong bunching
nature that two photons always register the photodetector simultaneously when a photonic dimer arrives at it. We note that the
results in Eq. (G2) and Eq. (G3) will be slightly different by a normalization factor 1/	x for nd = 1 and nd = 2, respectively.
It is due to the definition that vacuum normalizes to 1, while the physics is the same as the probability of detecting two photons
from different dimers is zero or a higher-order infinitesimal value.
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