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Spatially resolving classical and quantum entanglement with structured photons
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Nonseparability in classical and quantum states of light gives rise to the notions of classical (local) and
quantum (nonlocal) entanglement, usually defined as global features of the fields and states. Here we use
concurrence as a measure of this nonseparability and show that it can be spatially resolved, revealing regions
of maximum nonseparability and regions with no nonseparability. We use the topical examples of vectorial
structured light and its quantum analog, a hybrid spatial mode and polarization entangled states, to test the
approach on both local and nonlocal forms of entanglement. Our work has wide reaching implications, for
instance, in understanding the spatial dependence of coherence and polarization in vectorial light, as well as in
quantum entangled states for imaging, where spatial correlations are vital.
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I. INTRODUCTION

Classical and quantum states of structured light have
gained in prominence of late [1,2], driven by a versatile tool-
box and a myriad of exciting applications. Such states can
be structured in 1 degree of freedom (DoF), for instance, the
photonic orbital angular momentum (OAM) [3], or in a hyrbid
state of 2 or more DoF [4]. Particularly interesting examples
are hybrid entangled states that mix polarization and spatial
modes (such as OAM states) [5] shown in Fig. 1(a) and their
classical counterpart, vectorial structured light [6], shown in
Fig. 1(b), nonseparable states of light with inhomogeneous
polarization structures [7]. The former are a nonlocal form
of entanglement with the correlations across two or more
photons that may be distantly apart, while the latter are a
local form of entanglement in single-photon states and are a
measure of nonseparability in classical fields. The latter are
sometimes called classically entangled [8,9], but here lim-
ited to the local nonseparability of 2 or more DoF, where a
measurement on one affects the outcome of the other. The
local form of this nonseparability has given rise to exotically
structured light, from the well-known cylindrical vector vortex
beams of optical fiber [10] to light with topology, from Mo-
bius strips [11] to skyrmions [12], fueling many applications
[6], revealing the interplay between classical and quantum
systems [13–15] as well as being a probe into the fundamental
nature of polarization, coherence, distinguishablity, and entan-
glement [16,17].

In parallel, quantum entanglement in the spatial basis has
exploded in popularity of late, driven by interest in OAM
entanglement [18,19], marking two decades since its first in-
ception [20]. Entanglement in higher dimensions has garnered
significant interest in the fields of quantum communica-
tions [21] and computation [22], leading to the development
of several methods to increase security [23], computational
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power [24], and resilience to noise [25]. Entanglement in
the continuous position basis, in particular, has given rise to
several techniques for quantum imaging [26] and quantum
key distribution [27]. In these applications and others, the
number of correlations and the spatial distribution of these
correlations are of particular importance. Significant effort
has gone into measuring the Einstein-Podolsky-Rosen-like
spatial correlations between photons produced through spon-
taneous parametric down-conversion (SPDC) [28–33], thus
allowing for the quantification and certification of spatial
entanglement. It has also been shown that these spatial cor-
relations can be manipulated and shaped, primarily for pre-
and postcorrection through scattering media, by manipulating
the second-order quantum coherence of the two-photon state
[34,35]. Increased efficiency in measuring and certifying en-
tanglement has also been demonstrated by spatially tailoring
the basis for minimal losses, noise resistance, and fewer nec-
essary measurements [36]. Different techniques and methods
for tailoring and shaping spatial correlations and thus the
nonseparability of quantum states hold tremendous potential
for increasing the effectiveness of established and emerging
quantum techniques.

Despite the advances, spatial entanglement (classical and
quantum) is usually measured as a global property of the
field or state, tracing out the spatial information. Here we
use a spatially resolved projective measurement of local and
nonlocal entanglement to show that the nonseparability can
vary dramatically across the state, from regions of maximal
nonseparability to regions of no nonseparability, shown in
Fig. 1(c). Classically, the homogeneity of the fields likewise
changes from fully vector to fully scalar across the field, while
in quantum the correlations rise and fall in spatial regions. We
use hybrid combinations of OAM beams to demonstrate the
effect experimentally with a range of hybrid states and regions
of interest, showing good agreement with theory. The results
show that classical and quantum light can be tailored spatially
for on-demand nonseparability, where some regions can differ
substantially from the average (global) value. Our results offer
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FIG. 1. Quantum and classical nonseparability. (a) Quantum hybrid entangled states correlate the spatial information of one photon (photon
A) with the polarization of another (photon B) and, consequently, these two pieces of information cannot be known separately. If a position
measurement is made on photon A, one will immediately know the polarization of photon B. This does not depend on the distance between the
two photons and thus we have nonlocal nonseparability. (b) In a vector beam, the polarization varies spatially resulting in correlations between
the spatial and polarization degrees of freedom of the beam. Every point in the beam is associated with a specific polarization state and thus
one cannot speak about a position on the beam without also knowing the polarization at that position. This is a form of local nonseparability.
(c) Spatial regions of the nonseparable state, which vary in size, location, and shape, exhibit different degrees of nonseparability. This suggests
that the size, shape, and location of the region an observer is interested in will affect the strength of the correlations observed. A point in space
has only one polarization state associated with it and therefore has no nonseparability.

insights into the spatial nature of the correlations, classical and
quantum, and have wide reaching implications, for instance,
in understanding the spatial dependence of coherence and
polarization in vectorial light, as well as in quantum entangled
states for imaging, where spatial correlations are vital.

II. THEORY

A. Quantifying nonseparability

The unique property of nonseparability, which mathemati-
cally distinguishes quantum nonlocal correlations from those
that are classical or separable in nature, can also be used
analogously to describe light beams with inhomogeneous
polarization states [37,38]. In the former, the system’s nonsep-
arability is shared between two spatially separated particles,
whereas in the latter the nonseparability exists locally between

the internal degrees of freedom of each photon in a coherent
light beam. In the case where the wave functions that de-
scribe the system are position dependent, it is imperative to
ask whether the domain over which the state is sampled, the
resolution, and the geometry have an impact on the degree of
the entanglement that can be measured.

To elucidate and answer these questions, we employ hybrid
(nonlocal) entangled two photon states as well their classical
analogs, i.e., light fields with inhomogenous polarisations,
also called vector beams. Both states can be expressed using
the bra-ket notation following the Schmidt decomposition,

|�〉 = |ψ1〉A|P+〉B + |ψ2〉A|P−〉B, (1)

where |ψ1(2)〉 are arbitrary and orthogonal spatial modes, and
P± are orthogonal polarization eigenstates. Here our states
constitute independent degrees of freedom which can be seen
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from the tensor product structure, |spatial〉 ⊗ |polarization〉,
enabling us to distinguish the spatial and polarization com-
ponents. While at first glance, the states above bare a
resemblance for both hybrid entangled states and classical
vectorial beams, the discrepancies can be seen when one as-
signs adequate labels for the subscripts A and B: in (i) hybrid
entangled states, A and B represent two different photons
with each photon being entangled in an independent degree
of freedom (in our case we entangled the spatial degree of
freedom of photon A with the polarization degree of freedom
of photon B), while for (ii) vectorial beams, they label the
internal degrees of freedom of a field (A is the spatial DoF
and B is the polarization DoF and both of these DoFs cannot
be described separately from each other).

To examine the spatial characteristics of these states, we
study their spatial variations. It is useful to rewrite the state
in the position basis, |�r〉 satisfying 〈�r|�r′〉 = δ(�r − �r′). It fol-
lows that the spatial modes can be expressed as |ψi〉 =∫∫ ∞

−∞ ψi(�r)|�r〉d2�r, where i ∈ {1, 2} and ψi(�r) are the position-
dependent wave functions describing the spatial components.
Accordingly, by substituting this into Eq. (8), we may describe
the hybrid states as

|�〉 =
∫∫ ∞

−∞
|�rA〉[ψ1(�rA)|P+〉B + ψ2(�rA)|P−〉B]d2rA. (2)

The nonseparability of these states is quantified using a metric
known as the concurrence, which, for the above state, is given
by

C = 2
√

〈ψ1|ψ1〉〈ψ2|ψ2〉 − |〈ψ1|ψ2〉|2. (3)

where the inner product 〈·|·〉 is defined as

〈ψi|ψ j〉 =
∫∫ ∞

∞
ψ∗

i (�rA)ψ j (�rA)d2rA (4)

When we have C = 0, the state is called a completely sep-
arable state; a value between 0 and 1 indicates a partially
separable state and a value of C = 1 indicates a maximally
nonseparable state. Equation (3) shows that the nonsepara-
bility depends solely on the spatial modes of our state. We
therefore conjecture that by looking at specific regions of the
spatial modes, we will observe values of the nonseparabil-
ity that differ from the global value. An arbitrary region of
interest, D, can be isolated by using an appropriate aperture
function, defined as

f (�rA) =
{

1 if �rA is in D,

0 otherwise. (5)

This has the overall effect of bounding the function in the
region D, thus simplifying the integral in Eq. (2) to

|�〉 = 1

N

∫∫
D

|�rA〉[ψ1(�rA)|P+〉B + ψ2(�rA)|P−〉B]d2rA, (6)

where N is a normalization factor. Physically, this corresponds
to the truncation of the spatial profile of component A, which
in practice can occur due to restrictions in the apertures of the
optical system. The inner products defined in Eq. (4) then also
simply to

〈ψi|ψ j〉 =
∫∫

D
ψ∗

i (�rA)ψ j (�rA)d2rA (7)

FIG. 2. The spatial dependence of nonseparability. If an observer
chooses to focus on only a specific region of a vectorial light field,
they will measure a different value of the field’s nonseparability. This
is influenced by both the location and the shape of the region of
interest.

for the isolated region. In general, Eqs. (4) and (7) will not
be equal and thus the nonseparability in the chosen region
D will differ from the global value. This is illustrated in
Fig. 2. Classically, this figure can be interpreted as showing
the intensity profile of the vectorial beam. The concurrence of
the different regions (shown in dashed lines) then shows the
nonseparability of the different parts of the beam in the trans-
verse plane. In the case of quantum hybrid entangled states,
this figure shows the spatially resolved position probability
distribution of photon A. Within each of the dashed regions,
we see what the measured concurrence of the quantum state
would be if we restricted the aperture of our detector to only
those dashed regions. In either case, the concurrence of the
entire state is 1, but if we look at specific spatial regions within
the state with different locations and geometries, we measure
a different value for the concurrence. Consequently, we can
use the concurrence as a metric to quantify the degree of
nonseparability in our chosen region of interest and allow for
comparison between different regions and geometries across
the state.

B. Measuring nonseparability

Concurrence can quantify the degree of nonseparability;
however, Eq. (3) requires both the amplitude and the phase
information for both spatial modes, which can be cumbersome
to measure experimentally. Here we show that the concur-
rence can be measured using the spatially resolved Stokes
parameters. Without loss of generality, we construct a nonsep-
arable state in the horizontal (H) and vertical (V ) polarization
basis

|�〉 = |ψ1〉A|H〉B + |ψ2〉A|V 〉B, (8)

where |ψ1(2)〉 are the same as above. The horizontal and verti-
cally polarized intensity components of the state are given by

IH (V )(�rA) = 〈ψ1(2)|ψ1(2)〉. (9)
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FIG. 3. Basis-independent measure of nonseparability. (a) Vector modes are created by superimposing to orthogonal scalar modes, each
in an orthogonal polarization state. (b) The concurrence or nonseparability of a nonseparable state can be measured using a basis-independent
method. For our states, the inner products present in the first term of Eq. (3) are directly related to the Stokes parameters S0 and S1 and the
inner product in the second term is directly related to the Stokes parameters S2 and S3. Thus the concurrence can be directly calculated from
the four Stokes parameters.

The spatially varying Stokes parameters for the entire state
may then be written as

S0(�r) = Ih(�r) + Iv (�r) = I (�r)

= I|ψ1(�r)|2 + I|ψ2(�r)|2,
S1(�r) = Ih(�r) − Iv (�r)

= I|ψ1(�r)|2 − I|ψ2(�r)|2,
S2(�r) = Id (�r) − Ia(�r)

= 2I|ψ1(�r)||ψ2(�r)| cos[φ1(�r) − φ2(�r)],

S3(�r) = Ir (�r) − Il (�r)

= 2I|ψ1(�r)||ψ2(�r)| sin[φ1(�r) − φ2(�r)]. (10)

In the case of the hybrid entangled states, it is equivalent to
measuring the observables of the Pauli matrices on photon B,
using

S j (�r) = 〈|�rA〉〈�rA ⊗ σB, j〉, (11)

where j ∈ {0, 1, 2, 3} and σB,0 = 12. Full details of the calcu-
lation are given in Ref. [39]. We can obtain parameters we call
the Stokes powers by integrating over the spatially resolved
Stokes parameters in Eq. (10) in the chosen region D,

Pi =
∫

D
Si(�r)dA, (12)

where i ∈ {0, 1, 2, 3}. Using the expressions in Eq. (10), we
can relate the Stokes powers Pi to the inner products in Eq. (3).
As shown in Fig. 3(b), the first term in the square root of
Eq. (3) contains only inner products of the spatial modes
with themselves and thus can give us information about the
total intensity and the Stokes power directly related with our
chosen basis. These are the Stokes powers P0 and P1 and the

exact relationship is given by

〈ψ1|ψ1〉〈ψ2|ψ2〉 =
∫

D
|ψ1(�r)|2dA

∫
D

|ψ2(�r)|2dA

= IhIv
I2

= 1

4

[
1 − P2

1

P2
0

]
. (13)

The Stokes powers P2 and P3 give the same information as the
second term under the square root of Eq. (3),

〈ψ1|ψ2〉 =
∫

D
|ψ1(�r)||ψ2(�r)| exp{i[φ1(�r) − φ2(�r)]}d�r

= 1

2I

∫
D

S2(�r) + iS3(�r)d�r

= 1

2P0
[P2 + iP3]. (14)

These relationships then allow us to rewrite the concurrence
in Eq. (3) in terms of only the four Stokes powers,

C(D) =
√

1 − P2
1 − P2

2 − P2
3

P2
0

. (15)

Since we are using the concurrence as a way to quantify the
nonseparability in our region of interest D, the value of C
will change depending on our choice of D. This derivation
shows the results for a state created in the horizontal and the
vertical polarization basis. A similar argument holds for any
state created in any arbitrary, orthogonal polarization basis.
Using Eq. (15), we are able to easily measure and calculate the
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FIG. 4. Experimental setup. (a) Vector modes were generated by encoding two orthogonal spatial modes onto an SLM then combining
them using a Mach-Zehnder interferometer. The beam is then directed onto a polarizer camera to obtain the four linear polarization intensities.
The circular polarization intensities were obtained by placing a QWP before the camera. (b) The simulated (Sims.) and captured (Expt.) images
of each polarization projection of a vector beam with lh = −1 and lv = 10. (c) The spatial to polarization converter (SPC) involves impinging
a diagonally polarized photon onto one half of an SLM, where its horizontally polarized component is modulated. The photon then passes
through a lens and QWP twice before being reflected off the second half of the SLM where the remaining light is modulated. This creates
a correlation between the photon’s input OAM and its output polarization. (d) The reconstructed quantum Stokes parameters of a measured
hybrid entangled state with l1 = 0 and l2 = +3. (e) Two entangled photons are generated using a nonlinear crystal. One of the photons is
incident on an SLM to determine its spatial profile. The other photon passes through a SPC to correlate its OAM to a polarization state. Its
polarization is detected using polarization optics.

nonseparability of a given spatial region in an experimental
setting.

III. EXPERIMENT AND RESULTS

Figure 4(a) shows the setup used to experimentally probe
the spatially varying nonseparability of a vectorial beam. A
green diode laser beam (wavelength λ = 520 nm) was ex-
panded using a 10× objective lens L1 and then collimated
by L2 ( f2 = 150 mm) before being directed onto a reflective
PLUTO-VIS HoloEye spatial light modulator (SLM). The
screen of this SLM was divided into two halves. Each half
was encoded with the desired scalar mode (e.g., two Laguerre-
Gaussian beams, one on each half). This results in two beams
in each diffraction order reflecting off the SLM. To select the
desired first diffraction order, a 4 f spatial filtering system
was used. The SLM only modulates horizontally polarized
light. In order to generate a vector beam, one must overlap
two orthogonally polarized modes. This was achieved with a
Mach-Zehnder interferometer. One beam was diverted using
a system of mirrors and passed through a half-wave plate
(HWP) with the fast axis at an angle of 45◦, converting it from
horizontally to vertically polarized. The two beams were then
recombined using a polarizing beam splitter (PBS) to form a
vector beam. The generated vector beam was then incident
directly onto a Mako G-508 polarization-sensitive camera,
which is capable of measuring all four linear polarization
intensities simultaneously. The circularly polarized compo-
nents were measured by placing a quarter-wave plate (QWP)

with its fast axis at an angle of 45◦ before the camera. This
converted the right-circularly and left-circularly polarized
components to horizontally and vertically polarized, respec-
tively, which were then measured by the camera. Figure 4(b)
shows the simulated (Sims.) and the experimentally captured
(Expt.) polarization projections of a vector beam generated
by superimposing two Laguerre-Gaussian (LG) modes. The
vertically polarized mode has an OAM of 10 and the horizon-
tally polarized mode had an OAM of −1. Various LG modes
with varying OAM were encoded to generate several different
vectorial superpositions. The nonseparability for different re-
gions of the beams was calculated using Eq. (15). The regions
of interest were isolated through the use of numerical masks
applied over the captured intensity images.

The setup shown in Fig. 4(e) was used to generate a hybrid
entangled state. A pump beam with a wavelength of 355 nm
is incident on a nonlinear crystal (NC). OAM-OAM entangled
photon pairs with a wavelength of 710 nm are generated at the
NC through SPDC. The photons are spatially separated using
a 50:50 beam splitter (BS). One of the entangled photons, pho-
ton A, remains unchanged and is detected using the conjugate
spatial OAM state on the SLM and a single-mode fiber (SMF).
The other photon undergoes spatial to polarization coupling
(SPC) before detection by a set of polarization optics and a
SMF. Figure 4(c) shows the details of the SPC. Photon B’s
polarization is rotated to diagonal polarization via the use of a
HWP. Photon B then impinges on one half of an SLM where
the horizontal component of the polarization is modulated.
The photon then reflects the SLM, through a 4 f imaging lens
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FIG. 5. Spatially varying nonseparability. (a) A square mask of increasing size was applied to the captured intensity projections allowing
specific regions of the beam to be isolated and used to calculate the concurrence. (b) The nonseparability of a region is not simply a
monotonically increasing function of region size but instead depends on the global geometry of the field. As the region of interest is made
larger, we see that the nonseparability reaches a maximum, drops, and then returns to that maximum. Therefore, the spatially varying behavior
of the nonseparability cannot be treated as simply additive. (c) The concurrence of a vector LG superposition with lh = −1 and lv = 4 and (d)
lh = −1 and lv = 10 as functions of the mask size. (e) The concurrence of a hybrid entangled state with l1 = 0 and l2 = +1 and (f) l1 = 0 and
l2 = +3 as functions of the mask size.

(L) and a QWP with its fast axis at 45◦. This converts the
horizontal and vertical polarization components to right and
left circular, respectively. The photon then reflects off a mirror
which flips the polarization of the right- and left-circularly
polarized components. This photon then passes back through
the QWP converting the circular components to horizontal and
vertical. The photon then impinges on the second half of the
SLM which modulates the newly horizontally polarized com-
ponent (which has not been modulated by the SLM up to this
point). By controlling the holograms displayed on each half of
the SLM, the desired subspace can be digitally postselected.
A full description of the SPC process is given in Ref. [40].
The spatially resolved quantum Stokes parameters are shown
in Fig. 4(d) for a state with OAM l1 = 0 and l2 = +3. The
regions of interest were isolated through the use of numerical
masks applied over the calculated quantum Stokes parameters.

In order to first confirm that the nonseparability of the
vector beam does vary spatially, a square mask of increasing
size was applied to captured intensities. This procedure is
shown in Fig. 5(a). The initial side length of the mask was
3.45 µm and was increased one pixel at a time to 3.45 mm.
The camera’s pixel size was 3.45 µm. The concurrence was
calculated after the application of each successive mask using
Eq. (15). The results from this procedure for two different
vector superpositions of LG beams are shown in Figs. 5(c)
(lh = −1, lv = 4) and 5(d) (lh = −1, lv = 0). The results for
this procedure applied to two different hybrid entangled states
are shown in Figs. 5(e) (l1 = 0, l2 = +1) and 5(f) (l1 = 0,
l2 = +3). In all cases, the component spatial modes were
equally weighted resulting in a global concurrence of C = 1.

Simulated results are shown in light blue while experimental
results are shown in dark blue. From these plots, one can
see that the concurrence increases as more and more of the
states are included in the region of interest until a maximum
is reached. The nonseparability then has a small dip in for
the two vector beams and second hybrid entangled state cases
before returning to and then maintaining the maximum value.
This general trend holds for all nonseparable states tested,
with the dip becoming more pronounced as the difference
between the OAM of the component spatial modes increases.
Figure 5(b) illustrates the reason for this dip. The first maxi-
mum is reached in the first image, where exactly one quarter
of the total field is included in our region of interest. The
contributions from each orthogonal mode in this region are
equal and thus the nonseparability is at a maximum of ≈1.
As the region of interest increases, as shown in the second
image, the entirety of the smaller annular ring is included,
while only part of the larger ring remains in the region of
interest. This results in an unequal contribution from each
mode and thus a drop in the nonseparability. A maximum
is again reached when both modes are again included in the
region of interest due to the reestablishment of equal contri-
butions. This example is important as it illustrates that the
nonseparability is not a monotonically increasing function
of the size of the region of interest but also depends on the
geometry of and the position relative to the global field being
observed.

The primary visual feature of most states with OAM is
their doughnut-shaped intensity profiles. The greater the OAM
carried by the beam per photon, the larger the doughnut ring.
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FIG. 6. Radially varying nonseparability. (a) An annular ring mask of increasing radius and fixed width was applied to the captured intensity
projections, allowing specific regions of the beam to be isolated and used to calculate the concurrence. (b) Here a vector beam consisting of
two LG beams with lh = −1 and lv = 15 is shown. The region with the intensity ring corresponding to lh = −1 shows a concurrence of only
C = 0.08, while the region corresponding to lv = 10 shows a concurrence of only C = 0.39. The region showing the maximum concurrence
is, in fact, the space between the two intensity rings. Here, the total intensity is very low compared to the rest of the state, but the relative
intensities between the two spatial modes are approximately equal. This results in a very high concurrence and nonseparability even though we
have a very low intensity. (c) The concurrence of a vector LG superposition with lh = −1 and lv = 4 and (d) lh = −1 and lv = 10 as functions
of the annular ring’s radius. (e) The concurrence of a hybrid entangled state with l1 = 0 and l2 = +1 and (f) l1 = 0 and l2 = +3 as functions
of the annular ring’s radius.

This creates a relationship between the OAM of the state
and the spatial distribution of the beam’s intensity or the
spatial correlations between the entangled photons, linking
the OAM subspace and the spatial distribution of the state.
It is, therefore, of interest to examine how the concurrence
changes as one moves through the spatial location of these
OAM subspaces. To do this, a mask with an annular ring of set
width (approximately 60 pixels with a pixel size of 3.45 µm)
was applied onto the measured intensity projections of the
vector beams and the calculated quantum Stokes parameters
of the hybrid entangled state. The radius of this ring was
then increased until the annular ring moved past the largest
intensity ring present in the vector intensity projections or
quantum Stokes parameters. Each time, the concurrence was
calculated according to Eq. (15). This process is illustrated in
Fig. 6(a) The results of this measurement are shown for vector
beams in Figs. 6(c) (lh = −1, lv = 4) and 6(d) (lh = −1,
lv = 10). The vector beams were again LG superpositions.
The results for two different hybrid entangled states are shown
in Figs. 6(e) (l1 = 0, l2 = +1) and 6(f) (l1 = 0, l2 = +3). The
results for all cases have a global concurrence of C = 1. The
simulated results are shown in light blue and the experimental
results are shown in dark blue. The plots show the nonsep-
arability increasing until a maximum value of 1 is reached
before dropping down to 0. The location of this peak shifts
further outward as the difference in OAM between the two
component spatial modes increases while the width of the
peak decreases.

It is curious to note that the peaks observed in Figs. 6(c)–
6(f) occur not when the mask in centered on any single ring,
but when it is centered in between the two intensity rings. This
is shown more explicitly in Fig. 6(b) for a vector beam with
lh = −1 and lv = 10. When the annular ring mask is centered
on the smaller or larger intensity rings, the concurrence is
relatively low. However, when it is centered between the two
intensity rings, the concurrence almost reaches the maximum
possible value, suggesting that this is where most of the state’s
polarization inhomogeneity lies (in the case of vector beams)
or where the spatial-polarization correlations are rapidly vary-
ing in position (in the case of the hybrid entangled states). This
results from the fact that the spatial modes are what dictate the
the degree of nonseparability. At each intensity ring, contribu-
tions from a single spatial mode dominate and thus the non-
separability is quite low. In the region between the two rings,
the contribution from each spatial mode are approximately
equal and thus we have a high concurrence and nonseparabil-
ity. We can then see that the intensity of our field does directly
dictate the nonseparability and it is instead determined by the
relative intensities between the the spatial modes.

IV. CONCLUSION

The ability to structure nonseparable states of light, both
classical and quantum, is well known and provides a use-
ful tool for encoding and retrieving information. Quantum
structured light especially has found applications in a myriad
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of fields including imaging, metrology, communications, and
computing. Here we have demonstrated that the nonsepara-
bility of vectorial and quantum states is not just a property
of the global state, but varies spatially, depending on the
shape and location of the region of interest. Consequently
and depending on the needs and context, one may alter their
state to increase or decrease the nonseparability in a chosen
region and quantify this change using our modified defini-
tion of concurrence. Our approach offers alternative ways of
probing fundamental aspects of classical vectorial light and

improving the efficiency and effectiveness of quantum imag-
ing and communication techniques.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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