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The precision of quantum sensing could be improved by exploiting quantum phase transitions, where the
physical quantity tends to diverge when the system approaches the quantum critical point. This critical enhance-
ment phenomenon has been applied to the quantum Rabi model, showing a promising sensing enhancement
without the need for complex initial state preparation. In this work, we present a quantum phase transition in the
coupling cavity-mechanical oscillator system when the coupling strength crosses a critical point, determined by
the effective detuning of the cavity and frequency of the mechanical mode. By utilizing this critical phenomenon,
we obtain a prominent enhancement of quantum sensing, such as the position and momentum of the mechanical
oscillator. This result provides an alternative method to enhance the quantum sensing of some physical quantities,
such as mass, charge, and weak force, in a large mass system.
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I. INTRODUCTION

In the pursuit of checking new theories, a consistent
imperative resides in the enhancement of measurement pre-
cision with the development of technologies [1–4]. Quantum
sensing, as one advancing technology to carry out the
high-precision measurement, can significantly improve mea-
surement precision by exploiting quantum phenomena such
as quantum superposition, entanglement, and criticality [5–7].
At the core of measurement precision lies the relevant
parameters’ susceptibility. By utilizing the high sensibil-
ity characteristic to minute changes in physical parameters
around the quantum critical point, the measurement preci-
sion can be greatly enhanced [8–11]. A study shows that the
precision of coupling strength at the critical point exhibits a
significant enhancement with respect to the noncritical ones,
which regards the quantum critical system as a valuable plat-
form for the quantum estimation of Hamiltonian parameters
[12].

Quantum sensing refers to the estimation of parameter
values through an appropriate estimator following the mea-
surement of a parameterized quantum state signal [13–20].
The preparation of the initial state assumes paramount impor-
tance in this process of physics because the inherent quality
directly determines the precision of parameter estimation. Ac-
tually, one effective but challenging method to enhance the
quantum sensing is to prepare a ground state close to the
critical points. Recently, some works demonstrated the poten-
tial for achieving high-precision measurement with a relaxed
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initial state preparation by utilizing quantum criticality
[21,22]. Quantum phase transition (QPT) manifests a signifi-
cant divergence phenomenon, exemplified by the Dicke model
[23], transitions from the normal phase to the superradiance
phase in the thermodynamic limit. Further researches show
that the QPT can also occur in a finite component system
[24–27], such as the Rabi model [28], where the QPT appears
when the atomic transition frequency is much greater than
optical field frequency [29–31]. Subsequently, the QPT in
the Rabi model has been proposed to enhance the quantum
sensing for the precision measurement with relaxed initial
state preparation [21,32,33].

A typical cavity optomechanical system (COMS), con-
sisting of a mechanical oscillator, optical cavity, and driving
light [34–38], is an emerging powerful platform to explore
the nonlinear radiation-pressure coupling between mechanical
mode and optical mode with important roles in precision mea-
surement [39]. In past years, plenty of significant theoretical
and experimental studies have been devoted to understand-
ing the nonlinear dynamics in COMS. These studies have
covered various aspects such as steady-state dynamics with
weak coupling, bistable state dynamics with strong coupling,
and some unstable dynamics, including limit cycle, period
bifurcations, and chaos [40–46]. Recently, some important
works studied quantum metrology at the mesoscopic scale
by nonlinear mechanical devices [47–49]. Yet, despite signif-
icant progress has been made in this field, the metrological
analysis of quantum criticality in COMS still lacks substantial
investigations. COMS exhibits a transition from stable state
to unstable state [50–55], which is an excellent platform to
achieve enhancement of quantum sensing.

In this work, we investigate the enhancement of quantum
sensing by exploiting the QPT in a typical COMS. A di-
vergent feature of the quantum Fisher information (QFI) is
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FIG. 1. Cavity optomechanical system consists of an optical cav-
ity with frequency ωc (expressed by operators a and a†), a mechanical
oscillator with frequency ωm (expressed by operators b and b†), and
g is the optomechanical coupling strength. ωk is the frequency of
cooling laser and ωl is the frequency of drive laser (εl is amplitude).

found near the quantum critical point, and it is subsequently
elucidated that the proximity of the measurement precision
achieved through quantum phase transitions (QPT) to the
quantum Cramér-Rao bound is observed [56–58]. Moreover,
the QFI does not require specific initial-state preparation, thus
simplifying the experimental requirements. Additionally, the
adjustable drive laser in the COMS also provides a more con-
venient method to satisfy the frequency relationship than the
standard Rabi model. Furthermore, the parameter of QPT is
proportional to the optomechanical coupling strength, imply-
ing that the phase transition could be obtained by modulating
the drive laser power. Since mechanical oscillators can be
regarded as a bridge coupled to various physical systems and
are suitable for detecting quantities such as mass, charge,
and weak force [59–61], our work paves the way for critical
quantum sensing by utilizing a mechanical oscillator around
the quantum critical point.

The rest of this paper is organized as follows. In Sec. II, we
provide the Hamiltonian of COMS in the rotating frame and
then linearize it to discuss the dynamic phase transition around
the quantum critical point. In Sec. III, we demonstrate the
calculation process of the QFI for the parameter-dependent
Hamiltonian. Section IV shows the results of quadrature mea-
surements by homodyne detection and analyzes the error
introduced by the finite frequency ratio with different initial
states. Finally, we briefly discuss the experimental feasibility
in Sec. V and give a conclusion in Sec. VI.

II. QUANTUM PHASE TRANSITION IN COMS

A typical COMS is shown in Fig. 1, where the system con-
sists of a single-mode field and a nanomechanical oscillator
[62,63], and its Hamiltonian is (h̄ = 1)

H = ωca†a + ωmb†b − ga†a(b† + b)

+ iεl (e
−iωl t a† − eiωl t a). (1)

The first and second terms represent the free energy of the
cavity field and nanowire oscillator, the third term is the op-
tomechanical coupling term with the coupling strength g, and
the last term is regarded as the driving term with the driving

amplitude εl . Performing the rotation transformation under
U = e−iωl ta†a leads to the simplification of the Hamiltonian
as follows:

H ′ = δa†a + ωmb†b − ga†a(b† + b) + iεl (a
† − a), (2)

where δ = ωc − ωl is the detuning between the cavity-field
frequency and the driving laser frequency.

Replace the operators with their average values plus fluc-
tuations driven by strong laser, i.e., a → 〈a〉 + δa, b → 〈b〉 +
δb. In the following, we choose an appropriate driving phase
to make (〈a〉, 〈b〉) real and replace the fluctuation (δa, δb) by
(a, b) for convenience. By neglecting the nonlinear terms and
retaining the linear interaction terms, the resulting effective
Hamiltonian is given by (Appendix A)

HL = �a†a + ωmb†b − G(a† + a)(b† + b), (3)

where the effective detuning between the cavity-field fre-
quency and the driving laser frequency is � = δ − 2g〈b〉
and the enhanced effective optomechanical coupling strength
G = g〈a〉 [64,65].

By utilizing the Schriffer-Wolff (SW) transformation
[66,67] to eliminate the off-diagonal part in HL, we obtain
an approximated appropriate unitary transformation eS . The
generator S = G(b† + b)(a† − a)/ωm is anti-Hermitian and
block-off-diagonal under the condition of η = �/ωm � 1,
which makes the transformed Hamiltonian e−SHLeS free of
the coupling terms between the cavity field and nanome-
chanical oscillator. Consequently, generating the cavity-field
fluctuation to 〈a†a〉(t=0) = 0, we obtain the effective Hamilto-
nian as

HL = ωmb†b − λ2ωm

4
(b† + b)2, (4)

with λ = 2G/
√

�ωm. Equation (4) can be diagonalized
by the squeezing operator S (rnp) = exp[rnp(b†2 − b2)/2]
with squeezing amplitude rnp = ln(1 − λ2)/4, i.e., H′

L =
S†(rnp)HLS (rnp) = εnpb†b + Enp where Enp = (εnp − ωm)/2
is the ground-state energy and εnp = ωm

√
1 − λ2 is the ex-

citation frequency [30]. Generally, the excitation frequency
εnp is required to be real, which indicates λ < 1, i.e., the
critical point is λc = 1. If λ < 1, this system will be in stable
state. While λ > 1, the excitation energy eigenvalues of the
Hamiltonian turn into complex and the above processes is
out of place, as shown in Fig. 2. Essentially, the dynamical
evolution of COMS enters into unstable dynamics [44,68,69].

III. QFI OF CRITICAL QUANTUM DYNAMICS

The performance of quantum sensing is determined by how
sensitive two nearby states are, as indicated by QFI. Consider
a parameter (ξ )-dependent Hamiltonian Hξ = H0 + ξH1 and
the system is initially prepared in |
0〉. After the dynamic
evolution Uξ = exp(−iHξ t ), the state of the system becomes
ρξ = Uξ |
0〉〈
0|U †

ξ . The QFI, which characterizes the sensi-
tivity between ρξ and ρξ+dξ with dξ denoting the infinitesimal
change of ξ , is Iξ = 4Var[hξ ]|
0〉, where Var[. . . ]|
0〉 rep-
resents the variance corresponding to the initial state and
hξ = iU †

ξ (∂ξUξ ) is the generator of parameter translation with
respect to ξ [70,71]. Therefore, the key mission to obtain QFI
is calculating hξ .
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FIG. 2. Variation of the excitation frequency with respect to the
coupling parameter. λ < 1 is the stable region we discussed, and
λ > 1 enter the unstable region.

By the integral formula for the derivative of an oper-
ator exponential ∂xe−yH (x) = − ∫ y

0 e−(y−s)H (x)∂xH (x)e−sH (x)ds
[72], we obtain the integral form of hξ is

hξ =
∫ t

0
eiHξ sH1e−iHξ sds =

∫ t

0

∞∑
n=0

(is)n

n!

[
H (n)

ξ , H1
]
ds

= −i
∞∑

n=0

(it )n+1

(n + 1)!

[
H (n)

ξ , H1
]
. (5)

To further simplify the result of Eq. (5) into two parts: a linear
term with time and oscillatory term with time, we first con-
struct the Hamiltonian Hξ satisfying the following reciprocal
relationship [71]:

[Hξ , ] =
√

�, (6)

where � is dependent on the parameter λ, Hξ can be regarded
as superoperator acting on , and  = i

√
�C − D with C =

−i[H0, H1] and D = −[Hξ , [H0, H1]]. Then, making the sys-
tem satisfy the following commutation rules:[

H (2n+1)
ξ , H1

] = i�nC,
[
H (2n+2)

ξ , H1
] = −�nD, (n ∈ N ),

(7)

Eq. (5) can be further simplified to

hξ = H1t + cos(
√

�t ) − 1

�
C − sin(

√
�t ) − √

�t

�
3
2

D, (8)

which reveals that hξ tends to divergent as � → 0 under
the condition of

√
�t 
 O(1), demonstrating a critical effect.

Substituting Eq. (8) into Iξ = 4Var[hξ ]|
0〉 and taking the limit
as λ → 1, we finally obtain the QFI as (see Appendix B for
details) [21]

Iξ 
 4
[sin(

√
�t ) − √

�t]2

�3
Var[D]|
0〉. (9)

Iξ diverges as �−3 under the conditions of
√

� 
 O(1) and
Var[D]|
0〉 �= 0 for the pure initial state |
0〉.

Assuming that Eq. (4) satisfies the relation in Eq. (6),
we define the quadrature operators as X = (b† + b)/

√
2 and

P = i(b† − b)/
√

2 before calculating the QFI of HL. Then,

HL can be rewritten as

H′
L = ωm

2
[P2 + (1 − λ2)X 2]. (10)

Comparing the form of Eq. (10) with Hξ = H0 + ξH1,
we choose H0 = ωmP2/2 and H1 = ωmX 2/2. Utilizing the
method of Eq. (6), we get � = 4ω2

mξ with the parameter
ξ = 1 − λ2 and

C = ω2
m(XP + PX )

2
, D = ω3

m[P2 − (1 − λ2)X 2]. (11)

At this time we can obtain the QFI of HL for the measurement
of the parameter λ as

Iλ(t ) = (∂λξ )2Iξ (t )


 16λ2 [sin(
√

�ωmt ) − √
�ωmt]2

�3
Var[P2]|ϕ〉, (12)

where the parameter � = 4(1 − λ2) � 1 and Var[D]|
0〉 

ω6

mVar[P2]|
0〉 as ξ → 0 for the initial state |
0〉. It also
shows that Iλ(t ) is divergent as ξ → 0 (i.e., � → 0), thus, the
measurement precision can be enhanced around the quantum
critical point. Next, We will present a feasible high-precision
measurement approach and draw a comparison with QFI.

IV. MEASUREMENT PRECISION OF SYSTEM

With the rapid development of macroscopic optomechan-
ical systems in experiments, the preparation of some phonon
states is expected to be realized. For example, the coherent
state has been generated in the Kerr parametric oscillator [73],
and the superposition state has also been relatively well estab-
lished in theory [74–76]. Considering experimental feasibility,
we investigate the performance of the quantum sensing rely-
ing on homodyne detection with the superposition state and
the coherent state, respectively.

A. Superposition state as the initial state

Let us now assess the performances of standard homodyne
detection with a product state |
0〉 = |0〉a ⊗ |ϕ〉m, where the
state of the mechanical field mode |ϕ〉m = (|0〉 + i|1〉)/

√
2.

After an evolution over a duration of time t , governed by
the effective Hamiltonian of COMS in Eq. (10), the motion
equations of quadrature operators X in the Heisenberg picture
can be obtained as (see Appendix C for more details)

〈X 〉t =
√

2�− 1
2 sin(

√
�ωmt/2),

(�X )2 = 1 + (2λ2 − 1)�−1[1 − cos(
√

�ωmt )]. (13)

As shown in Fig. 3(a), 〈X 〉t as a function of λ after an evolu-

tion time τ = π/[ωm(
√

1 − λ2
0)] is sensible around working

point λ0 and the derivative of 〈X 〉t tends to diverge as λ0 → 1.
Defining the error propagation function Iλ(t ) =

(∂λ〈X 〉t )2/(�X )2 [4,77], the estimation error is given by
I−1

λ (t ). When Iλ(t ) = Iλ(t ), the estimation error reaches the
quantum Cramér-Rao bound (i.e., reciprocal of QFI). As
shown in Fig. 3(b), the periodic peaks of Iλ(t ) are obtained
at the evolution time τn = 2nπ/

√
�ωm with the peak value

Iλ(τn) = 32λ2π2n2�−3, which is the same order with
the corresponding QFI Iλ(τn) 
 64λ2π2n2�−3Var[P2]|ϕ〉m
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FIG. 3. Quantum sensing by homodyne detection of the mechan-
ical field. (a) Quadrature 〈X 〉τ as a function of λ after an evolution
time τ = 2π/(ωm

√
�λ0 ) with �λ0 = 4(1 − λ0)2. The filled circles

represent λ = λ0. Inset: This figure shows the susceptibility ∂λ〈X 〉τ

as a function of λ after the same evolution time τ . The black solid line
with filled circles illustrate the graphics of ∂λ〈X 〉τ at λ0 = λ. (b) The
QFI Iλ as a function of evolution time t . Inset: The ratio between
Iλ(τ ) and Iλ(τ ) after an evolution time τ = 2π/(ωm

√
�).

according to Eq. (12), which can been seen from the
inset of Fig. 3(b). Note that the evolution time of Iλ(τn)
will increase in the vicinity of critical point because of
τn ∝ 1/

√
�. However, it can be observed that both the

values of Iλ(τn) and Iλ(τn) become larger as λ → 1 and as
increase of τn. This indicates that the bound of precision is
elevated [the larger Iλ(τn)], allowing for higher precision in
measurements [the larger Iλ(τ )]. In addition, our protocol
does not require particular initial states of mechanical mode.
In summary, despite the presence of critical slowing down,
the enhancement of quantum sensing can be realized without
the need for a complex state preparation because Var[P2]|ϕ〉m

has no affection for this qualitative behavior as a factor. The
above results are valid for the general initial state and allow
for an improvement in experimental tolerance.

B. Influence of finite frequency ratio

The above discussion is based on the thermodynamic limit
condition, i.e., η = �/ωm → ∞. This condition is idealized,
used to neglects the higher-order terms of the Hamiltonian

FIG. 4. The ratio between Ĩλ(τ ) and Iλ(τ ) for finite frequency
ratio η in the condition of η → ∞ after an evolution time τ =
2π/(ωm

√
�). Inset: The parameter �λ0 = 4(1 − λ0)2 corresponds to

the working point λ0 at which Ĩλ(τ ) achieves its local maximums.
These solid curves satisfy the relation log10[�λ0 ] = log10[4(1 −
λ)2 + λ4η−2]/3.

of COMS after the Schrieffer-Wolff (SW) transformation.
however, η can only attain finite values in the actual condi-
tion. Therefore, the purpose of this section is to explore the
influence of higher-order terms in the SW transformation of
the COMS Hamiltonian. After rectifying S = G(b† + b)(a† −
a)/ωm into S̃, we can derive the corrected Hamiltonian H̃L

see Eqs. (D6) and (D7) in Appendix D], which results in a
correction on Eq. (13), i.e., 〈X̃ 〉t = 〈X 〉t + 〈X 〉c and (�X̃ )2 =
(�X )2 + (�Xc)2. Hence, we can obtain the dynamics of the
quadrature in the condition of finite frequency ratio as

〈X̃ 〉t = 〈
|eiHLt Xe−iHLt |
〉
= 〈
|eS̃eiHLt e−S̃XeS̃e−iHLt e−S̃|
〉
= 〈
|[1 + O(η− 1

2 )]eiHLt X [[1 + O(η−1)]

× e−iHLt [[1 + O(η
1
2 )]|
〉, (14)

with |
〉 = |
0〉. The leading term 〈
|eiH̃Lt Xe−iH̃Lt |
〉 is
equal to 〈X 〉t and the dominant contribution to correction is
on the order of η−1/2〈X 〉t ∼ (η�)−1/2.

To evaluate the influence of the transformed Hamiltonian
H̃L, where the major influence is from λ2η−1, we recalculate
the Heisenberg equations of quadrature and obtain the correc-
tion 〈X 〉c ∼ η−2�−3/2, which is more important than the order
of (η�)−1/2 derived from the SW transformation. Similarly,
the correction to the variance of the quadrature (�X̃ )2 can be
obtain as (�Xc)2 ∼ η−2�−2. Thus, the analysis in the above
section will remain valid in the condition of � � η−1 and the
correction terms can be negligible compared with �X (τn) = 1
when t = τn. As shown in Fig. 4, the performance of our
solutions can be sustained when the condition is satisfied.

C. Measurement precision of coherent state

The above calculations are based on the mechanical su-
perposition in Sec. IV, a state which is not easy prepared in
most mechanical systems. Here, we discuss the performance
based on a coherence state around the critical point for more
application. First, we prepare a product state 
0 = |0〉α ⊗ |α〉,
where |α〉 denoting the coherence state of mechanical oscil-
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FIG. 5. The QFI I (α)
λ as a function of evolution time t with differ-

ent α, where we choose λ = 0.98.

lator. Then, the equations of quadrature operators X can be
obtained in the Heisenberg picture, with its mean value and
variance given by

〈X (α)〉(t ) =
√

2�− 1
2 Im(α) sin(

√
�ωmt/2)

+
√

2Re(α) cos(
√

�ωmt/2),

(�X (α) )2(t ) = 1
4 + (1 − λ2)�−1 cos(

√
�ωt ), (15)

with Im(α) and Re(α) denoting the real part and imaginary
part of α, respectively. Thus, we have the function I (α)

λ (τn) =
(∂λ〈X (α)〉τn )2/(�X (α)

τn
)2 = 64π2λ2�−3Im2(α) at evolution

time τn = 2nπ/
√

�ωm with τn still denoting the positions of
peak values of I (α)

λ (τn). As expected, it keeps the same order
of I (α)

λ (τn) 
 64λ2π2n2�−3Var[P2]|ϕ〉m , which means that the
coherence state can also promise the enhancement of quantum
sensing.

Due to the similar critical behavior as the superposition
state, we assign λ to 0.98 to analyze the role of α. As shown in
Fig. 5, the QFI of the coherence state is affected by both Re(α)
and Im(α). In addition, Im(α) has a greater influence on I (α)

λ

and totally controls the value of I (α)
λ which can be reflected

in Fig. 6. When Im(α) takes a larger value, the estimation

FIG. 6. The ratio between I (α)
λ (τ ) and I (α)λ(τ ) with λ = 0.98

after an evolution time τ = π/(ωm

√
1 − λ2). Re(α) is negatively

related to the ratio and Im(α) is positively related to the ratio.

FIG. 7. The ratio between Ĩ (α)
λ (τ ) and I (α)

λ (τ ) for the finite fre-
quency ratio η in the condition η → ∞ after an evolution time
τ = π/(ωm

√
1 − λ2) (λ = 0.98). Dashed line, triangle, and circle

are overlapped together when α takes a pure imaginary number.

error is closer to the Cramér-Rao bound. However, the ratio
I (α)

λ /I (α)
λ diminishes as Re(α) increases, which means that

the real part of the initial state can negatively impact the
sensitivity of quantum sensing. The rationale behind this trend
is that the function I (α)

λ remains constant while I (α)
λ becomes

larger, i.e., Cramér-Rao bound becomes lower. This critical
behavior would own more superiority for the coherent state
with a larger imaginary part. It is worth noting that the critical
slowing down still exists, but more importantly, this example
shows that different states (at least the superposition state and
coherent state) do not have a substantial affect on the ratio
between function Iλ and QFI. The enhancement of quantum
sensing can be realized with a less demanding initial state in
COMS.

Next, we are curious about the performance of I (α)
λ with

finite frequency. The major influence is still discussed by
the motion equation of quadrature, 〈X 〉(α)

c ∼ η−2�−3/2 and
(�Xc)2 ∼ η−2�−2. When � � √

2η−1, the correction terms
can be neglected. After calculation, we find that the ratio
Ĩ (α)

λ /I (α)
λ will not be affected by the imaginary part Im(α)

of the coherent state. However, as shown in Fig. 7, the sys-
tem requires a larger frequency ratio to reduce the impact of
correction terms when Re(α) increases.

V. EXPERIMENTAL FEASIBILITY

The protocol in this article requires less fluctuation of
phonon number so that the QPT phenomenon of mechanical
oscillator quantum fluctuation is evident. For this reason, we
need to manipulate a strong laser to cool the nanomechanical
oscillator into its ground state by some cooling methods, such
as the sideband cooling [78], optical feedback cooling [79],
and radiation pressure cooling [80]. We insert a silicon carbide
nanowire into a high-finesse fiber microcavity in static, insu-
lated, and cryogenic (T = 15 mK) vacuum, where its quality
factor is about 106 and cavity length is 200 μm [63]. The
employed nanowire with effective masses around M = 48 pg,
diameter d = 130 nm, and length L = 10 μm can vibrate
with a frequency about ωm/2π = 10.56 MHz. To cool the
nanomechanical oscillator, we can utilize an additional pump
field with laser frequency ωk , satisfying the red-sideband res-
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onance condition ωc − ωk ∼ ωm. Moreover, the ground-state
cooling of the nanomechanical oscillator has been realized
experimentally in various systems [62,78,81,82]. The huge
frequency ratio (ωc − ωl )/ωm needed in this proposal can
be easily obtained by adjusting the frequency of the driving
laser ωl , where the frequency of the driving laser and mi-
crocavity is in the optical range and much greater than the
oscillator frequency. The optomechanical coupling strength
is inherently tunable via the driving power, which further
adjusts the parameter λ near the quantum critical point. In
addition, it is essential to prepare the nanomechanical oscil-
lator into a superposition state or a coherence state [83–85].
The realization of these states was already reported in the
trapped-ion oscillator system [86,87]. Moreover, the coherent
and superposition states of the macroscopic ensemble are not
far away from experimental applications [73–76]. Therefore,
using COMS as a platform to achieve the enhancement of
critical quantum sensing is expected to be feasible according
to our proposal.

VI. CONCLUSION

In conclusion, we investigated the transition of COMS and
explored the quantum sensing around the quantum critical
point. We demonstrate the feasibility of enhanced measure-
ment by utilizing the critical divergent feature of QFI without
the specific initial state preparation. Compared with the stan-
dard Rabi model, the huge frequency ratio between the cavity
and the mechanical oscillator is adjustable and easy to be
implemented by only changing the frequency of the driving
laser in our proposal. Due to the excellent scalability of me-
chanical oscillators to various physical systems, the scheme in
our work could be applied to quantum sensing for measuring
classical quantities and macroscopic quantum phenomena.
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APPENDIX A: LINEARIZATION OF
THE OPTOMECHANICAL SYSTEM

Considering the influence of environmental thermal noise
on COMS, the quantum Langevin equation of Hamiltonian
Eq. (2) are given by

ȧ =
(
−iδ − γc

2

)
a + iga

(
b† + b

) + εl + √
γcain,

ḃ =
(
−iωm − γm

2

)
b + iga†a + √

γmbin, (A1)

where ain and bin are noise operators of the optical mode and
mechanical mode, respectively, and γc,m are the dissipation of
system corresponding to the operators of ain and bin.

Here we substitute the operators with their average values
augmented by fluctuations induced by a strong laser, i.e.,
a → 〈a〉 + δa, b → 〈b〉 + δb. In the subsequent analysis, we
replace the fluctuation δa and δb by a and b, which is consis-
tent with the main text. Then, the evolution equations for the
mean amplitudes can be obtained as

˙〈a〉 =
[
i(2g〈b〉 − δ) − γc

2

]
〈a〉 + εl ,

˙〈b〉 =
(
−iωm − γm

2

)
〈b〉 + ig|〈a〉|2, (A2)

and the evolution equations of fluctuation operators are given
as

ȧ =
[
i(2g〈b〉 − δ) − γc

2

]
a + ig〈a〉(b† + b) + √

γcain,

ḃ =
(
−iωm − γm

2

)
b + ig〈a〉(a† + a) + √

γmbin. (A3)

Under a strong laser driving, the coherent amplitudes reach
their steady state with

〈a〉 = εl

γc/2 − i(2g〈b〉 − δ)
, 〈b〉 = ig|〈a〉|2

iωm + γm/2
. (A4)

At this time, these Langevin equations of fluctuation operators
is corresponding to the Hamiltonian Eq. (3).

APPENDIX B: DERIVATION OF THE QFI AROUND
CRITICAL POINT

The form of Eq. (9) cannot be directly obtained, but some
terms can be discarded under some conditions [21]. Since the
formula of hξ has already been known, the exact QFI can be
calculated as

Iξ = 4t2Var[H1]|
0〉 + h2(t )�−2Var[C]|
0〉

+ j2(t )�−3Var[D]|
0〉 + C(t ), (B1)

where h(t ) = 2[sin(
√

�t ) − √
�t], j(t ) = 2[cos(

√
�t ) − 1],

and the covariance term

C(t ) =2h(t )t�−1 Cov [H1,C]|
0〉 − 2 j(t )t�− 3
2

× Cov [H1, D]|
0〉 − h(t ) j(t )�− 5
2 Cov[C, D]|
0〉,

(B2)

with the definition Cov[C1, C2]|
0〉 = 〈
0|C1C2 + C2C1|
0〉 −
2〈
0|C1|
〉〈
0|C2|
0〉. Obviously, the third term of Eq. (B1)
makes the dominant contribution as λ → 1, i.e., the parameter
ξ → ξc. Thus, we can neglect the other low-order terms under
the conditions

√
�t = O(1) and Var[D] �= 0 which keep di-

vergent scaling of Iξ . The final approximate form is obtained
as

Iξ 
 4
[sin(

√
�t ) − √

�t]2

�3
Var[D]|
0〉. (B3)
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APPENDIX C: CALCULATIONS OF QUADRATURE
DYNAMIC EVOLUTION OF COMS

According to dX/dt = i[H, X ], the equations of motion
for the quadrature operators X , governed by Eq. (4), are given
as

〈X 〉t =
√

2�− 1
2 sin(

√
�ωmt/2), (C1)

from which the susceptibility with respect to λ can be obtained
as

∂λ〈X 〉t = 4
√

2λ�−3/2 sin(
√

�ωmt/2)

− 2
√

2λωmt�−1 cos(
√

�ωmt/2). (C2)

Next, we calculate the expectation of the square operator and
the variance of the quadrature as

〈X 2〉t = 1 + 2λ2�−1[1 − cos(
√

�ωmt )],

(�X )2 = 1 + �−1(2λ2 − 1)[1 − cos(
√

�ωmt )], (C3)

where the variance (�O)2 = 〈O2〉t − 〈O〉2
t as (O denotes an

operator)
According to error propagation formula (δλ)2 =

(�O)2/(∂λ〈O〉)2, we define Iλ = (∂λ〈X 〉t )2/(�X )2.
The precision approaches the lower bound of position
measurement when Iλ closes the QFI Iλ. Error propagation
theory, which is a method for estimating the function output
error from the function input error, is widely acceptable and
used in experiments [77,88,89]. This is the reason we adopt
the error propagation function method in the main text.

Apart from the error propagation function Iλ, some article
evaluates the classical fisher information (CFI) and compare
its value with the QFI to evaluate the performance of homo-
dyne detection [32,48]. We will briefly introduce and illustrate
this method.

Since x is a continuous variable, the formula of CFI is

Iλ =
∫

dx
1

p(x|λ)

[
∂ p(x|λ)

∂λ

]2

, (C4)

where p(x|λ) = Tr[ρ(λ)�x] according to the Born rule.
p(x|λ) is the conditional probability distribution about x in
state ρλ(t ). The positive operator-valued measure (POVM)
detector is given by �x = |x〉〈x|. Transform |x〉 into the Fock
representation by the following formula:

|x〉 = π−1/4
∑

n

exp(−x2/2)

(n!2n)1/2
Hn(x)|n〉, (C5)

where Hn(x) is the Hermite polynomial of order n. The condi-
tional probability distribution p(x|λ) can be obtained through
the numerical solution of ρλ(t ) at any time. Then, CFI Iλ can
be computed using Eq. (C4), and a comparative analysis can
be conducted with Iλ, Iλ, and Iλ illustrated in Fig. 8.

Foremost, it is apparent from Fig. 8 that the CFI Iλ is
significantly higher than the error propagation function Iλ and
even closer to the QFI Iλ. Subsequently, the figure shows that
the CFI and error propagation oscillate with the same period
and their periodic peaks are very close to QFI Iλ. In other
words, homodyne detection provides a nearly optimal estima-
tion scheme except for an accurate time control. Furthermore,

0

1

2

3
104

I

0

2

4

6 I

0 1 2 3
0

10

20

30

I

(a)

(b)

(c)

FIG. 8. The Iλ (quantum fisher information), Iλ (Classical fisher
information), and Iλ (error propagation function) for the quadrature
operator X as a function of t with the periodic peaks occurring at
even periods τn = 2nπ/(

√
�ωm )(n ∈ Z+). All of them increase with

time τn, which means a higher precision. The relative order remains
Iλ > Iλ > Iλ, while λ approaches the critical point. Iλ and Iλ has the
same quantum Cramér-Rao bound.

Fig. 8 illustrates that the relative relationship between these
three functions remains stable as the parameter λ approaches
the critical point. Those results show that the optimal estima-
tion scheme does not become ineffective due to critical effects.

The figure of Iλ and Iλ can be obtained in the same way
when the initial state is prepared in the coherence state. Here
we will not repeat the calculation process. In brief, the COMS
model exhibits the same high precision at η → ∞ compared
with the Rabi model. Additionally, this protocol is a nice way
to study mechanical cavity by the bosonic field.

APPENDIX D: SW TRANSFORMATION OF COMS
WITH HIGHER-ORDER TERM

In the main text, the generator S of SW transformation has
already been approximated in the condition η = �/ωm � 1.
Here, we will reach a more precise generator S̃ which holds
for the finite frequency ratio [30,66,67]. The Hamiltonian
HL satisfies the form of Hs − GV , with Hs = �a†a + ωmb†b
and V = (a† + a)(b† + b). Next, considering a unitary
transformation Ũ = eS̃ , the transformed Hamiltonian can be
written as

H̃L = e−S̃HLeS̃ =
∞∑

k=0

1

k!

[
H (k)

L , S̃
]
. (D1)

Divide the transformed Hamiltonian into the diagonal part H̃d

and off-diagonal part H̃od by defining S̃ as block-off-diagonal
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and using the fact that V is block-diagonal, which can be
obtained as

H̃d =
∞∑

k=0

[
H (2k)

s , S̃
]

2k!
−

∞∑
k=0

[GV (2k+1), S̃]

(2k + 1)!
,

H̃od =
∞∑

k=0

[
H (2k+1)

s , S̃
]

(2k + 1)!
−

∞∑
k=0

[GV (2k), S̃]

(2k)!
. (D2)

Now, we can give the generator S̃ as

S̃ = GS̃1 + G3S̃3, (D3)

by keeping to the third order in G. S̃1 and S̃3 can be calculated
by the formula

[Hs, S̃1] = V, [Hs, S̃3] = 1
3 [[V, S̃1], S̃1]. (D4)

We find that the generator S̃ satisfies the conditions in
Eq. (D4) as

S̃1 = 1

�
(b + b†)(a† − a) + ωm

�2
(b − b†)(a + a†) + O

(ωm

�3

)
,

S̃3 = 2

3�3
[(b + b†)3 − (b − b†)2 − (b + b†)](a + a†)

+ 2ωm

3�4 [(a + a†)3 − (a − a†)2 − (a + a†)](b + b†)

+ O
(ωm

�4

)
. (D5)

Next, we can use Eq. (D3) to rearrange the generator S̃ as

S̃ = λ

2
η− 1

2 (b + b†)(a† − a) + λ

2
η− 3

2 (b − b†)(a + a†)

+ λ3

12
η− 3

2 [(b + b†)3 − (b − b†)2 − (b + b†)](a + a†)

+ O
(
λ3η− 5

2

)
, (D6)

where λ = 2G/
√

�ωm and η = �/ωm. Inserting the
generator S̃ into the Hamiltonian, we can reach

H̃L =�a†a + ωmb†b − λ2

4
ωm(b† + b)2

− λ2

4
η−1ωm(a† + a)2 − 1

24
λ4η−2ωm

× (b† + b)2 + O(λ4η−3). (D7)

In the main text, Eq. (4) only takes the first three terms for
η � 1. When we consider the effect of the finite frequency
ratio of COMS, we cannot neglect higher-order terms.
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