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Assisted metrology and preparation of macroscopic superpositions with split spin-squeezed states
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We analyze the conditional states in which one part of a split spin-squeezed state is left, upon performing a
collective spin measurement on the other part. For appropriate measurement directions and outcomes, we see
the possibility of obtaining states with high quantum Fisher information, even reaching the Heisenberg limit.
This allows us to propose a metrological protocol that can outperform standard approaches, for example, in a
situation where the number of particles in the probe is bounded. The robustness of this protocol is investigated
by considering realistic forms of noise present in cold-atom experiments, such as particle number fluctuations
and imperfect detection. Ultimately, we show how this measurement-based state-preparation approach can allow
for the conditional (i.e., heralded) preparation of spin Schrödinger’s cat states even when the initial state before
splitting is only mildly squeezed.
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I. INTRODUCTION

Spin-squeezed states are of paramount importance for in-
vestigating multipartite quantum correlation, as well as for
quantum-enhanced metrology applications. Experimentally,
these states are nowadays routinely prepared in atomic ensem-
bles, either by controlling atomic collisions, or by light-matter
interaction. In these platforms, a number of studies revealed
the rich entanglement structure of spin-squeezed states [1]
and demonstrated their usefulness for performing measure-
ments with a precision surpassing the standard quantum
limit [2].

Recently, the concept of split spin-squeezed states was
introduced, where an ensemble of spin-squeezed particles
is spatially distributed into individually addressable modes
[3]. Through this process, the particle entanglement present
in the initial state give origin to mode entanglement be-
tween its partitions [4], highlighting also a strong duality
between these two concepts [5]. After their first experi-
mental realization with Bose-Einstein condensates [6], split
spin-squeezed states raised a lot of interest for their possi-
ble applications in quantum technologies and fundamental
studies. Examples include theoretical investigations of their
potential quantum metrology [7,8], recently demonstrated
experimentally in [9], and for investigating multipartite quan-
tum correlations [10–14]. Taking this successful example
into consideration, it would be crucial to understand whether
other quantum information tasks could be accessible by such
states.

*qiongyihe@pku.edu.cn
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In this context, we provide here an alternative metrological
protocol enabled by split spin-squeezed states. The idea is
based on the fact that, due to the shared quantum correlations
between the two parties of the system, performing a local
measurement on one of them leaves the other in a conditional
state that can have an extremely high sensitivity. This protocol
can outperform the standard approach of using spin-squeezed
states when the number of particles in the probe, as well as the
state preparation time, are limited.

Moreover, our measurement-based state preparation proto-
col can result in the generation of macroscopic superposition
states, also known as spin Schrödinger cat states [15,16].
In addtion to their interest for metrology, such states are
appealing for fundamental studies of quantum correlations
in many-body systems. Their nonclassicality is notoriously
related to interference fringes and negative regions in the
Wigner function, which are typically difficult to prepare
experimentally.

In summary, our work analyses a regime of system pa-
rameters and resources in which an assisted metrological
protocol using split spin-squeezed states can offer an advan-
tage. Moreover, we investigate the use of such states for the
heralded preparations of macroscopic superposition states.
These ideas could be implemented experimentally with Bose-
Einstein condensates, where the preparation of cat-like spin
states turned out to be extremely challenging using conven-
tional approaches.

II. SINGLE PROBE METROLOGY WITH OAT STATES

In a typical quantum metrology scheme, the phase shift
θ to be determined is encoded in a N-partite probe state ρ0

by a generator H as ρ = e−iθHρ0eiθH . A fundamental limit
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to the maximum phase sensitivity is provided by the so-called
quantum Cramér-Rao bound �θ � �θQCR ≡ 1/

√
vFQ[ρ, H],

where FQ[ρ, H] is the quantum Fisher information (QFI) and
v is the number of independent measurements [2]. For a pure
state, the QFI can be expressed in terms of the variance of H
as FQ[ρ, H] = 4Var[ρ, H]. The standard quantum limit tells
us that, for all classical states FQ[ρ, H] � N , while according
to the Heisenberg limit quantum states satisfy FQ[ρ, H] � N2.
Therefore, observing FQ[ρ, H] > N implies the presence of
metrologically useful entanglement [2]. Moreover, a high QFI
can be related to correlations that are even stronger than en-
tanglement, namely, Bell correlations [17].

Of paramount importance for preparing atomic ensembles
in quantum states with large QFI is the one-axis twist-
ing (OAT) dynamics [18]. Starting from an N-partite spin
coherent state pointing along the +x direction, the OAT
Hamiltonian H = h̄χS2

z gives, after an evolution time t , the
state

|ψ (μ)〉 = 1√
2N

N∑
k=0

√(
N

k

)
e−i μ

2 (N/2−k)2 |k〉, (1)

where μ = 2χt is an adimensional parameter and |k〉 is the
Dicke state with k excitations.

The properties of state Eq. (1) have been extensively inves-
tigated theoretically [2,19]. Notably, expectation values of the
collective spin operator can be computed analytically, also for
high moments [20]. This allows us to obtain analytical expres-
sions also for the eigenvalues of the 3 × 3 covariance matrix
�i j = Cov[Si, S j], with Si ∈ {Sx, Sy, Sz}. The basis change
that diagonalizes � is of clear physical intuition and often con-
venient to use. Together with the polarization direction x = x′,
we introduce the squeezing direction z′ = − sin θ∗y + cos θ∗z
and antisqueezing directions y′ = cos θ∗y + sin θ∗z, with

θ∗ = 1

2
arctan

(
4 sin

(
μ

2

)
cosN−2

(
μ

2

)
1 − cosN−2(μ)

)
, (2)

as the directions that respectively minimize (z′) and maximize
(y′) the second moment of the collective spin.

The maximum eigenvalue of the covariance matrix � is
also proportional to the QFI of the state Eq. (1). One obtains a
QFI larger than N for 0 < μ < 2π and even reaching N2 for
μ = π , when a “Schödinger cat” state is obtained [15].

Experimentally, the OAT dynamics is implemented in, e.g.,
ion traps through light-mediated interactions [21] or BECs
through atomic elastic collisions [22] and it is routinely used
for the preparation of spin-squeezed states. These enabled nu-
merous demonstrations of quantum-enhanced metrology, such
as being applied to measuring magnetic fields [23], improving
frequency resolution in atomic clocks [24,25], and realizing
squeezed matter-wave interferometry [26].

If we consider a metrological application where the num-
ber of particles in the probe is limited to some maximum
number, we also set a limit to the achievable QFI (i.e., the
Heisenberg limit) and thus to the sensitivity. However, one
might argue that the state preparation could involve more par-
ticles than the one used in the probe itself and ask whether this
could be used to provide some advantage. While it is clear that
if the ancillary particles are just discarded no advantage can be

FIG. 1. State preparation and metrology with split atomic en-
sembles. (a) To prepare nonclassical states of many-body systems,
traditional approaches rely on implementing a nonlinear dynamic in
a trapped ensemble. (b) Instead, our assisted protocol is based on first
spatially splitting a mildly entangled ensemble to then measure one
of the two parts. Because of the shared correlations, this results in
projecting the other half into a multipartite state that can have strong
quantum correlations.

obtained, it is not trivial to see whether the probe sensitivity
can be improved by a partial characterization of the ancillary
particles’ state. Here, by partial characterization, we mean the
information that can be obtained from some measurement of
experimentally practical implementation, such as the result
of a collective measurement performed on the ensemble of
ancillary particles.

This question can be refined even further by considering
a more realistic situation that includes the relevant noise
sources. In fact, during the preparation of squeezed BECs
there are inevitable decoherence mechanisms resulting from
technical and intrinsic noise [27,28]. The first can originate
from imperfections in the implementation, while the second
is fundamental as it originates from particle losses. For BECs,
these noise sources limit the OAT evolution to short times
(μ < N−2/3).

III. ASSISTED METROLOGY

To present our metrological protocol, we consider the case
of an atomic ensemble in which the OAT dynamics is fol-
lowed by a spatial separation of the particles into two distinct
partitions [3], see Fig. 1. This last step can be realized by
modifying the trapping potential to a double-well [29] or by
exploiting additional internal states of the atoms [30], and it
can formally be described by a beam-splitter transformation.
The resulting split spin-squeezed state can thus be written as
[3]

|	(μ)〉 = 1

2N

N∑
NA=0

NA∑
kA=0

NB∑
kB=0

√(
N

NA

)(
NA

kA

)(
NB

kB

)

× e−i μ

2 (N/2−kA−kB )2 |kA〉NA |kB〉NB , (3)

where Nα is the number of particles for partition α ∈ {A, B}
with NA + NB = N , and |kα〉Nα

is the Nα-particle Dicke state
with kα excitations. Crucial to this state is that the multipartite
entanglement generated by the OAT dynamics is partially
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FIG. 2. Measurements on the xy plane. Properties of the conditional states obtained from a split spin-squeezed state with N = 100, NA =
NB = N/2. (a) For lA = NA/2, FQ/NB as a function of the measurement direction θA and selected Wigner functions showing squeezed and
cat-like states. Fixing θA such that the measurement direction is either y′ or z′, we show the probability of measuring lA, panels (b), (c)
respectively, and the FQ/NB of the associated states, panels (d), (e). For lA = NA/2, we show in (f) a comparison between FQ/NB of conditional
states and of OAT states, as a function of the squeezing μ. Here, the comparison is for a fixed number of particles NB in the probe state.

“converted” by the spatial splitting into mode entanglement
between the A and B partitions.

Split spin-squeezed states have already been realized ex-
perimentally [6,31], and are thus becoming relevant for
practical metrological applications [9]. In the protocol we
consider, NB particles constitute the probe whose sensitivity
might depends on the operations performed on the NA an-
cillary particles. In the following we investigate the probe’s
conditional states obtained upon performing a collective spin
measurement on A and discuss in which scenarios this assisted
protocol can provide a better metrological performance than
the standard OAT dynamics.

A. Ideal scenario

Let us consider the situation in which it is performed a
measurement of the number of ancilla particles and of their
collective spin SA

n along direction n. Note that these two
physical quantities can be measured simultaneously, as the
associated operators commute. Obtaining as result (NA, lA),
the probe particles are left in the (unnormalized) state

|	(μ)B〉 = n
NA

〈lA|	(μ)〉, (4)

where n
NA

〈lA| is the NA-particle Dicke state with lA excitations
for SA

n . The probability for this to state to occur is given by

p(lA, NA|n) = 1

22N

NA∑
kA=0

NA∑
k′

A=0

N−NA∑
kB=0

(
N

NA

)(
N − NA

kB

)√(
NA

kA

)(
NA

k′
A

)
e−i μ

2 (N/2−kA−kB )2
ei μ

2 (N/2−k′
A−kB )2 n

NA
〈lA|kA〉NA NA〈k′

A|lA〉n
NA

. (5)

This expression allows us to introduce the probability of
obtaining result lA from a measurement of ŜA

n on NA parti-
cles, namely, pNA,n(lA) = p(lA, NA|n)/p(NA), where p(Nα ) =
2−N

( N
Nα

)
is the probability of having Nα particles in mode

α ∈ {A, B}.
For a given NA it is worth investigating the conditional

states Eq. (4), their QFI, and their probability to occur Eq. (5).
From our analytical expression it is possible to consider ar-
bitrary measurement directions n and results lA, but in the
following we will focus on discussing the parameters we
found most interesting.

We start considering a collective spin measurement on the
yz plane performed locally on A, so that SA

n = sin θASA
y′ +

cos θASA
z′ , where θA is the angle between the measurement

and the squeezing direction z′. For lA = NA/2, we show in
Fig. 2(a) the QFI of the conditional probe states as a function
of θA. Interestingly, for small values of μ conditional states
with large QFI are obtained for θA = 0 (i.e., the squeezing di-
rection z′), while for larger values of μ a large QFI is obtained
for θA ≈ π/2 (i.e., the antisqueezing direction y′). To under-

stand better this behavior, we look at the Wigner functions of
the conditional probe states resulting from different measure-
ment angles and levels of squeezing. Interestingly, we observe
that a measurement along θA ≈ 0 results in conditional states
that resemble spin-squeezed and oversqueezed states, while
a measurement along θA ≈ π/2 results in conditional states
that resemble a superposition of coherent spin states, i.e., a
spin cat state. To analyze the probability p(lA) ≡ pNA,n(lA) of
these states to occur, we plot in Figs. 2(b) and 2(c) the value
of Eq. (5) for different levels of squeezing. As μ increases,
if the measurement is performed along the antisqueezing di-
rection y′, p(lA) tends to spread uniformly over all range of lA
[see Fig. 2(b)], while for a measurement along the squeezing
direction z′, then p(lA) gets peaked around lA = NA/2 [see
Fig. 2(c)]. For both measurement directions, and for different
results lA, we can then compute the QFI of the conditional
states, see Figs. 2(d) and 2(e).

With these in hand, we want to compare the metrolog-
ical advantage given by the conditional probe states just
investigated and an OAT state. The resources we keep
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constrained are the number of atoms in the probe state and
the adimensional squeezing parameter μ. For a nonlinearity χ

independent of the particle number, the latter constraint corre-
sponds to keeping fixed the state preparation time t = μ/2χ .
In Fig. 2(f) we compare the value of FQ/NB for the different
conditional states just discussed, with the one for an OAT state
with NB = 50 particles. This comparison is meaningful for a
scenario where the number of particle in the probe is limited,
but additional ancillary particles not interacting with the field
to be estimated can be included in the state preparation and
measurement. Interestingly, we see that there are situations
where the conditional states reach much higher FQ/NB than
the OAT state and that one can even saturate the Heisenberg
limit, i.e., FQ/NB ≈ NB, for μ 
 π .

In particular, when the measurement direction is aligned
with the antisqueezing direction y′, we obtain for relatively
large values of μ (μ > 0.4 for NA = NB = 50) conditional
states with FQ/NB that is, in general, high compared to a
simple OAT state is observed. Interestingly, we also observe
large fluctuations of FQ/NB for μ > 0.5 and that it is possible
to reach FQ/NB ≈ NB for μ 
 π (see Supplemental Material
[32], Sec. II). On the other hand, when the measurement is
aligned with the squeezing direction z′, the value of FQ/NB

obtained for the conditional states roughly follows the one
for an OAT state, apart for small μ. This regime is of par-
ticular interest, as (i) these values of μ are the one typically
explored in cold atom experiments, (ii) in this regime one
can exceed the FQ/NB of an OAT state, and (iii) this occurs
with high probability since p(lA) is peaked around lA = NA/2.
Moreover, we will show in the following section that this
configuration is also robust to noise, in the sense of particle
number fluctuations and imperfect detection.

We then consider a collective spin measurement along x
performed locally on A. The probability to obtain a certain
measurement result lA strongly depends on the amount of
squeezing μ, Fig. 3(a). In fact, for μ = 0 the state is fully
polarized along x, and one has lA = NA with unit probabil-
ity, but when μ increases the state starts to “wrap around”
the Bloch sphere, resulting in a nonzero probability for all
possible lA. The QFI for the associated conditional states is
illustrated in Fig. 3(b), showing a large variation even reach-
ing the Heisenberg limit. If the result lA = NA is obtained,
the conditional probe state is a mildly squeezed spin state.
However, as soon as one obtains lA < NA, the resulting condi-
tional state resembles a spin cat state, Fig. 3(c). Note that for
lA > NA/2 the angular separation of the coherent spin states
participating in the superposition, and therefore, also the num-
ber of interference fringes, scales with NA − lA. Moreover,
remember that even if conditional states with FQ/NB ≈ NB

are possible, these occur with very small probabilities. To
compare the metrological advantage given by these condi-
tional states and an OAT state we show in Fig. 3(d) the
corresponding QFI values. For relatively large values of μ

(μ > 0.3 for NA = NB = 50) we obtain conditional states
with FQ/NB that strongly fluctuates, taking values both larger
and lower than the one of an OAT state. The behavior is
much more regular for small values of μ, where we can
see a regime in which conditional states with lA < NA give
a FQ/NB growing in time much faster than the one of an
OAT state[see μ < 0.1 in Fig. 3(d)]. This regime is the one

FIG. 3. Measurements along the x direction. Properties of the
conditional states obtained from a split spin-squeezed state with N =
100, NA = NB = N/2. (a) Probability of measuring lA for different
levels of squeezing and (b) the FQ/NB of the associated conditional
states. (c) Selected Wigner functions showing cat-like states of dif-
ferent size. (d) Comparison between FQ/NB of conditional states and
of OAT states, as a function of the squeezing μ. Here, the comparison
is for a fixed number of particles NB in the probe state.

resulting in conditional states that closely resemble spin cat
states.

In Sec. I of the Supplemental Material [32] we give more
details about the states considered so far, while in Sec. II
of [32] we show Wigner functions of the conditional states
resulting from several other measurement directions and out-
comes, together with their properties.

B. Noisy scenarios

So far we considered a fixed NA, but the splitting process
resulting in the state Eq. (3) is associated to partition noise
which makes NA and NB = N − NA fluctuate. For the equal
(50:50) splitting we considered, the probability to observe
Nα particles in mode α = A, B is simply given by the Bi-
nomial distribution p(Nα ). Concretely, this means that in an
experiment the probe states will have a fluctuating number
of particles and, therefore, a fluctuating sensitivity. In a prac-
tical scenario it would be extremely inefficient to postselect
only experimental realisations with a given NB, therefore, we
might ask what is the average sensitivity if all realizations
are considered. In each realization, A′s measurement gives
knowledge of NA and lA, which would allow us to perform
a local optimization on the B side to exploit the maximum
sensitivity of the conditional state. We can thus define the
average QFI density as〈

FQ

NB

〉
lA

=
N∑

NB=0

p(NB)
FQ

[
ρB

lA,NA|n
]

NB
, (6)

where FB[ρB
lA,NA|n] is the QFI of the conditional probe state

ρB
lA,NA|n. This last term is obtained from a measurement on

A along the direction specified by n and giving as result lA.
However, note that lA has now to be a function of NA since
the size of system A is fluctuating. For example, we could
compute Eq. (6) for the case when lA = �NA/2�, which we

053327-4



ASSISTED METROLOGY AND PREPARATION OF … PHYSICAL REVIEW A 108, 053327 (2023)

have seen to be the most likely result for measurements on
the yz plane and small μ, see Figs. 2(b) and 2(c). Remarkably,
we observe that there is no appreciable difference between a
numerical evaluation of 〈FQ/NB〉 for measurements on the yz
plane and lA = �NA/2� and the value of FQ/NB when NA =
NB = N/2 and lA = NA/2. In other words, averaging FQ/NB

over the distribution p(NB) seems to give a result compatible
with the value of FQ/NB when NB = N/2. This could be ex-
plained by noting that (i) for large N the distribution p(NB)
is sharply peaked and symmetric around NB = N/2, and (ii)
in the averaging, the FQ/NB of a state with NB = N/2 + k
particles compensates the one of a state with NB = N/2 − k
particles, resulting in a value very close to the FQ/NB of a
state with NB = N/2 particles. Perhaps surprisingly, we find
that this correspondence holds for any value of μ, and for
different choices of the function for lA (e.g., lA = NA − 1 for
measurements of SA

x ). More details about this comparison can
be found in Sec. II B of the Supplemental Material [32]. There,
we also compare another possible definition of average QFI in
the case where no measurement optimisation is done on the B
side depending on the value of NB [still, the same postselection
according to lA(NA) is applied]. Even in this scenario, we
observe that the average QFI is compatible with the value of
FQ/NB when NB = N/2, which can be attributed to the fact
that conditional states with different NB ≈ N/2 can appear
very similar.

The second type of noise that we analyze is a measure-
ment noise that results in errors on the observed value of lA.
Experimentally, this can originate from imperfect atom num-
ber counting, which always happens as detectors have finite
resolution. We model this noise as a Gaussian distribution
centered around lA and of standard deviation σ , such that
if the value l∗

A is observed there is a probability plA,σ (l∗
A ) =

(2πσ 2)−1/2e−(l∗A−lA )2/2σ 2
for the true value to be lA.

Analogously to the previous case, we define the QFI aver-
aged over different values of lA as〈

FQ

NB

〉
l∗A

= FQ
[
N

∑NA
lA=0 pNA,n(lA)plA,σ (l∗

A )ρB
lA,NA|n

]
NB

, (7)

where N−1 = ∑NA
lA=0 pNA,n(lA)plA,σ (l∗

A ) is a normalization pa-
rameter. We illustrate in Fig. 4 how this quantity varies as a
function of σ , and for different measurement settings on A.

Figure 4(a) shows that the noise we are considering affects
differently the conditional states obtained upon measurement
of SA

y′ or SA
z′ . In the first case, it appears that there exists a

critical level of noise σ � after which the average QFI is the
one of a mixture of coherent spin states. On the other hand,
this is not true in the second case, where we see the average
QFI decreasing only asymptotically. We can understand this
behavior by looking at the Wigners in Fig. 2(a), where it is
reasonable to expect that the Gaussian-like conditional states
resulting from SA

z′ measurements are more robust than the
cat-like conditional states resulting from SA

y′ measurements.
For a given amount of noise σ , it is interesting to know how
the average QFI changes as a function of the squeezing μ.
This is illustrated in Fig. 4(b), for different levels of noise
σ . Interestingly, while the fragility of the conditional states
obtained from SA

y′ measurements results in an average QFI
that can quickly fall below the value of the QFI for an OAT

FIG. 4. Robustness to detection noise. Sensitivity of the con-
ditional states obtained from a split spin-squeezed state with N =
100, NA = NB = N/2. Panels (a), (b) consider conditional states with
l∗
A = NA/2 resulting from measurements along y′ and z′, while panels

(c), (d) along x. Panels (a), (c) show FQ/NB as a function of the
detection noise σ , while (b), (d) as a function of the squeezing μ.
Dashed lines are for a level of noise σ1 = 0.49, while dotted lines
for σ2 = 1.37, which correspond to a 10% probability of having
lA = l∗

A ± 1 or lA = l∗
A ± 2, respectively.

state, conditional states obtained from SA
z′ measurements seem

able to achieve an average QFI larger than the one of an OTA
state for small μ, even if σ is relatively large. This result
further supports the statement made in the previous section,
saying that the regime of small μ and SA

z′ measurements is of
great interest for assisted metrology tasks since it results in
conditional states with high sensitivity and noise robustness.

Figure 4(c) shows how the measurement noise we are
considering affects the conditional states obtained upon mea-
surement of SA

x , for different values of the result l∗
A. As

expected, the average QFI of conditional states with larger
l∗
A decays faster as the noise σ increases since such states

are cat-like states with fine structures in the Wigner function
that are rapidly washed-out by noise, see Fig. 3(c). Also in
this scenario, it is interesting to know how the average QFI
changes as a function of the squeezing μ for a fixed amount
of noise σ . This is illustrated in Fig. 4(d), for conditional states
with different l∗

A. For small values of μ it is possible to see that
the QFI of an OAT state can be surpassed by the considered
conditional states, given a l∗

A < N and a small enough σ .
In addition, a further analysis on imperfection on atom

counting on both Nα and lA is discussed in the Supplemental
Material [32], Sec. III.

IV. MEASUREMENT-BASED PREPARATION
OF SPIN CAT STATES

Schödinger cat states are regarded as powerful resources
for quantum metrology, error-corrected quantum computing,
and fundamental studies. While cat states have been success-
fully implemented with trapped ions [33,34], Rydberg atoms
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[35], optical and microwave photons [36–40], and mechan-
ical oscillators [41], their realization atomic ensembles has
remained elusive. Difficulties lie in engineering the correct
nonlinear interactions, suppressing noise mechanisms (such
as particle losses and phase noise), and performing measure-
ments with high resolution.

It is known that the OAT dynamics Eq. (1) result in a
spin cat state at μ = π [15]. Nevertheless, following this
simple strategy is unrealistic for BECs due to the severe
particle losses that would occur during the long dynamics. Ap-
proaches to mitigate these have been investigated [16], even if
their experimental implementation remains challenging. Al-
ternatively, ideas have been proposed to prepare macroscopic
superpositions between two modes of a spin-1 BEC with a
dynamic governed by spin-exchanging collisions [42].

In the analysis of conditional states we presented, we have
seen that spin cat states can be obtained as a result of mea-
surement along suitable directions (e.g., SA

y′ or SA
x ), if the

appropriate results are obtained, see Figs. 2 and 3. We can thus
propose to use this approach for the heralded preparation of
macroscopic superposition states in spin-1/2 BECs. Crucially,
even if this protocol demands a high resolution in counting the
number of particles, it has the advantage of being potentially
fast, as the initial squeezed state that needs to be prepared
requires an OAT evolution parameter μ much smaller than π

for SA
x measurements, see Fig. 3.

To understand the robustness of the protocol we propose,
we investigate how finite measurement resolution affects the
prepared state. From Figs. 3 and 5 we can see that after a mea-
surement of SA

x different cat states are obtained depending on
the result lA. In particular, these states have different size (i.e.,
separation between the two coherent spin state components),
different parity (i.e., Wigner function value at the origin),
and different orientation on the yz plane. Therefore, if in an
experiment the measured l∗

A differs from the actual lA because
of noise, the resulting conditional state will be a statistical
mixture of different cat states. If this noise is too large, aver-
aging over different cat states would result in a washing-out of
the interference fringes and thus of the quantum coherence of
the superposition. Importantly, to estimate what is the amount
of noise that can be tolerated it is not enough to take into
account the variance σ 2 of the Gaussian distribution model-
ing uncertainties in lA, but also the probability that a certain
lA occurs for the parameters considered (see Eq. (5) of the
Supplemental Material [32]). For this reason, if result l∗

A is
obtained, the conditional mixed state takes the form

ρ(l∗
A, σ ) = N

NA∑
lA=0

pNA,ŜA
n
(lA)plA,σ (l∗

A )ρB
lA,NA|n. (8)

In Fig. 5(a) we plot the Wigner function of such states for dif-
ferent values of l∗

A and σ . Even if the precise value of the noise
that can be tolerated depends on the l∗

A considered, we observe
that around σ ≈ 0.7 the interference fringes characterising the
coherent superposition vanish. This value corresponds to an
approximate probability of p ≈ 0.2 for the real value of lA to
be l∗

A ± 1.
A more quantitative analysis of the effect of noise is ob-

tained by looking at the negativity of the Wigner function. For
continuous variable systems, Wigner negativity is related to

FIG. 5. Heralded generation of cat states. Nonclassical features
of the conditional states obtained from a split spin-squeezed state
with N = 100, NA = NB = N/2, after measuring SA

x . We show, as a
function of the level of detection noise σ . (a) Wigner functions of
conditional states associated to different l∗

A and (b) Wigner function
negativity as defined in Eq. (9).

the non-Gaussianity and nonclassicality of the state [43] and
it is known to be a resource for quantum information tasks
[44–46]. For spin systems, however, the Wigner function is
defined on a (generalized Bloch) sphere and the definition
of non-Gaussianity and negativity is subtle. Here we follow
Ref. [47] and compute the Wigner negativity as

W N (ρ) = 1

2

(
2 j + 1

4π

∫ π

θ=0

∫ 2π

φ=0
|Wρ (θ, φ)| sin θdθdφ − 1

)
,

(9)

where Wρ (θ, φ) is the value of the Wigner function at point
(θ, φ) on the Bloch sphere, see Sec. IV of the Supplemental
Material [32]. In Fig. 5(b) we show how the negativity of
the conditional mixed states’ Wigner function changes as a
function of the amount of noise σ , for different values of l∗

A.
For small σ , we have that ρ stays very close to a pure state
with l∗

A ≈ lA, so that its negativity stays constant until a critical
value of σ [approximately 0.4 in Fig. 5(b)] where conditional
states with l∗

A ± 1 start to contribute. After this point the neg-
ativity decreases until the point where it completely vanishes
[approximately 0.5–0.9 in Fig. 5(b)].

053327-6



ASSISTED METROLOGY AND PREPARATION OF … PHYSICAL REVIEW A 108, 053327 (2023)

V. CONCLUSION

We analyzed the conditional states resulting from a lo-
cal measurement in one of the two parts of a split-spin
squeezed state. The multipartite entanglement present in
these states, combined with the local measurement, leads
to a rich family of nontrivial conditional states exhibiting
high Fisher information or large Wigner negativities. These
were investigated quantitatively, for different local measure-
ment directions and outcomes, both without and with the
presence of noise. The latter was chosen to take into ac-
count particle number fluctuations in the conditional states,
which are intrinsic in the probabilistic (beam-splitter-like)
splitting process, as well as measurement imperfections. We
observe that the observed nonclassical properties are robust
to noise, and therefore of interest for applications in quantum
technologies.

In this context, we propose a protocol that can be used
to enhance the sensitivity of a measurement probe in a sce-
nario where its size, as well as the state preparation time,
are limited. Our idea is based on the fact that, if the probe
is entangled with an ancilla system, a local measurement
in the latter can prepare the probe in conditional states
with much higher sensitivity. Concretely, we analyze a sce-
nario where a split spin-squeezed state is shared between
the probe and the ancilla and identified the range of system
parameters and local measurements providing a metrological
advantage.

In addition this practical application, we note that the
measurement-based state preparation protocol we investigate

can be used to generate spin cat states. These macroscopic
superposition states are of interest not only for metrology, but
also for fundamental research. We quantify the nonclassicality
of the conditional states that can be prepared through a mea-
sure of their Wigner function negativity and investigated its
robustness with noise.

A natural platform where our ideas could be realized
are ultracold atomic ensembles, where spin-squeezed states
are routinely prepared for a number of applications. More
recently, the spatial splitting of such states was also demon-
strated [6,31], thus opening the path to the experimental study
of split spin-squeezed states [3]. Apart from shedding light on
multipartite quantum correlations [10–12], it is of interest to
investigate the usefulness of such states for quantum technolo-
gies, such as for quantum teleportation [48] and metrology
[7,8]. Our study brings a contribution in these interesting
directions.
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