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Out-of-phase solitons in multicore fibers of one-dimensional
and square lattices of weakly coupled cores
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Approximate solitonlike out-of-phase spatiotemporal solutions for the wave field envelope in multicore fibers
with weakly coupled cores in configurations of a one-dimensional 1 × N lattice and a square N × N lattice
are found. The stability of these distributions for pulse durations greater than the critical duration is shown
analytically and numerically. Numerical simulation of initially shorter pulses shows that the emission of linear
dispersive waves rather quickly transforms them to the found solution with a duration about the critical one.
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I. INTRODUCTION

The concept of optical solitons—stable, localized struc-
tures formed as a result of competition between dispersion and
nonlinearity—is one of the most striking effects in nonlinear
optics. The great interest shown in soliton solutions of nonlin-
ear equations is due to the fact that they play a fundamental
role in the dynamics of a laser pulse in a medium. The theory
of optical solitons has found application in numerous practical
problems [1].

One of the disadvantages of optical solitons is that the
energy of the nonlinear structure in a single fiber is inversely
proportional to the pulse duration. A possible method for
increasing the total energy of soliton laser pulses at a fixed
duration is to switch to multichannel laser systems based on
weakly coupled multicore waveguides. In this case, the total
energy of a given nonlinear structure can significantly exceed
the energy of a soliton of the nonlinear Schrodinger equa-
tion (NSE) in a single core. The existence of these nonlinear
solutions will make it possible to generalize the well-known
methods of laser pulse compression in a single fiber as applied
to multicore fibers (MCFs).

A number of interesting results have been obtained for
the in-phase wave distributions in MCFs: the generation of
a supercontinuum [2–5], compression of laser pulses [4–10],
formation of light bullets [4–7,9–12], and control of the wave
field structure [13,14]. Unfortunately, there is its own crit-
ical power (energy for pulse problem), at which threshold
instability of the self-focusing and self-trapping of the quasi-
homogeneous distribution of the discrete wave field occurs
[15]. It should be noted that the presence of its own critical
power leads to the fact that the total power of the coherent
laser radiation is again limited to a level that does not exceed
the maximum achievable in a single-channel system.

Rather promising results were obtained in the case of us-
ing out-of-phase distributions of the wave field (the field in
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neighboring cores changes sign). Stable out-of-phase distri-
butions were found for different core configurations in MCFs:
on a ring [16,17], and in the form of a one-dimensional lattice
[18] and a square lattice [19]. This made it possible to propose
a fundamentally different method for transporting coherent
laser radiation with a power significantly exceeding the crit-
ical power of self-focusing in media. Thus, the threshold,
which fundamentally limits the power in one core and free
space, can be overcome, and the way to create significantly
more (10 times or more) powerful coherent laser pulses in
fiber optics, in comparison with currently existing ones, can
be. found. These studies have motivated interest in the search
for stable spatiotemporal soliton solutions. The out-of-phase
space-time soliton was found in an MCF consisting of an
even number of cores on the ring, and a stability analysis
was carried out [20]. The stable out-of-phase space-time soli-
ton solutions were found in MCFs of 24 densely packed
cores [21].

In this paper, we generalize the solitonlike solution to the
case of MCFs with one-dimensional and square core lattices.
Previously, stable out-of-phase steady-state solutions were
found for intense wave beams in such MCFs [18,19]. At low
powers, the wave field in these solutions is distributed along
the sine, as in a linear rectangular waveguide. As the power
increases, the wave field amplitudes in different cores become
equal. The generalization of these solutions to the case of
spatiotemporal solitonlike solutions is most simply performed
within the framework of the variational approach, which will
be tested on already known solutions. The search and analysis
of the stability of new classes of stable out-of-phase soliton-
like wave field distributions in MCFs from one-dimensional
(Sec. III) and two-dimensional (Sec. IV) lattices of cores will
be performed. Numerical simulation of the original equa-
tion will be used to demonstrate the stability of the found
solutions.

II. BASE EQUATIONS

Lets consider the self-action of laser pulses in a multi-
core fiber, which is a rectangular lattice (N × M) of weakly
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coupled cores. We use the weak-coupling approximation of
fundamental modes guided by the cores of an optical fiber
oriented parallel to the z axis [1,22]. In this case, the wave
field in the MCF can be approximately represented as the sum

E (z, t, x, y) ≈
∑
n,m

En,m(z, t )φ(x − xn, y − ym), (1)

where xn, ym are the coordinates of the center of the {n, m}-th
core, φ(x, y) is the structure of the fundamental mode in the
core, and En,m is the complex amplitude of the electric field
strength in the {n, m}-th core. The summation is performed
over all fiber cores.

The evolution of the wave field envelope during propa-
gation along the z axis can be affected by linear dispersion,
inertial Kerr-type nonlinearity, and interaction with the
nearest-neighbor cores due to the weak overlap of fundamen-
tal modes guided by them. Assuming weak coupling between
the cores that does not perturb the structure of the fundamental
mode, we obtain the following system of equations for the
envelope of the electric field strength En,m in the {n, m}-th core
[4,6]:

i
∂En,m

∂z
+ iβ1

∂En,m

∂t
− β2

2

∂2En,m

∂t2
+ γ |En,m|2En,m

+ χ (En−1,m + En+1,m + En,m−1 + En,m+1) = 0, (2)

where β1 = ∂k/∂ω and β2 = ∂2k/∂ω2 are the first- and
second-order linear dispersion coefficients for the core dis-
persion law k(ω), γ is the nonlinearity coefficient, and χ is
the linear coupling coefficient between adjacent cores. Here
we consider the case when all the cores are the same, i.e., the
coefficients of linear dispersion, nonlinearity, and coupling are
assumed to be the same. We will also assume that the central
frequency of the laser pulse injected into the MCF lies in
the region of anomalous group velocity dispersion (β2 < 0).
Equation (2) must be supplemented with boundary conditions,

En,0 = En,M+1 = E0,m = EN+1,m = 0. (3)

Here we have specially added “virtual” points n = 0, N + 1
and m = 0, N + 1 at the boundaries, which corresponds to the
absence of these cores in a real fiber.

In the accompanying coordinate system moving with the
group velocity of the wave packet (τ = t − β1z), Eqs. (2) can
be written in dimensionless variables in the following form:

i
∂un,m

∂z
+ α

∂2un,m

∂τ 2
+ |un,m|2un,m

+ un−1,m + un+1,m + un,m−1 + un,m+1 = 0, (4)

where α = −β2/(2χ ), En,m = un,m
√

χ/γ , z → z/χ .
Equation (4) is limited to the approximation (1) of the

single-mode propagation of the wave field in each core. This
approximation is violated for radiation power values in some
core Pn,m = |En,m|2 ∫∫

φ2dxdy, close to the critical power of
self-focusing in a homogeneous medium Pcr.

A class of stable out-of-phase soliton solutions was found
[20] in a MCF consisting of an even number of cores located
on a ring. This corresponds to M = 1 and periodic boundary
conditions u0 = uN , when a supermode un = (−1)nA± with
the same wave field amplitude in all cores exists [16]. Here,

the term “supermode” denotes a stationary solution to a dis-
crete problem. This made it possible to look for a solution
in the class of factorized functions un(z, τ ) = (−1)nu±(z, τ ),
where the transverse distribution of the wave field is deter-
mined by this supermode.

Unfortunately, the ring configuration of the MCF has a
number of disadvantages that may limit its practical appli-
cation. First, the complexity of manufacturing such a fiber
increases with N due to the requirement for a fairly accurate
uniform arrangement of the cores around the ring. Second, the
presence of a large unused space in the center of a multicore
fiber with a large number of cores makes the transverse di-
mensions of the fiber large, which is not always convenient in
practice.

In this paper, we consider alternative configurations of
a multicore fiber, in which the cores are located along a
line (M = 1) or on a square lattice (M = N). We investigate
the possibility of the existence and stability of out-of-phase
spatiotemporal solitary solutions in such fibers, which are
localized laser pulses propagating without distortion in all
available cores. We demonstrate analytically and numerically
that such solutions exist for both one-dimensional and two-
dimensional lattices of cores, and determine the range of
parameters for the stability of the found solutions.

Unfortunately, it is quite difficult to find analytical solitary
solutions for Eq. (4). A possible simplification would be to
move to a smooth transverse envelope in MCF consisting of
a large but finite number of cores. For example, in the case
of a fiber with a rectangular core matrix N × M (N, M � 1),
we will look for a solution of Eq. (4) in the form of an
out-of-phase distribution un,m = (−1)n+mU (n, m, z, τ )e−2iz.
Assuming the field envelope to be a smooth function ( ∂U

∂n �
πU , ∂U

∂m � πU ), we arrive at the equation of NSE type,

i
∂U

∂z
− ∂2U

∂n2
− ∂2U

∂m2
+ |U |2U + α

∂2U

∂τ 2
= 0. (5)

The sign of the nonlinearity remained the same (i.e., focus-
ing) in the equation, but the sign of the diffraction terms
changed since the out-of-phase distribution is at the edge
of the Brillouin zone. As a result, the character of Eq. (5)
became defocusing at α = 0. This has a physical meaning of
“pushing” the field in neighboring cores due to a difference
in signs. In the case of a line of cores (M = 1, N � 1), we
get a similar equation, but without derivatives with respect to
the second index m, i.e., ∂U

∂m = 0. Note that Eq. (5) remains
Hamiltonian and its action is

S =
∫∫∫∫ [

U∂zU ∗ − U ∗∂zU

2i
− α

∣∣∣∣∂U

∂τ

∣∣∣∣
2

+
∣∣∣∣∂U

∂n

∣∣∣∣
2

+
∣∣∣∣∂U

∂m

∣∣∣∣
2

+ |U |4
2

]
dzdτdndm. (6)

Equation (5) should be supplemented with boundary
conditions corresponding to (3): U (n, 0) = U (n, M + 1) =
U (0, m) = U (N + 1, m) = 0. Moreover, the presence of such
boundary conditions qualitatively changes the nonlinear dy-
namics in comparison with the case of boundless media, when
a kind of the wave-breaking, the dispersion-induced chirp-
ing, or the Kerr-induced phase modulation can happen. The
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FIG. 1. (a) Structure of solutions for different parameter values.
Dashed line: exact solution U± (7); solid line: power-law distribution
of the wave field Ubeam (9). (b) Dependence of the width of �ξ

(14), (15) on the maximum amplitude umax in exact (dashed) and
approximate (solid) solutions.

presence of boundary conditions makes the problem similar
to waveguide propagation, in which the fundamental mode (a
continuous analog of the supermode) is unique and stable. For
example, a solution similar to parabolic pulses [23] in bound-
less media will correspond to the initial dynamics of a very
narrow wave field, containing a lot of waveguide modes, in the
area far from waveguide boundaries. Contrary, single-mode
solutions are of interest in this paper due to their robustness
and predictability.

III. ONE-DIMENSIONAL LATTICE

Consider first the case of cores located along the line. In
the case of beams (α = 0), a stable out-of-phase supermode is
found [18], using the Jacobi sine,

U± = U0 sn(κn, q)e−iλz, 2qκ
2 = U 2

0 ,

(N + 1)κ = 2K (q), λ = (1 + q)κ2. (7)

Here, K (q) = ∫ π/2
0

dψ√
1−q sin2 ψ

is the complete elliptic integral

of the first kind, and the parameter q varies in the range [0,1)
and is found from the transcendental equation

qK (q)2 = 1
8 (N + 1)2U 2

0 . (8)

The structure of the found out-of-phase supermode (7) for
different values of the parameter q is shown by a dotted line
in Fig. 1(a). Here, the field distribution is normalized to the
maximum value.

The intensity distribution of the supermode is nonuniform
in the transverse direction [Fig. 1(a)] and is well approximated
by the dependence |U±|2 ∝ sin2 πn

N+1 in the case of low power,
while at high power the field intensity is uniformly distributed
over all cores, |U±|2 ∝ const. The solution (7) is similar in
form to cnoidal waves, but was obtained for Eq. (5) with
defocusing nonlinearity. Therefore, it gives a smoothing of the
maxima instead of their highlighting, as in cnoidal waves.

Unfortunately, the authors are not aware of a generalization
of solution (7) in the simplest special functions to the multi-
dimensional case (rectangular lattice of cores) and to the case
of pulses (α 	= 0). Therefore, to construct a approximate out-
of-phase space-time soliton solution, we use the variational
approach.

A. Beam problem (α = 0)

To test the variational approach, we consider the MCF
configuration of an MCF with known solution (7) for the wave
field and obtain its approximate analog. Good agreement with
the solution (7) can be obtained for the power-law distribution
on the transverse coordinate,

Ubeam =
√

P(a + 1)(2a + 1)

2(N + 1)a2
(1 − |ξ |a)eib|ξ |a+iϕ, (9)

where ξ = 2n
N+1 − 1, P = 2

N+1

∫ 1
−1 |Ubeam|2dξ ≈ ∑ |un|2 is

the wave field power, which is preserved in the process of
evolution. We took into account that the inhomogeneous phase
shift across the beam is proportional to the inhomogeneity
of its amplitude (∝ b|ξ |a). The power-law distribution (9)
describes the exact solution for the supermode (7) quite well
over a wide range of parameters q, a [Fig. 1(a)]. It should be
noted that the limiting case of the linear problem [q = 0 in the
solution (7)] corresponds to the power-law distribution (9) at

amin = (1 +
√

6)/2 ≈ 1.72. (10)

Substituting expression (9) into the action (6) of Eq. (5)
with α = 0, we find the truncated action

S =
∫

P

N + 1

[
3P

N + 1

(a + 1)(2a + 1)

(3a + 1)(4a + 1)

+ (4a2b2 + 24a2 − 14a + 2)(a + 1)(2a + 1)

(2a − 1)(3a − 1)(4a − 1)(N + 1)2
+ dϕ

dz

+ 1

3a + 1

db

dz
− 11a2 + 12a + 3

(a + 1)(2a + 1)(3a + 1)2
b

da

dz

]
dz.

(11)

Then the change in the parameters p = {a, b, ϕ} of the wave
field [Eq. (9)] along the MCF is determined by the Euler
equations

d

dz

∂L
∂ ṗ j

− ∂L
∂ p j

= 0, ṗ j = d p j

dz
, (12)

where Eq. (11) is used as the action S = ∫
Ldz. The resulting

equations have a stationary point (center type) at

P = (3a + 1)2(4a + 1)2(4a2 − 4a − 5)

3(N + 1) (2a − 1)2(11a2 + 10a + 2)
, b = 0, (13)

053503-3



SKOBELEV, BALAKIN, AND LITVAK PHYSICAL REVIEW A 108, 053503 (2023)

corresponding to a stable out-of-phase distribution. Note that
Eq. (13) has a single real root at a � amin for any value
of P. Here, P = 0 is achieved at a = amin and there is the
asymptotic P ≈ 48

11 a2/(N + 1) at P → ∞.
Let us compare the found approximate solution (9) at the

stationary point (13) with the exact solution (7). Figure 1(b)
shows the dependence of the wave beam width �ξ , deter-
mined from the level of the field amplitude decreased by
a factor of two, on the maximum amplitude umax. For the
approximate solution, it is equal to

�ξ = 1/
a
√

2, (14)

and for the exact solution,

�ξ = 1 − F
(

π
6 , q

)
K (q)

≈ 1 − ln 3

ln 8 − ln(1 − q)
, (15)

where F (ψ, q) is an incomplete elliptic integral of the second
kind. Figure 1(b) shows good agreement between the exact
(dashed line) and the approximate (solid line) solutions.

Additional numerical calculations were carried out within
the framework of Eq. (4), which showed that the found ap-
proximate solution (13) quite well describes the wave field
propagation in a one-dimensional lattice with N � 5. Thus,
the approximate solution (9), (13) adequately describes the
transformation of the spatial distribution of the wave field
from the inhomogeneous (|un|2 ∝ sin2[πn/(N + 1)]) to a
homogeneous (|un|2 ∝ const) intensity distribution with in-
creasing power. This allows us to hope that the approximate
out-of-phase space-time solitonlike solution will have the
same good accuracy.

B. Pulse problem (α �= 0)

Next, we use the variational approximation to find an
out-of-phase spatiotemporal quasisoliton solution in the
framework of the two-dimensional equation (5). It is rea-
sonable to use the class of factorized functions, where the
longitudinal wave field distribution in all cores corresponds to
the NSE soliton, and the transverse distribution is determined
by the approximate solution (9):

U 1D
sol =

√
W (a + 1)(2a + 1)

4(N + 1)a2τp
(1 − |ξ |a)

eib|ξ |a+iστ 2+iϕ

cosh(τ/τp)
, (16)

where W is the total energy, τp is the soliton duration, σ is the
time frequency modulation parameter, and b is the phase front
curvature. Here we have used the conservation of total energy,
W = ∫∫ |U |2dξdτ .

Substituting distribution (16) into action (6) and integrat-
ing over the variables τ, ξ , we find the truncated action
(we use the computer algebra system WXMAXIMA [24] to
prove it),

S =
∫

W

N + 1

[
W

(N + 1)τp

(a + 1)(2a + 1)

(3a + 1)(4a + 1)

+ (4a2b2 + 24a2 − 14a + 2)(a + 1)(2a + 1)

(2a − 1)(3a − 1)(4a − 1)(N + 1)2

+ α
1 + π2σ 2τ 4

p

3τ 2
p

− 11a2 + 12a + 3

(a + 1)(2a + 1)(3a + 1)2
b

da

dz

+ 1

3a + 1

db

dz
+ π2τ 2

p

12

dσ

dz
+ dϕ

dz

]
dz. (17)

The change in parameters p = {a, b, τp, σ, ϕ} of the wave
field (16) along the MCF is determined by the Euler equa-
tions (12) for the action (17). The resulting equations have a
stationary point (center type) at b = σ = 0 and

W

τp
= (3a + 1)2(4a + 1)2(4a2 − 4a − 5)

(N + 1)(2a − 1)2(11a2 + 10a + 2)
, (18a)

W = α

τp

2(N + 1)(3a + 1)(4a + 1)

3(a + 1)(2a + 1)
, (18b)

corresponding to the solitonlike propagation of the laser pulse.
Oscillations near this center are similar to those in the qua-
sisoliton duration in the framework of a one-dimensional
NSE. Unfortunately, it is difficult to find a solution to Eqs. (18)
for arbitrary values of the energy W . However, it is easy to find
the solution asymptotics for small values of the energy W ,

a ≈ amin + 1

200

W 2

α
, amin = 1 + √

6

2
, (19a)

τp ≈ 8

3

(N + 1)α

W
+ (N + 1)W

439
. (19b)

Here, we replace complicated root expressions by integers
close to them (with a difference of less than 1%).

For a small parameter a ≈ amin, the transverse distribution
of the found solution is fairly close to sine profile |un| ∝
sin( πn

N+1 ), while the corresponding duration in the longitu-
dinal direction is large and the energy increases according
to the root law W ≈ √

200α (a − amin). As the parameter a
increases, the transverse distribution of the found solution
transforms to a homogeneous one, the duration tends to zero,
and the energy tends to infinity.

Let us study the stability of the found approximate
out-of-phase soliton-like solution. The assumption of the
uniformity of the longitudinal distribution of the wave field
over MCF cores in solution (16) is possible only under
conditions when the transverse structure is formed faster than
the longitudinal one.

The out-of-phase soliton in the MCF with a ring con-
figuration, in which field amplitudes are uniform across the
cores, is stable [25] when the dispersion length Ldis = τ 2

p/α

exceeds the coupling length 2π . Since we are looking for a
stationary solution in solitonlike form, the dispersion length is
exactly equal to the nonlinear one. Unfortunately, the spatial
distribution of the out-of-phase mode is inhomogeneous in the
transverse direction and depends on the field amplitude (7)
in the MCF with the line configuration of cores. The found
solution (16), (18) should be expected to be stable if the
dispersion length of the laser pulse exceeds the beat length
between the out-of-phase and the next-nearest supermodes of
the MCF,

τ 2
p

α
� 2π

�h
. (20)
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The linear propagation constant in the absence of dispersion
in the considered MCF has the form

hn = 2 cos

(
πn

N + 1

)
. (21)

The smallest of them, hN = 2 cos[πN/(N + 1)], corresponds
to the out-of-phase distribution. Then the difference in the
propagation constant between the out-of-phase and the next-
nearest supermodes is

�h = 4 sin

(
π/2

N + 1

)
sin

(
3π/2

N + 1

)
≈

N�1

3π2

(N + 1)2
. (22)

If, for some reason, asymmetric supermodes are forbidden,
then the nearest symmetric supermode will have hN−2 =
2 cos(π N−2

N−1 ) and give

�h = 4 sin

(
π

N + 1

)
sin

(
2π

N + 1

)
≈

N�1

8π2

(N + 1)2
. (23)

We use the expansion (19) for obtaining the stability condi-
tion. According to Eq. (20), the found approximate solution
(16) with parameters (19) will be stable in the case

τp � τcr ≡ (N + 1)

√
2α

3π
or

W � W 1D
cr ≡

√
32πα

3
, a ≈ amin. (24)

Thus, the transverse distribution of the found approximate
solution is always close to the linear case [|un|2 ∝ sin2( πn

N+1 )]
and noticeable equalization of the amplitudes over the cores
does not occur, in contrast to the beam problem (α = 0,
Sec. III A). It follows from the condition (24) that the maxi-
mum admissible energy of stable solutions is bounded from
above and does not depend on the number of cores. For
relatively long pulses τp � τcr, the energy is approximately
N/2 times greater than the NSE soliton energy with the same
duration in a single-core fiber.

C. Numerical simulation

To demonstrate the stability of the found out-of-phase
spatiotemporal solitonlike solution in a MCF with a one-
dimensional lattice, let us turn to numerical simulation of the
initial Eq. (4). A laser pulse was injected at the input of MCF
in the form

un = (−1)n

√
W (a + 1)(2a + 1)

4(N + 1)a2τp

1 − |ξn|a
cosh(τ/τp)

,

ξn = 2n/(N + 1) − 1, n = 1 . . . N. (25)

Such pulse shape can be expanded in only odd modes
(un = ∑

c2k+1 sin π (2k+1)n
N+1 ), which automatically allows

only symmetric perturbations with wave numbers
h2k+1 = 2 cos( π (2k+1)

N+1 ), i.e., the minimum propagation index
difference for perturbations is given by (23).

Let us first consider the case when the initial duration of
the laser pulse exceeds the threshold value τp > τcr [Eq. (24)].
Figure 2 shows the typical dynamics of a wave packet at a =
1.8 in an MCF consisting of N = 11 cores. In this case, the
dispersion length is 22.5 and the beat length between adjacent

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Pulse dynamics in MCF of 11 cores at a = 1.8. (a) De-
pendencies of the wave-packet duration (blue dashed), energy (red
dash-dotted), and maximum amplitude (black line) on the coordinate
z. Evolution of the real part of the wave field over (b) cores, (c) the
spectrum, and (d) the envelope in the central core along the z axis.
Insets: The wave field distribution at the input (blue dashed) and at
the output (red line). Slices of (e) the spectrum and (f) the envelope.

modes is 12. In Fig. 2(a), the duration τp, the maximum am-
plitude umax, and the laser pulse energy W are normalized to
initial values. The z coordinate is normalized to the dispersion
length. Figures 2(e) and 2(f) show the two-dimensional evolu-
tion of the spectral intensity and electric field |un|Re(un) along
the fiber. The remaining figures show slices of the wave field
in the longitudinal and transverse directions. In particular,
Fig. 2(b) shows the evolution of the field dynamics |un|Re(un)
in the transverse direction at τ = 0. This figure demonstrates
the preservation of the relative phase difference between
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FIG. 3. Pulse dynamics in an MCF of 11 cores at a = 2.2. Simi-
lar to Fig. 2.

adjacent cores. Figures 2(c) and 2(d) show the evolutions of
the spectrum and the field envelope |un|2 in the central core
(i.e., for n = 6). The insets to the right of the figures show the
initial (blue dashed line) and output (red solid line) distribu-
tions. Thus, the results of numerical simulation demonstrate
a stable propagation of the found out-of-phase spatiotemporal
solution with keeping of its shape, total energy, and relative
phase difference between adjacent cores over the calculated
interval 350zdis, when the dispersion length exceeds the beat
length between two adjacent modes. This confirms the stabil-
ity of the found analytical solution.

Next, we numerically analyze the case when the disper-
sion length of the injected laser pulse is less than the beat
length between adjacent supermodes (τp < τcr), i.e., when

the predicted stability condition of the found solution (24)
is violated. Figure 3 shows the typical dynamics of a wave
packet at a = 2.2 in an MCF consisting of N = 11 cores,
600zdis long. In this case, the dispersion length is 5.7 and
the beat length between neighboring modes is 12. At the
initial stage z � 150zdis, the laser pulse intensely radiates a
dispersive wave at the frequency ω1D

rad, the estimate for which is
given below [Eq. (31)]. The width of the laser pulse spectrum
monotonically decreases and its duration, accordingly, mono-
tonically increases as the energy in the wave packet decreases
[Fig. 3(a)]. The laser pulse stops radiating when the disper-
sion length of the excited nonlinear structure exceeds the
beat length between neighboring supermodes. Subsequently,
the laser pulse propagates unchanged. Note that the group
velocity of dispersive radiation differs from the group velocity
of the laser pulse, which further leads to the isolation of the
wave packet from the background radiation.

Let us estimate the frequency ω1D
rad of the dispersive wave.

In the case of a single-core NSE, there is a well-known stable
soliton solution u =

√
2

τp cosh(τ/τp) . The NSE soliton does not
interact with radiation since the wave numbers of the soliton
lie in the region forbidden for linear dispersive waves. There-
fore, there can be no resonance and energy exchange between
the solitons and linear waves. When higher-order dispersion
is taken into account, the spectrum of linear waves becomes
wider and can overlap with the region of the soliton spectrum.
Consequently, solitons can not only interact with radiation,
but also begin to radiate linear waves. In the case of MCFs,
the presence of a lattice can also make it possible to radiate
dispersive waves.

Let us obtain a more simplified solution to determine the
wave number of the solitary solution. The stability analysis
(24) and the results of numerical simulation (Fig. 3) show
that the transverse distribution of the wave packet is close
to sine profile |un| ∝ sin( πn

N+1 ). So, we can look for a very
approximate solution of Eq. (4) in the form

un = (−1)n sin

(
πn

N + 1

)
A(z, τ ). (26)

Substituting into the action of Eq. (4) for M = 1, we find the
truncated action

S = N + 1

2

∫∫ [
i

2

(
A

∂A∗

∂z
− A∗ ∂A

∂z

)

+ 2 cos

(
π

N + 1

)
|A|2 + α

∣∣∣∣ ∂A

∂τ 2

∣∣∣∣
2

− 3

8
|A|4

]
. (27)

Its variation gives the NSE equation

i
∂A

∂z
+ α

∂2A

∂τ 2
+ 3

4
|A|2A − 2 cos

(
π

N + 1

)
A = 0, (28)

whose soliton solution is

un = (−1)n

√
4

3

√
2α/τp

cosh(τ/τp)
sin

(
πn

N + 1

)
e−ik1D

sol z. (29)

Here, k1D
sol = 2 cos( π

N+1 ) − 3
8 u2

0 is the wave number of a soliton
in a one-dimensional array of weakly coupled cores and u0

is the soliton amplitude. Note that varying the action (17)
on W will give a similar value, k1D

sol ≡ −dϕ/dz. The linear
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FIG. 4. Dependence of the final energy W of the excited out-of-
phase soliton on the number of cores, N , and the power parameter a.
The dots show the critical energy level (24).

dispersion relation of Eq. (4) at M = 1 looks like, for un ∝
(−1)ne−ikz+iκn−iωτ ,

k1D
dis = αω2 + 2 cos κn, κn = πn

N + 1
. (30)

Due to the symmetry, the considered soliton can radiate a
dispersive wave at the frequency ωrad with odd n. Then the
nearest radiated frequency is

ω1D
rad = ± 1√

α

√
4 sin

(
π

N + 1

)
sin

(
2π

N + 1

)
− 3

8
u2

0. (31)

The cyan dashes in Fig. 3(c) show the found estimate of
the dispersive wave frequency [Eq. (31)], which is in good
agreement with the results of the numerical simulation. As the
amplitude of the soliton decreases due to losses, the dispersive
wave frequency shifts to the one determined in the limit of
small amplitudes (u0 ≈ 0), which is shown in the figure by
the black dash-dotted line.

To conclude this section, we discuss the results of numeri-
cal simulations corresponding to large values of the parameter
a. As noted above, in the case of a beam problem, with in-
creasing power, the stable spatial distribution of the wave field
transforms from the inhomogeneous sine profile to a uniform
distribution [18]. According to the formulas (16), (18), such a
transformation should occur for the spatial distribution of the
found out-of-phase solitary solution with increasing energy
(increasing the parameter a). Unfortunately, in the case of a
pulse problem, this does not happen due to the mechanism
of generation of dispersive waves, which leads to a decrease
in energy and, accordingly, to an increase in the duration of
the wave packet to such values when the dispersion length
exceeds the beat one. Figure 4 shows the energy of the excited
nonlinear structure as a function of the number of cores, N ,
and the parameter a. It can be seen that the final energy is
bounded from above and does not depend on the number
of cores, which is in good agreement with the qualitative
estimate [Eq. (24)]. The arrows in the figure show the change
in energy from the initial value to the current one. It should be
noted that for even larger values of a > 5 [which corresponds
to a beam distribution close to the homogeneous one; see

Fig. 1(a)], a cascade of dispersive waves is generated at differ-
ent frequencies and a faster decrease in the pulse energy up to
the threshold value occurs. Thus, the change in the transverse
structure of the out-of-phase spatiotemporal solitonlike solu-
tion is negligible, in contrast to the beam problem. Therefore,
as a solution to Eq. (4) in the case of a one-dimensional lattice,
one can use the approximate solution [Eq. (29)] at energies not
higher than those given in Eq. (24).

IV. SQUARE LATTICE

In the previous section, a new class of out-of-phase solitary
solutions was found in a one-dimensional lattice of cores
(M = 1). It is shown that the maximum achievable energy of
the found nonlinear structure does not depend on the number
of cores, N , due to the generation of a dispersive wave. In this
regard, the question arises of the existence of a stable solitary
solution in a square lattice (N × N) in order to be able to scale
the maximum achievable energy from the number of cores. To
answer this question, we use the variational approximation to
find a solution in the framework of the three-dimensional NSE
(5) in the class of functions

U 2D
sol =

√
W

τp

(a + 1)(2a + 1)

4(N + 1)a2
(1 − |ξ |a)(1 − |ζ |a)

× eib(|ξ |a+|ζ |a )+iστ 2+iϕ

cosh(τ/τp)
, (32)

where ξ = 2n/(N + 1) − 1, ζ = 2m/(N + 1) − 1. Substitut-
ing it into Eq. (6), we find a truncated action,

S =
∫

W

(N + 1)2

[
3W

N2τp

(a + 1)2(2a + 1)2

(3a + 1)2(4a + 1)2

+ 4(2a2b2 + 12a2 − 7a + 1)(a + 1)(2a + 1)

(2a − 1)(3a − 1)(4a − 1)(N + 1)2

+ α
1 + π2σ 2τ 4

p

3τ 2
p

− 2(11a2 + 12a + 3)

(a + 1)(2a + 1)(3a + 1)2
b

da

dz

+ 2

3a + 1

db

dz
+ π2τ 2

p

12

dσ

dz
+ dϕ

dz

]
dz. (33)

By varying action (33), we obtain equations for the parameters
a, b, τp, and σ . The resulting equations have a stationary point
(center type) at b = σ = 0 and

W

τp
= (3a + 1)3(4a + 1)3(4a2 − 4a − 5)

3(a + 1)(2a + 1)(2a − 1)2(11a2 + 10a + 2)
, (34a)

W = α

τp

2(N + 1)2(3a + 1)2(4a + 1)2

9(a + 1)2(2a + 1)2
. (34b)

This is a system of two nonlinear equations for two unknowns
a and τp. Solving Eq. (33) for arbitrary energies W is difficult.
Again, it is easy to find the asymptotics at low energies,

a ≈ amin + 1

360

W 2

α(N + 1)2
, τp ≈ 32

9

(N + 1)2α

W
+ W

585
.

(35)
Here complicated root expressions are replaced by integers
close to them (with a difference of less than 1%).
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FIG. 5. Dependence of the energy W of the excited out-of-phase
soliton on the number of cores, N , and the duration τp according to
the formulas (35) and (36). The dashed line shows the level of the
critical duration [Eq. (24)].

The stability of the solution [Eq. (32)] with parameters
given in Eq. (34) should be expected for durations exceeding
the critical value τp � τcr, as in the case of a one-dimensional
lattice [Eq. (24)]. The duration limit estimate will not change.
The changes will affect only the maximum achievable energy,

W � W 2D
cr ≡ 16

9

√
6πα(N + 1), (36)

growing in a two-dimensional lattice proportionally to the
number N , in contrast to the case of a one-dimensional lattice
[Eq. (24)].

It should be noted that the condition (36) gives an increase
in the maximum achievable energy of stable out-of-phase soli-
tonlike distributions only in proportion to N for a fiber with
N × N cores. However, the energy of the found distributions is
approximately N2/2 times greater than the energy of a soliton
pulse of the same duration [Eq. (35)] in a single-core fiber.
Therefore, for relatively long pulses τp � τcr, the gain from
using fibers with a square core matrix is obvious (Fig. 5).

Let us turn to numerical simulation of the initial equa-
tion (4) to demonstrate the stability of the found out-of-phase
spatiotemporal solitonlike solution in a MCF with a two-
dimensional lattice of cores. A laser pulse was injected at the
MCF input,

un,m = (−1)n+m

√
W

τp

2a2 + 3a + 1

4(N + 1)a2

(1 − |ξn|a)(1 − |ζm|a)

cosh(τ/τp)
,

(37)
where ξn = ζn = 2n/(N + 1) − 1 and n, m = 1, . . . , N . Such
a pulse shape automatically means the presence of only
symmetrical perturbations, i.e., the minimum propagation
constant difference for noise was given by Eq. (23).

Let us give a small explanation. A problem arises in dis-
playing the three-dimensional wave field distribution in the
case of a two-dimensional lattice. In the case of a discrete
system, the renumbering of MCF cores solves this problem,
i.e., efficient transition from a two-dimensional lattice to a
one-dimensional one. Let us explain this using the example
of a fiber with a square matrix of 11 × 11 cores (Fig. 6). It is

FIG. 6. (a) Example of the wave field distribution and continuous
numbering of the cores in a fiber of 11 cores. (b) Normalized inten-
sity in the cores from the continuous numbering index. Distributions
in different rows are colored differently.

common to use two indices to designate the core in a rect-
angular matrix, for example, un,m with n, m = 1, . . . , N . On
the other hand, the same array of cores can be described
by a single continuous index, kn,m = n + Nm ∈ 1 . . . 121.
The first representation is visual and convenient for the-
oretical analysis, and the last one is more convenient for
numerical simulations of the wave fields’ dynamics and dis-
playing the results. Figure 6(a) shows a two-dimensional
distribution of the wave field intensity of the form |un,m|2 =
sin2( πn

N+1 ) sin2( πm
N+1 ), and Fig. 6(b) shows the same distribu-

tion of the continuous numbering index k.
Let us return to numerical results and consider first the

case of large initial pulse duration exceeding the threshold
value τp > τcr. Figure 7 shows the typical dynamics of a wave
packet at a = 1.8 in an MCF consisting of 11 × 11 cores (N =
11), 500zdis in length. The continuous numbering of the cores,
kn,m = n + Nm, is used in the figure. The figure structure and
captions are the same as in Fig. 2. Figures 7(c) and 7(d) show
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FIG. 7. Laser pulse dynamics in an MCF of 11 × 11 cores at a =
1.8. The continuous numbering of the cores, kn,m = n + Nm, is used
in the figure. Figure captions are similar to Fig. 2.

the evolution of the spectrum and the field envelope |ukn,m |2
in the central core n = m = 6. It can be seen from Fig. 7
that the found solution (37) propagates without changes
through the MCF over the calculated interval of 500zdis. This
confirms the stability of the found analytical solution.

Next, we numerically analyze the case when the dispersion
length of the injected laser pulse is less than the beat length
between adjacent modes (τp < τcr), i.e., when the predicted
stability condition of the found solution is violated. Figure 8
shows the typical dynamics of a wave packet at a = 2.2
in a multicore two-dimensional fiber consisting of 11 × 11
cores with length 500zdis. For these parameters, the dispersion
length is equal to 5.7 and the beat length between adjacent
modes is equal to 12. The continuous numbering of the cores,

FIG. 8. Laser pulse dynamics in an MCF of 11 × 11 cores at a =
2.2. The continuous numbering of the cores, kn,m = n + Nm, is used
in the figure. Figure captions are similar to Fig. 2.

kn,m = n + Nm, is used in the figure. The captions are similar
to Fig. 2. It can be seen that a laser pulse propagating in an
MCF radiates a dispersive wave at a frequency ω2D

rad, which is
different from the frequency in the case of a one-dimensional
grating, ω1D

rad. Below, an estimate of this frequency will be
found. At the initial stage z � 100zdis, the injected laser pulse
intensively radiates a dispersive wave with an amplitude com-
parable to the one at ω = 0. The width of the laser pulse
spectrum decreases monotonically, and the duration, accord-
ingly, increases as the energy in the wave packet decreases
[Fig. 8(a)]. The laser pulse stops radiating when the dispersion
length of the excited nonlinear structure exceeds the beat
length between neighboring supermodes. Subsequently, the
laser pulse propagates unchanged.
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FIG. 9. Dependence of the final normalized energy W/N of the
excited out-of-phase soliton in an MCF of N × N cores on the num-
ber N and the power parameter a. The dots show the critical energy
level (36).

The stability analysis (36) and the results of numerical sim-
ulation (Fig. 8), as in the case of a one-dimensional grating,
demonstrate the impossibility of a noticeable transformation
of the transverse distribution of the wave field from an inho-
mogeneous profile to a uniform one with an increase in the
parameter a. Figure 9 shows the final energy of an excited
out-of-phase soliton in a two-dimensional lattice N × N as a
function of the parameters N and a. The figure shows that this
energy is proportional to the number of cores, N , in one of
the directions, which is in good agreement with the above
theoretical analysis (36). This is significantly different from
a one-dimensional lattice of weakly coupled cores since the
maximum achievable transported energy increases despite the
limitation of the minimum duration of solitons. As in the case
of a one-dimensional lattice, the growth of the soliton energy
is limited with increasing parameter a due to the generation of
a dispersive wave at the frequency ω2D

rad.
Let us obtain the frequency estimate ω2D

rad, proceeding in
a similar way as was done in the case of a one-dimensional
lattice. We will look for a solution of Eq. (4) in the form

un,m = (−1)n+m sin

(
πn

N + 1

)
sin

(
πm

N + 1

)
A(z, τ ). (38)

Substituting into the action of Eq. (4) for M = N , we find the
truncated action,

S = (N + 1)2

4

∫∫ [
i

2

(
A

∂A∗

∂z
− A∗ ∂A

∂z

)

+ 4 cos

(
π

N + 1

)
|A|2 + α

∣∣∣∣ ∂A

∂τ 2

∣∣∣∣
2

− 9

32
|A|4

]
. (39)

Its variation gives the NSE equation

i
∂A

∂z
+ α

∂2A

∂τ 2
+ 9

16
|A|2A − 4 cos

(
π

N + 1

)
A = 0, (40)

whose soliton solution is

un,m = (−1)n+m 4

3

√
2α/τp

cosh(τ/τp)

× sin

(
πn

N + 1

)
sin

(
πm

N + 1

)
e−ik2D

sol z, (41)

where k2D
sol = 2 cos( π

N+1 ) − 9/32u2
0 is the wave number of a

soliton in a square lattice of weakly coupled cores, and u0

is the amplitude of the soliton. The similar value of wave
number k1D

sol ≡ −dϕ/dz is obtained by varying the action
[Eq. (33)] on W . Note that the energy of this solution is W =
32
9 (N + 1)2α/τp; compare with Eq. (35). The linear dispersion

relation of Eq. (4) for un,m ∝ (−1)n+me−ikz+iκnn+iκmm−iωτ has
the form

k2D
dis = αω2 + 2(cos κn + cos κm), κn = πn

N + 1
. (42)

It is obvious that the radiation threshold of a dispersive wave is
lower in the case when the indices n, m do not change simulta-
neously. Due to the symmetry of the problem, the considered
soliton can radiate a dispersive wave at the frequency ωrad

with odd n and m. Then the nearest radiation frequencies will
correspond to n = N, m = N − 2 or n = N − 2, m = N and
give

ω2D
rad = ± 1√

α

√
4 sin

(
π

N + 1

)
sin

(
2π

N + 1

)
− 9

32
u2

0. (43)

Let us return to the results of the numerical simulation.
Cyan dashes in Fig. 8(c) show the found estimate [Eq. (43)]
of the dispersive wave frequency, which is in good agreement
with the numerical results. As the soliton amplitude decreases
due to losses, the frequency of the dispersive wave shifts to the
frequency determined in the limit of small amplitudes (u0 ≈
0), which is shown in the figure by the black dash-dotted line.

V. CONCLUSION

The approximate solitonlike out-of-phase solutions for the
wave field in an MCF with core configurations in the form
of line 1 × N and a square matrix N × N are found in the
framework of the discrete nonlinear Schrodinger equation.
The stability conditions for Eqs. (24) and (36) of the found
solutions are determined, and the presence of the minimum
duration τcr for their stability is shown. Numerical simulation
confirms the stability of such solutions at durations τp � τcr

and shows that the radiation of linear dispersive waves for
shorter pulses rather quickly leads them to the found distri-
bution with τp ∼ τcr.

Thus, the maximum achievable energy of relatively long
pulses, τp > τcr, grows in proportion to the number of cores.
For example, the total energy of the out-of-phase distribu-
tion in a square MCF of N × N cores is about N2/2 times
higher than the energy of a NSE soliton of the same duration.
However, the presence of the minimal duration τcr ∝ N means
that the maximum achievable transferred energy grows as
little as N for a square matrix N × N of cores and does not
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depend on the number of cores in a one-dimensional lattice.
This makes such fibers less preferable for operating with
extremely short solitons in comparison with MCFs with the
ring configuration of cores [25]. However, the technological
difficulties in manufacturing MCFs from a large number of
cores equally distributed over the ring level out the limitations
of out-of-phase distributions in MCFs with a square matrix of
cores.
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