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Spatially resolved macroscopic near-threshold harmonics generated from harmoniclike
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Bincheng Wang ,1 Tianyu Wen,1 Yong Fu,1 Baochang Li,1 Kan Wang,1 and Cheng Jin1,2,*

1Experimental Teaching Center of Physics and Department of Applied Physics, Nanjing University of Science and Technology,
Nanjing, Jiangsu 210094, China

2MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology,
Nanjing, Jiangsu 210094, China

(Received 10 June 2023; accepted 1 November 2023; published 17 November 2023)

We investigate the generation of near-threshold harmonics (NTHs) based on solving the three-dimensional
time-dependent Schrödinger equation and utilizing an artificial neural network as a surrogate model to study
the macroscopic propagation. Through our research, we identify two distinct pathways for NTH generation:
harmoniclike transition and resonant transition. These pathways exhibit varying laser-parameter dependencies
and phase-matching conditions, making it possible to spatially separate and selectively enhance NTHs by
manipulating laser parameters in experimental setups. Our study provides insights into the underlying physics of
the NTH macroscopic propagation and presents a methodology that can be applied to computationally intensive
problems in the field of strong-field physics.
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I. INTRODUCTION

High-order harmonic generation (HHG) is a phenomenon
that occurs when ultrashort femtosecond intense laser pulses
interact with atoms and molecules. It has emerged as a vital
aspect of ultrafast science and technology, facilitating signif-
icant advancements in the field [1–3]. HHG yields coherent
light sources in the extreme-ultraviolet (XUV) to soft-x-ray
range that have proven invaluable for various applications
[4,5]. Moreover, HHG serves as a valuable tool for investigat-
ing atomic and molecular electronic structures and ultrafast
dynamics [6–8]. Recently, experiments have shown that near-
threshold harmonics (NTHs), which are harmonics generated
near the ionization threshold Ip of the target atom, can serve as
light sources for VUV frequency-comb applications [9–16].
These breakthroughs have highlighted the potential of NTHs
in expanding the range of applications in the VUV spectral
region.

Considering that the energy range of NTHs closely over-
laps with that of Rydberg states, it is reasonable to question
whether the numerous excited states near the ionization
threshold have any influence on NTH generation. In a study
conducted in 2009, Yost et al. explored the generation of the
7th (H7) to 13th (H13) harmonics, which are in close prox-
imity to the ionization threshold, using a 136-MHz, 1070-nm
laser on a xenon (Xe) target [10]. The research findings re-
vealed intense intensity-dependent oscillations in the on-axis
yields of H7 and H11, while such oscillations were com-
paratively weaker for H9 and H13. Moreover, the far-field
spatial profiles of H7 and H11 exhibited more diffused char-
acteristics (halos), whereas those of H9 and H13 were more
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focused. This initial investigation provided evidence for the
coherence of NTHs and their potential use in applications
involving VUV frequency-comb structures. Subsequently, in
2014 NTHs were further examined using a 5-fs, 800-nm
driving laser on an argon (Ar) target [12]. In this study
the short pulse duration led to the spreading of H9 across
the ionization threshold, revealing multiple sharp lines be-
low the threshold. These atomic lines predominated at low
intensity, and their positions shifted towards higher energies as
the intensity increased. These lines were understood to arise
from the coherent radiation decay of Rydberg states trapped
in the laser field [17]. However, it was also proposed that they
may originate from ionization of excited states recombining
to the ground state [14].

Understanding the mechanism underlying the emission
of near-threshold harmonics is expected to be a complex
task. Several studies have indicated that the generation
of NTHs is influenced by various factors, including long
and short quantum orbits [18], multirescattering processes
[19], and Rydberg states [20]. Unlike above-threshold high-
order harmonics, which can be explained by the standard
three-step model, NTHs are characterized by the presence
of the Coulomb potential from the ion core, significantly
altering the trajectories of tunneling electrons. The interpre-
tation of NTH generation in terms of contributions from
multiple trajectories and their interference lacks predictive
power. Additionally, laboratory observations of NTHs depend
on the phase-matching conditions of harmonics in the gas
medium, highlighting the need for systematic theoretical sim-
ulations of NTHs. Previous experimental findings have also
revealed significant differences in the spatial distribution of
NTHs, providing valuable insights into the generation mech-
anisms of NTHs and offering rich information for further
investigation [10].
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To accurately calculate the NTH spectra for individual
atoms, the target atom is typically treated as a one-
electron system, and the three-dimensional time-dependent
Schrödinger equation (3D-TDSE) is solved. Unlike above-
threshold harmonics where the quantitative rescattering theory
(QRS) model provides a simple approach to calculate har-
monics from each atom [21], in NTH, replacing QRS with
3D-TDSE for hundreds of laser intensities in propagation cal-
culations would require significant computational resources.
Thus, full macroscopic propagation calculations are rarely
performed. Recently, there has been a growing interest in
applying artificial intelligence and machine learning tech-
niques to enhance computational methods in physical sciences
[22]. The combination of deep learning methods with strong-
field physics has shown promising results [23–29]. Deep
learning can directly predict final results and reconstruct high-
resolution spectra [28], or even predict the time-dependent
induced dipole moment of HHG [29]. These methods alleviate
the computational limitations of conventional semiclassical
approaches and offer new possibilities to tackle problems with
high computational costs. More recently, a convolutional neu-
ral network has been trained to simulate HHG [30], offering
a method that applies the neural network to investigate the
generation of HHG.

In this article we propose an approach that utilizes a fully
connected neural network as a surrogate model to replace the
computationally demanding 3D-TDSE model in macroscopic
propagation calculations. Our method allows for a compre-
hensive and systematic investigation of NTH generation based
on the 3D-TDSE, analyzing both microscopic mechanisms
and macroscopic propagation, enabling direct comparisons
with experimental observations.

II. METHODS

A. 3D-TDSE

The schematic plot of our model is shown in Fig. 1.
First, we use the 3D-TDSE model to calculate single-atom
induced-dipole moments in the time domain by varying laser
peak intensities and carrier-envelope phases (CEPs) for Ar
atoms using an 800-nm linearly polarized laser pulse with
a FWHM pulse width of three optical cycles (8.1 fs). The
envelope of it is trapezoidal with one cycle on and off. We
use 500 laser intensities ranging from 0.5 × 1014 W/cm2 to
3.5 × 1014 W/cm2 and 100 CEPs ranging from 0 to 2π , re-
sulting in a total of 50 000 data points (500 × 100) as the input
data set for our neural network. The 3D-TDSE describing the
dynamics of the electron in the velocity gauge is

i
∂

∂t
ψ (r, t ) =

[
1

2
(p − A(r, t ))2 + V (r)

]
ψ (r, t ), (1)

where ψ (r, t ) is the electron wave function, p is the momen-
tum operator, and A(r, t ) is the vector potential of the laser
field. In the dipole approximation, the vector potential A(r, t )
of is space independent and can be written as

A(r, t ) = A(t ) =
∫

E (t )dt =
∫

E0 f (t ) cos(ωt )dt, (2)

where E (t ) is the laser electric field, E0 is the amplitude of
the laser electric field, and f (t ) is the laser envelop. The

FIG. 1. Schematic plot of the numerical model for computing
microscopic and macroscopic NTH.

expression of the laser envelop is

f (t ) =
⎧⎨
⎩

t/T (0 � t � T )
1 (T < t < 2T )
(T − t )/T (2T � t � 3T )

, (3)

where T is the optical cycle of the laser field and t is the time.
V (r) is the effective potential, and in our paper, the Tong-Lin
potential is used to simulate Ar [31], which is a widely used
effective potential and can accurately model excited states and
their interaction with electric fields in strong-field scenarios
[32]. The 3D-TDSE is solved in the spherical coordinates,
in which the wave function ψ (r, t ) is expanded by spherical
harmonics |l, m〉,

ψ (r, t ) =
∑
l,m

Rlm(r, t )

r
|l, m〉, (4)

where Rlm(r, t ) is the radial part of the wave function.
This radial wave function is discretized by a finite-element
discrete-variable representation method. The time propaga-
tion of the TDSE is calculated by the split-Lanczos method
with the time step fixed at dt = 0.01 a.u. The initial wave
function is prepared by the imaginary-time propagation. The
details of the numerical solution to the TDSE can be found in
[33]. The induced dipole moment is given by

d (t ) = 〈ψ (r, t )|r|ψ (r, t )〉. (5)

B. Neural network

Second, a fully connected multilayer neural network is uti-
lized for training the input data set. The detailed parameters of
the neural network can be found in Table I. The compiler used
here is PYTORCH, an open-source PYTHONmachine learning
library. More information about PYTORCH can be found on
their website [34]. The input data set consists of the laser
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TABLE I. Neural network parameters.

Compiler: PYTORCH Train data: 60%

Epochs: 40 000 Valid data: 20%
Pred data: 20% Hidden dim: 2048
Hidden layers: 5 Optimizer: Adam
Lr: 5 × 10−5 × f(t)a Batch size: 32
L2: 0

af(t)=0.1 if: epochs = 2.5 × 104, 3.0 × 104, 3.5 × 104.

electric field and the induced dipole moment calculated from
the 3D-TDSE. We consider 500 laser intensities ranging from
0.5 × 1014 W/cm2 to 3.5 × 1014 W/cm2, as well as 100 CEP
values ranging from 0 to 2π . This results in a total of 50 000
data points (500 × 100) forming the input data set for our
neural network. Increasing the amount of input data enhances
the stability of the trained results; however, it should not be
less than 10 000 to maintain training accuracy and stability.
The training data set is randomly divided into three groups
in a ratio of 6:2:2, namely, train data, validation data, and
prediction data. The neural network architecture consists of
one input layer, five hidden layers, and one output layer.
Each layer comprises 2048 coefficients, including weight and
bias terms. These terms correspond to a time interval of
�t = 0.16 a.u. in the time domain. In the input layer, the
laser electric field in the time domain is divided into 2048
points, denoted as E (ti ), i = 1 : 2048. In the hidden layer,
each node is connected to the corresponding E (ti ) from the
input layer through weights and biases, based on the following
formula:

a j =
∑

i

Wi, jE (ti ) + b j . (6)

Here a j represents the value of the node, Wi, j denotes the
weight, and bj represents the bias in each node. This process
is repeated for each subsequent hidden layer, linking nodes in
a similar manner until all nodes are transmitted to the output
layer. The coefficients in each layer are adjusted through back-
propagation algorithms until the mean square error (MSE)
between the output-induced dipole and the input dipole is less
than 10−8. We have chosen to utilize the Adam algorithm as
our optimizer, which is a well-established stochastic optimiza-
tion method [35].

The MSE of the final training results is influenced by two
factors: (1) the input data set and (2) the neural network
structure. The input data set should contain at least 10 000
data points to ensure stability and accuracy. Additionally, a
stronger correlation between the laser electric field and the in-
duced dipole moment leads to better training outcomes. Thus
the target for training is the induced dipole moment in the time
domain rather than the spectrum in the frequency domain. To
decrease the MSE, various parameters in the neural network
need to be appropriately adjusted, such as the number of lay-
ers, training epochs, and learning rate. Increasing the number
of hidden layers and the number of coefficients in each layer
enhances the precision of the neural network output. However,
it also increases the computational cost in terms of time and
memory usage. The learning rate, denoted as Lr, is a crucial
hyperparameter in the network training process. A learning

FIG. 2. (a) The MSE of the train data set trained from the dif-
ferent amounts of the input data set. (b) The MSEs between the
output-induced dipole and the input-induced dipole as a function of
epoch. (c) The distributions of the MSE in different data sets. (d)–(i)
The induced dipole moment, the harmonic spectra, and the phase
of the harmonics calculated by the artificial neural network (ANN)
and the TDSE when the laser intensity is 1.5 ×1014 W/cm2 and
2.0 × 1014 W/cm2 and the CEP is 0.

rate that is too high may make it difficult for the network to
converge, while one that is too small may cause convergence
to local minima. To strike a balance, we set the learning rate to
gradually decrease as the number of training epochs increases.
The batch size determines the number of parameters passed to
the program during each iteration of training. If the batch size
is too large, the network may converge to local minimums, and
if it is too small, the training results may be erratic. Selecting
an appropriate batch size is important for achieving optimal
training outcomes.

Figure 2(a) presents the trained MSE using different
amounts of 3D-TDSE data. It is observed that when the
amount of 3D-TDSE data is 5.0 × 103, the MSE of the train
data set is roughly 1.0 × 10−6, and when it is increased to
5.0 × 104, the MSE decreases to 2.5 × 10−8. Based on the
Fourier transform relationship between the time domain and
frequency domain, in order to obtain accurate NTH spectra
(in this case, up to the 13th order for 800 nm), the MSE of
the induced dipole moment should be less than 1.0 × 10−7.
Therefore, to accurately calculate the harmonic spectrum, it
requires a substantial amount of 3D-TDSE data, with a mini-
mum threshold of 1.0 × 104. Figure 2(b) displays the mean
square error MSE between the output-induced dipole and
the input-induced dipole as a function of the epoch. It was
observed that as the training epoch increased, the MSE de-
creased. At an epoch of 4.0 × 104, the MSEs were 2.5 × 10−8

for the valid data set and the pred data set, while in the train
data set it was 2.4 × 10−9. Figure 2(c) displays the distribu-
tion of the MSE among different data sets. The distribution
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of the MSE follows a Gaussian distribution, with a FWHM of
2.5 × 10−8 for both the valid data set and pred data set, and
2.0 × 10−8 for the train data set. Figures 2(a), 2(b), and 2(c)
demonstrate that the induced dipole moments trained based
on the neural network exhibit high precision (2.5 × 10−8)
and good error distribution—both necessary conditions for
replacing the 3D-TDSE in the calculation of macroscopic
propagation.

In Figs. 2(d)–2(i), we present several examples of the in-
duced dipole moment, harmonic spectrum, and the phase of
the harmonics obtained from the trained neural network (blue
solid line). It is important to highlight that in the training pro-
cess, maintaining stability and accuracy of the trained results
is crucial. Oscillation of induced dipole moments in the time
domain between positive and negative values can introduce
instability and lead to significant errors. To overcome this
issue, we employ a technique where a constant value is added
to each induced dipole moment, ensuring they remain consis-
tently positive during training. Subsequently, when utilizing
the neural network to calculate the macroscopic propagation
of NTH, the applied constant value is subtracted, guaranteeing
result accuracy. In the figures presented, the displayed induced
dipole moments reflect the subtracted value, which can be
directly employed for calculating the macroscopic propaga-
tion of NTH.

By comparing these results with those calculated from the
TDSE model (red dash line), we observe that the induced
dipole moment in the time domain is nearly identical. How-
ever, there are some differences in the high-order harmonic
spectra and their phase. These variations occur at the same
order (21st) for different laser intensities [see Figs. 2(e), 2(h),
and 2(b)], implying that they are independent of the laser
intensity. This difference arises from the error in the trained
induced dipole moment. The harmonic spectra are generated
from the Fourier transform of the induced dipole moment
in the frequency domain. Therefore the high-order harmonic
spectra correspond to the rapid and small fluctuations of the
induced dipole moment in the time domain. As the MSE
between the induced dipole moment trained by our model
and the dipole moment obtained from 3D-TDSE calculations
is approximately 2.5 × 10−8, the harmonic spectra calculated
from the trained dipole moment are accurate for low-order
harmonics but show some differences in high-order harmon-
ics. One potential solution to this issue is to increase the
number of layers and training epochs in order to decrease
the MSE of the neural network. However, in this study we
are primarily focused on the accuracy of the near-threshold
harmonics, which are adequately represented in the trained
harmonic spectra. Besides, we can also find that there is a
suppression of the yield of the 7th and 9th harmonics com-
pared with the 11st and 13rd harmonics. These phenomena
have been observed experimentally in [36] and attributed to
the interaction between the Rydberg state and the laser field.
In Fig. 3 we present the induced dipole moment, harmonic
spectra, and phase of the harmonics for different CEPs at an
intensity of 2.5 × 1014 W/cm2. Despite significant changes
in the induced dipole moment, our trained model accurately
reproduces the dipole moment, harmonic spectra, and phase
of the harmonics.

FIG. 3. (a)–(i) The induced dipole moment, the harmonic spec-
tra, and the phase of the harmonics calculated by the ANN and the
TDSE when the laser intensity is 2.5 × 1014 W/cm2 and the CEP is
0, 0.6π , and 1.2π .

Moreover, in Fig. 4 we have presented some poor results
obtained from the trained neural network that corresponded
to an MSE larger than 1.0 × 10−7. It can be observed that
the poor results mainly occurred under low laser inten-
sity (<1.0 × 1014 W/cm2) and situations where the induced

FIG. 4. (a)–(c) The induced dipole moment, the harmonic spec-
tra, and the phase of the harmonics calculated by the ANN and
the TDSE when the laser intensity is 1.0 × 1014 W/cm2 and the
CEP is 0.8π . (d)–(f) The same as (a)–(c), but the laser intensity is
0.8 × 1014 W/cm2 and the CEP is 0.2π . (g)–(i) The same as (a)–(c),
but the laser intensity is 0.5 × 1014 W/cm2 and the CEP is 0.
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dipole underwent drastic changes in the time domain. The
reason for this is that, on the one hand, the low induced
dipole moment occupied a small proportion of the total MSE
compared to high laser intensity. On the other hand, the drastic
changes in the induced dipole moment were more difficult
to replicate in the neural network. From Fig. 4 we notice
that this error mostly affects the yield of harmonics and the
induced dipole moment, while the phase of harmonics is less
affected. In addition, we also need to emphasize that the
trained neural network is only valid in the range of the input
data set, i.e., from 0.5 × 1014 W/cm2 to 3.5 × 1014 W/cm2

for laser intensities and from 0 to 2π for CEPs. Expanding the
calculation range will lead to the instability of the calculation
results.

C. Macroscopic propagation

Finally, the trained neural network is implemented as a sur-
rogate model to compute the single-atom induced dipoles in
the macroscopic propagation of NTH. The propagation theory
that gives a macroscopic response of NTH to the medium is
obtained from our previous paper [37]. The propagation of
NTH in the medium is described by the equation

∇2Eh(r, z, t ) − 1

c2

∂2Eh(r, z, t )

∂t2
= μ0

∂2Pnl (r, z, t )

∂t2
, (7)

where

Pnl (r, z, t ) = [n0 − ne(r, z, t )]x(r, z, t ), (8)

ne(t ) = n0

{
1 − exp

[
−

∫ t

−∞
ω(τ )dτ

]}
. (9)

Pnl (r, z, t ) is nonlinear polarization generated by the medium,
n0 is the neutral atom density, ne(t ) is free-electron density,
and ω(τ ) is tunnel ionization rate which can be calculated
from the Ammosov-Delone-Krainov (ADK) theory [38]. The
x(r, z, t ) is the induced dipole moment calculated from the
neural network. We assume that in low gas pressure, there is
no ionization effect of the medium on the fundamental laser
field and the effects of absorption and free-electron dispersion
are negligible. Only the phase gradient of the fundamental
Gaussian beam and the phase of the induced dipole moment
will affect the macroscopic propagation process. The temporal
derivative in the above equation can be eliminated by Fourier
transform:

∇2
⊥Eh(r, z′, ω) − 2iω

c

∂Eh(r, z′, ω)

∂z′ = −μ0ω
2Pnl (r, z′, ω),

(10)

where

Eh(r, z′, ω) = F̂ [Eh(r, z, t )], (11)

Pnl (r, z′, ω) = F̂ [Pnl (r, z, t )]. (12)

Here F̂ is the Fourier transform operator acting on the tem-
poral coordinate. It is worth noting that we have compared
our calculation result based on this model with the exper-
iment measurement, and the results show that our model
can accurately calculate NTH, showing consistency with the
experimental measurements presented in [12].

FIG. 5. (a) Time-frequency analysis of the NTH in one optical
cycle. (b) Diagrammatic sketch of the generation of NTH 1 and 2. (c),
(d) Evolution of the harmonic yields in space (inside gas medium)
for H9 and H9.5, respectively. The color boxes of (c) and (d) are the
same and uniformly displayed in (d). (e), (f) Time-frequency analysis
for the NTH at peak A and peak B, respectively. The color boxes of
(e) and (f) are normalized and identical, and are displayed uniformly
in (f).

III. RESULTS AND DISCUSSION

We first examine the microscopic features of NTH emis-
sions at the single-atom level using a laser intensity of 2.0 ×
1014 W/cm2 and a CEP of 0. Time-frequency analysis for
NTHs around the 9th harmonic (H9) in one optical cycle is
displayed in Fig. 5(a), using the synchrosqueezing transform
to clearly see emission structures in the low-frequency re-
gions [19]. Our analysis reveals two types of NTH radiation:
NTH 1, which is continuous in the energy domain with an
obvious chirp characteristic and has a generation mechanism
similar to that of HHG emission caused by long electron
trajectories [10,19]; and NTH 2, which has a narrow energy
range around 0.4271 a.u. (H7.5) and 0.5410 a.u. (H9.5) and a
long duration (> 0.25 optical cycles). These two NTHs have
been observed and studied in prior research [12,14,18,20].
The generation mechanism of NTH 1 and NTH 2 is depicted
in Fig. 5(b). NTH 1 is considered to originate from the ion-
ization of electrons from the ground state to the continuum
state. Upon the reversal of the laser field and subsequent
suppression of the core potential, some electrons can undergo
a harmoniclike transition from the continuum state back to the
ground state, resulting in the generation of NTH 1 [18]. On the
other hand, the generation of NTH 2 involves the excitation of
electrons from the ground state to either the Rydberg states
of 4s with an energy of 0.4271 a.u. or 4d with an energy of
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FIG. 6. Dependence of (a) the yields and (b) the phase of the
NTH 1 and NTH 2 on laser intensity. (c), (d) Coherence length of
NTH 1 and NTH 2 as a function of the propagation distance (z) and
the radial distance (r). The color boxes of (c) and (d) are normalized
and identical, and are displayed uniformly in (d).

0.5410 a.u. This process can occur through frustrated tunnel-
ing ionization (FTI) [14], resonance excitation [12], or the
four-steps model [20]. Subsequently, the electrons transition
from these Rydberg states to the ground state 3p, leading to
the production of NTH 2. In our paper we refer to the pathway
of NTH 1 as a harmoniclike transition and the pathway of
NTH 2 as a resonant transition.

Next, we examine the macroscopic properties of NTH.
Figures 5(c) and 5(d) show the evolution of harmonic yields
in space for H9 and H9.5, respectively, as calculated with the
macroscopic propagation model based on the neural network.
The driving Gaussian beam has a beam waist of 25 µm at
focus, and a 1.5-mm-long gas medium with uniform distri-
bution is located 1.0 mm before laser focus. In Fig. 5(c), H9
exhibits a multipeaked structure, with the first peak occurring
on axis at r = 0 µm (peak A), the second peak appearing at
r = 12 µm, and the third peak located at r = 15 µm. On the
other hand, H9.5 only has one peak at around r = 12 µm (peak
B) in Fig. 5(d). Figures 5(e) and 5(f) depict the time-frequency
analysis for peaks A and B, respectively. It is observed that
peak A is solely from the contribution of NTH 1, while peak
B only includes the contribution of NTH 2. In other words, the
emissions of NTH 1 and NTH 2 can be spatially separated in
the exit plane of the gas medium, with NTH 1 primarily focus-
ing on the axis and NTH 2 being concentrated of axis. Note
that such separation can only be achieved after the harmonics
propagate a certain distance in the medium.

Finally, we discuss the phase-matching conditions that give
rise to the different spatial distributions of the two types of
NTH. In Fig. 6(a) we calculate the dependence of the yields
of NTH 1 and NTH 2 on laser intensity. At low intensi-
ties (<1.5 × 1014 W/cm2), NTH 2 is stronger than NTH 1,
while the opposite is true at high intensities. This competi-
tive relationship between NTH 1 and 2 was also observed in
experiments [12]. Moreover, we fit the intensity dependence

of the NTH 1 and 2 based on the fitting function and coeffi-
cients:

I1 = a1eb1I + c1, (13)

I2 = a2eb2I + c2 (I < 1.5 × 1014 W/cm2),

I2 = a2eb2I + c2 + a3 sin(dI ) (I > 1.5 × 1014 W/cm2),
(14)

where a1 = 0.004 042, b1 = 0.2576, c1 = −0.003 474, a2 =
0.031 56, b2 = 0.2231, c2 = −0.002 071, a3 = 0.000 423 5,
and d = 20.51. We can find that the yield of NTH 1 grows
as a function of exponential function with the increase of
laser intensity. For NTH 2, the yield grows exponentially
when the laser intensity is below 1.5 × 1014 W/cm2 but
exhibits oscillatory behavior when the laser intensity is higher.
This yield dependence has been observed in the NTH of
Xe in experiments [10] and strong-field ionization of hydro-
gen [39,40], where it is associated with channel closing. In
the NTH generation, as discussed above, two mechanisms
are involved: harmoniclike transition and resonant transition.
The weight of each transition depends on the ionization
process and the motion of the electron in the laser field,
which are influenced by the laser parameters and the poten-
tial of the target. When the total number of the electrons
is fixed, harmoniclike and resonant transitions compete with
each other. Under low-laser-intensity conditions, ionization
becomes more challenging, leading to a relatively weaker
harmoniclike transition. As a result, the resonant transition
predominates. Conversely, with the laser intensity increasing,
the harmoniclike transition increases. At high laser inten-
sity, the harmoniclike transition dominates and limits the
resonant transition, resulting in the oscillating increase of
resonant transition. Figure 6(b) illustrates the dependence of
the phase of NTH 1 and NTH 2 on laser intensity. We also fit
them according to the fitting function and coefficients:

ϕ1 = β1 ln(α1I ) + γ1, (15)

ϕ2 = [β2 ln(α2I ) + γ2]κ sin(ωI ), (16)

where β1 = 0.1058, α1 = 0.025 62, γ1 = 0.030 11, β2 =
0.6766, α2 = 1.8125, γ2 = 0.2031, κ = 0.043 51, and ω =
25.125. Both are in the form of a logarithmic function, but the
phase of NTH 1 approaches a negative constant (–0.2 rad) as
laser intensity increases, while the phase of NTH 2 is always
a positive number and becomes closer to 1.2 rad as laser
intensity increases. Since the Rydberg states of 4s and 4d are
more sensitive to the laser field compared to the continuum
states, the phase of NTH 2 changes more rapidly with the laser
field.

Based on the dependence of calculated yield and phase of
NTHs on laser intensity, we can calculate the phase-matching
conditions of NTH 1 and 2. Since the gas pressure in this study
is assumed to be low, the electric fields at the center and exit of
the gas target do not experience significant changes compared
to that at the entrance, and phase mismatch resulting from
neutral gas and free-electron dispersion can be neglected.
Thus the phase mismatch of NTH can be described as follows:

�k = �kNT H + �kG, (17)
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where �kNT H is the phase mismatch caused by the single-
atom induced dipole of the two kinds of NTHs, and �kG is the
phase mismatch due to the phase gradient of the fundamental
Gaussian beam. The coherence length is defined as lcoh =
π/�k. Figures 6(c) and 6(d) depict the map of coherence
length of the two individual NTHs as a function of propa-
gation distance (z) and radial distance (r). It clearly shows
that NTH 1 exhibits optimal phase matching close to the axis,
suggesting that it is mainly generated along the axis. On the
other hand, the coherence length of NTH 2 is maximum when
r = 10 µm at z = –2.5 mm. When NTH 2 propagates along the
z direction, the position with optimal phase matching shifts
from r = 10 µm to r = 15 µm when z = 0 mm. Due to the
symmetry of the Gaussian beam, the symmetry of NTH 2
is preserved as it propagates from z = 0–2.5 mm. Based on
these phase-matching conditions, NTH 1 can be selected and
enhanced on the axis, while NTH 2 can be strengthened of
axis by adjusting the laser parameters.

IV. SUMMARY

In summary, we have demonstrated a method that utilizes
artificial neural networks to compute the single-atom induced
dipoles from the 3D-TDSE model. This enables us to ac-
curately perform macroscopic propagation for near-threshold
harmonics (NTHs) and explain some phenomena observed in
experiments. We have revealed that there are two pathways,
i.e., harmoniclike and resonant transition, in the microscopic
NTH. Due to their different yield and phase dependence on
the driving laser intensity, they can be spatially separated after
propagating in the gas medium. This work not only provides

insights into the generation of macroscopic NTHs but also
presents an effective solution to overcome the problem of
highly computational costs in NTH generation, as well as in
other strong-field physics problems.

Furthermore, our research on the generation mechanisms
of NTHs holds significant value for further exploration. How-
ever, it is important to note that our discussions are based
on the one-electron system 3D-TDSE and may not include
certain structural effects [15]. In future studies it would be
valuable to explore these effects as a potential research direc-
tions. Furthermore, acknowledging that our current discussion
of the NTH generation mechanism is qualitative and phe-
nomenological, we propose that future investigations should
concentrate on employing novel models that incorporate pre-
cise mathematical definitions and physics formulas. This
approach will enable a more comprehensive and quantitative
analysis of the phenomenon.
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Mücke, A. Pugzlys et al., Science 336, 1287 (2012).

[6] J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pepin, J. C.
Kieffer, P. B. Corkum, and D. M. Villeneuve, Nature (London)
432, 867 (2004).

[7] C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. D.
Silvestri, and S. Stagira, Nat. Phys. 7, 822 (2011).

[8] L. He, S. Sun, P. Lan et al., Nat. Commun. 13, 4595 (2022).
[9] C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R.

Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch,
Nature (London) 436, 234 (2005).

[10] D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B.
Gaarde, and K. J. Schafer, Nat. Phys. 5, 815 (2009).

[11] A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann,
I. Hartl, and J. Ye, Nature (London) 482, 68 (2012).

[12] M. Chini, X. Wang, Y. Cheng, H. Wang, Y. Wu et al., Nat.
Photon. 8, 437 (2014).

[13] A. Ferré et al., Nat. Photon. 9, 93 (2015).
[14] H. Yun, J. H. Mun, S. I. Hwang et al., Nat. Photon. 12, 620

(2018).
[15] M. F. Zhu, J. Zhang, L. Q. Hua, Z. R. Xiao, S. P. Xu, X. Y. Lai,

and X. J. Liu, Phys. Rev. A 104, 043111 (2021).
[16] B. C. Wang, Y. F. Zhang, P. F. Lan, C. Y. Zhai, M. Li, X. S. Zhu,

J. Chen, P. X. Lu, and C. D. Lin, Phys. Rev. A 103, 053119
(2021).

[17] S. Beaulieu, S. Camp, D. Descamps, A. Comby, V. Wanie, S.
Petit, F. Légaré, K. J. Schafer, M. B. Gaarde, F. Catoire, and Y.
Mairesse, Phys. Rev. Lett. 117, 203001 (2016).

[18] E. P. Power, A. M. March, F. Catoire, E. Sistrunk, K.
Krushelnick, P. Agostini, and L. F. DiMauro, Nat. Photon. 4,
352 (2010).

[19] P. Li, Y. Sheu, C. Laughlin, and S. Chu, Nat. Commun. 6, 7178
(2015).

[20] W. H. Xiong, J. W. Geng, J. Y. Tang, L. Y. Peng, and Q. Gong,
Phys. Rev. Lett. 112, 233001 (2014).

[21] A.-T. Le, R. R. Lucchese, S. Tonzani, T. Morishita, and C. D.
Lin, Phys. Rev. A 80, 013401 (2009).

[22] K. Mills, K. Ryczko, I. Luchak, A. Domurad, C. Beeler, and I.
Tamblyn, Chem. Sci. 10, 4129 (2019).

053510-7

https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1126/science.1132838
https://doi.org/10.1126/science.1218497
https://doi.org/10.1038/nature03183
https://doi.org/10.1038/nphys2029
https://doi.org/10.1038/s41467-022-32313-0
https://doi.org/10.1038/nature03851
https://doi.org/10.1038/nphys1398
https://doi.org/10.1038/nature10711
https://doi.org/10.1038/nphoton.2014.83
https://doi.org/10.1038/nphoton.2014.314
https://doi.org/10.1038/s41566-018-0255-8
https://doi.org/10.1103/PhysRevA.104.043111
https://doi.org/10.1103/PhysRevA.103.053119
https://doi.org/10.1103/PhysRevLett.117.203001
https://doi.org/10.1038/nphoton.2010.38
https://doi.org/10.1038/ncomms8178
https://doi.org/10.1103/PhysRevLett.112.233001
https://doi.org/10.1103/PhysRevA.80.013401
https://doi.org/10.1039/C8SC04578J


WANG, WEN, FU, LI, WANG, AND JIN PHYSICAL REVIEW A 108, 053510 (2023)

[23] N. I. Shvetsov-Shilovski and M. Lein, Phys. Rev. A 105,
L021102 (2022).

[24] A. M. M. Gherman, K. Kovács, M. V. Cristea, and V. Tos,a,

Appl. Sci. 8, 2106 (2018).
[25] O. Neufeld, O. Wengrowicz, O. Peleg, A. Rubio, and O. Cohen,

Opt. Express 30, 3729 (2022).
[26] M. Lytova, M. Spanner, and I. Tamblyn, Can. J. Phys. 101, 132

(2023).
[27] A. Mihailescu, J. Instrum. 11, C12004 (2016).
[28] X. W. Liu, G. Zhang, J. Li, G. Shi, M. Zhou, B. Huang, Y. Tang,

X. Song, and W. Yang, Phys. Rev. Lett. 124, 113202 (2020).
[29] J. Z. Yan et al., Opt. Express 30, 35444 (2022).
[30] J. M. Pablos-Marín, P. Marín, J. Serrano, and C. H. García,

Comput. Phys. Commun. 291, 108823 (2023).
[31] X. M. Tong and C. D. Lin, J. Phys. B: At. Mol. Opt. Phys. 38,

2593 (2005).

[32] H. B. Yao, Q. W. Qu, Z. H. Zhang, J. W. Wang, J. Gao, C. X. Hu,
H. Li, J. Wu, and F. He, Phys. Rev. Lett. 130, 113201 (2023).

[33] J. T. Liang et al., J. Phys. B: At. Mol. Opt. Phys. 53, 095601
(2020).

[34] https://pytorch.org/.
[35] D. P. Kingma and J. Ba, arXiv:1412.6980.
[36] K. Miyazaki and H. Sakai, J. Phys. B: At. Mol. Opt. Phys. 25,

L83 (1992).
[37] C. Jin, A. T. Le, and C. D. Lin, Phys. Rev. A 79, 053413

(2009).
[38] M. V. Ammosov, N. B. Delone, and V. P. Krainov, Zh. Eksp.

Teor. Fiz. 91, 2008 (1986) [Sov. Phys. JETP 64, 1191 (1986)].
[39] Q. G. Li, X.-M. Tong, T. Morishita, C. Jin, H. Wei, and C. D.

Lin, J. Phys. B: At. Mol. Opt. Phys. 47, 204019 (2014).
[40] Q. G. Li, X. M. Tong, T. Morishita, H. Wei, and C. D. Lin, Phys.

Rev. A 89, 023421 (2014).

053510-8

https://doi.org/10.1103/PhysRevA.105.L021102
https://doi.org/10.3390/app8112106
https://doi.org/10.1364/OE.445743
https://doi.org/10.1139/cjp-2022-0115
https://doi.org/10.1088/1748-0221/11/12/C12004
https://doi.org/10.1103/PhysRevLett.124.113202
https://doi.org/10.1364/OE.470495
https://doi.org/10.1016/j.cpc.2023.108823
https://doi.org/10.1088/0953-4075/38/15/001
https://doi.org/10.1103/PhysRevLett.130.113201
https://doi.org/10.1088/1361-6455/ab7527
https://pytorch.org/
http://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.1088/0953-4075/25/3/006
https://doi.org/10.1103/PhysRevA.79.053413
http://jetp.ras.ru/cgi-bin/dn/e_064_06_1191.pdf
https://doi.org/10.1088/0953-4075/47/20/204019
https://doi.org/10.1103/PhysRevA.89.023421

