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Distinguishability and mixedness in quantum interference
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We study the impact of distinguishability and mixedness, two fundamental properties of quantum states,
on quantum interference. We show that these can influence the interference of multiple particles in different
ways, leading to effects that cannot be observed in the interference of two particles alone. This is demonstrated
experimentally by interfering three independent photons in pure and mixed states and observing their different
multiphoton interference, despite exhibiting the same two-photon Hong-Ou-Mandel interference. In addition
to its fundamental relevance, our observation has important implications for quantum technologies relying on
photon interference.
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I. INTRODUCTION

Quantum interference is a defining feature of quantum
physics, leading to behavior that puts it in sharp contrast to its
classical counterpart. Beyond its importance on a fundamen-
tal level, interference is also a crucial component for many
modern quantum technologies. For example, those relying
on photon interference include photonic quantum comput-
ing, boson sampling approaches to demonstrating quantum
advantage, quantum metrology and quantum networks [1–7].
However, quantum interference suffers from an intrinsic
trade-off between which-path information and interference
strength [8,9]. Therefore, a key requirement for high-quality
operation of these technologies is that the photons are indis-
tinguishable and have a high purity. Otherwise, the quantum
interference degrades and this leads to a reduction in the
fidelity of quantum operations.

Extensive theoretical and experimental work has been de-
veloped for analyzing the effect of photon distinguishability
in computationally demanding tasks like boson sampling
[10–24]. A common approach to quantifying similarity of
photons is to perform a Hong-Ou-Mandel (HOM) interference
test between pairs of them. One photon is injected into each
input of a balanced beam splitter and the relative time delay
is varied over the coherence time of the photons’ wavepackets
[25]. The visibility of the variation in coincidence counts gives
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a measure of the overlap of the photons’ wave functions,
and so can characterize the similarity and quality of photons
[26]. The existence of distinguishable states can give rise to
another important photon error: mixedness, where a photon
is in an incoherent combination of different states. This also
leads to decreased interference strength. Existing theoretical
work captures the effects of both of these errors but quali-
tative differences between the resulting behavior are unclear
[10,12,27].

Here, we show that discrimination between distinguisha-
bility and purity in the interference of independent photons
requires at least three photons. We demonstrate this experi-
mentally by preparing sets of three photons in pure and mixed
states and interfering them in a multiport splitter. We use
intuitive geometric interpretations to show that, in both cases,
the HOM visibilities are the same, but other multiphoton out-
put statistics differ. Our result underscores that two-particle
interferences are generally insufficient for predicting the na-
ture of interference in larger systems of mixed quantum
states.

II. DISTINGUISHABLE AND MIXED STATES

A photon’s state is defined by its mode. We will make a
distinction between the resolved degrees of freedom where
detectors do resolve the mode structure (in our case, the spatial
mode) and the unresolved degrees of freedom where they
do not (here, the temporal mode and polarization). We will
investigate distinguishability in interference by starting with
a set of independent photons, prepared with one photon per
spatial mode, and states that determine their distinguishability.
The photons then evolve through an interferometer that mixes
spatial modes but leaves other degrees of freedom unchanged.
Finally, the photons are detected at the outputs.
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FIG. 1. (a) HOM dip measurement where photons with states
ρa and ρb and relative time delay �t interfere on a balanced beam
splitter. (b) We here assume the photons occupy identical Gaussian
wavepackets. The output coincidence probability P11 reaches a min-
imum at zero relative delay and the visibility depends on the overlap
of their states. For a two-dimensional space where ρa is assumed
pure, this overlap of Bloch vectors is reduced by (c) distinguishabil-
ity and (d) mixedness in the same way, giving identical HOM dip
visibilities.

If photons differ in their unresolved states then there is, in
principle, information that can distinguish between the photon
paths in an interferometer leading to a particular output pattern
[10–12]. For example, in HOM interference the relative arrival
time of two photons at a beam splitter allows discrimination
between the two paths leading to output coincidence detec-
tion, namely, both photons being transmitted or both being
reflected. As the relative time delay approaches zero, the paths
become indistinguishable. This strengthens the destructive in-
terference that suppresses output coincidences and leads to a
characteristic HOM dip [see Figs. 1(a) and 1(b)].

If the two photons instead have pure states |a〉 and |b〉
that are different in some other unresolved degree of free-
dom besides arrival time, then the strength of coincidence
suppression at zero relative delay is determined by the pair-
wise distinguishability |〈a|b〉|2. This can be measured using
the HOM dip visibility V = (max − min)/max. The intro-
duction of a third photon with state |c〉 means there are
four distinguishing parameters: three pairwise distinguisha-
bilities and the appearance of a multiparticle phase ϕabc =
arg(〈a|b〉〈b|c〉〈c|a〉) [15]. Adding more photons leads to
more pairwise distinguishabilities and additional multiparticle
phases with a similar form. For N pure photons, at most (N −
1)2 real parameters describe their distinguishability [13,16].

More generally, quantum systems such as photons can be
in mixed states. For example, heralding from a spectrally
entangled pair source leads to mixed photon states. The simi-
larity of two photons in states ρa and ρb is then described by
the real pairwise trace Tr(ρaρb). Extending to more photons,
similarity is related to traces of products of their density
matrices and mixedness means the largest number of dis-
tinguishing parameters for N coincident photons increases
to (N! − 1) [12,28]. Constructing pure state decompositions

for the mixed states involved means that interference can be
expressed as an incoherent sum of pure state interferences
[10]. However, this obscures intuitive aspects of interference
that can be captured through geometric considerations of the
distinguishing parameters. In this paper, we investigate the
form of these parameters for two and three photons and show
how distinguishability and mixedness can affect multiphoton
interference differently.

III. TWO-PHOTON INTERFERENCE

We begin by showing that two-photon interference vis-
ibility does not discriminate between distinguishability and
mixedness. Consider two photons with states ρa and ρb im-
pinging on a balanced beam splitter. If the probability of
observing output coincidences P11 is monitored as the rela-
tive time delay is varied, a HOM dip is observed [Figs. 1(a)
and 1(b)]. Its visibility is determined by the pairwise trace
Tr(ρaρb). This quantity can be interpreted geometrically by
considering an unresolved space with two dimensions; here
the minimum number needed for two photons to exhibit com-
plete distinguishability.

Let Bloch vectors ra and rb describe the states ρa and ρb,
respectively, so r j = Tr(ρ jσ), j = a, b, where σ is the vector
of Pauli matrices. The pairwise trace is related to the dot
product as

Tr(ρaρb) = 1
2 (1 + ra · rb). (1)

The lengths and relative orientation of the Bloch vectors
describe the purities and distinguishability of the states, re-
spectively, and affect the pairwise trace in the same way [see
Figs. 1(c) and 1(d)]. This also holds for two vectors describing
unresolved states in a higher-dimensional space, where the dot
product determines the pairwise trace. Thus, the visibility of
HOM interference between two independent photons cannot
discriminate between distinguishability and mixedness.

IV. THREE-PHOTON INTERFERENCE

The interference of three photons depends on five distin-
guishing parameters: three real pairwise traces and also the
generally complex triple trace Tr(ρaρbρc). Here we consider
qubit states that permit an intuitive geometric description of
the triple trace. Associating a Bloch vector r j to each state
ρ j, j = a, b, c, we find [29]

Tr(ρaρbρc) = 1
4 (1 + ra · rb + ra · rc + rb · rc + iVabc). (2)

The dot products describe pairwise similarities and the imagi-
nary component encodes a collective description via the scalar
triple product of the three Bloch vectors: Vabc = ra · (rb × rc).
This has a magnitude given by the volume of the corre-
sponding parallelepiped and a sign set by its orientation in
a right-handed frame [see Fig. 2(a)]. It is also antisymmetric
under pairwise swaps of the vectors. If the Bloch vectors
are coplanar then Vabc = 0 and the triple trace is real and
fully determined by pairwise traces. Otherwise, it contains
information not captured by the dot products alone.
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FIG. 2. (a) The scalar triple product of three Bloch vectors Vabc

encodes a collective description of the states. (b) Pure qubit states
equally spaced in azimuthal angle but with varying θ [Eq. (3)].
(c) Magnitude of the volume Vabc for the pure state preparation.
(d) Mixed states where pairwise similarity is controlled by purity
through the vector length r [Eq. (4)].

V. PURE AND MIXED PREPARATIONS
OF THREE PHOTONS

We now consider two preparations of three photons: one
where pairwise similarities are governed by distinguishability
and another where they are determined by state purity. HOM
visibilities for the two preparations could be the same, but
we will see that Vabc plays an important role in three-photon
interference.

We define orthogonal states {|0〉, |1〉} to span the unre-
solved qubit space. These could correspond to a basis for
polarization or spectral differences, for example. Here we
encode these qubits using horizontal and vertical polarisa-
tions {|H〉, |V 〉}. First, we consider three photons in pure
states

|a〉 = cos (θ/2)|H〉 + sin (θ/2)|V 〉,
|b〉 = cos (θ/2)|H〉 + ei 2π

3 sin (θ/2)|V 〉,
|c〉 = cos (θ/2)|H〉 + ei 4π

3 sin (θ/2)|V 〉,
(3)

with 0 � θ � π/2. These vectors lie at the top of the Bloch
sphere when θ = 0 and are equally spaced in the equator
when θ = π/2. Like the petals of a blooming flower, for other
values of θ they point between the top of the Bloch sphere and
the equator, and remain equally spaced in azimuthal angle,
as shown in Fig. 2(b). For these pure states, ρ j = | j〉〈 j|, j =
a, b, c, and the three pairwise traces are equal and given by
Tr(ρ jρk ) = (5 + 3 cos 2θ )/8; they vary between 0.25 and 1.
The volume Vabc = −3

√
3/2 × cos θ sin2 θ and its magnitude

varies between 0 and 1, as shown in Fig. 2(c).
The second preparation we consider uses identical mixed

states to vary the pairwise similarity solely by purity. Each
photon has the same state

ρp = p|H〉〈H | + (1 − p)|V 〉〈V |. (4)

p is the preparation probability, the length of the Bloch vector
is r = |2p − 1|, and the state purity is P = 1

2 (1 + r2) [see
Fig. 2(d)]. Here the pairwise traces are again equal and now
given by the purity, varying between 0.5 and 1, and overlap-
ping with the range possible for the pure state configuration.
However, crucially Vabc is here always zero.

VI. MULTIPHOTON INTERFERENCE STATISTICS

To investigate how the various distinguishing parame-
ters manifest in interference, we consider interfering these
preparations of three photons in a balanced three-port inter-
ferometer. This “tritter” is described by a unitary matrix with
elements Uj,k = exp( jk 2π i

3 )/
√

3. When photons with qubit
states labeled a, b, c enter inputs 1–3 respectively, the prob-
abilities of various output patterns are (Appendix A)

P111 = 1
18 (3 + ra · rb + ra · rc + rb · rc),

P(120) = 1
36 (3 − ra · rb − ra · rc − rb · rc −

√
3Vabc),

P(210) = 1
36 (3 − ra · rb − ra · rc − rb · rc +

√
3Vabc),

P(300) = 2
3 P111. (5)

The subscripts indicate the numbers of photons in the in-
dividual output modes. The brackets around the output
configurations denote those related by cyclic permutation
of occupation numbers, so (210) = {210, 102, 021}. The dot
products of Bloch vectors derive from the interference of paths
related by the pairwise exchange of photons and dependence
on Vabc comes from interfering paths related by full permuta-
tion of photons. The high symmetry of the tritter is the reason
why all fully bunched probabilities are the same, and why the
partially bunched probabilities look similar. The probabilities
of coincidences P111 and of bunchings P(300) depend linearly
on the dot products of Bloch vectors and are not sensitive Vabc.
This observation and its extension to larger systems are dis-
cussed in Appendix B. Critically, here, the partially bunched
probabilities depend on Vabc.

VII. EXPERIMENT AND RESULTS

We generate photons using a pair of periodically poled
potassium titanyl phosphate (ppKTP) crystals designed for de-
generate spontaneous parameteric down-conversion (SPDC)
at 1550 nm. We prepare the photons’ polarizations using sets
of wave plates, interfere them in a fiber tritter, and detect
them using superconducting nanowire single-photon detectors
(SNSPDs). Further details of the experimental setup are given
in Fig. 3 and Appendix C.

We first prepare three photons in the pure states of Eq. (3)
[shown in Fig. 2(b)]. The angle θ is varied from 0 to π/2
using wave plates. This monotonically decreases the pair-
wise trace Tr(ρ jρk ) from 1 to 0.25. θ also changes the
volume |Vabc| as shown in Fig. 2(c). We then perform two
sets of measurements: first, two-photon interference dips are
recorded between pairs of photons interfering in the tritter.
These tritter HOM (THOM) dips have half the visibility of
the corresponding standard HOM dips, so can also be used
to infer pairwise traces. Second, three-photon counts at the
tritter outputs are used to estimate the three-photon scattering
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FIG. 3. A laser pumps two SPDC sources to generate indistin-
guishable photons. Both photons emitted from Source 1 enter the
tritter and Source 2 is operated in a heralded configuration to supply
a third photon. The photons’ polarizations are prepared using sets
of half-wave plates (HWPs) and quarter-wave plates (QWPs) and
arrival times are matched using delay stages d1 and d2. Details
of polarization control are given in Appendix C. Each tritter out-
put is connected to a four-port splitter for pseudo-photon-number
resolution. At the measurement stage, all outputs are connected to
superconducting nanowire single-photon detectors (SNSPDs) with
>90% efficiencies and then a time tagger is used to count the differ-
ent photon statistics.

probabilities. In Fig. 4(a) we plot a selection of partially
bunched scattering probabilities against the associated HOM
visibility between photon pairs, along with theory curves.
From Eq. (5), these three-photon probabilities depend on
pairwise traces and also on Vabc. The first leads to a linear con-
tribution to the probabilities as the pairwise trace varies and
the second to nonmonotonic variation. Next, we use the six
partially bunched probabilities and the expressions in Eq. (5)
to estimate the magnitude |Vabc| for each value of θ . This is
plotted against the HOM visibility in Fig. 4(b) and displays
the nonmonotonic variation expected for the manipulation of
Vabc in Fig. 2(c).

Next, we simulate the preparation of three photons in the
mixed states of Eq. (4) [shown in Fig. 2(d)]. We achieve this
by measuring three-photon counts for all eight input combi-
nations where each photon has H or V polarization. Summing
these with appropriate weightings depending on preparation
probability p simulates the scattering for photons in identi-
cal mixed states. We select a set of pairwise traces between
0.5 and 1 for which we determine three-photon scattering
probabilities. We plot some of the partially bunched proba-
bilities against HOM visibilities in Fig. 4(c) with ideal theory
curves. Their behavior contrasts sharply with that for the pure
state preparation by following a linear relation with pairwise
traces because the volume Vabc = 0. We use partially bunched

FIG. 4. Partially bunched probabilities and extracted volumes |Vabc| for pure [top row (a), (b)] and mixed [bottom row (c), (d)] preparations
of three photons interfering in a tritter. Gray regions indicate values of the pairwise trace that cannot be accessed for each preparation, and
gray curves are ideal theory. For the top row, the pairwise traces of the interfering photons vary between 1 and 0.25 as the angle θ varies
from 0 to π/2. From Eq. (5), partially bunched probabilities depend on Vabc and so vary nonmonotonically. In (b) we estimate |Vabc| using the
six partially bunched probabilities and plot it against the associated HOM visibility. For the bottom row, the pairwise traces are determined
by the state purity that varies between 0.5 and 1 as the Bloch vector length r varies from 0 to 1. Here Vabc = 0 and so the partially bunched
statistics in (c) vary linearly with the pairwise trace. Horizontal error bars in the top plots are determined experimentally from mean THOM
visibilities. Vertical error bars in (a,c) are comparable to marker size, and in (b,d) arise from differences in estimates from the partially bunched
probabilities. Additional three-photon data for other output patterns are given in Appendix D.
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probabilities to estimate Vabc as the state purity is varied, and
find it is zero throughout, as shown in Fig. 4(d).

Differences between the experimental results and ideal the-
ory in Fig. 4 are due to imperfect state preparation, residual
spectral distinguishability and mixedness, and higher-order
photon emissions from the SPDC sources. Also, we use
four-port splitters for pseudo-photon-number resolution and
imbalances in their splitting ratio will affect the probabilities
determined from photon counts.

The key takeaway from Fig. 4 is that the two very different
preparations of photons can give rise to the same (T)HOM
dip visibilities but different three-photon probabilities. Both
preparations access pairwise traces of between 0.5 and 1 (as
indicated by overlapping regions of the shared x axis) and
so (T)HOM experiments cannot discriminate between them
(two-photon data are given in Appendix E). Also, the coinci-
dent and fully bunched probabilities only depend on pairwise
traces and so also cannot distinguish the state preparations, as
shown by additional data in Appendix D. However, partially
bunched probabilities depend on Vabc and so, as shown by
Figs. 4(b) and 4(d), can distinguish between preparations of
photons in a way impossible using lower-order interference.

This interference test is not intended as a general diagnos-
tic tool for identifying mixedness. However, in Appendix F
we show that measurement of HOM visibilities and Vabc can
permit identification of mixedness for specific state prepara-
tions. In addition to discriminating between these special state
preparations, we find measurement of HOM visibilities and
Vabc can also be used to identify mixedness of the interfering
qubit states.

VIII. DISCUSSION

In this work, we presented an experiment that reveals the
different effects of distinguishability and mixedness in mul-
tiphoton interference beyond two photons. The scalar triple
product of Bloch vectors embodies this for unresolved qubit
states.

We can briefly comment on how the investigations here
extend to more photons and higher dimensions. Adding a
fourth photon with a qubit state ρd introduces a dependence
on Tr(ρaρbρcρd ). However, as shown in Appendix G, this
depends only on dot products and scalar triple products of
Bloch vectors, and so this four-photon interference is fully
described by two- and three-photon parameters. This holds
for the interference of any number of independent photons
with qubit states. The choice of qubit states here imposes
a restriction on the five parameters governing three-photon
interference (see Appendix F). Turning to higher dimensions,
qutrits are sufficient to fully probe all parameters. The triple
trace then contains extra terms [30–32] so that, unlike for
qubits, HOM visibilities do not fully determine the real part
of the triple trace, as shown in Appendix H.

Our result highlights the importance of going beyond HOM
visibilities when characterising photon indistinguishability.
Here, the sensitivity to Vabc was crucial to discriminating
photon preparations. This is particularly relevant in the con-
text of photonic quantum technologies, where much effort is
dedicated to engineering sources of pure, indistinguishable
photons. Common approaches include spontaneous processes

that rely on material nonlinearities, such as spontaneous
parametric down-conversion and four-wave mixing, and here
residual correlations can lead to mixed single photons. We
note that the two-dimensional space used here was to allow
intuition at small scales, but generally mixedness will be over
larger spaces. Other, in principle, deterministic quantum emit-
ters, such as quantum dots, can be difficult to align, resulting
in spectral distinguishability. The choice of photon source will
determine the dominant photon errors, necessitating careful
characterization to determine the impact on quantum opera-
tion fidelity, for example, photonic Bell-state generation [33].

Beyond tests of quantum computational complexity using
photons [3,34], optical approaches to universal measurement-
based quantum computation rely on the generation of small
entangled states that can be combined to build up a cluster
resource state [35,36]. The effect of photon distinguishabil-
ity on fault-tolerant schemes has been investigated [37], but
a more general treatment also including effects of photon
impurity (and routes to protect against such errors) will be-
come crucial as the scale of optical quantum technologies
continues to grow. As well as photons, our work also applies
to systems of other interfering particles where interactions
with the environment and which-path information can degrade
indistinguishability.
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APPENDIX A: CALCULATING SCATTERING
PROBABILITIES

If single photons with states ρi, i = 1, . . . , N are input into
the ith arms of an N-mode interferometer, the probability of a
detection outcome is given by [10,12]

Pρ1,...,ρN = N
∑
σ∈SN

⎡
⎣

⎛
⎝ a∏

j=1

Tr
(
ρα j1 . . . ρα jn

)⎞⎠

× perm(M 	 M∗
σ,1)

⎤
⎦, (A1)

where (α j1, . . . , α jn) is the structure of the jth disjoint cycle
of σ , where σ is an element of the permutation group SN .
a is the number of disjoint cycles in σ , n is the length of
the jth cycle, and M is the scattering matrix constructed
from the input and output mode occupations. Here 	 indi-
cates the element-wise product of matrix elements. For an
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input state configuration with photon number occupations ni,
r = (n1, n2, . . . , ni, . . . , nm), the mode assignment list d (r) is
defined as

d (r) = (

n1−times︷ ︸︸ ︷
1, . . . , 1,

n2−times︷ ︸︸ ︷
2, . . . , 2, . . . ,

nm−times︷ ︸︸ ︷
m, . . . , m), (A2)

which contain the mode indices for each photon as many times
as the number of photons occupying that mode. We similarly
define the mode assigned list d (s) for the output state con-
figuration s = (l1, l2, . . . , li, . . . , lm). The scattering matrix M
is then constructed from the unitary U as M = Ud (r),d (s). The
normalization N is given by: N = (

∏
j s j!r j!)−1.

APPENDIX B: INSENSITIVITY OF COINCIDENT
AND FULLY BUNCHED STATISTICS TO Vabc

The coincident and fully bunched probabilities shown in
Fig. 4 for a tritter interferometer depend linearly on the pair-
wise traces and exhibit no dependence on the volume Vabc

[defined for the pure state preparation in Figs. 2(b) and 2(c).
This actually holds for any three-port unitary interferometer.

For scattering probabilities to exhibit sensitivity to the
imaginary components of traces of density matrices, the
expression in Eq. (A1) should change under ρ j → ρ∗

j .
n-photon interference depends on Tr(ρα j1 . . . ρα jn ), where
(α j1, . . . , α jn) is the jth disjoint cycle of some permutation
σ . Under complex conjugation of all ρ j we find[

Tr
(
ρα j1 . . . ρα jn

)]∗ = Tr
(
ρα jn . . . ρα j1

)
. (B1)

The density matrices in the trace are now permuted according
to the jth disjoint cycle of the inverse permutation σ−1. n-
photon interference in Eq. (A1) therefore depends on

Tr
(
ρα j1 . . . ρα jn

) × perm(M 	 M∗
σ,1)

+ Tr
(
ρα j1 . . . ρα jn

)∗ × perm(M 	 M∗
σ−1,1). (B2)

For the case of three-photon coincidences from a three-port
unitary interferometer U , the scattering matrix M = U . In-
serting the Euler angle decomposition for a general SU(3)
unitary [38] reveals that these permanents are purely real.
Hence coincidences here are not sensitive to the imaginary
part of Tr(ρaρbρc) and so exhibit no dependence on Vabc. For
more than three photons this condition does not necessarily
hold: N-photon coincidence probabilities, where N > 3, can
be sensitive to imaginary components of traces of density
matrices.

For fully bunched probabilities where all N photons occupy
the kth output port, the scattering matrix M is constructed by
taking the kth column of the unitary describing the interfer-
ometer N times. The element-wise product M 	 M∗

σ,I yields a
real matrix and so a real permanent. Therefore, fully bunched
probabilities do not depend on imaginary parts of the traces
of density matrices, and so in the three-photon case do not
depend on Vabc.

APPENDIX C: EXPERIMENTAL SETUP

The setup is shown in Fig. 5. A mode-locked Ti:sapphire
laser with a repetition rate of 76 MHz emits 3.2-ps pulses
centered at 775 nm. It is used to pump two periodically

FIG. 5. Detailed experimental setup described in the main text of
Appendix C.

poled potassium titanyl phosphate (ppKTP) crystals of di-
mensions 1 mm × 1 mm × 30 mm and a poling period of 
 =
46.175μm. The pump power is controlled by a combination
of a HWP and a polarizing beam splitter (PBS) before being
divided into two beams using a 50 : 50 beam splitter. After
additional power control, the beams are focused onto the
crystals using a combination of lenses, resulting in an ideal
beam waist at the crystals. HWPs before the crystals ensure
the polarization required for the phase-matching condition.
The crystals are placed in temperature-controlled ovens to set
the temperature for ideal degenerate phase-matching.

After the crystals, longpass filters are used to block the
pump beam; 3-nm and 1.5-nm bandpass filters centered at
1550 nm are used to ensure spectral indistinguishability,
which is verified by measuring the photons’ spectra using
a spectrometer (Kymera 193i-B1 spectrometer and iDus In-
GaAs DU490A-1.7 photo-diode array by Andor Technology).
The signal and idler photons are orthogonally polarised and
are separated using PBSs. A linear polarizer is used to clean
the polarization in the reflected arm of the PBS. HWPs and
QWPs are then used to set the photons’ polarisations. Delay
stages temporally align the photons, which are then coupled
into single-mode fibers. Polarization states undergo random
rotations on propagating through optical fiber. We compensate
for these using paddles such that the desired polarization states
interfere at the tritter, up to some global unitary that does not
affect relative orientations of the states. In our setup, both
sources were pumped with an average power of 50 mW, which
is low enough to reduce the effect of higher-order emissions
while maintaining good count rates. We obtain an average rate
for four-photon events of ≈10 Hz. This allows for shorter in-
tegration times per measurement, thereby reducing the effect
of environmental changes.

A classical laser light at 1550 nm was used to characterize
the tritter. Table I shows the splitting ratio at different output
ports with respect to the total output power. The insertion loss
is determined for each input port by taking the ratio of power
sent in to the tritter to the net power at the output of the tritter.

053701-6



DISTINGUISHABILITY AND MIXEDNESS IN QUANTUM … PHYSICAL REVIEW A 108, 053701 (2023)

TABLE I. Splitting ratio and insertion loss of the tritter.

Output 1 Output 2 Output 3 Insertion loss

Input 1 32.01% 30.24% 29.86% 0.356 dB
Input 2 33.05% 29.18% 29.75% 0.363 dB
Input 3 32.97% 27.92% 29.94% 0.409 dB

These losses are mostly due to the connectors used (E2000
connectors) that are rated to have a loss of the order of 0.5 dB.

We apply the Sinkhorn-Knopp algorithm [39] to the data in
Table I to recover the normalized magnitudes for the scattering
matrix elements, effectively correcting for imbalanced losses.
We then use a minimization procedure to find the phases that
ensure unitarity of the tritter scattering matrix, and find

U Exp
tritter = 1√

3

⎛
⎜⎝

0.987 1.02 0.997

1.00 0.999e2.11i 0.997e−2.07i

1.01 0.984e−2.09i 1.01e2.09i

⎞
⎟⎠. (C1)

This has very high fidelity with the ideal tritter and so we
use the ideal scattering matrix in our analysis. We verified the
polarization independence of the interferometer by recovering
the same splitting probabilities for horizontally and vertically
polarized light.

APPENDIX D: ADDITIONAL THREE-PHOTON DATA

In Figs. 4(a) and 4(c) of the main text we plotted two
of the partially bunched tritter output probabilities for each
state preparation. In Fig. 6, we plot all the partially bunched,
coincident, and fully bunched probabilities.

APPENDIX E: TRITTER HOMS DIPS AND PAIRWISE
TRACES FOR THREE-PHOTON EXPERIMENTS

The two preparations of three photons presented in Eqs. (3)
and (4) of the main text are chosen so that they cannot
be discriminated by THOM visibilities alone. Alongside the
three-photon data shown in Fig. 4, we also record sets of
THOM dips and use their visibilities to infer the pairwise
traces of pairs of interfering photons. Note that the two-photon
coincidence probability through an ideal tritter is P11 = [2 −
Tr(ρ jρk )]/9, and so here the maximum visibility of an in-
distinguishable THOM dip is V = 0.5. The associated HOM
visibility on a balanced beam splitter is simply twice the
THOM visibility.

As an example, we choose a pairwise trace of Tr(ρ jρk ) =
0.7. This corresponds to θ = 0.684 in the pure preparation of
Eq. (3) and a preparation probability p = 0.816 in the mixed
preparation of Eq. (4). In the later case we simulate impurity
by incoherently summing counts for the four combinations of
input pairs of photons each in H or V polarization. The results
are shown in Fig. 7. The key observation is that the THOM

FIG. 6. Scattering probabilities for pure [top row (a)–(c)] and mixed [bottom row (d)–(f)] preparations of three photons interfering in a
tritter. Gray regions indicate values of the pairwise trace that cannot be accessed for each preparation and gray curves are ideal theory. For the
top row, the pairwise traces of the interfering photons vary between 1 and 0.25 as the angle θ varies from 0 to π/2. From Eq. (5), partially
bunched probabilities (a) and (b) depend differently on Vabc, but in (c) the fully bunched and coincidence probabilities depend only on pairwise
traces. For the bottom row, the pairwise traces are determined by the state purity that varies between 0.5 and 1 as the Bloch vector length
r varies from 0 to 1. Here Vabc = 0 and so the partially bunched statistics in (d) and (e) vary linearly with the pairwise trace, like the other
probabilities in (f). Inset THOM dips for a given pairwise trace cannot discriminate between the state preparations. Horizontal error bars in the
top plots are determined experimentally from mean THOM visibilities and all vertical error bars are comparable to marker size.
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FIG. 7. Experimental THOM dips for pairs of photons from the pure [top row (a)–(c)] and mixed [bottom row (d)–(f)] preparations of
photons, with pairwise traces set to Tr(ρ jρk ) = 0.7. Error bars are from Poissonian statistics [smaller for the single source twofolds in (a), (d)],
dashed lines are fits to the data, and quoted visibilities and errors are determined from these fits.

visibilities are the same for the pure preparation in the top
row and the mixed preparation in the bottom row.

To confirm the accuracy of our pure state preparation,
we fit all sets of THOM dips and plot the inferred pairwise
traces against the ideal values. To a good approximation we
assume an ideal tritter, so the pairwise trace is given by twice
the associated THOM visibility. Results are shown in Fig. 8.
Differences between ideal and experimental values are due to
slight variations in the paths around the Bloch sphere depicted

FIG. 8. Plots of the experimentally determined pairwise traces
for the pure state preparation of three photons, against the ideal value
from the expression Tr(ρ jρk ) = (5 + 3 cos 2θ )/8 for the states in
Eq. (3). Error bars indicate the standard deviation on the estimate
of the pairwise trace from the three output THOM dip visibilities.

in Fig. 2(b), likely arising from small errors in wave-plate
calibration. We measured THOM dip visibilities for six of
the eleven θ values used in Figs. 4(a) to 4(c). A linear fit
is used to estimate pairwise traces that were not measured
experimentally. The means of these pairwise traces and their
errors are used for the x coordinates and errors in Figs. 4 and 6.

APPENDIX F: USING Vabc TO IDENTIFY
MIXEDNESS FOR QUBITS

We can determine Vabc using multiphoton statistics and
here we show how it permits identification of mixedness. Its
magnitude is given by [40]

|Vabc| = rarbrc[1 − (r̂a · r̂b)2 − (r̂a · r̂c)2 − (r̂b · r̂c)2

+ 2(r̂a · r̂b)(r̂a · r̂c)(r̂b · r̂c)]
1
2 , (F1)

where ri is the length of vector ri and r̂i = ri/ri are unit
vectors. For pure qubits, ri = 1 and the magnitude |Vabc| is
completely determined by the dot products of unit vectors.
These describe pairwise distinguishabilities that can be ob-
tained from THOM visibilities [see Fig. 1(c)]. The triple
overlap of Eq. (2) reduces to 〈a|b〉〈b|c〉〈c|a〉 and its argument,
the triad phase ϕabc, is given by half the solid angle subtended
by the three vectors and encodes three-particle distinguisha-
bility [15].

If the qubit states are not pure then Vabc replaces ϕabc as
the appropriate collective distinguishing parameter and it can
be used to identify mixedness in a way that is impossible
using two-photon interference. THOM dips between partially
distinguishable pairs of pure photons would yield |Vabc| that
satisfies Eq. (F1) with all ri = 1. If this does not hold then
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the assumption of pure states is incorrect and mixedness can
be identified. It is worth noting here why qubit states are
insufficient to freely tune the five distinguishing parameters
for three-photon interference: knowledge of the vector dot
products fixes the magnitude |Vabc| and so the real and imagi-
nary parts of Tr(ρaρbρc) are not independent.

We now briefly describe an experiment we performed
where the measured Vabc indicates the mixedness of an
unresolved state. We prepare three photons in pure polariza-
tion states labeled |a〉, |b〉, |c〉 (with associated Bloch vectors
r j, j = a, b, c) that ideally set the following quantities:

ra · rb = 0.5,

ra · rc = 0.27,

rb · rc = −0.03,

Vabc = ra · (rb × rc) = −0.82. (F2)

We then perform two sets of measurements: first, THOM dip
visibilities between pairs of photons to infer experimental
Bloch vector dot products [from pairwise traces, see Eq. (1)];
second, three-photon counts at the tritter outputs as the tem-
poral delay of photon b is swept: this varies between temporal
distinguishability and indistinguishability of b with respect to
the other photons. The relative values of the partially bunched
probabilities at these two extremes allows direct measurement
of Vabc [using Eq. (5)].

In order to simulate the mixedness of the state ρa, we repeat
the above measurements but now with the first photon in the
pure state |a⊥〉 which is on the opposite side of the Bloch
sphere to |a〉. This flips the sign of Vabc above and also changes
some of the dot products. We then take weighted sums of
statistics for the first and second preparations of the photons
to simulate state impurity for photon a.

As an example, we set the purity of the first photon to 0.9
so that the associated Bloch vector length is ideally ra = 0.64.
Substituting the measured values of vector dot products and
|Vabc| into Eq. (F1), we experimentally find a best estimate
ra = 0.56. This confirms that measurement of Vabc can permit
identification of mixedness of a qubit state. Deviation from
the ideal value mostly arises from imperfect state preparation,
fitting errors due to Poissonian counting statistics and low
visibility signals, and residual spectral distinguishability.

APPENDIX G: TRACE OF FOUR QUBIT STATES

The interference of four photons will depend on pair-
wise traces, triple traces, and also the quadruple trace
Tr(ρaρbρcρd ). For qubit states, this last quantity can be ex-
pressed in terms of Bloch vector dot and scalar triple products

Tr(ρaρbρcρd ) = 1
8 [1 + [ra · rb + ra · rc + ra · rd + rb · rc

+ rb · rd + rc · rd ] + [(ra · rb)(rc · rd )

− (ra · rc)(rb · rd ) + (ra · rd )(rb · rc)]

+ i[ra · (rb × rc) + ra · (rb × rd )

+ ra · (rc × rd ) + rb · (rc × rd )]]. (G1)

Hence two- and three-photon parameters fully determine the
interference of four photons with mixed qubit states. For
qubits, higher-order traces can be decomposed into combina-

tions of dot and scalar triple products using the commutation
relations for Pauli matrices: σ jσk = δ jkI + iε jklσl .

APPENDIX H: INTERFERENCE OF THREE
PHOTONS WITH QUTRIT STATES

In the main text, we concentrated on three photons with
qubit states to present an intuitive geometric picture of
mixedness and distinguishability. However, this imposes a
restriction on the five parameters governing three-photon in-
terference through Eqs. (2) and (F1), and as discussed in
Appendix F. A three-dimensional (qutrit) space is needed to
fully probe three-photon distinguishability.

The Gell-Mann matrices {λi} are generators of the SU(3)
group and satisfy commutation and anticommutation relations

[λr, λs] = 2i frstλt , {λs, λr} = 4
3δrs + 2drstλt . (H1)

drst and frst are, respectively, the completely symmetric and
antisymmetric SU(3) structure constants. These define sym-
metric and antisymmetric vector products [30]

a 	 b :=
√

3drst asbt , a 	 b = b 	 a, (H2)

a ∧ b := frst asbt , a ∧ b = −b ∧ a. (H3)

a and b are eight-dimensional real vectors that are the qutrit
equivalents of Bloch vectors.

A general qutrit state ρ j can be expressed by [30]

ρ j = 1
3 (I +

√
3n j · λ), (H4)

where λ is the vector of the eight Gell-Mann matrices and
the components of the eight-dimensional vector n j = √

3/2 ×
Tr(ρ jλ). Pairwise traces of two qutrit states are, as for qubits,
captured by the dot products of the associated vectors. How-
ever, the triple trace becomes considerably more complicated
[30–32]:

Tr(ρaρbρc) = 1

9

[
(1 + 2(na · nb + na · nc + nb · nc

+ na · (nb 	 nc)) + i
2

3
√

3
na · (nb ∧ nc)

]
.

(H5)

For qubits, we saw from Eq. (2) that the real part of the
triple trace is fully determined by Bloch vector dot prod-
ucts. For qutrits, this no longer holds due to the presence of
na · (nb 	 nc). It is also possible to prepare three pure qutrit
states such that the pairwise traces are constant but the terms
involving three n j vectors vary. see, for example, Ref. [15] or
the following configuration from Ref. [31]:

|a〉 = |0〉,

|b〉 = 1√
2

(|0〉 + |1〉),

|c〉 = 1√
3

(|0〉 + (2eiγ − 1)|1〉 +
√

4 cos γ − 3|2〉). (H6)

The sum of the dot products is 3/4, independent of the angle
γ , but the triple trace is eiγ /3.
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