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Analytical approach to higher-order correlation functions in U(1) symmetric systems
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We derive a compact analytical solution of the nth-order equal-time correlation functions by using scattering
matrix (S matrix) under a weak coherent state input. Our solution applies to any dissipative quantum system that
respects the U(1) symmetry. We further extend our analytical solution into two categories depending on whether
the input and output channels are identical. The first category provides a different path for studying cross-
correlation and multiple-drive cases, while the second category is instrumental in studying waveguide quantum
electrodynamics systems. Our analytical solution allows for easy investigation of the statistical properties of
multiple photons even in complex systems. Furthermore, we have developed a user-friendly open-source library
in Python known as the quantum correlation solver, and this tool provides a convenient means to study various
dissipative quantum systems that satisfy the above-mentioned criteria. Our study enables using S matrix to study
the photonic correlation and advance the possibilities for exploring complex systems.
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I. INTRODUCTION

The correlation function is crucial in various fields, in-
cluding condensed matter physics [1], statistical physics [2],
and quantum physics [3]. Correlation functions are partic-
ularly in quantum physics for characterizing the statistical
properties of light. Specifically, they play a vital role in de-
veloping various quantum devices, such as scalable coherent
single-photon source devices [4–6], nonreciprocal quantum
devices [7–11], and two-photon devices [12], which are essen-
tial for quantum information processing [13,14] and quantum
engineering [15].

The second-order equal-time correlation function (ETCF)
is the most straightforward and typical example used to de-
scribe the statistical properties of light. The value of the
correlation function characterizes the photon-number statis-
tics of light. For instance, when the correlation function is
less than one, it describes the sub-Poissonian photon-number
statistics [16,17]. While it is more than one, it charac-
terizes the super-Poissonian photon-number statistics [3].
Similarly, higher-order ETCFs can be utilized to reveal spe-
cific effects like photon-induced tunneling and multiphoton
blockade [18].

However, despite being simple open quantum systems with
nonlinearities, such as a two-level atom trapped in a cavity or
an optical resonator with Kerr-type nonlinearity, the analytical
computation of higher-order ETCFs remains challenging. So
far, several effective methods have been proposed to address
this challenge, such as the master-equation method [19–21]
and quantum-trajectory approach [22,23]. The common fea-
ture of the above methods is that nth-order ETCF is treated by
numerical calculation. Notably, the analytical solution is more
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intrinsic, and scattering matrix (S-matrix) methods [24–38] al-
low us to resolve the problem by treating the low-dimensional
system, such as quantum dots, superconducting qubits, and
atomic ensembles, as a scatterer or potential field for the opti-
cal fields and attempting to relate the incoming and outgoing
optical fields [39].

In this paper, we theoretically demonstrate that for a large
class of open quantum systems satisfying the U(1) symme-
try under a weak coherent state input, the nth-order ETCF
could be described entirely by the n-photon S matrix. Sub-
sequently, we give the n-photon S matrix for arbitrary input
and output channels, and the S matrix completely depends
on Green’s function. In order to further calculate the S ma-
trix, we prove that the time-ordered Green’s function can
be exactly computed by using an effective Hamiltonian that
involves only the degrees of freedom of the system without
the part of environments which has an infinite number of de-
grees of freedom. To proceed, we focus on studying a system
that respects the conservation of the total excitation number.
Therefore, the effective Hamiltonian could be decomposed
into a block-diagonal form, and the annihilation operators and
creation operators of the system have a similar matrix form,
i.e., block-upper and -lower triangular forms. As conclusions
above, we first define a probability amplitude of equal-time
probing multiple photons and give the concrete expression.
Therefore, we derive a compact analytical solution of the nth-
order ETCF, and the analytical expression ultimately depends
on the probability amplitude we defined. Moreover, the com-
pact analytical solution can be extended from the single-mode
coherent drive to the multimode coherent drive and from the
different input and output channels to the same. As a result,
the former provides a different way to study the dynamical
photon blockade phenomenon [40,41], and the latter opens up
a different path to explore the waveguide quantum electrody-
namics system [42].
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The paper is organized as follows: In Sec. II, we introduce
a total Hamiltonian including system and environments, and
then prove the equivalence of two types of nth-order correla-
tion functions. In Sec. III, we derive the n-photon S matrix and
the effective Hamiltonian. In Sec. IV, we define a probability
amplitude of equal-time probing multiple photons in order to
acquire the compact analytical solution of nth-order ETCF. In
Sec. V, we study the effect of two categories corresponding
to different and identical input-output channels, respectively.
The former further divides into four cases, i.e., one to one
(in Sec. V A), many to one (in Sec. V B), one to many (in
Sec. V C, and many to many. The latter is described by
Sec. V D. Finally, in Sec. VI, we calculate three examples and
give the concise analytical solution of the first example as a
representative case for illustrating the versatility and validity
of the analytical solution.

II. EQUIVALENT MODEL

We first consider a generalized open quantum system sat-
isfying the conservation of total excitation number, which
means that the U(1) symmetry is satisfied. For the sake of
simplicity, the system Hamiltonian on which we focused is
represented by Hsys{ok}, where the notation {ok} indicates that
the system of interest comprises several local system modes.
Subsequently, we introduce the symbol N to represent the to-
tal excitation number operator of the system, and the operator
commutes with the system Hamiltonian, i.e., [Hsys,N ] = 0.
Finally, without loss of generality, we assume that each local
system interacts with one or more individual heat baths (de-
faulting to two), and the interaction Hamiltonian HI between
the system and the heat baths does not break the U(1) symme-
try. Consequently, the total Hamiltonian Htot, involving both
the system and the heat baths, is defined as (h̄ = 1) [43]

Htot = Hsys{ok} + HB + HI with

HB =
∫

dω
∑

k

ω[b†
k (ω)bk (ω) + c†

k (ω)ck (ω)],

HI =
∫

dω
∑

k

[ξb,kb†
k (ω)ok + ξc,kc†

k (ω)ok + H.c.],

(1)

where ξb,k (ξc,k) denotes the coupling strength between the
heat bath with mode bk (ω) [ck (ω)] and the kth local system,
and is assumed to be frequency independent. ok represents a
lowering operator of the kth local system that is assumed to
commute with the heat bath modes, e.g., bk (ω) and b†

k (ω). In
this section we assume ok to be arbitrary. In practice, ok can
be a bosonic annihilation operator describing a cavity mode
or a lowering operator for the two-level atom. bk (ω) [b†

k (ω)]
and ck (ω) [c†

k (ω)] both are bosonic annihilation (creation) op-
erators of the heat baths coupled to the kth local system. Note
that the subscript k only is used to label the local system and
the corresponding heat baths, and in some specific models we
also do not necessarily introduce the subscript. Meanwhile,
the operators also satisfy the standard commutation relation

[μm(ω), νl (ω
′)] = δm,lδμ,νδ(ω − ω′), μ, ν ∈ {b, c}. (2)

Notice that the Hamiltonian HI in Eq. (1) is a linear interac-
tion. For the case of a class of nonlinear interactions satisfying

the U(1) symmetry, the specific discussions are presented in
Appendix E.

To proceed, we introduce a laser coherently driving to the
ith local system described by Eq. (1), and the corresponding
Hamiltonian is given by

Hd = (�∗
i oie

iωd t + �io
†
i e

−iωd t ), (3)

where �i is the driving strength with |�i| → 0, and ωd is
the driving frequency. In physics, the driven process could be
viewed as a coherent state input to the local system through
a heat bath coupled to the corresponding local system [37].
After tracing over the heat bath degrees of freedom, the evolu-
tion of the reduced density matrix ρs is given by the Lindblad
master equation [44,45]

dρs

dt
= −i[Hsys + Hd, ρs] +

∑
k

(κb,k + κc,k )D[ok]ρs, (4)

where κb,k = 2π |ξb,k|2, κc,k = 2π |ξc,k|2, and D[a]ρ =
aρa† − {a†a, ρ}/2.

Notice that Eq. (4) corresponds to the result of a zero-
temperature limit (i.e., nth = 0) due to the fact that all heat
baths are initially in the vacuum state, rather than thermal
state. Now, according to the Mollow transformation [46], we
can take off the driving term [i.e., Eq. (3)], but the initial
state of the heat bath coupled to the ith local system must be
replaced from the initial vacuum state to a coherent state. The
heat bath mode can be bi or ci. For convenience, we choose
bi as the heat bath mode, and the corresponding heat bath
is defined as an input channel. Similarly, the heat bath with
mode c j is naturally defined as an output channel. Notice that
the choice of bi and c j depends completely on the system
we focus on and the physical quantities we calculate. As a
consequence, the input state (i.e., the initial state of the total
Hamiltonian) can be written as [37]

|ψin〉 = N
∞∑

n=0

βn
i√
n!

∣∣� (n)
in

〉bi

ωd
⊗ |0〉B ⊗ |g〉, (5)

where |� (n)
in 〉bi

ωd
= b†n

i (ωd )/
√

n!|0〉, which denotes the Fock
state of n photons with frequency ωd in the input channel, |0〉B

represents the vacuum state of baths except the mode bi, and
|g〉 is the ground state of the system, i.e., Hsys|g〉 = 0. Here, βi

is the coherent state amplitude, i.e., βi = �i

√
2π/κb,i, and N

is the normalization factor. In this paper, the coherent state is
abbreviated to |βi〉bi

ωd
, i.e., |ψin〉 = |βi〉bi

ωd
⊗ |0〉B ⊗ |g〉.

Based on Eqs. (1), and (5) and scattering matrix (S-matrix)
methods, we strictly prove an equation in Appendix B which
relates the Lindblad master equation to the S matrix through
the nth-order equal-time correlation function (ETCF) of jth
local system

g(n)
j j (0) = 〈ψout|c†n

j (t )cn
j (t )|ψout〉

〈ψout|c†
j (t )c j (t )|ψout〉n

= Tr
[
o†n

j on
jρss

]
Tr
[
o†

jo jρss
]n , (6)

where c j (t ) is the inverse Fourier transform of c j (ω),
i.e., c j (t ) = ∫

dω/
√

2πe−iωt c j (ω) ≡ F−1[c j (ω)], and ρss

denotes the steady-state density matrix in Eq. (4). We con-
struct a link between the input state and output state through
the S matrix, i.e., |ψout〉 = S|ψin〉, where S is the scattering
operator [27].
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Therefore, we connect Eq. (4) with Eq. (1) through the
correlation function. That is to say, when we compute ETCF
for some complex models with large dimensions of Hilbert
spaces, we could replace the master-equation method with
a more effective method, namely, S matrix, and then take
advantage of Eq. (6). Note that the method is not omnipotent.
For example, it is not applicable in strong coherent driven
situation and the case where the U(1) symmetry is not satis-
fied. On the contrary, it is highly reasonable to consider many
models that satisfy the U(1) symmetry and involve a weakly
coherent drive in quantum optics.

III. SCATTERING MATRIX AND EFFECTIVE
HAMILTONIAN

In the above description, we have mentioned the scattering
operator S, which is used to connect the input and output
states, and the operator is equivalently written as S = �

†
−�+

[47,48], where �± = exp(iHtott±) exp(−iHBt±) with t± →
∓∞, called the Møller wave operators. Now, we consider
n photons scattering processes: n photons incident from the
input channel μ = (μ1, μ2, . . . , μn) with frequencies of k =
(k1, k2, . . . , kn) each, are scattered into the output channel
ν = (ν1, ν2, . . . , νn) with frequencies of p = (p1, p2, . . . , pn)
each. According to the physical significance of the scattering
operator, we define a generalized n-photon S matrix with
elements of the form

Sμν

p1...pn;k1...kn
=ν 〈p1 . . . pn|S|k1 . . . kn〉μ

= 〈0|
[

n∏
l=1

νl (pl )

]
S

[
n∏

l=1

μ
†
l (kl )

]
|0〉, (7)

where |k1 . . . kn〉 denotes the n-photon input state with fre-
quencies k, |p1 . . . pn〉 denotes the n-photon outgoing state
with frequencies p, and μ and ν represent the input and output
channels, respectively.

Following the standard procedure [27,43], we obtain the
input-output relations

μi,out(t ) = μi,in(t ) − ioμi (t ),

ν j,out(t ) = ν j,in(t ) − ioν j (t ),
(8)

where the input operator satisfies the commutation relation,
i.e., [μi,in(t ), ν†

j,in(t ′)] = δμi,ν j δ(t − t ′), and oμi represents the
annihilation operator of local system, which interacts with the
channel μi. Then, combining with Eqs. (7) and (8), we have

Sμν

p1...pn;k1...kn
= 〈0|

[
n∏

l=1

νl,out(pl )

][
n∏

l=1

μ
†
l,in(kl )

]
|0〉, (9)

where μl,in(k) and νl,out(p) are the Fourier transformation
of μl,in(t ) and νl,out(t ), respectively. The specific calculation
details of Eqs. (8) and (9) are presented in Appendix A.

To calculate the S-matrix element analytically, we need to
first derive the time-domain S-matrix element

Sμν

t ′
1...t

′
n;t1,...tn

≡ 〈0|
[

n∏
l=1

νl,out(t
′
l )

][
n∏

l=1

μ
†
l,in(tl )

]
|0〉, (10)

which is the inverse Fourier transform of Eq. (9). Sub-
sequently, following Ref. [31] and Eq. (8), the n-photon

time-domain S-matrix element (10) is given by

Sμν

t ′
1...t

′
n;t1...tn

=
n∑

m=0

∑
Bm,Dm

∑
Pc

GμDm νBm (t ′
Bm

; tDm )

×
n−m∏
s=1

[
δ
(
t ′
Bc

m (s) − tPcDc
m (s)

)
δνBc

m (s),μPcDc
m (s)

]
, (11)

where the time-ordered 2n-point Green’s function is defined
as

Gμν
(
t ′
Bn

; tDn

) ≡ (−1)n〈0|T
[

n∏
l=1

oνl (t
′
l )o†

μl
(tl )

]
|0〉, (12)

where T is the time-ordered symbol. In the expression above,
Bm (Dm) is a subset with m elements of {1, . . . , n}, its cor-
responding complementary subset is denoted by Bc

m (Dc
m),

Bm(s) [Dm(s)] represent its sth element, and PcDc
m is per-

mutation over the subset Dc
m.

∑
Bm

and
∑

Pc
represent a

summation over all subsets with m elements of {1, . . . , n}
and all possible permutations Pc of Dc

m, respectively. Besides,
we use the shorthand notations t ′

Bm
≡ {t ′

i |i ∈ Bm}, tDm ≡ {ti|i ∈
Dm}, νBm ≡ (νi|i ∈ Bm), and μDm ≡ (μi|i ∈ Dm). Due to Bn =
Dn = {1, . . . , n}, we have μ = μDn and ν = νBn .

For the case of different input and output channels, i.e.,
∀ i, j ∈ {1, 2, . . . , n}, μi �= ν j , the n-photon S matrix is equal
to the 2n-point Green’s function due to the presence of coeffi-
cient δμi,ν j , i.e., Sμν

t ′
1...t

′
n;t1...tn

= Gμν (t ′
Bn

; tDn ). For the other case,
i.e., ∃i, j ∈ {1, 2, . . . , n}, μi = ν j , the n-photon S matrix can
be expressed as a sum over all possible products of a single
Green’s function and δ functions [see Eq. (11)]. In effect, the
n-photon S matrix of the two cases can be explained by an
intuitive physical process: if the incoming n photons from one
channel are scattered into another, all photons must first enter
the local system before being scattered into another channel,
and it means that this term containing “bare” δ functions
in Eq. (11) will disappear. Conversely, if some of the input
channels overlap with the output channels, some photons
may bypass the local system but do not change themselves
frequencies, i.e., δ(t ′

Bc
m (s) − tPcDc

m (s) ), freely propagating from
the input to output channel, i.e., νBc

m (s) = μPcDc
m (s), thereby

naturally allowing the presence of “bare” δ functions.
Finally, considering the infinite multiple degrees of free-

dom for heat baths, we have to seek an effective Hamiltonian
which only contains the local system part (Hsys{ok}) to replace
the total Hamiltonian Htot. In effect, the time-ordered Green’s
function is precisely computed by the effective Hamiltonian,
not the whole system, and the derivation is presented in Ap-
pendix C. The main result is

Gμν
(
t ′
Bn

; tDn

) = G̃μν
(
t ′
Bn

; tDn

)
, (13)

where

G̃μν
(
t ′
Bn

; tDn

) = (−1)n〈g|T
[

n∏
l=1

õνl (t
′
l )õ†

μl
(tl )

]
|g〉, (14)

with operators[
õνl (t )
õ†

μl
(t )

]
= exp(iHefft )

[
oνl

o†
μl

]
exp(−iHefft ), (15)
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where

Heff = Hsys{ok} − i

2

∑
k

(κb,k + κc,k )o†
kok (16)

represents the effective Hamiltonian of the total system. We
prove the effective Hamiltonian in Appendix C. The effective
Hamiltonian also commutes with the total excitation number
operator, i.e., [Heff,N ] = 0. Hence, we convert the effective
Hamiltonian to a block-diagonal form and the annihilation
operator to block-upper triangular within the total excitation
space: Heff ≡ diag[H(0)

eff , H(1)
eff , H(2)

eff , . . .] and

oμk ≡

⎡⎢⎢⎢⎣
0 Oμk

0,1 0 · · ·
0 0 Oμk

1,2 · · ·
0 0 0 · · ·
...

...
...

. . .

⎤⎥⎥⎥⎦,

o†
μk

≡

⎡⎢⎢⎢⎢⎣
0 0 0 · · ·

O†μk
0,1 0 0 · · ·
0 O†μk

1,2 0 · · ·
...

...
...

. . .

⎤⎥⎥⎥⎥⎦. (17)

Here, the projection of the effective Hamiltonian on the ith
excitation subspace is denoted as H(i)

eff, and the projection of
the annihilation operator oμk onto the direct sum of the ith
and (i + 1)th excitation subspace is denoted as Oμk

i,i+1.

IV. PROBABILITY AMPLITUDE OF EQUAL-TIME
PROBING MULTIPLE PHOTONS

Inspired by the concepts of path integral in quantum me-
chanics, we define a probability amplitude of non-equal-time
probing n photons, i.e.,

Pμν
n (t1, . . . , tn) ≡ 〈0|

[
n∏

l=1

νl (tl )

]
S

[
n∏

l=1

μ
†
l (kl )

]
|0〉

=
n∏

l=1

∫
dt ′

l√
2π

e−ikl t ′
l Sμν

t1...tn;t ′
1...t

′
n
. (18)

Notably, the probability amplitude closely relates to Eq. (7),
and it represents the probability amplitude of non-equal-time
probing outgoing n photons with frequencies k. Subsequently,
in order to calculate the nth-order ETCF, we use a short-
hand notation for equal-time probing case, i.e., Pμν

n (t ) ≡
Pμν

n (t, . . . , t ). We analytically derive the probability ampli-
tude in Appendix D, which is

Pμν
n (t ) = e−iktott

√
(2π )n

n∑
m=0

∑
Dm,Bm

∑
P,Pc

[−→∏
m
j=1OνBm ( j)

j−1, j

][←−∏
m
j=1K−1∑ j

s=1 kPDm (s)
( j)O†μPDm ( j)

j−1, j

] n−m∏
s=1

[
δνBc

m (s),μPcDc
m (s)

]
, (19)

where Kω(n) = −i[H(n)
eff − ω − i0+],

←−∏
n
j=1Mj =

Mn . . . M2M1,
−→∏

n
j=1Mj = M1M2 . . . Mn, and ktot represents

the total frequencies of n incoming photons, i.e.,
ktot = ∑n

j=1 k j . The other symbols have been defined above,
such as Bm, Dm, and Pc. Note that PDm is permutation over the
subset Dm, and

∑
P represents a summation over all possible

permutations P of Dm.

V. CLASSIFICATION BASED ON INPUT AND OUTPUT
CHANNELS

This section delves into the physics that arises from clas-
sifying based on input and output channels. The classification
can be divided primarily into two categories. The first cate-
gory consists of different input and output channels, which can
be classified into four cases: one-to-one, many-to-one, one-to-
many, and many-to-many relationships between the number of
input and output channels, as shown in Figs. 1(a)–1(d). Here,
we will concretely introduce the one-to-one, many-to-one, and
one-to-many cases in Secs. V A, V B, and V C, respectively.
Similarly, the many-to-many case could be simply obtained
by combining many-to-one and one-to-many cases.

The second category consists of the same input and output
channels and applies mainly to waveguide quantum electro-
dynamics (QED) [42,49–54] systems. This emerging field fo-
cuses on the interaction of propagating photons with quantum
dots [55–57], superconducting qubits [58–62], or nanocavities
[63–66]. We will discuss this category in detail in Sec. V D.

A. Single input and single output channels

In Sec. II, we have introduced the representative one-to-one
case. Thus, for the incoming n photons, we have μ = (bi )n,
ν = (c j )n, and k = (ωd )n, where the superscript n represents
repeating number of each element in the list, e.g, (bi )2 =

.

..

.

.. ..
.

..
.

(a) (b)

(c) (d)

FIG. 1. A concise schematic of input-output channels coupled
to a system described by the Hamiltonian Hsys{ok}. (a) Single input
channel and single output channel. (b) Multiple input channels and
single output channel. (c) Single input channel and multiple output
channels. (d) Multiple input channels and multiple output channels.
The cyan arrow represents the incoming coherent state within the
input channel bi, the red arrow represents the outgoing state within
the output channel c j , as indicated by the direction of the two arrows,
and κb,i and κc, j are the corresponding decay rates.
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(bi, bi ). The corresponding input-output formalism can be
written as

bi,out(t ) = bi,in(t ) − iobi (t ), (20)

c j,out(t ) = c j,in(t ) − ioc j (t ), (21)

where obi (t ) = √
κb,ioi(t ) and ocj (t ) = √

κc, jo j (t ). Notably,
the only nonzero term is for m = n in Eq. (19); therefore, the
probability amplitude of equal-time probing n-photon could
be further simplified as

Pμν
n (t ) = n!ξ n

[−→∏
n
l=1O j

l−1,l

][←−∏
n
l=1K−1

lωd
(l )O†i

l−1,l

]
, (22)

where ξ = √
κb,iκc, j/2π exp(−iωdt ).

Then, the nth-order ETCF (6) under a weak coherent drive
is given by

g̃(n)
j j (0) ≡ lim

|βi|→0
g(n)

j j (0) =
∣∣Pμν

n (t )/n!
∣∣2∣∣Pμν

1 (t )
∣∣2n

=
∣∣[−→∏n

l=1O j
l−1,l

][←−∏
n
l=1K−1

lωd
(l )O†i

l−1,l

]∣∣2∣∣O j
0,1K−1

ωd
(1)O†i

0,1

∣∣2n . (23)

Besides, an essential physical quantity, namely, single-photon
transmission, is

T ≡ lim
|βi|→0

〈ψout|c†
j (t )c j (t )|ψout〉

〈ψin|b†
i (t )bi(t )|ψin〉

= 2π
∣∣Pμν

1

∣∣2
= κb,iκc, j

∣∣O j
0,1K−1

ωd
(1)O†i

0,1

∣∣2. (24)

The detailed derivation procedure is provided at the end of
Appendix D.

B. Multiple input and single output channels

According to Eq. (7) structure, the S-matrix elements are
formally the same to the two categories, but the difference is
their superscripts: μ and ν. Since the possible scattering paths
of multiple photons present multiple choices when multiple
input and output channels are present, so each scattering path
corresponds to a unique μ and ν in terms of the S matrix.
For example, in the one-to-one case, n photons can only
be injected through a single input channel bi and scattered

into a single output channel c j , so the possible scattering
path of n photons is only one, i.e., μ = (bi )n and ν = (c j )n,
where the number of elements both are n. Meanwhile, the
frequency of each incoming photon is naturally determined
when μ is determined, i.e., incoming n photon frequencies
k = (k1, k2, . . . , kn).

As shown in Fig. 1(b), there are multiple input channels
where each channel is injected with a coherent state, and the
input state can be written as

|ψin〉 =
[

m∏
l=1

|βl〉bl
ωl

]
|0〉B|g〉, (25)

where |0〉B represents the vacuum state of baths except for
multiple input channels, and m is the number of channels
injected coherent state. According to the Mollow transforma-
tion, the coherent state input is equivalent to the Hamiltonian,
namely, a multimode coherent drive

Hd =
m∑

l=1

β∗
l ol eiωl t + βl o

†
l e

−iωl t√
2π/κb,l

. (26)

On the one hand, we note that the Hamiltonian Hsys{ok} +
Hd is always time dependent when these driving frequencies
are not all identical (i.e., ∃k, l, ωk �= ωl ), and its reduced
density matrix also is time dependent even after long-time
evolution, i.e., ρs(t0 + t )|t0→+∞ �= ρss. On the other hand, the
Hamiltonian can be transformed into a time-independent one
by selecting an applicable rotating frame when all driving
frequencies are identical, and we have ρs(t0 + t )|t0→+∞ = ρss.
As a result, Eq. (6) needs to corrected slightly to apply simul-
taneously to both cases, i.e.,

g(n)
j j (t ) = 〈ψout|c†n

j (t )cn
j (t )|ψout〉

〈ψout|c†
j (t )c j (t )|ψout〉n

= Tr
[
o†n

j on
jρs(t0 + t )

]
Tr[o†

jo jρs(t0 + t )]n

∣∣∣∣
t0→+∞

. (27)

From now on, we assume βl = ηlβ1 for all l . According
to the discussions above, the computation of nth-order ETCF
under the weak coherent state amplitude (|β1| → 0) is as
follows:

g̃(n)
j j (t ) ≡ lim

|β1|→0
g(n)

j j (t ) =
∣∣∑(n,m)

μ Pμν
n (t )cμ

∣∣2∣∣∑(1,m)
μ Pμν

1 (t )cμ

∣∣2n =
∣∣[−→∏n

l=1O j
l−1,l

][∑m
x1,...,xn=1

←−∏
n
l=1K−1∑l

i=1 ωxi

(l )O
†
l−1,l

]∣∣2∣∣O j
0,1

∑m
x1=1 K−1

ωx1
(1)O

†
0,1

∣∣2n
. (28)

In the first step above, we redefine Eq. (27) under the m
weak coherent state amplitudes. In the second step, we first
take advantage of Eqs. (18), (25), and (27). Then, we define
the summation

∑(n,m)
μ and combination coefficient cμ. Here,∑(n,m)

μ represents a summation over all sublists with n ele-
ments of (b1, b2, . . . , bm)n, and cμ = ∏m

k=1[ηzμ(bk )
k /zμ(bk )!],

where zμ(bk ) represents the number of bk in list μ.
For example, when n = 2 and m = 2, there are three

corresponding sublists μ1 = (b1)2, μ2 = (b2)2, μ3 =
(b1, b2), and zμ1 (b1) = zμ2 (b2) = 2, zμ1 (b2) = zμ2 (b1) =
0, zμ3 (b1) = zμ3 (b2) = 1. In the last step, we use the
probability amplitude expression (19), and define the time-

dependent symbol, i.e., O
†
l−1,l = ∑m

j=1[η jO
†b j

l−1,l e
−iω j tδ j,xl ].

We find that the result of Eq. (28) applies to the two cases
above. Meanwhile, for the case of ω j = ωd , for all j, i.e.,
the frequencies of all incoming photons are equal to ωd , the
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nth-order ETCF could be further simplified as

g̃(n)
j j (t ) =

∣∣[−→∏n
l=1O j

l−1,l

][←−∏
n
l=1K−1

lωd
(l )

∑m
i=1 ηiO

†bi
l−1,l

]∣∣2∣∣O j
0,1K−1

ωd
(1)

∑m
i=1 ηiO

†bi
0,1

∣∣2n

= g̃(n)
j j (0). (29)

Similarly, the single-photon transmission is given by

T = lim
|β1|→0

〈ψout|c†
j (t )c j (t )|ψout〉∑m

i=1〈ψin|b†
i (t )bi(t )|ψin〉

= κc, j

∣∣O j
0,1K−1

ωd
(1)

∑m
i=1 ηiO

†bi
0,1

∣∣2∑m
i=1 |ηi|2 . (30)

Note that η1 = 1. As expected, when ηi = 0, for i > 1, the
multimode coherent drive becomes back to the single-mode
drive, and Eqs. (29) and (30) also are in agreement with
Eqs. (23) and (24).

In conclusion, we study multiple input channels because
they provide significant advantages in some physical prob-
lems. More specifically, when studying a conventional photon
blockade model [67–70], such as the widely studied nonlinear
system of a cavity filled with Kerr material [71,72], achieving
a near-perfect photon blockade effect is crucial for quantum
information processing and quantum computing. However,
this needs a strong nonlinearity without other improved ap-
proaches. Based on the theory of multiple input channels, the
nonlinearity strength required significantly decreases [41] for
the same strong photon blockade. The reason is that multiple
input channels lead to multiple possible scattering processes
for the outgoing two photons, and the probability amplitudes
of these processes can interfere destructively. Consequently,
the conventional photon blockade model enters the unconven-
tional photon blockade [73–76] region through interference
between multiple input channels. Note in this model that we
need to use the dynamical correlation function (28) to study
dynamical photon blockade effect, which corresponds to the
case ∃k, l, ωk �= ωl .

C. Single input and multiple output channels

As shown in Fig. 1(c), considering the presence of multiple
output channels, now we will study the photonic correlation
between different output channels, and we could use the cross-
correlation function [77–79] (CCF) with zero-delay time to
characterize it, i.e.,

g(n)
ν (0) ≡ 〈ψout|

[∏n
j=1 ν

†
j (t )

][∏n
j=1 ν j (t )

]|ψout〉∏n
j=1〈ψout|ν†

j (t )ν j (t )|ψout〉

=
Tr
[(∏n

j=1 o†
ν j

)(∏n
j=1 oν j

)
ρss
]∏n

j=1 Tr[o†
ν j oν j ρss]

. (31)

We find that the form of CCF agrees with the nth-order
ETCF, so we can repeat the same as steps, like Sec. V A,
to derive its analytical expression. Meanwhile, the probabil-
ity amplitude (18) is valid for arbitrary μ and ν. Thereby,
the n-photon CCF under a weak coherent drive with driving

FIG. 2. Illustration of two-photon scattering processes for a sys-
tem side coupled to a waveguide. There are three possible scattering
paths for the two photons, corresponding to the descriptions in the
three figures on the right. Here, we assume the input-output formal-
ism is bout(t ) = bin(t ) − iob(t ).

frequency ωd is given by

g̃(n)
ν (0) ≡ lim

|β1|→0
g(n)

ν (0) =
∣∣Pμν

n (t )
/

n!
∣∣2∏n

j=1

∣∣Pμν j

1 (t )
∣∣2

=
∣∣[−→∏n

l=1Oνl
l−1,l

][←−∏
n
l=1K−1

lωd
(l )O†i

l−1,l

]∣∣2∏n
j=1

∣∣Oν j

0,1K−1
ωd

(1)O†i
0,1

∣∣2 . (32)

As expected, when the number of output channels is equal to
one, i.e., m = 1, Eq. (32) will become back to Eq. (23) due to
ν = (c j )n.

Analogously, for the case of multiple input channels and
multiple output channels, as shown in Fig. 1(d), we could
directly derive the correlation function according to the two
conclusions of Sec. V B with Sec. V C.

D. Same input and output channel

Based on the structure of n-photon S matrix (11), we only
consider the case of identical single input channel and sin-
gle output channel here, i.e., μ = ν = (b)n, and the rest of
cases could be obtained by combining our proved conclusions.
Here, we assume the frequency of the incoming coherent state
is ωd . Thus, the probability amplitude of equal-time probing
n photon could be further simplified as

Pμμ
n (t ) = n!In

n∑
m=0

Cm
n

[−→∏
m
l=1Ob

l−1,l

][←−∏
m
l=1K−1

lωd
(l )O†b

l−1,l

]
,

(33)

where I = exp(−iωdt )/
√

2π , and Cm
n is the combination

number formula.
Notably, Pμμ

n can be described by a natural and intuitive
physical process, i.e., the m incoming photons are scattered
into the output channel b by the local system, and the rest of
(n − m) photons bypass the local system, where 0 � m � n.
The property is radically different from the case of multiple
input channels above. From the perspective of interference
paths, one is that n photons have multiple possible scattering
paths due to the presence of multiple input channels, and
the other is that n photons could be divided into multiple
combinations between few-photon scattering paths and freely
propagating paths due to the presence of identical input and
output channel, as shown in Fig. 2.
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Similarly, the input state is |ψin〉 = |β〉b
ωd

|0〉B|g〉. There-
fore, the nth-order ETCF and single-photon transmission
under the weak coherent state amplitude are given by

g̃(n)
bb (0) ≡ lim

|β|→0

〈ψout|b†n(t )bn(t )|ψout〉
〈ψout|b†(t )b(t )|ψout〉n

=
∣∣Pμμ

n (t )/n!
∣∣2∣∣Pμμ

1 (t )
∣∣2n ,

T ≡ lim
|β|→0

〈ψout|b†(t )b(t )|ψout〉
〈ψin|b†(t )b(t )|ψin〉 = 2π

∣∣Pμμ
1 (t )

∣∣2. (34)

However, the form of effective Hamiltonian usually differs
from Eq. (16) in waveguide QED systems because o could
consist of the annihilation operators of multiple local systems,
e.g., ob = ξ1o1 + ξ2o2. The specific derivation processes refer
to Refs. [80–82]. Note here that we should do a standard
quantum-optical Born-Markov approximation and neglect re-
tardation effects.

In general, the imaginary part of all eigenvalues of the
effective Hamiltonian is less than or equal to zero for a
pure dissipative system satisfying the U(1) symmetry, and
the number of eigenvalues whose imaginary parts are equal
to zero represents the number of steady states [83], such
as the effective Hamiltonian (16), which its steady state is
unique. However, multiple steady states are easy to achieve
in a waveguide QED system, such as multiple local quan-
tum systems coupled with a waveguide in different locations
[84–86]. Notably, our method is still effective for the case of
multiple steady states since Kω(n) always is reversible due to
the presence of i0+.

VI. PARADIGMATIC EXAMPLES

In this section, we will apply the method developed in the
previous sections to the three typical examples. In Sec. VI A,
we consider a typical single-atom–cavity QED system and
then analyze three schemes: cavity driven, atom driven, and
cavity-atom driven. Besides, we also study the advantages of
the multimode drive for the photon blockade. In Sec. VI B, we
consider a coupled-cavity array system with multiple atoms.
Undoubtedly, we will face dimensional exponential growth of
the Hilbert space with the size of the cavity, so we have to
resort to more effective numerical methods, such as the Monte
Carlo method [23], tensor networks [87–91], or a combination
of both [92]. However, our approach could reduce this expo-
nential complexity to polynomial complexity. In Sec. VI C, we
consider a spin- 1

2 system coupled to a one-dimensional (1D)
waveguide model, thereby studying the relationship between
the transmission spectrum and the correlation function.

Finally, based on the compact analytical expressions men-
tioned above, we present a Python code that can handle any
quantum systems satisfying certain conditions required in the
paper. The Python notebooks containing the code for each
physical model studied here are available online [93].

A. Jaynes-Cummings model

In this section, we consider the most typical model in quan-
tum optics: the Jaynes-Cummings (JC) model [94], which
describes a two-level atom coupled to a single-mode cavity

field. The Hamiltonian reads as

HJC = ωeσ
†σ + ωca†a + g(σ †a + σa†), (35)

where a and ωc represent the annihilation operator and
resonant frequency of the cavity mode, respectively; σ , g,
and ωe are the lowering operator (|g〉〈e|), cavity coupling
strength, and transition frequency of the atom. Then, we con-
sider three schemes: cavity driven (Hc

d ), atom driven (He
d ),

and cavity-atom driven (Hce
d ). Using the notation D[A]ρ ≡

AρA† − {A†A, ρ}/2, the master equation in explicit Lindblad
form reads as (h̄ = 1)

ρ̇ = −i
[
HJC + Hi

d, ρ
]+ κD[a]ρ + γD[σ−]ρ, (36)

where κ and γ are the cavity and atomic decay rates, re-
spectively, and Hi

d is the driving term, e.g., Hc
d = (�∗

1aeiω1t +
H.c.), He

d = (�∗
2σeiω2t + H.c.), and Hce

d = Hc
d + He

d . Now,
we assume �2 = η�1 and |�1| → 0. On the one hand, we
could obtain some useful information about the system by
an equivalent Hamiltonian like Eq. (1), such as statistical
properties of output light. On the other hand, the approach
also provides a more intuitive physical process to multimode
drive, as shown in Fig. 3.

Subsequently, following the standard procedures of our
method, the effective Hamiltonian and the total excitation
number operator are given by

Heff = HJC − iκ

2
a†a − iγ

2
σ †σ, N = a†a + σ †σ. (37)

Thereby, by selecting a set of basis vectors, we have

H(n)
eff =

[
nω̃c g

√
n

g
√

n (n − 1)ω̃c + ω̃e

]
,

Oe
n−1,n =

[
0 1
0 0

]
, Oe

0,1 = [
0 1

]
, (38)

Oc
n−1,n = diag[

√
n,

√
n − 1], Oc

0,1 = [1 0],

where Oc
n−1,n (Oe

n−1,n) represent the projection of the annihila-
tion operator a (σ ) onto the direct sum of the (n − 1)th and nth
excitation subspaces ω̃c = ωc − iκ/2 and ω̃e = ωe − iγ /2.

When ω1 = ω2 = ωd , by plugging Eq. (38) into Eqs. (23)
and (29), we can obtain the analytical solution of nth-order
ETCF about cavity mode. For the sake of conciseness, taking
n = 2 as an example, we have

g̃(2)
e (0) = |�c�e − g2|2

|�c(�c + �e) − g2|2 ,

g̃(2)
c (0) = g(2)

e (0)
|�e(�c + �e) + g2|2

|�e|4 , (39)

g̃(2)
ce (0) = g(2)

e (0)
|g2 − �c(�c + �e) + (�c + �e − ηg)2|2

|�e − ηg|4 ,

where the subscripts c, e, and ce represent the scheme of
cavity driven, atom driven, and both, respectively, and �x j =
ω̃x − ω j = �x. Besides, we also find the relationship by ana-
lyzing η, i.e., g̃(2)

ce (0)|η→0 = g̃(2)
c (0), g̃(2)

ce (0)|η→∞ = g̃(2)
e (0).

In addition, when ω1 �= ω2, by plugging Eq. (38) into (28),
the second-order dynamical ETCF is given by (δ = ω2 − ω1)

g̃(2)
ce (t ) = |C1 + C2e−2iδt + C3e−iδt + C4e−iδt |2

|C5 + C6e−iδt |4 , (40)
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(a) (b)

FIG. 3. (a) Sketch of a two-level atom with transition frequency ωe trapped in a single-mode cavity. The cyan (magenta) arrow corresponds
to the cavity (atom) drive with the driving strength �1 (�2) and frequency ω1 (ω2). |g〉 (|e〉) is the ground (excited) state of the atom, and κ and
γ are the cavity and atomic decay rates, respectively. (b) The equivalent model of (a). Here, there are two input channels (b1 and b2) and output
channels (c1 and c2). κb (γb) and κc (γc) are the decay rates of the cavity (atom) coupled to b1 (b2) and c1 (c2), respectively. |β1〉b1

ω1
and |β2〉b2

ω2

are the incoming coherent states, which correspond to the cavity-driven and atom-driven cases, respectively. Meanwhile, we have κ = κb + κc,
γ = γb + γc, β1

√
κb/2π = �1, and β2

√
γb/2π = �2.

with coefficients

C1 = �e1(�e1 + �c1) + g2

[�e1�c1 − g2][�c1(�e1 + �c1) − g2]
,

C2 = η2g2

[�e2�c2 − g2][�c2(�e2 + �c2) − g2]
,

C3 = −ηg�e1

[�e1�c1 − g2][�c(�c + �e) − g2]
,

C4 = −ηg(2�c2 + �e1)

[�e2�c2 − g2][�c(�c + �e) − g2]
,

C5 = �e1

�e1�c1 − g2
, C6 = −ηg

�e2�c2 − g2
,

(41)

where �x = (�x1 + �x2)/2. Notably, we find that g̃(2)
ce (t ) is a

periodic function about t with the minimum positive period
T = 2π/|δ|, and, if we want to verify the correctness, we
need to select an appropriate reference point, i.e., g̃(2)

ce (0) =
Tr[a†2a2ρ(t0)]/Tr[a†aρ(t0)]2, where t0 � 1.

As depicted in Fig. 4(a), when both the cavity and atom
are driven by two external fields simultaneously, the second-
order ETCF exhibits two minimum points, also known as
photon blockade points, compared to the case when only the
cavity is driven. This phenomenon occurs due to different
input channels creating destructive interference, resulting in
the photon blockade effect. In Fig. 4(c), we find that the
n-photon antibunching (in ωc − ωd = −1.3κ) and bunching
(in ωc − ωd = 0.81κ) effects are enhanced dramatically as
n increases. Besides, for the other strong n-photon anti-
bunching point, their corresponding detuning almost satisfies
ωc − ωd = [3 + 1.22 × (n − 3)]κ , where n = 3, 4, 5. For dif-
ferent driving frequencies, as shown in Fig. 4(b), we obtain
a dynamical photon effect, and it goes through the cycles
of bunching and antibunching effects over time, which the
period is T = 2π/|ω1 − ω2| = 4/κ . In Figs. 4(b) and 4(c),
our analytical solution agrees perfectly with the QUTIP sim-
ulations, thereby validating the approach. Meanwhile, we also
analyze the problem: How much drive strength can we accept
for our method? And give the boundary of driving strength to

a certain extent, as shown in Fig. 4(d). As a result, the case
of multiple input channels can trigger the photon blockade;
therefore, we could regard the case as a different way to
achieve photon blockade. More importantly, the scheme is
more feasible for experimental implementations.

No doubt, for the case of multiatom, i.e., Tavis-Cummings
model [95], the method is also powerfully effective, and some
concrete details solving the second-order ETCF have been
presented in Ref. [38].

Time 

QuTiP

S matrix

Cavity-driven

Cavity-Atom-driven

S matrix QuTiP(a) (b)

(c) (d)

Detuning Detuning 

Detuning 

FIG. 4. (a) Equal-time second-order correlation log10[g̃(2)(0)]
versus the detuning (ωc − ωd )/κ for the two schemes: cavity-atom
driven and cavity driven. (b) Equal-time second-order dynamical
correlation log10[g̃(2)

ce (t )] versus the time κt . (c) Equal-time nth-order
correlation log10[g̃(n)

ce (0)] versus the detuning (ωc − ωd )/κ , where
n = 3, 4, 5. (d) Validation of the S-matrix calculation against QUTIP

for the computation of the second-order ETCF. The inset shows the
dependence of log10[g̃(2)

ce (0)] as a function of the driving strength
�1 in ωc − ωd ≈ 1.84κ . In all subplots, the system parameters are
given by γ = 0.2κ and g = 0.6κ . The other parameters for (a), (c),
and (d) are chosen as ω1 = ω2 = ωd , ωe − ωc = κ , and �2 = 3�1;
ωc − ω1 = −(ωc − ω2) = −πκ/4, ωc = ωe, and �2 = �1 for (b).
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FIG. 5. Schematic of a dimer JC chain lattice. The first (last) cavity is coherently driven with driving strength �1, and the penultimate
(second) cavity is the signal cavity. Each cavity has resonance frequency ωc and decay rate κ , and each odd cavity couples to a two-level atom
with transition frequency ωe and decay rate γ . Dashed boxes represent the unit cells; the intracell and intercell coupling strengths are 1 and t ,
respectively.

B. Coupled cavity array model

This section considers a dimer JC chain system, as shown
in Fig. 5. The Hamiltonian is given by

H (s)
CA = ωc

Nc∑
j=1

a†
j a j +

Nc/2∑
j=1

[ωeσ
†
j σ j + g(a†

2 j−sσ j + H.c.)]

+
⎡⎣Nc/2∑

j=1

a†
2 j−1a2 j + t

Nc/2−1∑
j=1

a†
2 ja2 j+1 + H.c.

⎤⎦. (42)

Here, a(†)
j and ωc are the annihilation (creation) operator and

resonant frequency of the jth cavity mode; σ j , ωe, and g are
the lowering operator, transition frequency, and cavity cou-
pling strength of the jth atom. Here, t represents the intercell
hopping (with the intracell hopping normalized to unity), the
number of the cavity Nc is even, and s = 0(1) denotes only
the even (odd) cavity coupled to the atom. The Hamiltonian
describes a Su-Schrieffer-Heeger (SSH) model [96], when the
system does not contain atoms.

Meanwhile, the Lindblad master equation is

ρ̇ = −i
[
H (s)

tot , ρ
]+ κ

Nc∑
j=1

D[a j]ρ + γ

Nc/2∑
j=1

D[σ j]ρ, (43)

where κ and γ are the cavity and atomic decay rates, respec-
tively, and H (s)

tot = H (1)
CA + Hd(s). The driving term is H (s)

d =
[�∗

1(a1δs,1 + aNδs,0)eiωd t + H.c.], and s = 1(0) correspond to
red (blue) arrow within Fig. 5. Next, we will mainly study the
impact of the different positions of atoms within a unit cell on
the statistical property of output light from a signal cavity, i.e.,
s = 0 and 1. Note that we will not provide the derivation steps
or calculating procedures; all the data results come from the
QCS code [93].

As shown in Fig. 6(a), there is an excellent distinction
between s = 1 and 0 in resonance point (ωc = ωe = ωd ), and
this indicates that different configurations (i.e., the atoms only
located in odd or even cavity) could induce the strong photon
blockade effect. Meanwhile, in resonance point, we also study
the impact of intercell hopping t on the second-order ETCF
with different configurations, as shown in Fig. 6(b). Notably,
for the case of atoms located at the even cavity (s = 0), there
is a strong antibunching point at t ≈ 0.48, while this point
disappears for the other case (s = 1). Besides, when we tune
the detuning of cavity and atom frequencies (ωc − ωe �= 0),
the two configurations both create photon blockade effect, as
shown in Fig. 6(c). In Fig. 6(c), the transition from s = 1 to 0
seems like two small antibunching regions in s = 1 merging

into a larger antibunching region near the resonance position
in s = 0. Specifically, for s = 1, the innermost and outermost
two strong antibunching regions along the axis ωe − ωd = 0
move toward the resonance point and the nonresonance point
(ωc − ωe = ±κ), respectively, and finally forms the case of
s = 0.

Finally, we use a complicatedly complex numerical method
(tMPS and MC) to check out our analytical expression, and
the method agrees perfectly with the analytical solution ex-
cept for the minimum point. The error in strong antibunching
points mainly comes from a finite driving strength (�1 =
0.01κ) in numerical simulations and truncation errors in the
tMPS. Nevertheless, the compactly analytical solution is still
highly effective and correct.

C. Spin- 1
2 systems coupled to A 1D waveguide model

In this section, we consider a waveguide QED system, i.e.,
a dimer atom chain side coupled to a 1D waveguide, as shown
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FIG. 6. Equal-time second-order correlation log10[g̃(2)
s (0)] versus

the detuning (ωc − ωd )/κ in (a), the intercell hopping t in (b), and
the detuning (ωc − ωd )/κ and (ωc − ωe)/κ in (c). Here, the black
dots in (a) and (b) represent the numerical comparison by using
time-evolved matrix product state (tMPS) and Monte Carlo (MC).
The black dashed circles in (c) highlight the minimum point of the
correlation function. In all subplots, the system parameters are given
by Nc = 8, κ = 1, γ = 0.8κ , and g = 0.6κ . Especially, ωc = ωe for
(a), ωc = ωe = ωd for (b), and t = 0.5 for (a) and (c).
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. . .

Input Output

FIG. 7. Schematic of a dimer atom chain coupled to a 1D waveg-
uide. γ represents the decay rates of atom into the 1D waveguide. The
input state is described by |β〉br

ωd
. Dashed boxes indicate the unit cells

consisting of red and blue balls; the intracell distance is d1 and the
intercell atoms are offset by the distance d2.

in Fig. 7. The Hamiltonian for the atom chain reads Hsys =
ωe
∑N

j=1 σ
†
j σ j , where ωe is the transition frequency of atom.

Meanwhile, the Hamiltonian of a 1D waveguide is

Hwg =
∑
μ=l,r

∫
dω ωb†

μ(ω)bμ(ω), (44)

where the bμ(ω) are bosonic annihilation operators for the
right- (μ = r) and left- (μ = l) moving waveguide modes
of frequency ω. Note from Eq. (44) that we implicitly
assumed a linear dispersion relation for the degrees of free-
dom of the waveguide. The system-waveguide interaction
can be characterized by the rotating wave approximation
Hamiltonian

Hint = i
N∑

j=1

∑
μ=l,r

∫
dω

√
γμ

2π
[b†

μ(ω)σ je
−iωx j/vμ − H.c.],

(45)

where γl and γr are the decay rates into the left- (vl < 0)
and right- (vr > 0) moving waveguide modes, respectively,
vμ denotes the corresponding group velocities, and x j repre-
sents the position of the jth atom along the waveguide, i.e.,
x2 j+1 = j(d1 + d2) and x2 j = j(d1 + d2) − d2.

First, we assume γl = γr = γ /2, vr = −vl = v, and k =
ωe/v. Then, we consider an incoming coherent state |β〉br

ωd
,

and the coherent amplitude is small enough, i.e., |β| → 0.
Finally, following the standard procedures [80,81] (such as the
usual Born-Markov and secular approximations), the Lind-
blad master equation reads as

ρ̇ = −i[Hsys + Hcoh + Hd, ρ]

+ γ
∑
i, j

cos(k|xi − x j |)
(

σ jρσ
†
i − 1

2
{σ †

i σ j, ρ}
)

, (46)

where Hcoh = (γ /2)
∑

i, j sin(k|xi − x j |)σ †
j σi, and Hd =∑N

j=1[β∗√γ /4π exp(iωdt − ikx j )σ j + H.c.].
Next, we will study the statistical properties of photons

from the output channel br , such as the single-photon trans-
mission and the second-order ETCF. Like the second example,
all data results come from the QCS code [93].

When d1 + d2 = 2π/k, Hcoh in single-excitation subspace
has a chiral symmetry ensuring its spectrum is symmetric
about 0. The spectrum is

Em = ±
∣∣∣∣ γ sin(kd1)

1 − exp(2iπm/N )

∣∣∣∣, m = 1, 3, . . . , N − 1. (47)
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FIG. 8. The single-photon transmission T for (a) and the second-
order ETCF log10[g̃(2)

rr (0)] for (b) versus the detuning (ωd − ωe)/γ
and the distance d1/λ. In (a), the boundary of T = 0 corresponds
to the white dashed line. In (b), to distinguish the local minima
more clearly, all regions for which g̃(2)

rr (0) > 10 are colored dark red.
(c) The second-order ETCF g̃(2)

rr (0) (left-hand longitudinal axis) and
single-photon transmission T (right-hand longitudinal axis) versus
the detuning (ωd − ωe)/γ . The yellow regions in the inset indicate
a close correspondence between high transmissivity (T ≈ 1) and
strong antibunching effect [g̃(2)

rr (0) � 1]. In all subplots, the system
parameters are given by N = 20, d1 + d2 = λ, and λ = 2π/k. Espe-
cially d1/λ = 1

4 for (c).

Notably, when the frequency ωd of incoming photons is
within the range, i.e., [− min |Em| + ωe, min |Em| + ωe], the
transmission is almost zero, and also is accompanied by a
pronounced bunching effect, as shown in Figs. 8(a) and 8(b).
And, the white dashed corresponds to ± min |Em|. Mean-
while, when we choose a maximal window corresponding
to T ≈ 0, i.e., kd1 = π/2, as shown in Fig. 8(c), we find
that the transmission happens quickly oscillation near the
|ωd − ωe| � min |Em|, and the peaks of oscillation are equal
to one (T = 1). The first four peaks also are accompanied
by a strong antibunching effect, respectively, as shown in the
yellow regions within Fig. 8(c).

VII. CONCLUSIONS AND OUTLOOK

To sum up, we introduce a new physical quantity of the
probability amplitude with equal-time probing multiple pho-
tons, and the probability amplitude has a compactly analytical
expression for any quantum systems satisfying the U(1) sym-
metry. Based on this analytical expression, we could simply
obtain an nth-order ETCF under a weak coherent drive be-
cause the correlation function completely depends on the
probability amplitude. In addition, we also discuss the classi-
fication of input and output channels, and we correspondingly
give the probability amplitude and correlation function. We
find that multiple input channels could bring up an interfer-
ence effect, and the phenomenon is beneficial to study photon
blockades for us. Moreover, multiple output channels also can
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help us to study the cross correlation. We also prove that
our analytical expression works for identical input and output
channels, providing excellent convenience for studying the
waveguide QED systems. Finally, we consider three exam-
ples in order to illustrate the advantages of our method. Not
only do we find that multiple input channels can trigger the
photon blockade effect compared to a single input channel,
but we can also apply our method to solve large-dimensional
systems, such as multicavity and multiatom models. Crucially,
the probability amplitude can also be used to calculate other
important physical quantities, such as transmission spectrum,
reflectance spectrum, and multibundle correlation functions
[97,98]. We also provide a user-friendly open-source library

in Python and expect our method here to be further applied
and extended.
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APPENDIX A: DERIVATIONS OF INPUT-OUTPUT RELATIONS AND SCATTERING MATRIX ELEMENTS

For the total Hamiltonian (1), the Heisenberg equations of motion for the operators bi(ω) and c j (ω) are

i
dbi(ω)

dt
= [bi(ω), Htot] = ωbi(ω) + ξb,ioi, i

dc j (ω)

dt
= [c j (ω), Htot] = ωc j (ω) + ξc, jo j . (A1)

In the assumptions t > t0 and t0 → −∞, the differential equations (A1) can be solved:

bi(ω, t ) = bi(ω, t0)e−iω(t−t0 ) − iξb,i

∫ t

t0

oi(τ )e−iω(t−τ )dτ,

c j (ω, t ) = c j (ω, t0)e−iω(t−t0 ) − iξc, j

∫ t

t0

o j (τ )e− jω(t−τ )dτ. (A2)

We then integrate (A2) with respect to ω to obtain

�b(t ) = 1√
2π

∫ +∞

−∞
bi(ω, t )dω = bi,in(t ) − iξb,i√

2π

∫ t

t0

oi(τ )
∫ +∞

−∞
e−iω(t−τ )dω dτ = bi,in(t ) − i

√
κb,i

2
oi(t ),

�c(t ) = 1√
2π

∫ +∞

−∞
c j (ω, t )dω = c j,in(t ) − iξc, j√

2π

∫ t

t0

o j (τ )
∫ +∞

−∞
e−iω(t−τ )dω dτ = c j,in(t ) − i

√
κc, j

2
o j (t ), (A3)

with the input operators

bi,in(t ) = 1√
2π

∫ +∞

−∞
bi(ω, t0)e−iω(t−t0 )dω, c j,in(t ) = 1√

2π

∫ +∞

−∞
c j (ω, t0)e−iω(t−t0 )dω. (A4)

Similarly, in the assumptions t1 > t and t1 → +∞, Eq. (A1) can be written as

bi(ω, t ) = bi(ω, t1)e−iω(t−t1 ) + iξb,i

∫ t

t1

oi(τ )e−iω(t−τ )dτ,

c j (ω, t ) = c j (ω, t1)e−iω(t−t1 ) + iξc, j

∫ t

t1

o j (τ )e− jω(t−τ )dτ. (A5)

We integrate (A5) concerning ω to obtain

�b(t ) = 1√
2π

∫ +∞

−∞
bi(ω, t )dω = bi,out(t ) + iξb,i√

2π

∫ t

t1

oi(τ )
∫ +∞

−∞
e−iω(t−τ )dω dτ = bi,out(t ) + i

√
κb,i

2
oi(t ),

�c(t ) = 1√
2π

∫ +∞

−∞
c j (ω, t )dω = c j,out(t ) + iξc, j√

2π

∫ t

t1

o j (τ )
∫ +∞

−∞
e−iω(t−τ )dω dτ = c j,out(t ) + i

√
κc, j

2
o j (t ), (A6)

with the output operators

bi,out(t ) = 1√
2π

∫ +∞

−∞
bi(ω, t1)e−iω(t−t1 )dω, c j,out(t ) = 1√

2π

∫ +∞

−∞
c j (ω, t1)e−iω(t−t1 )dω. (A7)

Combining with Eqs. (A3) and (A6), we get the input-output relations:

bi,out(t ) = bi,in(t ) − i
√

κb,ioi(t ), c j,out(t ) = c j,in(t ) − i
√

κc, jo j (t ). (A8)
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Due to the property of Møller wave operators, i.e., �+
−�− = �

†
+�+ = I , we have

Sμν

p1...pn;k1...kn
= 〈0|

[
n∏

l=1

νl (pl )

]
Ŝ

[
n∏

l=1

μ
†
l (kl )

]
|0〉 = 〈0|�†

−

[
n∏

l=1

�−νl (pl )�
†
−

]
�−Ŝ�

†
+

[
n∏

l=1

�+μ
†
l (kl )�

†
+

]
�+|0〉

= 〈0|
[

n∏
l=1

�−νl (pl )�
†
−

]
�−�

†
−�+�

†
+

[
n∏

l=1

�+μ
†
l (kl )�

†
+

]
|0〉

= 〈0|
[

n∏
l=1

�−νl (pl )�
†
−

][
n∏

l=1

�+μ
†
l (kl )�

†
+

]
|0〉

= 〈0|
[

n∏
l=1

νl,out(pl )

][
n∏

l=1

μ
†
l,in(kl )

]
|0〉, (A9)

where

μl,in(kl ) ≡ �+μl (kl )�
†
+ = eiHtott0 e−iHBt0μl (kl )e

iHBt0 e−iHtott0 , (A10)

νl,out(pl ) ≡ �−νl (pl )�
†
− = eiHtott1 e−iHBt1νl (pl )e

iHBt1 e−iHtott1 . (A11)

According to Eqs. (A4) and (A7), for the operator bi,in(t ) we have

bi,in(t ) = 1√
2π

∫ +∞

−∞
bi(ω, t0)e−iω(t−t0 )dω = 1√

2π

∫ +∞

−∞
eiHtott0 bi(ω)eiωt0 e−iHtott0 e−iωt dω

= 1√
2π

∫ +∞

−∞
eiHtott0 e−iHBt0 bi(ω)eiHBt0 e−iHtott0 e−iωt dω

= 1√
2π

∫ +∞

−∞
bi,in(ω)e−iωt dω, (A12)

which automatically satisfy the inverse Fourier transform by the definition (A10), and the same is true for c j,out(t ), i.e., c j,out(t ) =
F−1[c j,out(ω)], where F represents the Fourier transform. Note that in the second line, we took advantage of the fact that
[HB, bi(ω)] = −ωbi(ω). As a result, the definitions (A10) and (A11) are self-consistent.

APPENDIX B: DERIVATION OF EQ. (6)

In order to demonstrate the equivalence between the scattering matrix and master-equation methods, we only need to calculate
the numerator of Eq. (6), and the computations are as follows:

〈ψout|c†n
j (t )cn

j (t )|ψout〉 = 〈ψin|Ŝ†�
†
−[�−c†

j (t )�†
−]n[�−c j (t )�†

−]n�−Ŝ|ψin〉 = 〈ψin|�†
+c†n

out, j (t )cn
out, j (t )�+|ψin〉

= 〈ψin|�†
+[c†

in, j (t ) + i
√

κc, jo
†
j (t )]n[c j,in(t ) − i

√
κc, jo j (t )]n�+|ψin〉. (B1)

Then, according to these definitions of �+, |ψin〉, and c j,in(t ), we have

c j,in(t )�+|ψin〉 =
[∫ +∞

−∞
eiHtott0 e−iHBt0 c j (ω)eiHBt0 e−iHtott0 e−iωt dω

]
[eiHtott0 e−iHBt0 ]

[
N |β〉bi

ωd
⊗ |0〉B ⊗ |g〉s

]
=
∫ +∞

−∞
eiHtott0 e−iHBt0 c j (ω)e−iωtN |β〉bi

ωd
⊗ |0〉B ⊗ |g〉s dω

= 0 = 〈ψin|�†
+c†

in, j (t ), (B2)

where N is a normalization factor, and the quantum causality condition about oj (t ) and o†
j (t ) at equal time is

[o j (t ), c j,in(t )] = [o†
j (t ), c j,in(t )] = [o j (t ), c†

in, j (t )] = [o†
j (t ), c†

in, j (t )] = 0. (B3)
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Hence, combining with Eqs. (B2) and (B3), (B1) can be further simplified as

〈ψout|c†n
j (t )cn

j (t )|ψout〉 = κn
c, j〈ψin|eiHBt0 e−iHtott0 o†n

j (t )on
j (t )eiHtott0 e−iHBt0 |ψin〉

= κn
c, jTr

[
o†n

j (t )on
j (t )eiHtott0 e−iHBt0 |ψin〉〈ψin|eiHBt0 e−iHtott0

]
= κn

c, jTr
[
o†n

j on
je

−iHtot (t∞+t )ρ(0)eiHtot (t∞+t )
]

= κn
c, jTr

[
o†n

j on
jU (t∞ + t, 0)ρ(0)U †(t∞ + t, 0)

]
= κn

c, jTrs
[
o†n

j on
jρs(t∞ + t )

]
, (B4)

where ρs(t∞ + t ) = TrB[U (t∞ + t, 0)ρ(0)U †(t∞ + t, 0)], ρ(0) = e−iHBt0 |ψin〉〈ψin|eiHBt0 , t0 = −∞ = −t∞, and Trs and TrB, re-
spectively, represent partial trace for systems and baths. For the sake of conciseness, we introduce a time-dependent displacement
operator

Dt {β(ω)} = exp

(∫ ∞

−∞
dω[β(ω)e−iωt b†

i (ω) − β∗(ω)eiωt bi(ω)]

)
, (B5)

where β(ω) = βδ(ω − ωd ) when a local system be coherently driven, and the free evolution of input state can be also rewritten
as e−iHBt0 |ψin〉 = D0{β(ω)e−iωt0}|0〉. Finally, in order to be consistent with Eq. (4), we need to demonstrate the equation

ρs(t ) = TrB[D†
t {β(ω)e−iωt0}U (t, 0)D0{β(ω)e−iωt0}|0〉〈0|D†

0{β(ω)e−iωt0}U †(t, 0)Dt {β(ω)e−iωt0}]
= TrB[Ũ (t, 0)̃ρ(0)Ũ †(t, 0)] = ρ̃s(t ), (B6)

where ρ̃(0) = |0〉〈0|, and |0〉 represents the vacuum state of the total system. And beyond that, according to the Mollow
transformation, the new evolution operator Ũ (t, 0) has

i
d

dt
Ũ (t, 0) = H̃ (t )Ũ (t, 0) with H̃ (t ) = Htot + Hi

d(t + t0). (B7)

Therefore, following the standard procedures [2,99] to trace out the heat baths degrees of freedom and applying the Born-Markov
approximation, the density matrix ρ̃s(t ) satisfies the master equation

∂t ρ̃s(t ) = −i
[
Hsys{ok} + Hi

d(t ), ρ̃s(t )
]+

∑
α

γα

(
Lαρ̃s(t )L†

α − 1

2
{L†

αLα, ρ̃s(t )}
)

≡ Lρ̃s(t ) (B8)

with Liouvillian operator L. Equation (B8) actually is Eq. (4), so Eq. (B4) can be further written as

〈ψout|c†n
j (t )cn

j (t )|ψout〉 = κn
c, jTrs

[
o†n

j on
jρs(t∞ + t )

] = κn
c, jTrs

[
o†n

j on
j ρ̃s(t∞ + t )

]
. (B9)

By plugging Eq. (B9) into (6), we have

g(n)
j j (0) = 〈ψout|c†n

j (t )cn
j (t )|ψout〉

〈ψout|c†
j (t )c j (t )|ψout〉n

= κn
c, jTrs

[
o†n

j on
j ρ̃s(t∞ + t )

]
κn

c, jTrs[o
†
jo j ρ̃s(t∞ + t )]n

= Trs
[
o†n

j on
jρss

]
Trs[o

†
jo jρss]n

, (B10)

where ρss represents the steady state, i.e., ρss = lim
t→∞ ρ̃s(t ) = ρ̃s(t∞ + t ).

APPENDIX C: DERIVATIONS OF EQS. (13)–(16)

According to quantum field theory, the time-ordered 2n-point Green’s function (12) can be written as the path-integral
formulation, i.e.,

Gμν (t ′
Bn

; tDn ) = (−1)n

∫
D[{bk (ω), b∗

k (ω), ck (ω), c∗
k (ω)}, {ok, o∗

k}]
∏n

l=1[oνl (t
′
l )o∗

μl
(tl )]ei

∫
dtL∫

D[{bk (ω), b∗
k (ω), ck (ω), c∗

k (ω)}, {ok, o∗
k}]ei

∫
dtL , (C1)

where L is the Lagrangian of the total system, and “{. . . }” represents all possible modes within brackets. For the total
Hamiltonian (1), the L is

L =
∑

k

∫
dω[b∗

k (ω)(i∂t − ω)bk (ω) + c∗
k (ω)(i∂t − ω)ck (ω)]

−
∑

k

∫
dω[ξb,kb∗

k (ω)ok + ξc,kc∗
k (ω)ok + ξ ∗

b,kbk (ω)o∗
k + ξ ∗

c,kck (ω)o∗
k] + Lsys, (C2)
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where Lsys is the system’s Lagrangian associating with the Hamiltonian Hsys{ok}. For the sake of convenience, we define a
symbol, i.e., A = ∂t + iω. In order to compute A−1, We have

AΠω(t − t ′) = δ(t − t ′) �⇒ Πω(t − t ′) =
∫

dk

2π
e−ik(t−t ′ ) i

k − ω + i0+ = e−iω(t−t ′ )θ (t − t ′), (C3)

where the function Πω(t − t ′) is an inverse of A. Hence, we only calculate the functional integration of waveguides in the
denominator of Eq. (C1):∫

D[{bk (ω), b∗
k (ω), ck (ω), c∗

k (ω)}]ei
∫

dt L

= ei
∫

dtLsys

∫
D[{bk (ω), b∗

k (ω), ck (ω), c∗
k (ω)}]

× e−∑
k

∫
dt
∫

dω[b∗
k (ω)Abk (ω)+c∗

k (ω)Ack (ω)+iξb,kb∗
k (ω)ok (t )+iξ∗

b,kbk (ω)o∗
k (t )+iξc,kc∗

k (ω)ok (t )+iξ∗
c,k ck (ω)o∗

k (t )]

= Nei
∫

dtLsys e−∑
k

∫
dt
∫

dt ′ ∫ dω[|ξb,k |2o∗
k (t )Πω (t−t ′ )ok (t ′ )+|ξc,k |2o∗

k (t )Πω (t−t ′ )ok (t ′ )]

= Nei
∫

dtLsys e−π
∑

k

∫
dt[|ξb,k |2o∗

k (t )ok (t )+|ξc,k |2o∗
k (t )ok (t )], (C4)

where N is the constant coefficient from the Gaussian functional integration. As a result, we can obtain the effective Lagrangian,
and then the effective Hamiltonian is obtained from the effective Lagrangian by Legendre transformation, which is

Leff = Lsys + iπ
∑

k

(|ξb,k|2 + |ξc,k|2)o∗
kok �⇒ Heff = Hsys{ok} − i

2

∑
k

(κb,k + κc,k )o†
kok . (C5)

Then by (C4) and (C5), Eq. (C1) can be simplified as

Gμν (t ′
Bn

; tDn ) = (−1)n

∫
D[{ok, o∗

k}]
∏n

l=1[oνl (t
′
l )o∗

μl
(tl )]ei

∫
dt Leff∫

D[{ok, o∗
k}]ei

∫
dt Leff

= (−1)n

∫
D[{ok, o∗

k}]
∏n

l=1[õνl (t
′
l )õ∗

μl
(tl )]ei

∫
dt Leff∫

D[{ok, o∗
k}]ei

∫
dt Leff

= (−1)n〈g|T
[ n∏

l=1

õνl (t
′
l )õ†

μl
(tl )

]
|g〉 = G̃μν (t ′

Bn
; tDn ), (C6)

where [
õνl (t )
õ†

μl
(t )

]
= exp(iHefft )

[
oνl

o†
μl

]
exp(−iHefft ). (C7)

Actually, we could use a more straightforward method to obtain the relation [81].

APPENDIX D: DERIVATION OF PROBABILITY AMPLITUDE WITH EQUAL-TIME PROBING n PHOTONS

According to Eqs. (11) and (18), the probability amplitude of equal-time probing n outgoing photons can be written as

Pμν
n (t ) =

n∏
l=1

∫
dt ′

l√
2π

e−ikl t ′
l Sμν

t ...t ;t ′
1...t

′
n
=

n∑
m=0

∑
Bm,Dm

m∏
s=1

∫ dt ′
Dm (s)√
2π

e−ikDm (s)t ′
Dm (s) GμDm νBm

(
tBm ; t ′

Dm

)∑
Pc

n−m∏
s=1

[
e−ikPcDc

m (s)t

√
2π

δνBc
m (s),μPcDc

m (s)

]
.

(D1)

In order to calculate Eq. (D1), we first deal with the integral:

I (Dn, Bn) ≡
n∏

s=1

∫ dt ′
Dn (s)√
2π

e−ikDn (s)t ′
Dn (s) GμDn νBn

(
tBn ; t ′

Dn

)
, (D2)

where the time-ordered 2n-point Green’s function

GμDn νBn
(
tBn ; t ′

Dn

) = Gμν (t . . . t ; t ′
1 . . . t ′

n) = G̃μν (t . . . t ; t ′
1 . . . t ′

n) = (−1)n〈g|T
[

n∏
j,k=1

õν j (t )õ†
μk

(t ′
k )

]
|g〉. (D3)
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Meanwhile, we can also take off the time-ordered operator in Eq. (D3) but need to add all possible permutations, and thus the
integral (D2) is given by

I (Dn, Bn) = (−1)n

[
n∏

s=1

∫
dt ′

s√
2π

e−ikst ′
s

]∑
P

〈g|
n+1∏
j=1

Õ
(
t ′
P j

)|g〉 n∏
j=1

θ
(
t ′
P j

− t ′
P j+1

)
, (D4)

where θ (x) is the step function, and P is permutations over indices {0, 1, . . . , n}. Note from Eq. (D4) that we have assumed t ′
0 = t ,

Õ(t ′
0) = ∏n

j=1 õν j (t ), and Õ(t ′
k ) = õ†

μk
(t ′

k ). According to Eqs. (15) and (17), there are some permutations in Eq. (D4) that are
automatically zero due to the property of upper and lower triangular matrices multiplication, e.g., õνm (tPm )õνn (tPn )õ†

μl
(tPl )|g〉 =

0. In order to evaluate the integral about time, we need to introduce an integral trick and an identical equation

∫ +∞

−∞
e−iM(t−t ′ )e±ia(t−t ′ )θ (t − t ′)dt ′ = lim

ε→0+
[i(M ∓ a − iε)]−1, (D5)

n∏
j=1

∫
dt j√
2π

e−ik j t j =
∫

dtP̃1√
2π

e−itP̃1

∑n
s=1 kP̃s

n∏
j=2

dtP̃ j√
2π

e
i
∑n

s= j kP̃s
(tP̃ j−1

−tP̃ j
)
, (D6)

where M is square matrix, a ∈ R, and P̃ are permutations over indices {1, 2, . . . , n}. Here, the imaginary part of all eigenvalues
of M is less than or equal to zero. Thereby, we can guarantee the validity of both e−i(M−iε)t |t→+∞ = 0 and Det[M ∓ a − iε] �= 0.
Based on Eqs. (D5) and (D6), Eq. (D4) can be further simplified as

I (Dn, Bn) = (−1)n

[
n∏

s=1

∫
dt ′

s√
2π

e−ikst ′
s

]∑
P̃

〈g|
n∏

j=1

[eiHefft oν j e
−iHefft ]

n∏
j=1

[
e

iHefft ′
P̃ j o†

μP̃ j
e
−iHefft ′

P̃ j
]|g〉θ (t − t ′

P̃1
)

n∏
j=2

θ
(
t ′
P̃ j−1

− t ′
P̃ j

)

= (−1)n
∑
P̃

[
n∏

j=1

∫ dt ′
P̃ j√
2π

]
〈g|

n∏
j=1

[oν j ]e
−iHeff (t−t ′

P̃1
)
ei(t−tP̃1

)
∑n

s=1 kP̃s θ
(
t − t ′

P̃1

)
e−it

∑n
s=1 kP̃s

×
n−1∏
j=1

[
o†

μP̃ j
e
−iHeff (t ′

P̃ j
−t ′

P̃ j+1
)
e

i
∑n

s= j+1 kP̃s
(t ′
P̃ j

−t ′
P̃ j+1

)
θ
(
t ′
P̃ j

− t ′
P̃ j+1

)]
o†

μP̃n
|g〉

=
[ n∏

j=1

e−ik j t

√
2π

]
lim

ε→0+

∑
P̃

〈g|
n∏

j=1

[oν j ]
n∏

j=1

{[
− i

(
Heff −

n∑
s= j

kP̃s
− iε

)]−1

o†
μP̃ j

}
|g〉

=
[ n∏

j=1

e−ik j t

√
2π

]∑
P̃

[−→∏
n
j=1Oν j

j−1, j

][←−∏
n
j=1K−1∑ j

s=1 kP̃s

( j)O
†μP̃ j

j−1, j

]
. (D7)

Analogously, the case of Dm and Bm also has

I (Dm, Bm) =
[ m∏

j=1

e−ikDm ( j)t

√
2π

]∑
P

[−→∏
m
j=1OνBm ( j)

j−1, j

][←−∏
m
j=1K−1∑ j

s=1 kPDm (s)
( j)O†μPDm ( j)

j−1, j

]
. (D8)

In the first step above, we use Eq. (15). In the second step, we take advantage of Heff|g〉 = 0 and Eq. (D6). In the third step,
we use Eq. (D5). In the last step, we use Eq. (16). Meanwhile, the inverse matrix becomes well defined due to the presence
of the coefficient ε when the effective Hamiltonian has one or more eigenvalues whose imaginary part is zero; in other words,
Det[Heff − ω − iε] �= 0.

Finally, let us plug Eq. (D8) into (D1), and we have

Pμν
n (t ) =

n∑
m=0

∑
Dm,Bm

I (Dm, Bm)
∑

Pc

n−m∏
s=1

[
e−ikPcDc

m (s)t

√
2π

δνBc
m (s),μPcDc

m (s)

]

= e−iktott

√
(2π )n

n∑
m=0

∑
Dm,Bm

∑
P

[−→∏
m
j=1OνBm ( j)

j−1, j

][←−∏
m
j=1K−1∑ j

s=1 kPDm (s)
( j)O†μPDm ( j)

j−1, j

]∑
Pc

n−m∏
s=1

[δνBc
m (s),μPcDc

m (s)
]. (D9)
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For example, we assume μ = (bi )n, ν = (c j )n, and k = (ωd )n. The corresponding input-output relations are written as bi,out(t ) =
bi,in(t ) − i

√
κb,ioi(t ) and c j,out(t ) = c j,in(t ) − i

√
κc, jo j (t ). Obviously, the only nonzero term is for m = n, and we have

Pμν
n (t ) =

[
e−iωd t

√
2π

]n ∑
Dn,Bn

∑
P

[−→∏
n
l=1OνBn (l )

l−1,l

][←−∏
n
l=1K−1∑l

s=1 kPDn (s)
(l )O†μPDn (l )

l−1,l

]

= n!

[
e−iωd t√

2π/(κb,iκc, j )

]n[−→∏
n
l=1O j

l−1,l

][←−∏
n
l=1K−1

lωd
(l )O†i

l−1,l

]
. (D10)

Therefore, combining with Eqs. (6) and (D10), the nth-order equal-time correlation function under a weak coherent drive could
be written as

g(n)
j j (0) = lim

|βi|→0

〈ψout|c†n
j (t )cn

j (t )|ψout〉
〈ψout|c†

j (t )c j (t )|ψout〉n
= lim

|βi|→0

|N |2 ∑∞
k=n

|βi|2k

k! ωd

〈
�

(k)
out

∣∣c†n
j (t )cn

j (t )
∣∣� (k)

out

〉
ωd[

|N |2 ∑∞
k=1

|βi|2k

k! ωd

〈
�

(k)
out

∣∣c†
j (t )c j (t )

∣∣� (k)
out

〉
ωd

]n

= ωd

〈
�

(n)
out

∣∣c†n
j (t )cn

j (t )
∣∣� (n)

out

〉
ωd

/
n![

ωd

〈
�

(1)
out

∣∣c†
j (t )c j (t )

∣∣� (1)
out

〉
ωd

]n =
∣∣Pμν

n (t )
/

n!
∣∣2∣∣Pμν

1 (t )
∣∣2n = lim

|�i|→0

Tr
[
o†n

j on
jρss

]
Tr
[
o†

jo jρss
]n , (D11)

where βi = �i
√

2π/κb, and |� (k)
out〉ωd = S|� (k)

in 〉bi
ωd

. In the step above, we take advantage of the relation, i.e., |N |2 → 1 when
|βi| → 0.

APPENDIX E: DISCUSSIONS ABOUT THE CASE OF THE NONLINEAR INTERACTION BETWEEN
THE SYSTEM AND THE HEAT BATHS

On the basis of Eq. (1), we assume that each local system also interacts nonlinearly with a new individual heat bath. Thus,
the noninteraction Hamiltonian HB and interaction Hamiltonian HI should be rewritten as

HB =
∫

dω
∑

k

ω[b†
k (ω)bk (ω) + c†

k (ω)ck (ω) + d†
k (ω)dk (ω)], (E1)

HI =
∫

dω
∑

k

[ξb,kb†
k (ω)ok + ξc,kc†

k (ω)ok + ξd,kd†
k (ω)om

k + H.c.], (E2)

where dk (ω) [d†
k (ω)] is bosonic annihilation (creation) operator of the new heat bath mode, and m is a positive integer greater

than 1. Notice that the total Hamiltonian Htot also respects the U(1) symmetry. Similarly, following Eqs. (A1)–(A8), one can
develop the standard input-output formalism that relates dl,in, dl,out, and ol as

dl,out(t ) = dl,in(t ) − i
√

κd,l o
m
l (t ), (E3)

where κd,l = 2π |ξd,l |2. Subsequently, following Appendix C, we could derive a new effective Hamiltonian, which is given by

Heff = Hsys{ok} − i

2

∑
k

(κb,k + κc,k )o†
kok − i

2

∑
k

κd,ko†m
k om

k . (E4)

Obviously, the nonlinear effect does not disappear, it just moved from the interaction Hamiltonian (E2) to the effective
Hamiltonian (E4). Besides, if we still regard Eq. (5) as the initial state of the total Hamiltonian, according to Eqs. (B1)–(B8), we
will obtain a Lindblad master equation after tracing over the heat bath degrees of freedom, i.e.,

dρs

dt
= −i[Hsys + Hd, ρs] +

∑
k

(κb,k + κc,k )D[ok]ρs +
∑

k

κd,kD
[
om

k

]
ρs, (E5)

where Hd = [�∗
i oi exp(iωdt ) + H.c.]. Actually, we can also achieve a multiphoton driving case to a local system by changing

the initial state of the total system, and the corresponding Hamiltonian and initial state are given by

Hd = E∗
l om

l eiωd t + El o
†m
l e−iωd t , |ψin〉 = |αl〉dl

ωd
⊗ |0〉B ⊗ |g〉, (E6)

where αl = El

√
2π/κd,l , and |0〉B represents the vacuum state of baths except the mode dl .

For the single-photon driving case [i.e., Eq. (3)], our conclusions in the main text still apply for the nonlinear interaction, and
we just need to replace the effective Hamiltonian with Eq. (E4). However, for the multiphoton driving case [i.e., Eq. (E6)], the
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nth-order ETCF (6) under a weak drive is given by

g̃(n)
j j (0) = lim

|αl |→0
g(n)

j j (0) = lim
|αl |→0

|N |2 ∑∞
k=�n/m�

|αl |2k

k! ωd

〈
�

(k)
out

∣∣c†n
j (t )cn

j (t )
∣∣� (k)

out

〉
ωd[

|N |2 ∑∞
k=1

|αl |2k

k! ωd

〈
�

(k)
out

∣∣c†
j (t )c j (t )

∣∣� (k)
out

〉
ωd

]n

= G × lim
|αl |→0

|αl |−2(n−�n/m�) = G × ∞ = ∞, (E7)

where G is a constant that is entirely unrelated to αl , and n − �n/m� is greater than 0 due to m > 1. Thus, we must simultaneously
add at least one single-photon drive term for the local system and select an appropriate parameter condition to prevent the
correlation function from approaching infinity. To prove this point, let us introduce a driving term

Hd = �∗
i oie

iωd t + �io
†
i e

−iωd t + E∗
l o2

l e
2iωd t + El o

†2
l e−2iωd t , (E8)

and the corresponding input state is given by

|ψin〉 = |βi〉bi
ωd

⊗ |αl〉dl
2ωd

⊗ |0〉B ⊗ |g〉. (E9)

For the sake of simplicity, we only provide the analytical expression of the second-order ETCF. To avoid the presence of the case
of Eq. (E7), we must choose this parameter condition, i.e., αl = ηβ2

i with |βi| → 0. Thus, we have

g̃(2)
j j (0) = lim

|βi|→0
g(2)

j j (0) = |〈0|[c j (t )c j (t )]S[b†
i (ωd )b†

i (ωd )]|0〉/2! + η〈0|[c j (t )c j (t )]S[d†
l (2ωd )]|0〉|2

|〈0|[c j (t )]S[b†
i (ωd )]|0〉|4 . (E10)

Notably, the denominator and the first term in the numerator can be analytically solved based on Eq. (19), and the corresponding
expressions are given by

〈0|[c j (t )]S[b†
i (ωd )]|0〉 = ξ × O j

0,1K−1
ωd

(1)O†i
0,1, (E11)

〈0|[c j (t )c j (t )]S[b†
i (ωd )b†

i (ωd )]|0〉 = 2!ξ 2 × O j
0,1O j

1,2K−1
2ωd

(2)O†i
1,2K−1

ωd
(1)O†i

0,1, (E12)

where ξ = √
κb,iκc, j/2π exp(−iωdt ). For the second term in the numerator, we have

〈0|[c j (t )c j (t )]S[d†
l (2ωd )]|0〉 =

∫
dt ′

√
2π

e−2iωd t ′ 〈0|c j,out(t )c j,out(t )d†
l,in(t ′)|0〉

=
∫

dt ′
√

2π
e−2iωd t ′

(iκc, j
√

κd,l )〈g|T [õi(t )õi(t )õ†
l (t ′)õ†

l (t ′)]|g〉

=
∫

dt ′
√

2π
e−2iωd t ′

(iκc, j
√

κd,l )〈g|[oioi]e
−iHeff (t−t ′ )[o†

l o
†
l ]|g〉θ (t − t ′)

= e−2iωd t (−iκc, j

√
κd,l/2π )O j

0,1O j
1,2K−1

2ωd
(2)O†l

1,2O†l
0,1. (E13)

Finally, let us plug Eqs. (E11)–(E13) into (E10), and the second-order ETCF can be simplified as

g̃(2)
j j (0) =

∣∣O j
0,1O j

1,2K−1
2ωd

(2)O†i
1,2K−1

ωd
(1)O†i

0,1 − iη̃ × O j
0,1O j

1,2K−1
2ωd

(2)O†l
1,2O†l

0,1

∣∣2∣∣O j
0,1K−1

ωd
(1)O†i

0,1

∣∣4 , (E14)

where η̃ = η
√

2πκd,l/κb,i = El/�
2
i .
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