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Isolated spectrally discrete bound states in the continuum in an open system
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Bound states in the continuum (BICs) exist in a variety of physical systems where they appear as lossless
propagating states surrounded by radiating modes. In the case of open systems, they coexist with continuous
families of guided states, which may be modes or other BICs, located in different regions of the frequency-
momentum parameter space. Here we report anisotropic waveguiding structures where guided modes and BICs
protected by symmetry are not possible whatsoever, though an isolated, single interference BIC emerges as a
lossless, solitary needle from a sea of radiating states. The needle BIC is the unique possible bound state, which
originates from the interplay of the two different radiation channels present in the structure, and remarkably,
it exists at a single frequency and a precise propagation direction as a spectrally discrete bound state for any
practical range of frequencies.
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I. INTRODUCTION

Bound states in the continuum (BICs) are modes that
propagate without losses even though their existence domain
overlaps with the part of the parameter space that corresponds
to radiating waves. They were predicted in the context of
quantum mechanics by von Neumann and Wigner [1], and
this research was later extended by Stillinger and Herrick
[2]. Subsequently, Friedrich and Wintgen described BICs as
a general wave phenomenon [3], and since then they have
been observed in many physical settings, including acoustic
systems [4] and photonic systems, where they have inspired a
wealth of new phenomena and important applications [5–8].

Pioneering works in photonics found BICs in dielectric
gratings [9], photonic crystal waveguides [10], waveguide
arrays [11,12], and photonic crystal slabs [13]. These stud-
ies spurred research into many systems, such as hybrid
plasmonic-photonic systems [14,15], zero-index materials
[16,17], diffraction gratings [18], slab waveguides with
grooves [19] and ridge terminations [20], all-dielectric
[21,22], plasmonic [23], and intrinsically chiral [24] metasur-
faces, and several periodic systems [25–29], among others.
Apart from periodic structures, photonic BICs also oc-
cur in anisotropic structures including waveguides [30,31],
in structures containing anisotropic defect layers [32–34],
and at interfaces as Dyakonov BICs [35]. In addition to
being of fundamental interest, the existence of photonic BICs
has been harnessed to realize applications in lasers [36,37],
biosensing [38], multiplexed communication channels [39],
directional radiation [40,41], broadband light capture [42],
high-quality-factor (high-Q) resonators [43,44], and nonlinear
optics [45,46], to cite a few examples.
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The aforementioned settings exhibit BICs that appear in
the dispersion space as isolated dots or as lines inserted within
the leaky-mode branches forming the continuum. When con-
sidering the whole parameter space, such BICs coexist with
numerous other BICs—either protected by symmetry or
generated by interference—and, importantly, with bands of
guided modes which occupy different parts of the parameter
space. For example, symmetric photonic crystal slabs can sup-
port various accidental BICs, which coexist both with BICs
protected by symmetry at the � point and branches of standard
guided Bloch modes that exist below the light cone [13]. Prac-
tical applications of BICs thus use excitation methods [47,48]
that avoid multiple resonances. Here we report a system al-
lowing for the existence of an isolated, discrete, interference
BIC that is the sole bound state possible in the whole avail-
able parameter space. This phenomenon occurs in antiguiding
anisotropic structures where no guided modes are allowed and
where such a state appears as an isolated, needlelike spectrally
discrete BIC in the frequency-momentum dispersion diagram.

Anisotropy-induced BICs appear in planar structures com-
posed of a substrate, film (or core), and cladding, where at
least the substrate is anisotropic [30]. When all optical axes
(OAs) are contained in the plane of the structure and parallel,
the structure is anisotropy symmetric, and BICs appear as
continuous lines that span over broad regions of the dispersion
diagram. This is the case in structures where all three layers
consist of uniaxial materials and the cladding and the substrate
radiation channels become equivalent, e.g., due to geometric
or mirror symmetry [49]. When at least one OA is taken out
of the plane, the polar anisotropy symmetry is broken, show-
ing groups of discrete BICs lying close to each other in the
frequency-momentum space [50]. Here we address BICs in
structures where the refractive indices of the anisotropic film
are lower than the ordinary refractive index of the substrate
and cladding, resulting in a so-called antiguiding structure,
i.e., no standard guided modes are supported. The conditions
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FIG. 1. (a) Layout of the system. The yellow, green, and blue
lines show the optic axes (OAs) for the cover, film, and substrate,
respectively. The OAs are parallel to the interface (y-z plane). The
coordinate system is aligned along the wave propagation direction
y, and x is perpendicular to the interface. (b) The OA arrangement
shown from the top. The angle φ between the propagation direction
(y) and the film OA is shown along with the offsets �c (�s) between
the film OA and the cover (substrate) OA. (c) Schematic of the
refractive indices showing three uniaxial materials with negative
birefringence. The red line indicates the value of Re(N ) for the
modes that we study. Prop. Dir., propagation direction; Ref. Ind.,
refractive index.

for radiation suppression and BIC formation are then stud-
ied, showing that the inclusion of a second distinct radiation
channel induces a transition where BIC lines in the dispersion
diagram collapse into a single BIC point. Such a state turns out
to be the only bound state existing for any practical range of
frequencies and propagation directions and therefore results
in a spectrally discrete needle BIC.

II. THEORETICAL FORMULATION

In this section we introduce the formulation for the analysis
of structures composed of film media sandwiched between
a substrate and a cover or cladding, where all three media
are lossless, dielectric uniaxial negative birefringent materials,
with all OAs parallel to the interface plane (y-z) and having
identical materials in the cladding and substrate [Fig. 1(a)].
To put our findings into perspective, we review the concept of
guided and leaky modes and then focus on the simplest struc-
ture supporting needlelike BICs, which is a planar antiguiding
structure. Finally, the condition for BIC existence is presented.

A. The anisotropic structure

Figures 1(a) and 1(b) show the structure used in this paper.
Since all three media are uniaxial with negative birefringence
and the cladding and substrate comprise identical materials,
their refractive indices fulfill noc = nos > nec = nes, and in
the film nof > ne f , where the subscripts o and e refer to the
ordinary and extraordinary indices, and c, f , and s denote the
cladding or cover, the film, and the substrate, respectively. The
coordinate axes are centered at the substrate-film interface,
where x is normal to the interface plane, y is the propagation
direction, and φ gives the angle between the film OA and the
direction of propagation. Then, the permittivity tensor for a

given layer when the optic axis points in the y direction is
given by

ε̂ = diag
(
n2

o, n2
e, n2

o

)
. (1)

The optic axis orientation in each layer transforms ε̂ using the
appropriate rotation matrix Rx(φ).

To have independent control over the cladding and
substrate radiation channels, their OAs are free to rotate inde-
pendently in the interface plane. �c = φc − φ (�s = φs − φ)
gives the offset between the film OA and the cladding (sub-
strate) OAs. An equivalent formulation would involve fixing
the OA orientations and rotating the direction of propagation
of light in the y-z plane. In this case, φ corresponds to the
propagation direction, with φ = arctan(kz/ky) [50].

B. Transfer matrix formalism

Solutions of Maxwell’s equations in uniaxial materials are
combinations of four basis waves: two with ordinary polar-
ization and two with extraordinary polarization. Eigenmodes
supported by slab waveguides comprising birefringent mate-
rials, however, are hybrid, made up of a combination of basis
waves with both ordinary and extraordinary polarization in
each layer [51], and are calculated in this paper using the
formulation in Ref. [50]. First, we define the ordinary and
extraordinary basis waves in each layer and construct the
eigenvalue problem as outlined in Ref. [51], resulting in the
eigenvectors

−→
F o =

⎡
⎢⎢⎢⎢⎣

κo sin (φ)

n2
o sin (φ)

−κo cos (φ)

κ2
o cos (φ)

⎤
⎥⎥⎥⎥⎦,

−→
F e =

⎡
⎢⎢⎢⎢⎣

κ2
o cos (φ)

εoκe cos (φ)

εo sin (φ)

−εoκe sin (φ)

⎤
⎥⎥⎥⎥⎦, (2)

where the rows of
−→
F e and

−→
F o correspond to the tangential

field components Ey, z0Hz, Ez, and z0Hy, respectively, and z0

is the vacuum impedance. We write the 4 × 4 field matrix F̂
using Berreman’s transfer matrix formalism [52], as

F̂ = [
−→
F+

o

−→
F−

o

−→
F+

e

−→
F−

e ], (3)

where the superscript + (−) refers to basis waves propagating
forward (backward) along x. The total field is calculated as−→m = F̂−→a , where −→a is a 4 × 1-column vector containing the
amplitudes of the respective basis waves. The field can be
transformed within two points in the same layer separated by
a distance d using the phase matrix

ÂD = diag(e−ik0κ
+
o D, e−ik0κ

−
o D, e−ik0κ

+
e D, e−ik0κ

−
e D), (4)

where κo and κe are the normalized propagation constants
in the x direction for the ordinary and extraordinary basis
waves. These are the eigenvalues of our problem, which can
be related to the optical axis orientation in each layer, φ, and
the mode effective index N = ky/k0 (normalized propagation
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constant in the y direction) as

κo = ±
√

n2
o − N2,

κe = ±
√

n2
e − N2

[
sin2 (φ) +

(
n2

e

n2
o

)
cos2 (φ)

]
. (5)

Thus, using Eqs. (3) and (4), a 4 × 4 characteristic matrix
M̂ for a film of thickness D can be written as

M̂ = F̂−1
f ÂDF̂f , (6)

where the subscript f refers to the film [51].
The cladding and the substrate are semi-infinite. Therefore

only two (one ordinary and one extraordinary) out of the four
basis waves must be selected for these layers. After selecting
the appropriate basis waves in the cladding and the substrate,
the fields at the two interfaces at x = 0 and x = D are related
using the characteristic matrix M̂ as

as
o · −→

F s
o + as

e · −→
F s

e = ac
o · M̂

−→
F c

o + ac
e · M̂

−→
F c

e, (7)

where the superscript c (s) denotes the cladding (substrate)
and ai

j is the complex amplitude of the corresponding basis
wave. Rewriting Eq. (7), we obtain a homogeneous system of
linear equations that can be written in matrix form as

Ŵ −→a = [ − M̂
−→
F c

o − M̂
−→
F c

e
−→
F s

o
−→
F s

e

]−→a = 0. (8)

The condition for the existence of nontrivial solutions of this
homogeneous system of linear equations, |Ŵ | = 0, gives us
the dispersion equation which must be solved numerically to
obtain the values of the effective mode index N for the hybrid
eigenmodes supported by the structure.

C. Guided and leaky modes

Guiding slab waveguides typically have films with higher
refractive indices than the cladding and substrate and thus
have N > [noc, nos, nec, nes], with N being real. The value
of κo and κe in the substrate and cover can be calculated
using Eqs. (5). Guided modes have imaginary κo and κe and
must decay in the substrate and cover as x → ±∞, which is
ensured by choosing the proper sign in Eqs. (5).

However, if N has a value smaller than any of the refractive
indices for the cladding or the substrate (nos, noc, nes, nec),
then the corresponding value of κo or κe becomes real,
and there is radiation leaking from the film to the substrate
or the cover. This means that a radiation channel is opened in
the cladding and/or the substrate, specifically, the ordinary or
the extraordinary wave that corresponds to a refractive index
larger than N , and for this value of N , guided modes are
not supported, resulting instead in a continuum of radiating
modes. This situation can be conveniently analyzed by using
a formalism based on hybrid leaky modes made up of waves
with both ordinary and extraordinary polarization [53–55].
These leaky modes are improper solutions of the dispersion
equation that do not vanish as x → ±∞ [56], but provide
a good approximation of the field near the waveguide and
are characterized by a complex mode index N , where Im{N}
approximates the radiation loss [56]. They are obtained as
a solution of the dispersion equation by selecting the basis
waves that grow exponentially upon moving away from the

interface for the polarization that corresponds to the radiation
channel. For the other polarizations, evanescent waves that
vanish as x → ±∞ are selected.

Antiguiding structures for any propagation direction φ are
ensured when the refractive indices fulfill noc = nos > nec =
nes, and in the film, nos > nof > ne f > nes [Fig. 1(c)]. Here,
the cladding and substrate ordinary refractive indices, which
are independent of the OA orientation, are the highest ones in
the structure. This has two important implications. First, light
in the film would not remain confined and would couple to the
continuum of ordinary waves in the cover and the substrate
[30]. Therefore the structure cannot support any conventional
guided mode, and only leaky modes are possible. Second,
leaky modes in the structure will fulfill nec = nes < Re{N} <

nos = noc [Fig. 1(c)]. Therefore the radiation channels in the
cladding and substrate are the ordinary wave, which couple
to the radiation continuum, while the extraordinary wave is
evanescent.

Note that in addition to guided and leaky modes confined
in the film, structures involving positive uniaxial materials
can, under specific conditions, also support Dyakonov sur-
face waves that remain confined at interfaces and decay
exponentially away from the interface [57]. The existence of
BICs in the context of Dyakonov surface waves has been
recently studied [35], revealing that the interfaces between
uniaxial positive and uniaxial negative materials can support
guided and leaky Dyakonov surface waves, and that the leaky
Dyakonov wave can become a surface BIC. However, the
structures considered here are composed entirely of nega-
tive uniaxial materials, and that precludes the existence of
Dyakonov surface waves. This is further confirmed by the
electric field profiles of the leaky mode and the BIC [plotted in
Figs. 3(b) and 3(c)], which show that light is confined within
the film rather than at the interfaces.

D. Conditions for BIC existence

For an interference (INT) BIC to exist, the amplitudes of
the radiation channels, which in our case correspond to the or-
dinary polarization, must vanish via destructive interference,
resulting in the conditions for radiation suppression. To obtain
this condition, we set ac

o = 0 in Eq. (7) resulting in the condi-
tion for radiation suppression (by destructive interference) for
the cladding,

as
o · −→

F s
o + as

e · −→
F s

e − ac
e · M̂

−→
F c

e = 0, (9)

and then set as
o = 0 in Eq. (7) to obtain the conditions for

radiation suppression for the substrate,

as
e · −→

F s
e − ac

o · M̂
−→
F c

o − ac
e · M̂

−→
F c

e = 0. (10)

The condition for INT BIC existence in this structure with two
radiation channels is set by requiring that the solutions coin-
cide for Eqs. (7), (9), and (10) simultaneously. This approach,
where two separate conditions for radiation suppression are
defined for the two radiation channels, is not strictly necessary
to study BICs and could be substituted by a single equa-
tion as

e · −→
F s

e = ac
e · M̂

−→
F c

e, obtained by simultaneously setting
ac

o = 0 and as
o = 0 in Eq. (7). However, the use of two equa-

tions is more versatile, and this approach can also be used to
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FIG. 2. BICs embedded on leaky modes and corresponding
phase maps. (a), (c), and (e) Propagation length L = (k0Im{N})−1,
defined as the length at which the field amplitude decays to 1/e
of the initial value for the fundamental leaky mode, in terms of
the film optical axis orientation (in degrees). (b), (d), and (f) The
corresponding phase (in units of π radians) of the cladding radi-
ation channel (ordinary) amplitude, measured with respect to the
confined (extraordinary) wave. The OA orientations are as follows:
(a) and (b) �c = �s = 0◦, (c) and (d) �c = �s = 10◦, and (e) and
(f) �c = 10◦, �s = 0◦. The transition from colored to white regions
corresponds to the leaky-mode cutoff.

study phenomena such as unidirectional guided resonances in
related geometries [49].

Mathematically, each condition for radiation suppression,
given by Eqs. (9) and (10), comprises a system of four homo-
geneous linear equations, where each equation corresponds to
one of the field components tangential to the interface encoded
in vectors

−→
F j

i and provides the coefficients a j
i for which

interference suppresses the tangential component of the radi-
ation channel. Written in matrix form, these overdetermined
systems of four linear equations and three unknowns a j

i have
the form R̂−→a = 0, where R̂ is a 4 × 3 matrix and −→a is a 3 × 1
column vector. Nontrivial solutions of this system require that
the determinants of all four possible 3 × 3 submatrices of R̂
equal zero, resulting in four different auxiliary equations for
each condition for radiation suppression. Each auxiliary equa-
tion is a possible mathematical solution that suppresses the
radiation channel when one of the tangential field components
is ignored, specifically the component corresponding to the
row left out when selecting the 3 × 3 submatrix of R̂. To
ensure that the radiation channel is suppressed when all four
tangential field components are taken into account, we must
account for all the possible combinations of the tangential
field components, and thus the solutions for the four auxiliary

FIG. 3. (a) Propagation distance L in three dimensions, as a
function of φ and two octaves in D/λ. The needlelike isolated BIC
is a lossless point surrounded by the radiating leaky mode within
which it is embedded. The magenta and blue markers show the
points for which the electric field profile (|Ez|) is plotted in (b) for a
leaky mode at D/λ = 0.758 and φ = 110◦ and in (c) for the lossless
needle BIC at the same value of D/λ but φ = 67.6◦. The insets
in (b) and (c) show the electric field profile near the waveguide.
We consider an incident wavelength of λ = 0.632 µm for the field
profile calculations. The dashed black lines indicate the waveguide
interfaces.

equations must coincide. Accordingly, each auxiliary equa-
tion must be solved to obtain Ni, j

aux, where the index i runs
over the four auxiliary equations and j = c, s refers to Eqs. (9)
(cladding) and (10) (substrate), respectively. The solution for
radiation suppression in the cladding is then at the point where
the four different Ni,c

aux coincide in the parameter space. Simi-
larly, the point of coincidence of the four different Ni,s

aux gives
the point in the parameter space where radiation is suppressed
in the substrate.

However, the coincidence of the solutions Ni,c
aux and Ni,s

aux
does not necessarily imply that they are physical solutions
since the field components must also satisfy Maxwell’s equa-
tions and the associated boundary conditions, which are
enforced by Eq. (7). Thus the intersection of the set of
solutions of the auxiliary equations, Ni, j

aux, with the solution of
the dispersion equation, N , obtained by solving Eq. (7) must
be considered. For that, we define a metric to measure the dis-
tance of Ni, j

aux from the solution of the dispersion equation (N)

Qj =
√√√√ 4∑

i=1

|N − Ni, j
aux|2, (11)

where the subscript in Qj , with j = c, s, indicates the condi-
tion for radiation suppression corresponding to the cladding
or the substrate, respectively. Then, the BIC exists at the point
where Qc and Qs are simultaneously zero. Similarly, unidi-
rectional guided resonances [49] exist when either Qc = 0 or
Qs = 0.
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III. RESULTS

We assume that our birefringent media are lossless
dielectrics with real refractive indices and semi-infinite
cladding and substrate. A typical signature of BIC exis-
tence is the presence of Fano resonances in the sample
reflection or transmission spectra [58]. However, as com-
mented before, guided modes do not propagate in the
structure, and only hybrid leaky modes are supported. There-
fore, in our setup, the signature of a BIC is an infinite
propagation length. We thus plot the leaky-mode propa-
gation length, L = (k0Im{N})−1, which measures the 1/e
decay of the leaky modes, and the BICs occur when L
diverges due to suppression of the radiation channels. In
addition, the condition for BIC existence given by Eq. (11)
unequivocally proves BIC existence. Finite structures, imper-
fect interfaces, material losses, or other perturbations would
result in the BICs turning into quasi-BICs, which are leaky
modes with low, but nonzero loss [59]. Furthermore, it is
known that perfectly lossless BICs cannot occur in finite
systems unless the permittivity or permeability vanishes or
diverges [5]. However, since realistic samples would have di-
mensions that are 103 or 104 times the operating wavelength,
in the calculations one can readily consider that the slabs of
lossless dielectrics are infinite along the y and z directions and
that the substrate and the cover extend infinitely in the −x and
+x directions.

Without loss of generality, the antiguiding structure is
made up of three negative uniaxial materials with cladding and
substrate refractive indices nec = nes = 1.3 and noc = nos =
1.7 and film refractive indices ne f = 1.4 and nof = 1.6 so that
the structure is symmetric in terms of refractive indices. All
angles between optic axes (φ,�) in this paper are expressed
in degrees.

A. Dispersion equation

When the structure has full anisotropy symmetry [50],
i.e., the optic axes of the cladding, film, and substrate are
aligned (�c = �s = 0◦) and are parallel to the interface plane
(θc = θ f = θs = 90◦), the cladding and substrate radiation
channels are equivalent, and the leaky mode supports families
of both polarization-separable (PS) and interference (INT)
BICs, which appear as lossless lines within the leaky-mode
sheet in the φ − D/λ space. This is shown in Fig. 2(a),
which shows the propagation distance L for the fundamental
branch of leaky modes. PS BICs are analogous to symmetry-
protected BICs in other photonic structures [5,11] and exist at
φ = 90◦, where transverse electric (TE) and transverse mag-
netic (TM) modes are separable. Then PS BICs correspond
to the TE modes supported by the guiding profile created by
the extraordinary indices shown in Fig. 1(b). INT BICs are hy-
brid, full-vector modes that arise from destructive interference
simultaneously in both radiation channels. As the anisotropy
symmetry is maintained and the cladding and substrate radi-
ation channels are equivalent, the fundamental leaky mode
supports a curved line of existence of INT BICs [Fig. 2(a)].
Since BICs are zeros of radiation, the phase of the radiation
channel amplitude at a BIC is undefined, and BIC existence
loci result in a jump of ±π in the phase of the radiation
channel amplitude [50], as shown in Fig. 2(b) for the cladding

(the jump in phase of the substrate radiation channel at the loci
of BIC lines is opposite in sign to that at the cladding).

Breaking the azimuthal anisotropy symmetry, but keep-
ing identical OA orientations in the cladding and substrate
(�c = �s �= 0◦), maintains the geometric mirror symmetry
about x = D/2 in the structure and the equivalence between
the cladding and substrate radiation channels. Therefore the
structure still supports lines of existence of BICs. However,
all the lines are deformed and correspond to INT BICs only,
as shown in Figs. 2(c) and 2(d) for �c = �s = 10◦. Thus this
is weak anisotropy-symmetry breaking [50].

While BICs appear at isolated points in the parameter space
in most photonic structures, where they coexist with other
bound or guided modes, it has been known for some time that
anisotropic structures can support lines of BICs embedded on
leaky modes in certain geometries [30,50]. Note, however,
that lines of BIC solutions have also been reported in the
parameter space of photonic crystal slabs where the environ-
ment is engineered to also be a photonic crystal [28]. Besides,
while the symmetry-protected BIC at the � point in photonic
crystal slabs exists as long as mirror symmetry is maintained
[29], the PS BIC in our structure disappears when anisotropy
symmetry is broken, even if mirror symmetry is maintained.

Different OA orientations in the cladding and the substrate
mean that, in addition to the anisotropy symmetry, the geo-
metric mirror symmetry in the structure is also broken and
the radiation channels are no longer equivalent. This situation
is shown in Fig. 2(e) for the fundamental leaky mode, where
the OA in the substrate is aligned with the OA in the film
(�s = 0◦) but the cladding OA has an offset �c = 10◦. As a
result, a topological transition occurs in the leaky-mode map,
and the BIC lines of existence shown in Figs. 2(a) and 2(c)
collapse to an isolated BIC point [Fig. 2(e)]. The isolated BIC
corresponds to a zero in both radiation channels and results in
a phase singularity in the radiation channel amplitude charac-
terized by a screw phase dislocation [44,50,60–62], as shown
in Fig. 2(f). The BIC winding number is assigned according
to the sense of the screw phase dislocation and has opposite
sign in the cladding and substrate, −1 (anticlockwise phase
increase of 2π ) and +1 (clockwise increase), respectively
[50,61]. Since anisotropy symmetry is broken, this structure
cannot support PS BICs, and the BIC in Figs. 2(e) and 2(f) is
an INT BIC with hybrid polarization. This BIC point, isolated
in both wavelength and direction, is the only bound mode
supported by the structure with these OA orientations (for
these values of φ, �c, and �s) over a broad range of frequen-
cies D/λ. Specifically, the isolated BIC shown in Figs. 2(e)
and 2(f) occurs at D/λ = 0.758, while the next BIC on the
fundamental (zero order) leaky mode occurs at D/λ = 2.162
(not shown), almost two octaves beyond. In the case of the
first-order leaky mode, the first BIC appears even further be-
yond this, at D/λ = 2.682. Therefore the isolated BIC shown
in Fig. 2(e) is the only bound mode supported by the structure
for any practical operation range of wavelengths. Figure 3(a)
shows how the propagation length L diverges, demonstrating
the resemblance of the BIC to an isolated, lossless needle in
an environment of radiating leaky modes. Figure 3(b) shows
the profile of a tangential electric field component (|Ez|) as
a function of x for a point on the leaky mode shown in ma-
genta in Fig. 3(a). The leakage from the core is shown in the

053506-5



SAMYOBRATA MUKHERJEE et al. PHYSICAL REVIEW A 108, 053506 (2023)

FIG. 4. Leaky-mode sheet for �s = 0◦ and (a) �c = −20◦ and
(b) �c = +20◦. The leaky-mode sheet in (c) and (d) has the same
values of �c but with �s = 10◦. Locus of the needle in the φ − D/λ

space under variation of �c for fixed values of (e) �s = 0◦ and
(f) �s = 10◦. The color of the dots in (e) and (f) indicates the
value of �c. The black dot in each plot corresponds to the scenario
�c = �s where the radiation channels are equivalent and instead of
the needle the structure supports BIC lines of existence, as shown in
Figs. 2(a) and 2(c).

exponential growth in the field profile as x → ±∞. Fig-
ure 3(c), on the other hand, shows the profile of the same
electric field component, but at the needle-BIC point. Since
the BIC does not radiate, the field profile resembles a guided
mode with exponential decay in the electric field outside the
core.

The existence of the needle BIC is robust under variation
of OA orientation, which only changes its position on the
leaky-mode sheet, as illustrated in Fig. 4. The breaking of the
symmetry around φ = 90◦ by setting �c,�s �= 0◦ determines
the position of the needle, and the leaky-mode cutoff, as is
shown by comparing Figs. 4(a)–4(d). In general, the greater
the difference between �c and �s, the narrower the φ range
of existence of leaky modes, largely determining the range of
φ for which the needle exists. Figure 4(e) shows the locus of
the needle in the φ − D/λ space as a function of variation of
�c with �s = 0◦. By setting a value of �s �= 0◦, the symmetry
of the locus is broken, allowing the tuning of the needle locus
for a greater range of D/λ in terms of �c [Fig. 4(f)]. Varying
the refractive index also changes the needle-BIC locus, similar
to standard BICs in structures with full anisotropy-symmetry
[31]. However, the needle is always present and only stops
existing when it moves beyond the cutoff of the fundamen-
tal leaky mode on which it exists [extreme values of �c in
Figs. 4(c) and 4(f)].

FIG. 5. (a) Same as Fig. 2(c) but showing red and black lines
in the parameter space where we study the conditions for radiation
suppression. (b) Logarithm of the propagation length L as a function
of φ at two different values of D/λ: D/λ = 0.8 (red curve) and
D/λ = 0.7578 (black curve). The BICs occur at the point where L
diverges. (c) Logarithm of Q corresponding to the cladding (C.), Qc

(solid curves), and the substrate (S.), Qs (dashed curves), for the two
values of D/λ.

B. Conditions for radiation suppression

We study the solution of the conditions for radiation sup-
pression in two different cases. Figure 5 shows the same
scenario as Fig. 2(c) when the structure maintains mirror
symmetry about x = D/2, though azimuthal anisotropy sym-
metry is broken equally in the cladding and the substrate
(�c = �s = 10◦). In this scenario, the two radiation channels
are equivalent, and the fundamental leaky mode supports lines
of INT BICs as shown in Fig. 5(a). We consider two different
values of D/λ, 0.8 and 0.7578, and plot the propagation length
L in terms of φ. The results are shown in Fig. 5(b), which
exhibits the typical signature of a diverging propagation
length at the INT BIC position for both values of D/λ. In
addition, Fig. 5(c) shows the logarithm for both Qc and Qs

for the same range of φ, and both Qc and Qs equal zero at
the same value of φ where L diverges, unequivocally indi-
cating the presence of a BIC. As a result, we see that in a
symmetric structure, a change in the value of D/λ results
only in a shift in the value of φ where BICs exist. Thus the
system allows the suppression of radiation at different values
of φ via destructive interference in both the cladding and the
substrate, resulting in the BIC. Consequently, the locus of the
BIC in the φ − D/λ space is the line (shown in dark blue)
in Fig. 5(a).

Figure 6(a) shows the same scenario as Fig. 2(e), where the
line of INT BICs collapses to a single needle BIC at D/λ =
0.7578. Here the mirror symmetry about the x = D/2 plane
is broken, while azimuthal anisotropy symmetry is broken
in the cladding (�c = 10◦) and maintained in the substrate
(�s = 0◦). Thus the radiation channels in the cladding and
the substrate are now distinct. We see in Fig. 6(b) that the
propagation length diverges at the INT BIC only when D/λ =
0.7578. As expected, Qc and Qs are zero at the value of φ

where the BIC exists for D/λ = 0.7578 [Fig. 6(c)]. However,
when we change the value of D/λ to 0.8, neither Qc nor Qs

equals zero for any of the values of φ. Thus, in this scenario,
a shift in the value of D/λ from 0.7578 to 0.8 results in
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FIG. 6. (a)–(c) Same as Fig. 5 but for an asymmetric structure
where azimuthal anisotropy symmetry is broken in the cladding
(�c = 10◦), but not in the substrate (�s = 0◦).

the BIC disappearing. Therefore, in asymmetric structures
with distinct radiation channels, the condition for radiation
suppression for the cladding and substrate and the solution
of the dispersion equation only have a simultaneous solution
at a single point in the φ − D/λ space where the needle
BIC exists. Therefore the locus of the BIC in this structure
is only a point on the leaky-mode sheet, resulting in the
needle BIC.

We study this in more detail, examining the four auxiliary
equations related to the condition for radiation suppression in
the substrate. Figure 7(a) shows Re(Ni

aux) for D/λ = 0.7578
(black curves in Fig. 6), corresponding to the existence of
the needle BIC. In this scenario, the four solutions for the
auxiliary equations Ni

aux and the solution of the dispersion
equation [Re(N )] coincide at a particular value of φ. There-
fore this is the point where Qs equals zero in Fig. 6(c),
meaning that it is possible to cancel the four tangential com-
ponents of the radiation channel, resulting in the needle BIC.
However, Fig. 7(b) illustrates the case of D/λ = 0.8 (red
curves in Fig. 6), showing that each solution Ni

aux intersects
with Re(N ) at different values of φ. Each of the intersections
is a point in φ where the radiation channel is canceled when
a set of three tangential field components is considered. How-
ever, there is no point where the solutions arising from all
four sets of tangential field components intersect. Therefore
BICs cannot exist at D/λ = 0.8. Though not shown here, the
Ni

aux arising from the condition for radiation suppression in
the cladding also shows similar behavior for the two cases
shown in Fig. 7. This indicates that the cladding and substrate
radiation channels are strongly coupled in this structure, and
when the condition for radiation suppression is fulfilled in one
channel, it is also fulfilled in the second one.

IV. DISCUSSION AND CONCLUSION

The transition in the dispersion diagram from BIC lines of
existence to BIC points was introduced in Ref. [50]. In that
work, the polar anisotropy symmetry was broken by taking
the film OA out of the interface plane (θ f �= 90◦) in a structure
with only one radiation channel. The result was multiple dis-
crete INT BICs, avoiding the formation of an isolated needle
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(a) D/ =0.7578
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FIG. 7. Solution of the four auxiliary equations, Ni
aux, corre-

sponding to the condition for radiation suppression in the substrate
(solid colored curves) and the dispersion equation (dashed black line)
for the structure in Fig. 6 with �c = 10◦ and �s = 0◦ for two differ-
ent values of D/λ: (a) D/λ = 0.7578 (existence of the needle BIC)
and (b) D/λ = 0.8 (no BIC). The condition for radiation suppression
in the cladding yields similar results.

BIC. The existence of two distinct radiation channels leads to
an additional constraint being placed on BIC existence and a
consequent drop in dimension of the BIC solution from lines
to points [5]. In this paper, the distinction between radiation
channels is created by simultaneous breaking of azimuthal
anisotropy symmetry and geometric mirror symmetry, leading
to a single spectrally isolated BIC that for practical purposes
is the only bound state supported by the otherwise antiguiding
structures.

Needle BICs occur as robust phenomena, and their loci on
the leaky-mode sheet can be tuned under variation of the OA
orientation. Nevertheless, the latter property is more complex
than the interpretation of finding the point of intersection
of two independent solutions corresponding to cladding and
substrate radiation channels. The results shown here should
be seen in light of the interference between the two radiation
channels through the reflections in the film layer, which are
included in the transfer matrix M̂, and the condition for radia-
tion suppression, carried by Eqs. (9) and (10). In particular, the
analysis of the conditions for radiation suppression for each
radiation channel shows that the reason for the collapse of INT
BIC lines in symmetric structures to needle BICs in asymmet-
ric structures is the impossibility of simultaneously canceling
all four tangential components of the radiation channel.

Needle BICs have been shown here in the simplest ge-
ometry, but we have verified that they also occur in other
configurations, e.g., with broken polar anisotropy symmetry.
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We thus anticipate that analogous phenomena may occur in
other open systems with two differentiated radiation channels
featuring an isolated needle BIC offering the possibility of
simultaneous spatial and spectral filtering. This is an interest-
ing feature that can inspire new schemes in the case of the
applications of BICs in lasing [36,37], ultrastable lasers [63],
and the scaling up of cavity dimensions preserving single-
mode operation [64], while the needle-BIC parametric tuning
suggests applications in optical communications [39].
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Topological nature of optical bound states in the continuum,
Phys. Rev. Lett. 113, 257401 (2014).

[61] E. N. Bulgakov and D. N. Maksimov, Topological bound states
in the continuum in arrays of dielectric spheres, Phys. Rev. Lett.
118, 267401 (2017).

[62] H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù,
and A. F. Koenderink, Experimental observation of a polar-
ization vortex at an optical bound state in the continuum, Nat.
Photonics 12, 397 (2018).

[63] D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich,
W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle,
and U. Sterr, 1.5 μm lasers with sub-10 mHz linewidth, Phys.
Rev. Lett. 118, 263202 (2017).

[64] R. Contractor, W. Noh, W. Redjem, W. Qarony, E. Martin,
S. Dhuey, A. Schwartzberg, and B. Kanté, Scalable single-mode
surface-emitting laser via open-Dirac singularities, Nature
(London) 608, 692 (2022).

053506-9

https://doi.org/10.1364/OL.44.005362
https://doi.org/10.1103/PhysRevB.97.024306
https://doi.org/10.1038/s42005-020-0353-z
https://doi.org/10.1364/OE.482894
https://doi.org/10.1103/PhysRevB.105.L201406
https://doi.org/10.1038/nature20799
https://doi.org/10.1364/OL.43.000607
https://doi.org/10.3390/ma11040526
https://doi.org/10.1038/s41467-020-15358-x
https://doi.org/10.1038/srep33394
https://doi.org/10.1038/s41586-020-2181-4
https://doi.org/10.1021/acsphotonics.0c01696
https://doi.org/10.1103/PhysRevLett.119.243901
https://doi.org/10.1038/s41586-019-1664-7
https://doi.org/10.1103/PhysRevLett.121.033903
https://doi.org/10.1103/PhysRevLett.123.253901
https://doi.org/10.1103/PhysRevB.107.184309
https://doi.org/10.1016/j.optcom.2022.128904
https://doi.org/10.1364/OL.425393
https://doi.org/10.1103/PhysRevA.98.063826
https://doi.org/10.1364/JOSA.62.000502
https://doi.org/10.1109/JQE.1979.1069973
https://doi.org/10.1109/50.4101
https://doi.org/10.1109/50.249901
https://doi.org/10.1364/AOP.1.000058
https://doi.org/10.1080/02726340801921403
https://doi.org/10.1103/PhysRevLett.121.193903
https://doi.org/10.1021/acsphotonics.6b00860
https://doi.org/10.1103/PhysRevLett.113.257401
https://doi.org/10.1103/PhysRevLett.118.267401
https://doi.org/10.1038/s41566-018-0177-5
https://doi.org/10.1103/PhysRevLett.118.263202
https://doi.org/10.1038/s41586-022-05021-4

