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Nonclassical radiation from a nonlinear oscillator driven solely by classical 1/ f noise
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Low-frequency classical 1/ f noise and quantum noise from low-temperature phonon modes are ubiquitous
across various experimental platforms, and are usually considered a hindrance for quantum technological
applications. Here we show that the simultaneous action of classical 1/ f noise and a low-temperature phonon
bath on a nonlinear oscillator can result in the generation of nonclassical antibunched radiation without the need
for any additional drive. The 1/ f noise itself provides the source of energy for generation of photons, while the
phonon bath prevents heating up to infinite temperature and takes the nonlinear oscillator to a noise-averaged
nonequilibrium steady state. The photon current in this nonequilibrium steady state may be detected by a standard
wide-band detector. For sufficient nonlinearity and frequency dependence of the effective noise spectrum, the
detected radiation can be antibunched. This opens the possibility to turn two of the most ubiquitous intrinsic
noises in experimental platforms from a hindrance to a resource. It shows that wasteful heat from unavoidable
noises can be converted into useful radiation. These results are based on the Redfield equation, which provides a
rigorously derived general approach to treat any type of weak noise in a quantum system, specified only via the
noise spectral function, as we discuss in detail.
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I. INTRODUCTION

As technology brings us close to realization of practical
quantum devices, various sources of noise pose a critical
problem. Considerable efforts are employed to characterize
and understand various types of noises [1–13] and develop
protocols to protect against them [14–22]. A possibility only
rarely explored is that the state of the system in presence of
such noises might itself be a nontrivial one with potential
for technological applications [23–28]. Such an alternative
approach turns the sources of noise from a hindrance to a
resource. Two of the most ubiquitous intrinsic noises that
occur across various experimental platforms are the classical
1/ f noise occurring at low frequencies [5–8,17,18,29–40] and
the unavoidable low-temperature quantum noise due to the
presence of phonon modes [29,41–56]. In this paper, we show
that simultaneous action of both these noises on a nonlinear
oscillator can lead to generation of nonclassical antibunched
radiation, without requiring any additional drive. The energy
for generating the radiation is provided by the classical 1/ f
noise, while the coupling to the phonon modes prevents heat-
ing and aids antibunching. This provides an intuitive way to
filter classical 1/ f noise into nonclassical radiation. Since
nonclassical radiation can aid in applications such as quan-
tum sensing, metrology, and imaging [57–63], it shows that
intrinsic heating from unavoidable noises can be utilized to
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generate useful radiation, perfectly in line with the broad goal
of quantum thermal machines [64–66].

Our work is motivated by the seminal experiment, Ref. [9].
In this experiment, noise in a flux qubit was studied as a
function of frequency over a very wide range, from 0.1 mHz
to 10 GHz. The symmetric and the antisymmetric parts of
the noise spectral function were experimentally measured. For
classical noise, the noise correlation function is real, which
ensures that the noise spectral function is symmetric. For
noise from a quantum thermal bath, the noise correlation
function can be complex, and its antisymmetric part can be
nonzero. At low temperatures, when thermal excitations are
suppressed, the antisymmetric part and the symmetric part
become almost equal, which is the signature of solely quan-
tum noise [1,2]. In the experiment, at low frequencies, the
symmetric part was seen to have a frequency dependence ω−α

with α ∼ 1, while the antisymmetric part was a negligible
constant. These are the characteristics of classical 1/ f noise.
At high frequency, the symmetric and antisymmetric parts
of the noise spectral function became identical, which is the
characteristic of purely quantum behavior. The classical to
quantum crossover was seen in the noise spectrum at ∼1 GHz.
The frequency dependence of the quantum noise was found to
be ωs with s > 1. Such super-Ohmic frequency dependencies
are often associated with a phonon bath [43,45,46]. This ex-
periment motivates this work investigating the physics near
the crossover region, where classical and quantum noises are
simultaneously present.

To treat simultaneous presence of classical and quan-
tum noises in a quantum system, we use the weak-coupling
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Redfield quantum master equation (RE) [67,68]. We discuss
how the RE gives a general and controlled way to describe
noises in quantum systems, giving access to both the noise-
averaged expectation values and the two-time correlation
functions. We provide rigorous derivations, clearly laying out
its accuracy and validity regimes. This description can treat
any type of weak noise, specified by its spectral function,
without requiring further microscopic modeling. This is cru-
cial because microscopic models for generating 1/ f noise
remains an open problem [3,5,29]. Despite this, the RE ap-
proach gives a consistent way to analyze the physical effects
of such noises in quantum systems.

We apply this general framework to explore the effect of
noises in a nonlinear oscillator. We obtain several analytical
results for arbitrary nonlinearity treated within rotating wave
approximation. We explore in detail the case of a Kerr nonlin-
ear oscillator in simultaneous presence of classical 1/ f noise
and phonons, showing the generation of antibunched radiation
from such intrinsic noises. Finally, we discuss the necessary
conditions required to generate antibunched radiation from
noises.

The paper is arranged as follows. In Sec. II, we give the
general formalism to treat classical and quantum noises. In
Sec. III, we apply the formalism to a nonlinear oscillator. This
includes both the analytical discussion for arbitrary nonlin-
earity and the numerical exploration for the Kerr nonlinear
oscillator. In Sec. IV, we give the summary and outlook,
highlighting the significance of our work. This is followed by
several Appendixes, which contain the steps for the rigorous
derivations.

II. MODELING SIMULTANEOUS CLASSICAL
AND QUANTUM NOISES

A. Redfield equation

In order to investigate the effect of simultaneous presence
of both classical and quantum noises, we need a formalism
that allows treatment of both on the same footing. This can be
done with the RE. Consider a system governed by a Hamilto-
nian ĤS , with small amounts of noise appearing in unwanted
couplings of a system observable Ŝ to sources which are not
directly controllable. We call these sources the “baths.” This
can be formally written as

Ĥ = ĤS + εŜ
∑

�

B̂� +
∑

�

ĤB�
, (1)

where ε � 1 is a dimensionless number giving the strength of
coupling to sources of noise, B̂� is the Hermitian operator of
the �th bath coupling to the system, and ĤB�

is the Hamilto-
nian of the �th bath. We call B̂� the noise operators. We assume
that initially, there was no correlation between the system
and the baths, and among the baths. This can be formally
written as

ρ̂tot (0) = ρ̂(0)
∏

�

ρ̂B�
(0), (2)

where ρ̂tot (0) is the initial state of the whole setup of the
system and the baths, ρ̂(0) is the initial state of the system,
and ρ̂B�

(0) is the initial state of the �th bath. The initial state

of the baths is such that

〈B̂�〉B = 0, (3)

where 〈. . .〉B = Tr[. . .
∏

� ρ̂B�
(0))] denotes trace over bath de-

grees of freedom. Thus, on average, the noise is zero. The
noise correlation functions, i.e, two-time correlation of the
bath operators coupling to the system, can be written as

〈B̂�(t )B̂m(0)〉B = δ�m

∫ ∞

−∞

dω

2π
W (�)(ω)e−iωt

= δ�m

∫ ∞

0

dω

π

[
W (�)

S (ω) cos(ωt )

− iW (�)
A (ω) sin(ωt )

]
, (4)

where W (�)(ω) is the Fourier transform of the noise correla-
tion function, which is termed the noise spectral function, and

W (�)
S (ω) = W(�)(ω) + W(�)(−ω)

2
,

W (�)
A (ω) = W(�)(ω) − W(�)(−ω)

2
(5)

are the symmetric and the antisymmetric parts of the noise
spectral function. Under these conditions, we can obtain the
quantum master equation for the long-time dynamics of the
system to the leading order in ε via the standard Born-Markov
approximation. This gives the RE [69]

∂ρ̂

∂t
= i[ρ̂, ĤS] − ε2([Ŝ,

ˆ̃S ρ̂(t )] + H.c.),

where ˆ̃S =
∫ ∞

0
dt ′Ŝ(−t ′)

∑
�

〈B̂�(t ′)B̂�(0)〉B, (6)

H.c. stands for Hermitian conjugate, and Ŝ(t ) = eiĤSt Ŝe−iĤSt .
The steps for rigorous derivation of the RE are given in
Appendix A.

B. Quantum and classical noises

For classical noise, the notation Tr(. . .)B should be re-
garded as the classical average over several noise realizations.
With this identification, classical and quantum noises can be
treated via RE on the same footing, and we can consider the
simultaneous presence of both.

Since B̂� is Hermitian, the presence of the imaginary part
in Eq. (4), which is odd in time, shows explicitly that B̂�(t )
and B̂�(0) do not commute, reflecting their quantum nature.
On the contrary, classical noises can be thought to be associ-
ated with environment degrees of freedom that commute with
each other, making the imaginary part zero. So we have, as
discussed before [1,2],

W (�)
A (ω) = 0 for classical noise,

W (�)
A (ω) �= 0 for quantum noise. (7)

If the noise source is a quantum system in thermal equilibrium
with inverse temperature β, the ratio of W (�)

A (ω) to W (�)
S (ω)

satisfies the so-called Kubo-Martin-Schwinger (KMS)
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condition

W (�)
A (ω)

W (�)
S (ω)

= tanh

(
βω

2

)
, for quantum thermal noise. (8)

So, we see that, classical source of noise can be thought of
as a quantum thermal bath in the infinite-temperature limit
β → 0. In the opposite limit of effectively zero temperature
β → ∞, tanh( βω

2 ) = 1, so W (�)
A (ω) = W (�)

S (ω). The simulta-
neous presence of both quantum and classical noises therefore
leads to a highly out-of-equilibrium situation, taking the sys-
tem to a nonequilibrium steady state (NESS) in the long-time
limit.

Within the above RE description, the noise from various
sources is additive, so that the effective total noise spectral
functions can be defined:

W tot
S (ω) =

∑
�

W (�)
S (ω), W tot

A (ω) =
∑

�

W (�)
A (ω). (9)

In the experiment in Ref. [9], these total noise spectral func-
tions were measured for a flux qubit.

C. Accuracy and validity regimes

When modeling classical and quantum noises as above,
one must be careful with the accuracy of the RE. This is even
more important because the RE does not generically guarantee
complete positivity [70]. Staying within its validity regimes,
carefully noting accuracy of various elements of the density
matrix obtained from RE can mitigate problems arising from
lack of complete positivity [23,71,72]. It has been shown that,
if a unique NESS is reached, the populations in the eigenbasis
of the system Hamiltonian are correct to order O(ε0) while the
coherences are correct to O(ε2) [71,73]. Higher-order terms
obtained from the RE, in either populations or coherences,
cannot be trusted. For a bosonic system, the number of bosons
must also be restricted in order for the weak-coupling ap-
proach to be applicable. Further, the RE is accurate for time
t 
 τM , where τM is the memory time of the bath, which
satisfies ∣∣∣∣∣

∑
�

〈
B̂�(t )B̂�(0)

〉
B

∣∣∣∣∣ < ε, ∀ t � τM (10)

in some chosen energy unit (see Appendix A).

D. Two-time correlations via regression formula

The RE gives the noise-averaged density matrix of the
system. The density matrix allows us to obtain expectation
values of operators. But, it does not immediately allow to
calculate multitime correlation functions. This can be done
using the quantum regression formula. We will be interested
in two-time correlation functions of the form

〈Ô2(t1)Ô4(t1 + τ )Ô3(t1 + τ )Ô1(t )〉
= Tr(Ô2(t1)Ô4(t1 + τ )Ô3(t1 + τ )Ô1(t )ρ̂tot (0)), (11)

where, Ô1, Ô2, Ô3, Ô4 are four system operators, Ô�(t ) =
eiĤt Ô�e−iĤt , and τ > 0. Using the cyclic property of the trace,

this correlation function can be exactly written as

〈〈Ô2(t1)Ô4(t1 + τ )Ô3(t1 + τ )Ô1(t1)〉
= TrS[Ô4Ô3

ˆ̃ρ (τ )],

ˆ̃ρ (τ ) = TrB(e−iĤτ ˆ̃ρ tot (t1)eiĤτ ),

ˆ̃ρ tot (t1) = Ô1ρ̂tot (t1)Ô2, (12)

where TrS (. . .) refer to trace over system degrees of freedom.
Thus, the two-time correlation function is obtained by taking
the trace of Ô4Ô3 with a modified system density matrix ˆ̃ρ (τ ).
This modified system density matrix is obtained by dressing
the density matrix of the full setup at time t1 with Ô1 and Ô2,
evolving with the full Hamiltonian for a time τ and taking
trace over the bath degrees of freedom. It can be shown that,
when τ 
 τM [74], up to leading order in system-bath cou-
pling strength, ˆ̃ρ (τ ) can be obtained by solving

∂ ˆ̃ρ

∂τ
� i[ ˆ̃ρ, ĤS] − ε2([Ŝ,

ˆ̃S ˆ̃ρ (t )] + H.c.), ∀ τ 
 τM (13)

starting with the initial condition

ˆ̃ρ (t1) = TrB( ˆ̃ρ tot (t1)) = Ô1ρ̂(t1)Ô2, (14)

where note that ρ̂(t1) is the system density matrix at time t1.
Thus, ˆ̃ρ (τ ), for τ 
 τM , can be obtained by solving the
RE starting with an appropriately modified initial condition.
From ˆ̃ρ (τ ), the required two-time correlation function can be
obtained. The steps for rigorous derivation of the regression
formula are given in Appendix A.

In this section, we have discussed the general formalism
to treat quantum and classical noises in the same setting,
and how both expectation values and two-time correlation
functions can be obtained consistently via this approach. A
crucial point to note is that this formalism based on RE does
not need microscopic modeling of the source of noise. Instead,
the knowledge of noise spectral function is enough. This is
useful because for some kinds of noise, for example, the 1/ f
noise, the underlying microscopic model is often not known
[3,5,29]. The RE approach allows exploration of the effect of
even such noises on quantum systems. In the next section, we
see this in the case of a nonlinear oscillator.

III. A NONLINEAR OSCILLATOR WITH NOISES

A. General model and the NESS

As a simple model of a nonlinear oscillator, we consider
the Hamiltonian

ĤS = �n̂ + χU (n̂), (15)

where n̂ = â†â is the number operator, U (n̂) is a function of
the number operator, and â is the bosonic annihilation operator
for the oscillator. This nonlinearity can be thought of arising
from a nonlinearity that is a function of x̂, with x̂ = (â + â†),
after neglecting counter-rotating terms (rotating wave approx-
imation). Considering such a nonlinear oscillator, as opposed
to a qubit, is experimentally relevant because many qubits
[75,76] are essentially oscillators with a finite nonlinearity.
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The time evolution in absence of coupling to any bath is
given by â(t ) = e−i�̂t â, where

�̂ = � + χ [U (n̂ + 1) − U (n̂)]. (16)

We consider that the coupling to multiple sources of noise
occurs via the operator x̂. We can then write the RE for this
setting and neglect the counter-rotating terms to obtain [77]

∂ρ̂

∂t
= i[ρ̂, ĤS] − ε2{[â†, (F̂+ + iR̂−)âρ̂]

+ [ρ̂(F̂− + iR̂+)â, â†] + H.c.}, (17)

where F̂± = [W tot
S (�̂) ± W tot

A (�̂)]/2, R̂± = R̂S ± R̂A, R̂S =
P

∫
dω
2π

W tot
S (ω)( 1

�̂+ω
+ 1

�̂−ω
), R̂A = P

∫
dω
2π

W tot
A (ω)( 1

�̂+ω
−

1
�̂−ω

). Remarkably, this equation can be solved analytically
to obtain the NESS density matrix. The population, i.e., the
photon-number distribution, is given by [77] (see Appendix B)

ρn = ρ0

n∏
p=1

[
W tot

S (�p−1) − W tot
A (�p−1)

][
W tot

S (�p−1) + W tot
A (�p−1)

] , (18)

where ρn = 〈n|ρ̂|n〉, |n〉 being the number eigenbasis, satisfy-
ing â|n〉 = √

n|n − 1〉, â†|n〉 = √
n + 1|n + 1〉, �n = 〈n|�̂|n〉

and ρ0 being determined by the normalization
∑∞

n=0 ρn = 1.
Within the rotating wave approximation, the coherences in the
number basis can be argued to be negligible.

From the expression for ρn, we directly see that if there
were only classical sources of noise, i.e, if W (�)

A = 0 ∀ �, all
states would be equally populated. This is true regardless of
the strength of nonlinearity χ . This is the infinite-temperature
state, which, for a bosonic system, is not normalizable and
hence ill defined. This points to a deficiency of the weak-
coupling approximation and the relevance of higher-order
terms, which are important when the system gets highly ex-
cited. If, instead, we have only quantum baths all at the same
temperature β, it can be shown that ρn ∝ e−β[�n+χU (n)], which
corresponds to the Gibbs state of the system at the temperature
of the baths. In presence of both classical and quantum noises,
we expect that ρn approximates the NESS photon-number
distribution well, provided the system is not too excited. This
is guaranteed if the temperatures of the quantum thermal baths
are low.

B. Classical 1/ f noise, phonons, and detector

The above description holds for an arbitrary number of
noise sources and baths. We now consider the case where the
intrinsic noises are classical 1/ f noise, noise from a phonon
bath with super-Ohmic spectrum, and a wide-band detector
[see Fig. 1(a)]. For simplicity, we consider that all the baths
have a hard lower cutoff frequency ωmin, and a hard upper
cutoff frequency ωmax. We take the cutoff frequencies far
enough from relevant system frequencies so that their values
only affect the physics negligibly. The classical 1/ f noise is
described by

W cl
S (ω) = �cl ω∗ω−1, ∀ ωmin � ω � ωmax

W cl
A (ω) = 0. (19)

FIG. 1. (a) A nonlinear oscillator in simultaneous presence
of classical 1/ f noise, a low-temperature super-Ohmic phonon
bath and a wide-band photon detector. (b) The total noise spec-
tral functions: W tot

S (ω) = W cl
S (ω) + W q

S (ω) + W D
S (ω) and W tot

A (ω) =
W cl

A (ω) + W q
A (ω) + W D

A (ω). Parameters: βω∗ = 10, s = 3, �cl =
10−3, �q = 10−6, �D = 10−3, ωmin = 0.01ω∗, ωmax = 50ω∗. Here
�D, �cl , and �q are dimensionless coupling constants to the detector,
the source of classical noise, and the phonon bath, respectively.
(c) The decay of the total noise correlation function |〈B̂(t )B̂(0)〉B|
with time. The horizontal line corresponds to

√
�D. The value where

horizontal line cuts the plot gives the estimate of τM . From the plot,
we find τM ∼ 2ω−1

∗ .

The phonon bath at inverse temperature β is described by

W q
A (ω) = �q

ωs

ωs−1∗
, ∀ ωmin � ω � ωmax

W q
S (ω) = W q

A (ω) coth

(
βω

2

)
. (20)

A super-Ohmic phonon bath corresponds to s > 1. We choose
s = 3. The wide-band detector is modeled by a quantum bath
with constant spectral function,

W D
A (ω) = �Dω∗, ∀ ωmin � ω � ωmax

W D
S (ω) = W D

A (ω) coth

(
βω

2

)
. (21)

We assume the detector temperature is the same as that of the
phonon bath, and we further assume the temperature to be low,
such that β� 
 1. The dimensionless parameters �cl , �q, and
�D are O(ε2) and give the strength of coupling to the classical
noise, the phonon bath, and the detector, respectively. The
frequency ω∗ provides a scale such that, if �cl = �q = �D,
W (cl )

S (ω∗) = W (q)
A (ω∗) = W (D)

A (ω∗). In Fig. 1(b), we plot the
total effective noise spectral functions W tot

S (ω), W tot
A (ω) for the
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chosen set of parameters given in the figure caption. For small
ω � 5ω∗, W tot

S (ω) ∼ ω−1 
 WA(ω), showing that the noise
is effectively classical. For ω 
 5ω∗, the W tot

S (ω) � WA(ω) ∼
ω3, so the noise is fully quantum. This is exactly akin to what
was experimentally observed in Ref. [9].

To apply the RE, we need an estimate of the memory time
τM for our chosen bath parameters. In Fig. 1(c), we do this by
plotting |〈B̂(t )B̂(0)〉B| with time. For our choice of parameters,
the smallest coupling to the bath is the coupling to the detector
�D, which can be taken as O(ε2). So

√
�D ∼ O(ε), and τM is

given by the time after which |〈B̂(t )B̂(0)〉B| <
√

�D. From the
plot, we estimate τM ∼ 2ω−1

∗ .
Since the classical noise acts like an infinite-temperature

bath, while the phonons and the detector act like low-
temperature baths, there is a current of photons excited by the
classical noise, that goes into the phonon bath and the detector.
The currents can be obtained from Eq. (17) by writing the
equation for the rate of change of photons in the system as

d〈n̂〉
dt

= Icl − Iq − ID, (22)

where Icl , Iq, and ID are obtained by grouping the terms
proportional to �cl , �q, and �D, respectively, with the corre-
sponding sign. Here, Icl gives the rate of excitation of quanta
by the classical noise, Iq gives the rate of dissipation of quanta
into the phonon bath, while ID is the photon current into
the detector. At NESS, d〈n̂〉

dt = 0, so Icl = Iq + ID. Due to its
constant spectral function, the photon current into the detector
simply becomes ID = 2�D〈n̂〉, while Iq has a more compli-
cated expression given in terms of the photon distribution (see
Appendix C).

The spectrum of radiation detected by the wide-band de-
tector is given by

S(ω) = Re

[∫ ∞

0
dτ eiωτ g(1)(τ )

]
,

where g(1)(τ ) = lim
t→∞

〈
â†(t )â(t + τ )

〉
(23)

and Re[. . .] denotes the real part. The counting statistics of
the photons is characterized by the second-order correlation
function

g(2)(τ ) = lim
t→∞[〈â†(t )â†(t + τ )â(t + τ )â(t )〉/〈n̂(t )〉2]. (24)

The photons are antibunched if g(2)(0) < g(2)(τ ). This is
guaranteed to happen if g(2)(0) < 1, which corresponds to a
sub-Possionian photon distribution [78]. Since we know the
NESS photon distribution, g(2)(0) can be directly calculated,
while S(ω), g(2)(τ ) can be calculated employing the quantum
regression formula, which is applicable for τ 
 τM . Detailed
formulas for obtaining g(2)(τ ) and S(ω) in our setting are
given in Appendixes D and E, respectively. Note that the
above characterization of detected radiation is valid strictly for
a low-temperature detector with constant spectral function, as
we are considering here.

C. Antibunched radiation from intrinsic noises

The above formulation holds for arbitrary choices of non-
linear functions U (n̂) [see Eq. (15)]. The nonlinear function
only sets �̂ [Eq. (16)]. We now numerically investigate the

FIG. 2. (a) The figure shows g(2)(0) (color coded), which quan-
tifies the fluctuations in the photon detection signal, as function of
χ and �. The dashed line shows the g(2)(0) = 1 contour. (b) The
rate of dissipation of quanta into the phonon bath (Iq) and the photon
current (ID) into the detector and g(2)(0), are plotted against �, for
χ = 3ω∗. The currents are multiplied by 2 to make them visible on
the same scale. The dotted horizontal line corresponds to g(2)(0) = 1.
(c) Steady state g(2)(τ ) for two different values of �, with χ = 3ω∗.
The dotted horizontal line corresponds to g(2)(0) = 1. (d) The fre-
quency spectrum of the photon signal for the same parameters. The
vertical dashed lines correspond to �n = � + 2χn, n = 0, 1, 2, 3.

experimentally relevant case of Kerr nonlinearity,

ĤS = �n̂ + χ n̂(n̂ − 1), (25)

which gives �̂ = � + 2χ n̂, and demonstrate the possibility of
antibunched radiation solely driven by the intrinsic 1/ f noise.
We consider χ > 0.

In Fig. 2(a), we show g(2)(0) as a function of χ and �.
We see that for a wide region of parameter space, the photon
statistics is sub-Poissionian, which guarantees antibunching.
The effective nonlinearity is given by the ratio χ/�. It is
interesting to note that sub-Poissionian statistics can occur
even with quite small values of χ/�. Figure 2(b) shows plots
of g(2)(0), ID, Iq as a function of �, keeping χ = 3ω∗. We
see that g(2)(0) smoothly crosses over from sub-Poissonian
to super-Poissonian values on increasing �. This is expected
because the effective nonlinearity decreases on increasing �.
The photon current into the detector ID decreases on increas-
ing �. This is because smaller � increases coupling to the
classical 1/ f noise, which is the only drive taking the system
out of equilibrium. The current into the phonon bath Iq shows
a nonmonotonic behavior. This arises due to the fact that al-
though the system is farther away from equilibrium at smaller
�, the coupling to the phonon bath decreases with �.

Next, in Fig. 2(c), we plot g(2)(τ ) for two chosen pa-
rameters. We see that in both cases, g(2)(τ ) monotonically
approaches 1. The monotonic approach may be a peculiar-
ity of the rotating wave approximation, which leads to zero
steady-state coherence in the number basis. Nevertheless, it
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FIG. 3. (a) The symmetric and antisymmetric parts of total noise
spectral functions in absence of the phonon bath. (b) g(2)(0) as a
function of χ and �. The dashed line corresponds to g(2)(0) = 1.
Other parameters are the same as in Fig. 2.

is clear that antibunching occurs over a considerable duration
of time. Finally, in Fig. 2(d), we plot the frequency spectrum
of detected radiation for the same two chosen parameters. We
see that the spectrum has multiple peaks where the higher-
frequency peaks, corresponding to transitions between the
higher excited states, have smaller magnitude. Because of the
frequency dependence of the noises, the different peaks also
have different widths.

Overall, the above results clearly demonstrate that it is
possible to get nonclassical antibunched radiation from a non-
linear oscillator solely driven by classical 1/ f noise. Note
that, since, for our choice of parameters, the classical to
quantum crossover in noise occurs at ∼5ω∗, the parameters
in Fig. 2 are around the crossover value. If we reduce the pa-
rameters to be deep into the classical regime, with finite χ , the
photon statistics becomes super-Poissionian again. Contrarily,
deep into the quantum regime, ID goes to zero.

It is useful to consider order-of-magnitude estimates of
various parameters. Following the experiment in Ref. [9], if
we set the classical to quantum crossover frequency in noise
to be ∼1 GHz, the range of � and χ explored in Fig. 2 is then
∼0.1–10 GHz. The photon current into the detector for such
parameters is in the range 1–100 kHz.

D. Antibunching without phonons

Even without the phonon bath, our setup has the detector as
a low-temperature quantum noise source. In presence of 1/ f
classical noise, we can still work near the crossover region
from classical to quantum noise to get antibunched radiation.
This is shown in Fig. 3. However, we see that the parameter
regime showing antibunching has decreased, as compared to
the case in presence of phonons. The presence of the phonon
bath therefore aids in antibunching. In experimental situa-
tions, it is hard to decouple from phonons. Our results show
that coupling to phonons is even advantageous.

E. Necessary requirements for antibunched radiation
from noises

We find that the the minimal necessary properties required
to generate antibunched radiation from noises are (a) the
noises have different effective temperatures, (b) the system is
nonlinear, (c) the noises are frequency dependent. The first

condition ensures that the system is out of equilibrium, so
that there is a photon current. To see the necessity of (b)
and (c), let us consider cases where either of the following
conditions is satisfied: (i) there is no nonlinearity, but there can
be frequency-dependent classical and quantum noises; (ii) the
oscillator is nonlinear, but there is no frequency dependence of
the noises. The latter condition can arise if there are only white
noises, and effectively empty quantum baths with constant
spectral functions. In either of the cases, the ratio appearing in
the product in Eq. (18) is independent of n. Calling this ratio r,
we find from Eq. (18), ρn ∝ e−nln(r). The NESS in these cases
then behaves like that of an effective thermal linear oscillator
with effective temperature �/lnr. While it is interesting that
in such cases, even far from equilibrium, such an effective
temperature can be defined [77,79], it also guarantees that
g(2)(0) = 2 in all such cases. Therefore, both nonlinearity and
frequency dependence of noises are required for antibunching.

It is to be noted that, phenomenologically, modeling
dissipation and noise in quantum systems neglecting their
frequency dependence is quite popular, owing to the rather
simple Lindblad equations that appear due to such approxi-
mations. While such approximations are widely used, going
beyond them is imperative to uncover interesting and impor-
tant physics like generation of antibunched radiation from
intrinsic noises, as we see above.

IV. SUMMARY AND OUTLOOK

Utilizing intrinsic noises. A sufficiently nonlinear oscillator
can generically produce antibunched radiation when driven. In
such a case, the drive would provide the energy required for
generating the radiation. The main significance of our work is
that, instead of such an external drive, we propose to directly
use the intrinsic noises in an experimental setting to generate
antibunched light. Two ubiquitous sources of noise occurring
across various experimental platforms are the low-frequency
classical 1/ f noise [5–8,17,18,29–40] and the quantum noise
due to coupling to phonons [29,41–56]. These sources of
noise, which are now quite well characterized, are usually
considered a hindrance for quantum technology applications.
We show that simultaneous action of these two noises on a
nonlinear oscillator can lead to emission of nonclassical, an-
tibunched radiation, without requiring any further drive. The
1/ f noise itself provides the energy required for generation
of photons, while the phonon bath prevents heating and aids
antibunching.

Nonclassical radiation has been shown to aid in quantum
sensing, metrology, and imaging applications [57–63].
Therefore, our main result turns the intrinsic noises from a
hindrance to a resource. Experimentally accessible parameter
regimes, which were previously deemed unfavorable for tech-
nological applications due to the intrinsic noises, may now
be explored for generation of antibunched radiation. To our
knowledge, utilizing the ubiquitous classical 1/ f noise has
not been discussed before, although some works go towards
utilizing the coupling to phonons [23,24,80–86]. This is also
consistent with the broad motivation for quantum thermal
machines [64–66], which is to convert wasteful heating in
quantum devices (here, from ‘infinite-temperature’ classical
1/ f noise) into useful energy (here, antibunched radiation).
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A general framework to treat noises in quantum systems.
Apart from the above, we also provide a detailed discussion
of how the RE provides a general and rigorous framework
to treat all types of noises in a quantum system. The noises
are all treated in an equal footing, irrespective of whether
they are quantum or classical. This treatment does not require
explicit modeling of the sources of the noise, but rather only
the knowledge of the noise spectral function. The approxima-
tions required are controlled, and their accuracy and validity
regimes are also discussed. This framework can be envisaged
to be useful across many other settings to characterize the
noises in quantum devices.

The RE does not generically preserve complete positivity
of the density matrix, but often such concerns can be mitigated
by carefully staying within its accuracy and validity regimes
[23,71,72]. It can also be reduced to several types of Lind-
blad equations through further approximations (for example,
[87–91]). These approximations ensure complete positivity at
the expense of lower accuracy. Most often, they may also lead
to some other fundamental limitations, such as lack of ther-
malization and violation of local conservation laws [70,71].
Alternatively, our description in terms of RE can be improved
by employing the recently discovered canonically consistent
quantum master-equation approach [92].

We would like to mention here that significant effort has
been dedicated to microscopically model sources of classical
1/ f noise [3,5,29]. While such modeling remains an open
question, our framework provides a controlled way to com-
pletely avoid such microscopic modeling and still analyze the
effects of 1/ f noise in a realistic setting.

Future directions. From above, it is clear that our results
should be of interest to researchers across quantum science
and technology, solid-state physics, quantum optics, thermo-
dynamics, and statistical physics. We reiterate that controlled
simultaneous coupling to 1/ f noise and phonons in a non-
linear oscillator (flux qubit) has already been demonstrated
[9], although the photon statistics of the radiation generated
has not yet been measured. We believe that the observed
antibunching in our setting can be improved via further fil-
tering to detect only photons within a small frequency range.
Investigations in this direction will be carried out in future
works. Other future works may explore scaling the system
to several nonlinear oscillators and going beyond the weak-
coupling regime.
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APPENDIX A: MICROSCOPIC DERIVATION
OF RE AND REGRESSION FORMULA

1. General microscopic setting

We go back to the fully microscopic starting point. The full
setup of system and the baths is governed by the Hamiltonian

Ĥ = ĤS + εŜB̂ + ĤB, (A1)

and the initial state of the full setup is taken as ρ̂tot (0) =
ρ̂(0)ρ̂B(0). Here we have defined the composite Hamiltonian
of all the baths ĤB = ∑

� ĤB�
, the composite initial state of

all the baths ρ̂B(0) = ∏
� ρ̂B�

(0), and the composite system-
bath coupling B̂ = ∑

� B̂�. Without much loss of generality,
we assume 〈B̂〉B = 0. The state of the system at time t is
given by

ρ̂(t ) = TrB(e−Ĥtρtot (0)e−Ĥt ). (A2)

We define the following superoperators:

P̂(•) = TrB(•)ρ̂B, Q̂ = Î − P̂, L̂ = i[•, Ĥ ], (A3)

where Î is the identity superoperator. In terms of these su-
peroperators, the evolution equation for ρ̂(t ) can be exactly
written as [69]

∂ρ̂

∂t
= i[ρ̂, ĤS] +

∫ t

0
dt ′K̂ (t ′)[ρ̂(t − t ′)],

K̂ (t )[•] = TrB(L̂etQ̂L̂Q̂L̂P̂[•]). (A4)

K̂ (t ) is called the memory kernel superoperator. The exact
same evolution can also be equivalently written for t1 > 0 as
[69]

∂ρ̂

∂t
= i[ρ̂, ĤS] +

∫ t−t1

0
dt ′K̂ (t ′)[ρ̂(t − t ′)]

+ Î(t − t1)[ρ̂(t1)],

Î (t )[•] = TrB(L̂etQ̂L̂Q̂[•]). (A5)

The occurrence of the superoperator Î(t ) stems from the
fact that at time t1, the system and the baths are no longer
in product state. Note that both the superoperators K̂ (t ) and
Î (t ) depend on the initial state of the bath ρ̂B(0) and the full
Hamiltonian Ĥ , but are independent of the initial state of the
system ρ̂(0).

The above equations are exact. We now perform the Born-
Markov approximation to obtain the RE. In the following, we
assume that time has been rescaled to some unit, so that it can
be considered as a dimensionless parameter.

2. Born-Markov approximation and RE

In doing the Born-Markov approximation, first, the mem-
ory kernel in Eq. (A4) is expanded in powers of system-bath
coupling strength ε, and the leading order is retained, higher
orders are neglected. This gives [69,71]

∂ρ̂

∂t
� i[ρ̂, ĤS] + ε2

∫ t

0
dt ′K̂ (RE)(t ′)[ρ̂(t − t ′)],

K̂ (RE)(t )[•] = −([Ŝ, Ŝ(−t ′)•]〈B̂(t ′)B̂(0)〉B + H.c.). (A6)

Let the bath correlation function decay with time. Then there
is a timescale τM , such that

|〈B̂(t )B̂(0)〉B| < ε, ∀ t � τM . (A7)
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For t 
 τM , setting the upper limit of time integral to infinity
in Eq. (A6) makes only errors in higher order in ε. So, we get

∂ρ̂

∂t
� i[ρ̂, ĤS] − ε2([Ŝ,

ˆ̃S ρ̂(t )] + H.c.),

ˆ̃S =
∫ ∞

0
dt ′Ŝ(−t ′)

∑
�

〈
B̂�(t ′)B̂�(0)

〉
B
, ∀ t 
 τM (A8)

which is the RE that we use to describe quantum and classical
noises on the same footing. The above two approximations
together are called the Born-Markov approximations.

3. Loss of information about initial system-bath correlations

We can now write Eq. (A5) also applying the Born-Markov
approximation to the memory kernel superoperator. In doing
so, we get

∂ρ̂

∂t
� i[ρ̂, ĤS] − ε2([Ŝ,

ˆ̃S ρ̂(t )] + H.c.)

+ Î(t − t1)[ρ̂(t1)], ∀ t − t1 
 τM . (A9)

Since this equation should describe the exact same state as
described by Eq. (A8), it follows that we must have

||Î(t − t1)[ρ̂(t1)]|| < ε, ∀ t − t1 
 τM (A10)

where ||Ô|| is the norm of the operator Ô, so that the last term
in Eq. (A9) can be dropped. In other words, the information
that the system was correlated with the bath at time t1 is lost
in a time τM . Since this should be true for all possible choices
of the time t1 and all possible choices of ρ̂(0), this should be
a property of the superoperator Î (t ).

4. Two-time correlations and quantum regression

As mentioned in the main text, we are interested in correla-
tion functions involving four system operators and two times

〈Ô2(t1)Ô4(t1 + τ )Ô3(t1 + τ )Ô1(t )〉
= Tr(Ô2(t1)Ô4(t1 + τ )Ô3(t1 + τ )Ô1(t )ρ̂tot (0)), (A11)

where Ô�(t ) = eiĤt Ô�e−iĤt , and τ > 0, which can be written
as

〈〈Ô2(t1)Ô4(t1 + τ )Ô3(t1 + τ )Ô1(t1)〉
= TrS[Ô4Ô3

ˆ̃ρ (τ )],

ˆ̃ρ (τ ) = TrB(e−iĤτ ˆ̃ρ tot (t1)eiĤτ ), (A12)

ˆ̃ρ tot (t1) = Ô1ρ̂tot (t1)Ô2.

where TrS (. . .) refer to trace over system degrees of freedom.
The correlation function is therefore obtained by taking the
“expectation value” with a generalized system density matrix
ˆ̃ρ (τ, t1). This generalized system density matrix is obtained
taking the full density matrix dressed by the operators Ô1

and Ô2, evolving it with the full Hamiltonian Ĥ up to time
τ and tracing out the bath degrees of freedom. The operation
comprising evolution via the full Hamiltonian and tracing
out the bath degrees of freedom is exactly the same as that

required in obtaining the system density matrix. Here, how-
ever, the “initial state” ˆ̃ρ tot (t1) has system-bath correlations.
So, without any further approximation,the evolution equa-
tion for ˆ̃ρ (τ ) with τ is the same as Eq. (A5):

∂ ˆ̃ρ

∂τ
= i[ ˆ̃ρ, ĤS] +

∫ τ−t1

0
dt ′K̂ (t ′)[ ˆ̃ρ (τ − t ′)]

+ Î(τ − t1)[ ˆ̃ρ (t1)]. (A13)

Given the initial condition

ˆ̃ρ (0) = TrB( ˆ̃ρ tot (t1)) = Ô1ρ̂(t1)Ô2, (A14)

where, note that ρ̂(t1) is the system density matrix at time
t1, we can in principle solve Eq. (A13) to obtain ˆ̃ρ (τ ). Then
taking the expectation value with respect to this general-
ized system density matrix, we obtain the desired correlation
function.

This is the most general form of quantum regression, which
holds without any approximation. Note that this has been
derived for τ > 0, so a notion of time ordering is already built
in. For τ < 0, the analog of the above formalism has to be
rederived, which will change the initial condition and the final
operators in the formal expectation value.

5. Quantum regression with Born-Markov approximation

From the discussions in Appendixes A 3 and A 4, it is now
easy to see that under weak system-bath coupling, the Born-
Markov approximation leads to

∂ ˆ̃ρ

∂τ
� i[ ˆ̃ρ, ĤS] − ε2([Ŝ,

ˆ̃S ˆ̃ρ (t )] + H.c.), ∀ τ 
 τM . (A15)

It follows that, to leading order in system-bath coupling, two-
time correlations can be obtained by solving the RE with
appropriately modified initial conditions and taking the trace
after multiplying by appropriate operators.

APPENDIX B: FINDING THE NESS POPULATION
DISTRIBUTION

Here we show the steps to derive Eq. (18) from Eq. (17).
Writing the evolution equation for ρn = 〈n|ρ̂|n〉, |n〉 being
the number eigenbasis, satisfying â|n〉 = √

n|n − 1〉, â†|n〉 =√
n + 1|n + 1〉, gives

dρn

dt
= −ε2[ρn(Cn + Dn) − ρn−1Cn−1 − ρn+1Dn+1]. (B1)

Here,

Cn =
∑

�

C(�)
n , Dn =

∑
�

D(�)
n ,

C(�)
n = (n + 1)

(
W (�)

S (�n) − W (�)
A (�n)

)
,

D(�)
n = n

(
W (�)

S (�n−1) + W (�)
A (�n−1)

)
, (B2)

where �n = � + 2nχ . For NESS, the left-hand side of
Eq. (B1) is zero. This takes it to the form of a difference
equation. The difference equation can be obtained by writing
the equation sequentially for various values of n and adding
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them. This yields

ρn−1Cn−1 = ρnDn ⇒ ρn = ρ0

n∏
p=1

Cp−1

Dp
, n = 1, 2, 3, . . . .

(B3)

Combining with Eq. (B2), we get Eq.(18).

APPENDIX C: FINDING CURRENTS

The currents are defined by the continuity equation

d〈n̂〉
dt

= −
∑

�

I�, (C1)

where I� is the current into the �th bath. From Eq. (B1), after
a little algebra, we find that

d〈n̂〉
dt

=
∞∑

n=0

n
dρn

dt
=

∞∑
n=0

ρn(Cn − Dn). (C2)

Combining Eqs. (B2), (C1), and (C2), we see that the current
into the �th bath is given by

I� =
∞∑

n=0

ρn(D(�)
n − C(�)

n ). (C3)

Putting the NESS value of ρn, the NESS currents can be
obtained. For the detector, which is modeled as an empty bath
with constant spectral function, the expression simplifies to

ID = 2�D〈n̂〉, (C4)

where 〈n̂〉 is the average photon number at NESS. The expres-
sion for the current into the phonon bath does not allow any
major further simplification.

APPENDIX D: OBTAINING g(2)(τ )

The second-order correlation function is given by

g(2)(τ ) = 〈â†(t )â†(t + τ )â(t + τ )â〉/〈n̂(t )〉2. (D1)

The denominator is easily obtained with 〈n̂(t )〉 =∑∞
n=0 nρn(t ), where ρn(t ) is the solution of Eq. (B1).

The numerator is exactly of the form of correlation function
in Eq. (A11). Following the discussion in Appendixes A 4
and A 5, we see that

〈n̂(t )〉2g(2)(τ ) = TrS[n̂ ˆ̃ρ (τ )], (D2)

where, for τ 
 τM , ˆ̃ρ (τ ) is obtained from solving the RE with
the initial condition

ˆ̃ρ (0) = âρ̂(t )â† =
∞∑

n=1

nρn(t )|n − 1〉〈n − 1|. (D3)

Since the initial condition is diagonal in the number basis and
the final trace also requires only the diagonal elements in the
same basis, instead of the full RE, we can use Eq. (B1). Thus,
the numerator of g(2)(τ ) is obtained by evolving the initial
condition in Eq. (D3) with Eq. (B1), and calculating the trace
in Eq. (D2).

In the main text, we are interested in the NESS, so we take
t → ∞. This amounts to using the NESS population distribu-
tion given in Eq. (B3) in calculating the initial condition and
the denominator.

APPENDIX E: OBTAINING THE SPECTRUM S(ω)

The spectrum of radiation detected by the wide-band de-
tector is given by

S(ω) = Re

[∫ ∞

0
dτ eiωτ g(1)(τ )

]
, (E1)

g(1)(τ ) = lim
t→∞〈â†(t )â(t + τ )〉, (E2)

where Re[. . .] denotes the real part. The spectrum satisfies the
sum rule ∫ ωmax

ωmin

dω

π
S(ω) = 〈n̂〉, (E3)

where 〈n̂〉 is the average photon number at NESS. The relation
between S(ω) and ID now follows from Eq. (C4).

Following the discussion in Appendixes A 4 and A 5, we
find that

g(1)(τ ) = TrS[â ˆ̃ρ (τ )] =
∞∑

n=1

Pn(τ ), Pn(τ ) = √
nρ̃n,n−1(τ ),

(E4)

where ˆ̃ρ (τ ) = ∑∞
n,m=0 ρ̃n,m(τ )|n〉〈m| is obtained by solving

the RE with the initial condition

ˆ̃ρ (0) = ρ̂â† =
∞∑

n=0

√
nρn|n〉〈n − 1|, (E5)

where ρ̂ = ∑∞
n=0 ρn|n〉〈n| is the NESS density matrix of the

system.
From the RE (17), we can directly find an evolution equa-

tion for Pn(τ ). After some tedious but straightforward algebra,
the evolution equation for Pn(τ ) becomes

dPn

dτ
= −[

i�nPn + ε2(An + Kn + G(1)
n−1 − G(2)

n−1

)]
Pn

− ε2An+1Pn+1 − ε2Kn−1Pn−1, (E6)

with the following definitions:

An = (n − 1)
(
G(1)

n−1 + G∗(1)
n−2

)
,

Kn = (n + 1)
(
G(2)

n−1 + G∗(2)
n

)
, (E7)

G(1)
n = F+(�n) + iR−(�n).

G(2)
n = F−(�n) + iR+(�n),

where F±(�n) = 〈n|F̂±|n〉 and R±(�n) = 〈n|R̂±|n〉. From
Eqs. (E4) and (E5), the initial condition for the above equa-
tion becomes

Pn(0) = nρn, ∀ n � 1. (E8)

Putting some finite but large enough upper cutoff nmax on the
number of photons in the system, we can rewrite Eq. (E6) as
a matrix equation

dPvec

dτ
= −MPvec, (E9)
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where Pvec is a column vector with nth element given by
Pvec

n = Pn, and M is a tridiagonal matrix with

Mn,n = i�nPn + ε2
(
An + Kn + G(1)

n−1 − G(2)
n−1

)
,

∀ 1 � n � nmax − 1

Mn,n+1 = ε2An+1, ∀ n

Mn−1,n = ε2Kn−1, ∀ 2 � n � nmax. (E10)

We can diagonalize the matrix M as

M = V −1�V, (E11)

where � = diag{λn} is the diagonal matrix containing the
eigenvalues of M, and the columns of V are the right eigen-
vectors of M. Formally solving Eq. (E9), obtaining g(1)(τ )
[Eq. (E4)] and calculating S(ω) [Eq. (E1)], we get the

following expression for the spectrum:

S(ω) = Re

⎡
⎣ nmax∑

j,�,n=1

Vj�(V −1)�nnρn
1

λ� − iω

⎤
⎦. (E12)

We have numerically checked in our calculations that restrict-
ing the frequency integral within the cutoffs satisfies the sum
rule to a good accuracy.

In calculating the spectrum S(ω), we need to integrate
over τ . However, the regression formula is valid only for
τ 
 τM . This brings into question the accuracy of the spec-
trum, calculated according to (E12). However, the inaccuracy
at short times only affects large frequency scales, while the
pronounced peaks in the spectra should be governed by the
large-τ regime of g(1)(τ ). Hence, we expect the position and
shape of peaks of S(ω) obtained using quantum regression
formula to be reasonably accurate for our chosen parameter
regime.
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