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Photon diffusion in space and time in a second-order-nonlinear disordered medium
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We report experimental and theoretical investigations of photon diffusion in a second-order-nonlinear disor-
dered medium under conditions of strong nonlinearity. Experimentally, photons at the fundamental wavelength
(λ = 1064 nm) are launched into the structure in the form of a cylindrical pellet, and the second-harmonic
(λ = 532 nm) photons are temporally analyzed in transmission. For comparison, separate experiments are carried
out with incident green light at λ = 532 nm. We observe that the second-harmonic light peaks earlier compared to
the incident green photons. Next, the sideways spatial scattering of the fundamental as well as second-harmonic
photons is recorded. The spatial diffusion profiles of second-harmonic photons are seen to peak deeper inside
the medium in comparison to both the fundamental and incident green photons. In order to give more physical
insights into the experimental results, a theoretical model is derived from first principles. It is based on the
coupling of transport equations. Solved numerically using a Monte Carlo algorithm and experimentally estimated
transport parameters at both wavelengths, it shows excellent semiquantitative agreement with the experiments
for both fundamental and second-harmonic light.
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I. INTRODUCTION

Electromagnetic wave propagation and scattering are ubiq-
uitous in diverse fields such as optics, condensed-matter
physics, biology, atmospheric optics, etc. [1]. Among various
related phenomena, the diffusion of light has attracted maxi-
mum attention in the last few decades [2]. Two factors have
primarily motivated these studies, namely, the occurrence of
the diffusion of light in tissues [3] and the parallels between
light diffusion and electron propagation in disordered conduc-
tors [4]. The first subfield, namely, diffusion in tissues, has led
to significant signs of progress in imaging inclusions in living
media [5], with the aim of replacing hazardous high-energy
radiation. The second domain overlaps with condensed-matter
studies and is intended to understand mesoscopic effects
in light transport in disordered media. Indeed, studies on
mesoscopic optics have led to better insights into electronic
transport, such as the transition from the diffusion regime
to the localization regime [6] upon a sufficient increase in
disorder.

A primary reason for the success of these studies in the
optical domain has been the inherent noninteracting nature
of the photons, as well as the possibility to directly im-
age the intensity distribution, which makes analyses easier
than for electrons. Interestingly, photon propagation allows
for additional aspects of transport, such as amplification and
nonlinearity. On the one hand, coherent amplification accom-
panied by diffusion or localization has led to the creation
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of novel optical sources named random lasers [7–12]. On
the other hand, studies coupling nonlinearity with the disor-
der have attracted growing attention [13–26]. For instance,
a great deal of effort has been focused on the effects of
χ (3) nonlinearity on Anderson localization [16–18], wherein
the question of whether nonlinearity subjugates localization
is still an open question [19]. Experimental attempts to ad-
dress this problem in one-dimensional systems showed that
the localized mode continues to exist under introduced non-
linearity [20]. Theoretically, the effects of χ (3) nonlinearity
on coherent backscattering (or weak localization) have also
been documented [21,22]. Likewise, χ (2) materials, partic-
ularly relevant to second-harmonic generation (SHG) [27],
have been studied in the regimes of diffusion and weak
localization [23–26]. Specifically, several consequences of
random quasi phase matching in disordered χ (2) materials
were discussed in recent years [28–30]. Furthermore, speckle
dynamics in these materials were recently quantified and
theoretically modeled [31,32]. Interestingly, second-harmonic
generation in a diffusive material creates a unique paradoxical
situation of incoherent transport, i.e., diffusion, coupled with
an inherently coherent phenomenon of second-harmonic gen-
eration and hence is of fundamental research interest. Over the
years, a few theoretical [33,34] and experimental reports [35]
have addressed this peculiar scenario. In one of the earliest
reports, Kravtsov et al. [33] theoretically studied two models
of disorder, namely, point scatterers in a nonlinear medium
and grainy nonlinear scatterers, and observed sharp peaks in
the angular distribution of backward diffuse second-harmonic
light. In another approach, Makeev et al. theoretically studied
the diffusion of second-harmonic (SH) light in a colloidal sus-
pension of spherical nonlinear particles, wherein they found
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that the average SH intensity was independent of the linear
scattering properties of the medium [34]. In the experimental
effort using GaP powders, a consistent picture that described
the second-harmonic intensity distribution in the sample was
obtained via the diffusion equation, which invoked nonlinear-
ity as a conversion rate [35].

The various models described above successfully invoked
the scenario of weak nonlinearity, wherein the nonlinearity did
not affect the distribution of fundamental photons. However,
these works focused on the spatial behavior of fundamental
and second-harmonic light, while no attention was paid to
the temporal behavior, under ultrashort-pulse illumination. In
this work, we address this question and others in light of
experiments and of a theoretical model. We carry out spatial
and temporal investigations of light propagating through a
strongly disordered potassium dihydrogen phosphate (KDP)
pellet. We diagnose pulse propagation through the system
and measure the transport mean free paths for the fundamen-
tal and second-harmonic light using the transmitted pulses.
Subsequently, we measure the longitudinal spatial distribution
of both components. To give more physical insights into the
processes at play, we build from first principles a theoret-
ical model involving the coupling of two radiative-transfer
equations (RTEs). Solved numerically using a Monte Carlo
scheme, the model gives reliable results compared to the
experiment. In Sec. II, we introduce the samples and the ex-
periments, and we present all experimental results. In Sec. III,
we present the theoretical model as well as the associated
numerical simulations in the same geometry as in the experi-
ments. The discussion and conclusion are given in Sec. IV.

II. SAMPLES AND EXPERIMENTS

We exploited commercially available KDP (EMSURE
ACS) as our nonlinear material. It has a large second-order
optical nonlinearity (∼0.43 pm/V). A fine powder of KDP
was realized after 10 min of ball milling. Figure 1(a) depicts
the scanning electron micrograph image of KDP grains, while
the inset shows the size distribution of the KDP grains, with
grain sizes in the range of 2 to 8 µm. The size distribution (red
bar graph) is approximately log normal (yellow line), peaking
at 3.11 µm. A pellet with length L = 5 mm and radius a =
0.5 cm was created under a hydraulic press. The pellet was
baked to remove remnant moisture at a temperature of 80 ◦C,
which was far below the transition temperature (190 ◦C [36])
of KDP. Before going to the main experiment, we evaluated
the effective refractive indices and internal reflection coef-
ficients that will be used later as input parameters in our
theoretical model. Using the Maxwell-Garnett formula [37]
(see Appendix A regarding the use of the Maxwell-Garnett
formula), the real parts of the effective refractive indices of
the pellet were found to be nr (2ω) = 1.45 and nr (ω) = 1.43
at λ = 532 nm and λ = 1064 nm, respectively. The internal
power reflection coefficients at λ = 532 nm and λ = 1064 nm
are estimated to be R(2ω) = 0.53 and R(ω) = 0.52, respec-
tively [38] (see Appendix A for a detailed derivation of the
internal reflection coefficient).

A schematic of the experimental setups is depicted
in Figs. 1(b) and 1(b). Two different experiments were
performed. For the temporal measurements [Fig. 1(b)],

FIG. 1. (a) SEM image of particles. The scale bar is 10 µm.
Inset: Distribution of particle size. (b) Schematic for temporal mea-
surements. Abbreviations: NC, nonlinear crystal; HBS, harmonic
beam splitter; M, mirror; L, lens; F1, filter (for λ = 532 nm); OF,
optical fiber; SC, streak camera. (c) Schematic of the experiment on
spatial diffusion. Abbreviations: L, lens; F1, F2, filters; SWIR, short-
wavelength infrared; EMCCD, electron-multiplying charge-coupled
device. Insets show a pellet with a 1-cm diameter and a length of
5 mm.

Nd:yttrium aluminum garnet (YAG) picosecond laser pulses
(EKSPLA, PL2143B), with pulse width ∼30 ps at the fun-
damental wavelength of λ = 1064 nm (hereafter referred to
as IR) and beam waist ∼5 mm, were made incident on the
front face of the pellet. The second-harmonic-generated light
(hereafter referred to as SHG) that was transmitted from the
back face was directed into the streak camera (Optronics SC-
10). The streak camera possesses a temporal resolution of less
than 3 ps, and its specified spectral sensitivity ranges from
200 to 950 nm. The spectral range of the streak camera did
not allow for measuring the IR pulse. A small part of the
second-harmonic light generated by a clear nonlinear crystal
was directed toward the marker pulse input of the streak
camera to calibrate the zero of the time axis. For the spatial
measurements [Fig. 1(c)], the pellet was pumped with the
fundamental of the Nd:YAG nanosecond laser (pulse width
∼5 ns, repetition rate of 10 Hz). The pulsed IR beam was
launched normally onto the front face of the pellet. The scat-
tered IR photons were imaged from one side of the pellet by
the combination of a lens and an InGaAs CCD, as shown in
Fig. 1. Simultaneously, a silicon CCD along with a lens was
employed to measure the internally generated and scattered
second-harmonic photons (SHG). For comparison for later
discussion, in both the temporal and spatial experiments, we
also externally launched frequency-doubled green light from
the source laser (λ = 532 nm, hereafter referred to as incident
green, or IG), whose temporal transmitted profile and spatial
scattering profile were measured separately by the same streak
camera and silicon CCD, respectively. The CCD images pro-
vided the spatial variation of light intensity along the length
of the pellet.

Our sample consists of a large number of KDP micro-
crystals with random orientations. The incident photons
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FIG. 2. Experimental temporal diffusion profiles of SHG (green
squares) and IG (blue dots) in a pellet with L = 5 mm. The SHG
signal peaks earlier in time. The orange dashed and red solid lines fit
the exponential decays for SHG and IG, respectively. Inset: diffusion
profiles on the semilog scale show comparable decay lengths.

experience multiple scattering due to the refractive index
mismatch between the microcrystals and the background
medium. SHG photons are generated at random positions
within the medium by the crossing of two IR photons and
also undergo multiple scattering. At large optical thickness
and long times, we can expect the transmitted multiply scat-
tered IR and SHG intensities to follow a diffusion process, as
confirmed by the spatial intensity profiles shown below.

The experimental temporal profiles of SHG (green squares)
and IG (blue dots) in the pellet, plotted in Fig. 2, exhibit
a classic diffusive behavior. We observe an interesting trend
in the transmission in which SHG photons have shorter res-
idence times than IG photons, given that the SHG profile
peaks earlier. The temporal profiles of SHG and IG show clear
exponentially decaying tails, as evidenced in the inset on a
logarithmic scale. Interestingly, the decay rates for the two
curves are also very similar, a fact which we will return to
in our theoretical work. The tails were fit by the expression
A exp(−�t ), with � being the decay rate. The estimated decay
rates fitted to numerous temporal profiles of the same sample
amount to 3.17 ± 0.13 and 3.25 ± 0.11 ns−1 for the SHG and
IG, respectively. These values are as close as a fitting routine
can provide. The apparent deviation may therefore be due to
the strong noise level. The orange dashed and red solid lines
in Fig. 2 correspond to the fits for SHG and IG, respectively.
Nonetheless, we emphasize here that only the IG data can be
fit a priori using diffusion theory. Although we use the same
analysis for the SHG light, the fact that it follows a similar
diffusion equation cannot be justified based on an existing
theory. The theory developed in the next section will elaborate
on this part and also justify the comparable decays seen in the
experiments. In the presence of absorption and side loss, the
decay rate � in a cylindrical system can be written as [39]

�(2ω) = D(2ω)

[
α2

1

ae(2ω)2
+ π2

Le(2ω)2
+ 3

�t (2ω)�a(2ω)

]
,

(1)

FIG. 3. Experimental spatial intensity profiles of incident green
(IG; blue solid line), fundamental infrared (IR; orange dotted line),
and second-harmonic-generated green (SHG; green dashed line)
light for the L = 5 mm pellet. The SHG signal peaks much deeper
in the sample, and IG peaks closest to the entry face inside the pellet,
followed by IR.

where the diffusion coefficient is given by

D(2ω) = vE (2ω)�t (2ω)

3
. (2)

For nonresonant scatterers, the energy velocity can be well
approximated by vE (2ω) = c/nr (2ω), where c is the light
velocity in vacuum. �t and �a are the transport and absorption
mean free paths, respectively. ae and Le are the effective radius
and thickness of the pellet, respectively, and are given by
ae(2ω) = a + ze(2ω) and Le(2ω) = L + 2ze(2ω), where ze is
the extrapolation length, given by

ze(2ω) = 2

3
�t (2ω)

[
1 + R(2ω)

1 − R(2ω)

]
. (3)

α1 in Eq. (1) is the first zero of the zero-order Bessel function
J0. By fitting the experimentally measured decay rates at λ =
532 nm for different sample lengths with Eq. (1), we extract
�t (2ω) ≈ 32 µm and �a(2ω) ≈ 11 mm (side loss). Due to the
limitation of spectral sensitivity, the streak camera could not
be used for the temporal profile of the IR light and the deter-
mination of the transport mean free path. We derived the value
of �t (ω) from a coherent backscattering experiment [40]. The
estimated value of �t (ω) is ∼216 µm. Note that for both the
harmonics, {L, a} � �t and t � vE�t . This signifies that our
sample is clearly in the diffusive regime [41].

Next, we examine the spatial diffusion profiles in the pellet.
Figure 3 displays the experimentally measured spatial profiles
for the IG (blue solid line), IR (orange dotted line), and SHG
(green dashed line) photons. Each profile shows a character-
istic diffusive peak inside the input edge. The first peak to
appear is the IG one, followed by the IR one. This behavior
is expected since �t (2ω) < �t (ω). The SHG peak may be
expected to appear at a location where the fundamental in-
tensity is maximum. However, this is not the case, and the
maximum intensity of the SHG is observed deeper in the
sample where the IR is about 80% of its peak intensity. This
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comes from the fact that the SHG beam is generated in the
medium by the IR beam and then propagates with the same
transport characteristics as the IG beam. This behavior will
be well reproduced by the theoretical model. Regarding the
wings deep inside the sample, an exponential decay is ob-
served. This arises from the loss mechanisms at play in the
sample coming from the finite transverse extent of the pellet,
the linear absorption, and the nonlinearity in the case of the
IR light.

III. THEORETICAL MODEL

A. Disorder model

In order to give more physical insights, we develop a
theoretical model that takes into account multiple scattering
and second-harmonic generation. To this end, we general-
ize the standard multiple-scattering theory to derive transport
equations for the fundamental and second-harmonic intensi-
ties averaged over the configurations of the disorder. This
derivation is similar to that of Ref. [32]. However, there are
three major differences: (1) we explicitly consider the time-
dependent regime, (2) we drop the intensity decorrelation due
to scatterer displacements, and (3) we take absorption into
account. It is important to note that this does not change the
way the derivation is performed since these differences do not
directly enter the computation of the second-harmonic phase
function. Interested readers can refer to Appendix B, where
the derivation is given. We present in the following only the
assumptions and the main results. We first define a model of
the disorder. The real material is made of a fine KDP powder
containing particles of different shapes and sizes. Therefore,
the simplest and most natural disorder model consists of a
continuous and complex fluctuating permittivity ε(r). The
disorder microstructure is then characterized by a spatial cor-
relation function that is chosen to be Gaussian in the form

Cε (r − r′, ω) = 〈δε(r, ω)δε∗(r′, ω)〉 = |�ε(ω)|2C(r − r′),
(4)

with

C(r − r′) = exp

[
−|r − r′|2

2�2

]
. (5)

In the equations above, 〈· · · 〉 represents an average over
all disorder configurations (statistical average). δε(r, ω) =
ε(r, ω) − 〈ε(r, ω)〉 is the fluctuating part of the permittivity,
|�ε(ω)|2 is the amplitude of the correlation, and � is the cor-
relation length. |�ε(ω)|2 depends on frequency since the
permittivity ε is dispersive. However, � involves only the
geometrical structure of the disorder and thus does not depend
on frequency. This also implies that the χ (2) nonlinearity is
supposed to be correlated in a similar way (i.e., with the same
correlation length). We thus have

Cχ (r − r′, ω) = 〈χ (2)(r, ω)χ (2)∗(r′, ω)〉
= |�χ (ω)|2C(r − r′). (6)

B. Transport equations

We first consider the case of the fundamental beam at fre-
quency ω corresponding to λ = 1064 nm and also denoted by

IR. The application of the standard multiple-scattering theory
leads to the no less standard RTE given by [42][

1

vE (ω)

∂

∂t
+ u · ∇r + 1

�e(ω)

]
I (r, u, t, ω)

= 1

�s(ω)

∫
p(u, u′, ω)I (r, u′, t, ω)du′. (7)

Although the pellet is large enough, a diffusion-type equa-
tion is not adequate enough to describe the experimental
results. Indeed, this kind of equation does not allow an accu-
rate reconstruction of the fluxes at short times and/or at small
depths. A transport-type equation such as Eq. (7) is required.
In this equation, I (r, u, t, ω) is the specific intensity, which
can be seen as the radiative flux at position r, in direction u, at
time t , and at frequency ω. More precisely, the derivation from
first principles shows that it is given by the Wigner transform
of the field. It reads

δ(k − kr )I (r, u, t, ω) =
∫ 〈

E

(
r + s

2
, ω + 


2

)
× E∗

(
r − s

2
, ω − 


2

)〉
e−iku·s−i
t ds

d


2π
, (8)

where E is the electric field, with E∗ being its complex-
conjugate counterpart. In this definition, the electric field is
a scalar quantity. Indeed, we choose here to neglect the effect
of the polarization, which is a very good approximation in the
multiple-scattering regimes where the field can be considered
to be fully depolarized [43]. kr (ω) = nr (ω)k0 is the real part
of the effective wave vector, where k0 = ω/c is the wave
number in vacuum. We recall that nr is the real part of the
effective refractive index. It describes the phase velocity of
the average field 〈E〉 (i.e., the field averaged over all possi-
ble configurations of the disorder). �e(ω) and �s(ω) are the
extinction and scattering mean free paths, respectively. They
are connected by the relation �e(ω)−1 = �s(ω)−1 + �a(ω)−1,
with �a(ω) being the absorption mean free path. p(u, u′, ω) is
the phase function representing the fraction of power scattered
from direction u′ to direction u during a single scattering
event. For the Gaussian disorder considered here, it is given
by

p(u, u′, ω) ∝ p(|kr (ω)u − kr (ω)u′|),

p(q) = exp

[
−q2�2

2

]
, (9)

normalized such that
∫

p(u, u′, ω)du′ = 1. As previously
mentioned, vE (ω) is the energy velocity, well approximated
by the phase velocity for nonresonant scatterers. Equation (7)
can be easily interpreted using a random-walk picture. In this
picture, light undergoes a random walk whose average step
is given by the scattering mean free path �s(ω) and whose
angular distribution at each scattering event is given by the
phase function p(u, u′, ω). The absorption is taken into ac-
count along a path of length s through an exponential decay
exp[−s/�a(ω)].

Let us focus now on the second-harmonic light at fre-
quency 2ω corresponding to λ = 532 nm and also denoted by
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SHG. By generalizing the standard multiple-scattering theory
taking into account second-harmonic generation, we obtain a
RTE given by (see Appendix B for details)[

1

vE (2ω)

∂

∂t
+ u · ∇r + 1

�e(2ω)

]
I (r, u, t, 2ω)

= 1

�s(2ω)

∫
p(u, u′, 2ω)I (r, u′, t, 2ω)du′

+ α

∫∫
pSHG(u, u′, u′′, ω)I (r, u′, t, ω)

× I (r, u′′, t, ω)du′du′′. (10)

This equation is very similar to Eq. (7), except for the presence
of a nonlinear source term. Because of the statistical average
over disorder configurations, it can be shown that the domi-
nant contribution in terms of paths for the second-harmonic
beam involves two SHG processes (one to generate the field
at 2ω and one to generate its complex conjugate) at the same
location and time [32]. This implies that there is no phase
shift to take into account between two fields, one at frequency
ω and one at frequency 2ω, and there is no phase-matching
condition as in standard SHG experiments without scattering.
Thus, the SHG process reduces to the product of two specific
intensities at ω coming from two different directions u′ and
u′′. α is a factor containing all constants involved in the SHG
process such as χ (2). pSHG(u, u′, u′′, ω) is the SHG phase
function describing the distribution of the SHG source term in
direction u arising from two linear specific intensities coming
from directions u′ and u′′. In the case of the correlated disorder
we consider here, it is given by

pSHG(u, u′, u′′, ω) ∝ p(|kr (2ω)u − kr (ω)u′ − kr (ω)u′′|),
(11)

where the p function is given in Eq. (9) and normalized such
that

∫
pSHG(u, u′, u′′, ω)du′u′′ = 1. Thus, the SHG phase

function is directly related to the disorder correlation function
in the same way as the standard phase function since the
SHG and scattering processes both take place in the scatterers.
We note that these equations are obtained in the perturbative
approach, meaning that the beam at ω is a source term for the
beam at 2ω, but the beam at 2ω has a negligible impact on the
beam at ω.

C. Numerical simulations

Equations (7) and (10) are solved using a Monte Carlo
scheme in geometries as close as possible to that in the real
experiments (see Fig. 4 for details). In particular, the crystal
grains have sizes ranging from 2 to 8 µm, which is large
compared to the wavelength. The correlation length is taken
such that k0� = 3 for all simulations. Using this value and
the experimental estimate of the real part nr of the effective
refractive index, we get estimates for the anisotropy factors
of g(ω) = 0.95 and g(2ω) = 0.99. Then the values of the
scattering mean free paths are deduced from the experimental
estimates of the transport mean free paths using the relation
�s = �t (1 − g). Experimental estimates are directly used for
the absorption mean free paths �a. This shows that the disorder
correlation length � impacts only �s. Recalling that �t are
small compared to the dimensions of the pellet, the diffusive

(a) (b)

FIG. 4. Geometry considered in the Monte Carlo simulations.
The illumination is a Gaussian beam with waist wi impacting the
front face of the pellet under normal incidence. The detection is
performed (a) through the back face of the pellet (temporal simu-
lation) or (b) along the side face (spatial simulation). The cylinder
contains the powder (pellet) and has a radius a and a height L.
The refractive index mismatch between the cylinder (real part of the
effective refractive index nr) and the external medium assumed to be
air is also taken into account in the simulation.

regime applies. Thus, �t is much more important than �s at
large depth and time, and the real value of k0� weakly impacts
the numerical results except at small depth and time, where
slight variations can occur. In practice, three simulations are
performed. The first is done to compute a six-dimensional
map (one temporal, three positional, and two directional co-
ordinates) of the specific intensity at ω. It also gives access
to the linear detected flux at ω denoted by FIR(t ). The second
is done to evaluate the SHG detected flux at 2ω [i.e., FSHG(t )]
using the previous map as a source term. The last is performed
to estimate the linear detected flux at 2ω [i.e., FIG(t )].

The results are shown in Figs. 5 and 6 for the temporal
and spatial profiles, respectively. The specific parameters for
each experiment are detailed in the captions and are chosen to
mimic the experiments. Both figures show very good agree-
ment with the experiment. Let us first consider the temporal
results in Fig. 5. We clearly recover the correct exponential
time decay of the flux at long times, which is a feature of
the diffusive regime. In particular, the long-time dependence
of the flux at the fundamental frequency FIR(t ) is given by
exp[−�(ω)t]. In the diffusive regime, since all radiative quan-
tities have the same time dependence, the specific intensity
itself also decays according to the same law. This implies that
the source term of the nonlinear RTE has a long-time depen-
dence given by exp[−2�(ω)t]. By convolving this source term
with the time response of a short pulse, we simply deduce the
long-time behavior of the SHG flux at 2ω, which is given by

FSHG(t ) ∝
∫ t

0
e−2�(ω)t ′

e−�(2ω)(t−t ′ )dt ′

∝
{

e−�(2ω)t −e−2�(ω)t

2�(ω)−�(2ω) if �(2ω) �= 2�(ω),

te−�(2ω)t otherwise.
(12)

For the powder considered here, 2�(ω) > �(2ω), which
means that the long-time behavior of the SHG flux is given
by e−�(2ω)t . In other words, the IG and SHG beams have
the same time decay at long times. This is clearly seen in
Fig. 5. However, we note that a different behavior could have
been observed depending on the order relation between 2�(ω)
and �(2ω). We also note that Eq. (12) is obtained under the
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FIG. 5. Numerically simulated temporal transmitted flux profiles
of incident green (IG; blue solid line), fundamental infrared (IR;
orange dotted line), and second-harmonic-generated green (SHG;
green dashed line) light for the L = 5 mm pellet. Inset: flux profiles
on a semilog scale. We also observe a poorer SNR on the SHG curve.
This is due to slow numerical convergence (only a fraction of the
SHG light is collected on the detector since the source term for
the SHG beam is dispersed throughout the pellet and a large part of
the SHG beam emerges from the other sides of the pellet). All param-
eters are chosen to mimic the experiment. The pellet is illuminated
from the front face with an ultrashort Gaussian pulse of normalized
waist k0wi = 2.95 × 104 (at frequency ω) and k0wi = 1.77 × 104

(at frequency 2ω) and under normal incidence. The detection is
performed through the back face of the pellet [see Fig. 4(a)]. The
other parameters are given by k0a = 2.96 × 104, k0L = 2.96 × 104,
k0�s(ω) = 1.28 × 103, k0�s(2ω) = 1.89 × 102, k0�a(ω) = 1 × 1010,
k0�a(2ω) = 5.9 × 105, nr (ω) = 1.43, nr (2ω) = 1.45, and k0� = 3.

assumption of exponential decay at all times for all quantities
included in this calculation. Since this is valid only at long
times, slight deviations could be observed numerically when
comparing the IG and SHG beams. However, Fig. 5 shows that
this is not the case. A quick comparison with Fig. 2 reveals
very good qualitative agreement with the experiments.

Regarding the spatial distribution of intensity displayed in
Fig. 6, we clearly see that the green light in the linear domain
shows a maximum right at the input interface of the sample.
The fundamental IR light similarly shows a maximum slightly
deeper in the sample, obviously owing to the larger value of
�t , which is the consequence of the larger wavelength. The
generated second-harmonic light peaks much deeper into the
sample, reflecting the process of local generation and subse-
quent diffusion of the emitted light. These trends accurately
reproduce the experimental observations in Fig. 3 in a quan-
titative manner, certifying the completeness of the numerical
model. Overall, for the total spatiotemporal behavior, we can
claim the agreement is semiquantitative.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we experimentally and numerically inves-
tigated the diffusion of light in a second-order-nonlinear
disordered material with a strong nonlinear coefficient. In
the experiments, a cylindrical pellet of KDP microcrystals,

FIG. 6. Numerically simulated spatial flux profiles of incident
green (IG; blue solid line), fundamental infrared (IR; orange dotted
line), and second-harmonic-generated green (SHG; green dashed
line) light for the L = 5 mm pellet. Numerical diffusion profiles
show excellent agreement with the experimental results in Fig. 3.
All parameters are chosen to mimic the experiment. The pellet is
illuminated from the front face with a Gaussian beam of normalized
waist k0wi = 2.95 × 104 (at frequency ω) and k0wi = 1.77 × 104

(at frequency 2ω) and under normal incidence. The detection is
performed along the side face of the pellet at different depths z
[see Fig. 4(b)]. The other parameters are given by k0a = 2.96 × 104,
k0L = 2.96 × 104, k0�s(ω) = 1.28 × 103, k0�s(2ω) = 1.89 × 102,
k0�a(ω) = 1 × 1010, k0�a(2ω) = 5.9 × 105, nr (ω) = 1.43, nr (2ω) =
1.45, and k0� = 3.

packed in a random orientation, was employed. The spatial
and temporal diffusion profiles of fundamental and second-
harmonic light were measured, along with incident light at
the second-harmonic wavelength. The experimental data were
used to estimate the transport parameters to the best possible
accuracy. Next, the experimental results were supported by a
theoretical model derived from first principles and led to the
coupling of transport equations for the linear and nonlinear
beams. A Monte Carlo scheme was used to solve this model
numerically in the same geometry as in the experiment. Excel-
lent agreement was obtained for the spatial behavior seen in
the experiments, along with very good qualitative agreement
for the temporal behavior. Moreover, this model allowed a
clear interpretation of the experimental results.

We note that this work addresses spatial and temporal dif-
fusion separately for both fundamental and second-harmonic
light. In the domain of linear disorder, researchers have
investigated spatiotemporal diffusion [44,45], which has
very interesting implications in light transport. Naturally,
spatiotemporal diffusion of second-harmonic light simultane-
ously with the fundamental light will form an exciting frontier
in nonlinear disorder physics. Indeed, the streak camera used
for this work has the capability to simultaneously capture
spatial and temporal diffusion. In addition, in our cylindrical
geometry, there is a scope for exploration of transverse diffu-
sion of second-harmonic as well as fundamental light. These
topics will form the object of our future studies, starting with
the current numerical models. We expect the present work to
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lay down the platform for further modeling of light transport
in nonlinear disorder.
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APPENDIX A: DETERMINATION OF THE EFFECTIVE
REFRACTIVE INDICES AND INTERNAL REFLECTION

COEFFICIENTS

1. Determination of the real part of the effective refractive index
nr of the random medium

In the pellet, the volume fraction of the KDP is 0.88. The
Maxwell-Garnett equation reads [37](

εr − εm

εr + 2εm

)
= δi

(
εi − εm

εi + 2εm

)
, (A1)

where εr , εi, and εm are the real parts of the dielectric constant
of the medium, the inclusions, and the matrix, respectively,
and δi is the volume fraction of the inclusions. In our case,
the air percentage is smaller than the KDP powder. We can
therefore assume that air is the inclusion and KDP is the
matrix. Setting δi = 0.12, εi = 1, and εm = n2

m = (1.5124)2,
we get nr (2ω) = 1.45 at λ = 532 nm. At λ = 1064 nm, the
refractive index of KDP is 1.4938 [46]. The calculated value
of nr (ω) is 1.4336.

2. Determination of the internal reflection coefficient R

We can obtain an estimate of the reflection coefficient using
Fresnel’s law. We assume that the direction and polarization
of diffusing light incident on the boundary from inside the
sample are completely random and the sample surface is flat.
For an angle of incidence θ , the power reflection coefficient
R(θ ) averaged over polarization is

R(θ ) = R⊥(θ ) + R‖(θ )

2
, (A2)

where

R⊥(θ ) =

∣∣∣∣∣∣∣
n1 cos θ − n2

√
1 − ( n1

n2
sin θ

)2

n1 cos θ + n2

√
1 − ( n1

n2
sin θ

)2

∣∣∣∣∣∣∣
2

(A3)

and

R‖(θ ) =

∣∣∣∣∣∣∣
n1

√
1 − ( n1

n2
sin θ

)2 − n2 cos θ

n1

√
1 − ( n1

n2
sin θ

)2 + n2 cos θ

∣∣∣∣∣∣∣
2

(A4)

are the Fresnel power reflection coefficients for incident light
polarized perpendicular and parallel to the plane of incidence,
respectively. Then the power internal reflection coefficient R
averaged over the incident angle θ is given by [38]

R = 3C2 + 2C1

3C2 − 2C1 + 2
, (A5)

where

C1 =
∫ π

2

0
R(θ ) sin θ cos θdθ (A6)

and

C2 =
∫ π

2

0
R(θ ) sin θ cos2 θdθ. (A7)

Setting n1 = nr and n2 = 1, we get R(ω) = 0.52 (i.e., for λ =
1064 nm) and R(2ω) = 0.53 (i.e., for λ = 532 nm).

APPENDIX B: DERIVATIONS OF THE TRANSPORT
EQUATIONS

This Appendix is dedicated to the derivations of the trans-
port equations at ω and 2ω. We report here the main steps,
and we detail the computation of the SHG source term for
the nonlinear transport equation at 2ω. The derivations rely
mainly on the standard multiple-scattering theory, the de-
tails of which can be found in various books and reviews
[2,47–49].

1. Scattering potential and Green’s function

One of the main building blocks of the multiple-scattering
theory is the scattering potential defined by

V (r, ω) = k2
0[ε(r, ω) − εb(ω)], (B1)

where εb(ω) is the permittivity of the background homoge-
neous medium (reference medium). In order to ensure that
the perturbative method applied afterward is as accurate as
possible, it is advisable to choose for εb the statistical average
of the permittivity [i.e., 〈ε(r, ω)〉], which leads to

V (r, ω) = k2
0δε(r, ω). (B2)

This potential describes the scattering process of the het-
erogeneities of the medium. The second ingredient is the
background Green’s function that connects two consecutive
scattering events. It is given by

Gb(r − r′, ω) = exp(ikb|r − r′|)
4π |r − r′| , (B3)

where kb = nbk0 is the wave vector in the background
medium. We note that this Green’s function is a scalar quantity
here since we choose to neglect the polarization. Indeed, it can
be shown that the polarization is completely washed out on av-
erage after a propagation distance of the order of the transport
mean free path inside a disordered medium [43]. In particular,
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this expression given by Eq. (B3) corresponds to the Green’s
function of the scalar homogeneous wave equation given by

�Gb(r − r′, ω) + k2
bGb(r − r′, ω) = −δ(r − r′). (B4)

2. Self-energy and intensity vertex

Two operators are used to describe the propagation of the
field in disordered media: the self-energy �(r, r′, ω) entering
the Dyson equation that governs the average field propaga-
tion and the intensity vertex �(r, r′,ρ,ρ′, ω) entering the
Bethe-Salpeter equation that governs the field-field correla-
tion evolution. Both contain an infinite series of scattering
sequences that are statistically not factorizable. Considering a
dilute medium (quantified further by the condition kr�e � 1),
these scattering sequences can be seen as Taylor expansions.
Thus, we can apply a perturbative approach and truncate the
series to the first nonzero order. In the following, we consider
only the frequency ω, but the same result holds at 2ω (for only
the linear beams).

For the self-energy �, this gives

�(r, r′) = 〈V (r, ω)Gb(r − r′, ω)V (r′, ω)〉c, (B5)

where 〈·〉c represents a statistical average restricted to the
connected part, i.e., 〈V GbV 〉c = 〈V GbV 〉 − 〈V 〉Gb〈V 〉. Since
the disorder correlation function C depends only on |r − r′|
(statistical homogeneity and isotropy), we have in the Fourier
domain

�(k, k′, ω) = 8π3δ(k − k′)�̃(k, ω). (B6)

This allows us to define the real part of the effective optical
index by

nr (ω) = nb + Re �̃(kr, ω)

2nrk2
0

, (B7)

where we recall that kr (ω) = nr (ω)k0 and k0 = ω/c. This is a
closed equation, and the computation of nr in practice is not
an easy task except in very dilute media. That being known,
the extinction mean free path is defined by

1

�e(ω)
= Im �̃(kr, ω)

kr
. (B8)

For the intensity vertex �, we have

�(r, r′,ρ,ρ′, ω) = 〈V (r, ω)V ∗(ρ, ω)〉cδ(r′ − r′)δ(ρ − ρ′).
(B9)

By invoking once again the statistical homogeneity and
isotropy, we get into the Fourier domain

�(k, k′,κ,κ′, ω) = 8π3δ(k − k′ − κ + κ′)�̃(k, k′,κ,κ′, ω),
(B10)

which leads to the following expressions for the phase func-
tion and the scattering mean free path:

1

�s(ω)
p(u, u′, ω) = 1

16π2
�̃(kru, kru′, kru, kru′, ω), (B11)

with the normalization∫
p(u, u′, ω)du′ = 1. (B12)

This finally leads to

1

�s(ω)
= k2

0 |�ε|2
16π2

∫
4π

C(q)du′, (B13)

p(u, u′, ω) = C(q)

[∫
4π

C(q)du′
]−1

(B14)

= k2
r �

2 exp[−q2�2/2]

2π
[
1 − exp

(−2k2
r �

2
)] , (B15)

with q = kr (u − u′) and C(q) being the Fourier transform of
the disorder correlation function C. In the case of a nonab-
sorbing medium where the imaginary part of the permittivity
vanishes, we have, from Eqs. (B8) and (B13),

1

�e(ω)
= 1

�s(ω)
= k2

0 |�ε|2
16π2

∫
4π

C(kr (u − u′))du′, (B16)

which implies that �−1
a (ω) = 0. In practice for the numerical

simulations performed in this study, the parameters nr , �e,
and �s are not computed using � and � and are given by
experimental measurements. However, Eq. (B15) is used for
the profile of the phase function.

3. Transport equation in the linear regime

Let us first consider the transport equation at ω in the linear
regime. Considering a dilute medium such that kr�e(ω) � 1,
we can show that the dominant term in the field-field correla-
tion function is given by the well-known ladder diagram:

(B17)

In this representation, the top line represents a path for the
electric field E , and the bottom line is for a path of its
complex conjugate E∗. Solid and dashed thick lines corre-
spond to average Green’s functions (describing propagation
between consecutive scattering events) and average fields,
respectively. Circles denote scattering events, and vertical
dashed lines represent statistical correlations between scat-
tering events through Eq. (B9). This diagram shows that the
field-field correlation function evolution essentially reduces
to the propagation of intensity. This implies that the field-
field correlation function is governed by a transport equation,
namely, the radiative-transfer equation (RTE), which reads[

1

vE (ω)

∂

∂t
+ u · ∇r + 1

�e(ω)

]
I (r, u, t, ω)

= 1

�s(ω)

∫
p(u, u′, ω)I (r, u′, t, ω)du′, (B18)

which is Eq. (7).

4. Transport equation in the second-harmonic regime

Since we consider a perturbative approach for the SHG,
the main point to address in that case is the expression
of the source term. We can show theoretically and validate
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numerically [32] that the leading diagram is given by

(B19)

where the squares denote the second-harmonic processes. This diagram confirms that a transport equation for the SHG beam is
still valid, but with a source term given by the product of two specific intensities at ω. In terms of an equation, this source term
is given by

S(r,ρ, 2ω) =
∫

〈G(r − r′, 2ω)〉〈G∗(ρ − ρ′, 2ω)〉�SHG(r′, r′′, r′′′,ρ′,ρ′′,ρ′′′, ω)

× 〈E (r′′, ω)E∗(ρ′′, ω)〉〈E (r′′′, ω)E∗(ρ′′′, ω)〉dr′dr′′dr′′′dρ′dρ′′dρ′′′, (B20)

where �SHG is the SHG vertex, given by

�SHG(r, r′, r′′,ρ,ρ′,ρ′′, ω) = 〈χ (2)(r, ω)χ (2)∗(ρ, ω)〉cδ(r − r′)δ(r − r′′)δ(ρ − ρ′)δ(ρ − ρ′′). (B21)

In the last expression, we keep the complex-conjugate notation for the second-order susceptibility χ (2) even though it is a real
quantity in order to remember that it corresponds to the complex-conjugate field. In the Fourier domain, making use of the
statistical homogeneity and isotropy again, we get

˜�SHG(k, k′, k′′,κ,κ′,κ′′, ω) = 8π3δ(k − k′ − k′′ − κ + κ′ + κ′′)�SHG(k, k′, k′′,κ,κ′,κ′′, ω). (B22)

From this, we can define a SHG phase function,

αpSHG(u, u′, u′′, ω) = 1

125π5
˜�SHG(kr (2ω)u, kr (ω)u′, kr (ω)u′′, kr (2ω)u, kr (ω)u′, kr (ω)u′′, ω). (B23)

α is a coefficient that takes into account all constants involved in the second-harmonic generation and is such that the second-
harmonic phase function is normalized as ∫

pSHG(u, u′, u′′, ω)du′du′′ = 1. (B24)

Plugging in the expression for the correlation function Cχ leads to

pSHG(u, u′, u′′, ω) ∝ exp

[
−q2�2

2

]
, (B25)

where q = kr (2ω)u − kr (ω)u′ − kr (ω)u′′ is the SHG scattering vector. We finally end up with the nonlinear RTE given by[
1

vE (2ω)

∂

∂t
+ u · ∇r + 1

�e(2ω)

]
I (r, u, t, 2ω) = 1

�s(2ω)

∫
p(u · u′, 2ω)I (r, u′, t, 2ω)du′

+ α

∫∫
pSHG(u, u′, u′′, ω)I (r, u′, t, ω)I (r, u′′, t, ω)du′du′′, (B26)

which is Eq. (10).
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