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Random Kronig-Penney-type potentials for ultracold atoms using dark states
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A construction of a quasirandom potential for cold atoms using dark states emerging in � level configuration
is proposed. Speckle laser fields are used as a source of randomness. Anderson localisation in such potentials is
studied and compared with the known results for the speckle potential itself. It is found out that the localization
length is greatly decreased due to the nonlinear fashion in which dark-state potential is obtained. In effect,
random dark-state potentials resemble those occurring in random Kronig-Penney-type Hamiltonians.
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I. INTRODUCTION

A particle moving in the potential consisting of narrow
peaks may be described by Kronig-Penney-type Hamiltonians
[1]. When the potential is periodic, the problem is solved by a
simple Bloch approach. The presence of disorder enriches the
physics. Here one can imagine that periodicity is broken either
by different potential amplitudes at periodically distributed
sites, the case sometimes called a compositional disorder [2]
or by random position of scatterers having then structural
(or positional) disorder. In both cases one typically expects
Anderson localization [3] at all energies for one-dimensional
(1D) system and uncorrelated disorder. The presence of cor-
relations leads to mobility edges as predicted and verified
experimentally for a number of models [2,4–13].

A standard way to implement potentials for ultracold atoms
is to use off-resonant laser standing waves via an ac-Stark
effect [14]. Such light-shift potentials enabled experiments
typical for condensed matter systems as manifested by, e.g.,
the pioneering observation of Mott insulator to superfluid
quantum phase transition [15]. Later research in optical lattice
potentials involved the use of different atomic species that
feature strong, long-range interactions [16–18], creation of
topological insulators [19], or studies of nonequilibrium dy-
namics [20]. In particular, the 1D experiments with ultracold
atoms in random potentials have been conducted with the far
off-resonant speckle potential [21], bichromatic fields [22], or
digital mirror devices [23].

The ac-Stark-based approach leads, naturally, to diffrac-
tion limitations that prohibit creating potentials with features
much sharper than half of the laser wavelength. To remedy
that, a construction based on ultracold atoms in many-levels
coupling schemes [24,25] was proposed. Coherent population
of a dark state in the three-levels � configuration was used to
create a periodic comb potential consisting of subwavelength
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peaks [26]. Involving more than three atomic levels [27,28]
opens possibilities for more complex potentials [29,30].

In this work we will use a similar � scheme to create
random correlated potentials featuring sharp peaks, even be-
yond the diffraction limit. The underlying model and creation
of a random dark-state potential is described in Sec. II. The
shapes of the potential peaks and basic statistical properties of
the potential are quantitatively analyzed in Sec. III. We focus
on two cases. In Sec. III A both lasers forming the legs of
the � system are due to a speckle field. In Sec. III B one of
them is due to a running wave, with corresponding potential
consisting of equidistant sharp tall peaks of a (quasi)random
height.

In Sec. IV B, we study Anderson localization of a random
potential from Sec. III A, linking the localization length Lloc to
the correlations functions of the potential. We discuss the pos-
sibility for approximation of the potential by properly placed
Dirac-δ scatterers.

In Sec. V we analyze Anderson localization in potential
defined in Sec. III B. We also discuss the role of correlations
between potential peaks height on singularity in a dependence
of the localization length on energy.

II. MODEL

We consider a gas of ultracold atoms of mass m confined
to a 1D tube along the x axis by a tight transverse harmonic
confinement in y, z realized by the potential V (x, y, z) =
mω2

⊥(y2 + z2)/2. The h̄ω⊥ is assumed to be sufficiently large
for excited transverse modes to remain unpopulated. We
assume no confinement along the x direction, but in real ex-
periment one would use either harmonic confinement or sheet
light implementing hard-wall boundary condition [31].

The atoms are driven by resonant laser light coupling
three atomic (sub)levels in the � configuration as shown in
Fig. 1. We assume the gas is noninteracting. In Ref. [26] this
was realized using fermionic 171Yb, where s-wave contact
interactions were suppressed. Whether the scheme can be
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FIG. 1. The � level configuration considered in this work. The
states |1〉, |2〉, are assumed to be the ground-state sublevels while |3〉
is the excited state with the spontaneous emission rate �e. The Rabi
frequencies �i(x) may be due to laser standing waves or a speckle
field and are typically position dependent.

successfully implemented with bosons is still an open ques-
tion, due to possible detrimental effect of collisional losses.

The Hamiltonian of the model takes the form

H = − h̄2

2m

d2

dx2
+ Ha, (1)

Ha = h̄

2

⎛
⎝ 0 0 �∗

1(x)
0 0 �∗

2(x)
�1(x) �2(x) −i�e

⎞
⎠.

The Rabi frequencies �i, i = 1, 2 describe laser driving of the
corresponding transitions between basis states |i〉 and |3〉. The
�e denotes the spontaneous emission decay rate of the upper
state in the � scheme. The fields �i(x) can be due to a laser
standing wave or a speckle field as discussed later on.

The atomic part of the Hamiltonian, Ha for each x ∈ R has
a zero eigenvalue with associated dark-state eigenvector:

|D(x)〉=−�2(x)|1〉+�1(x)|2〉√
|�1(x)|2+|�2(x)|2

=cos αx|2〉−sin αx|1〉. (2)

The remaining eigenvectors |Bj (x)〉, j = 1, 2 are called bright
states since they have a nonzero contribution from the excited
state |3〉. When �e �= 0 the matrix Ha is non-Hermitian and
the set of right eigenvectors B = {|D(x)〉, |B1(x)〉, |B2(x)〉}
has the associated ket states 〈D(x)|, 〈Bj (x)| that complete the
biorthonormal system. The latter are always meant as proper
left eigenvectors, and in general 〈Bi(x)| �= |Bi(x)〉†.

The bright-state energies are

Ej (x) = h̄

4
(−i� + (−1) j

√
−�2

e + 4|�1(x)|2 + 4|�2(x)|2).

(3)

The gap to bright states is nonzero if both �1(x),�2(x) do
not vanish at some x. This can be ensured, e.g., when one of
�1(x) is position independent and nonzero.

When expressed in the position-dependent basis B, de-
fined above, the Hamiltonian (1) takes the form (see
Refs. [29,30,32]):

H = 1

2m
(p − A)2 +

2∑
i=1

Ej (x)|Bj〉〈Bj | (4)

with Ai j = −ih̄〈Bi|∂x|B j〉. One can always choose the local
phases of basis vectors |1〉, . . . , |3〉 such that �i(x) are real.

Then, after projection onto |D(x)〉 state the Hamiltonian (1)
reduces to the form:

H = − h̄2

2m

d2

dx2
+ VD(x), (5)

where

VD(x) = − h̄2

2m
〈D(x)|∂xx|D(x)〉, (6)

is the dark-state potential. Using Eq. (2) one obtains:

VD(x) = h̄2

2m

[�′
1(x)�2(x) − �1(x)�′

2(x)]2[
�2

1(x) + �2
2(x)

]2 = h̄2

2m
(α′

x )2.

(7)

Under the condition

|Ej (x)| 	 |Akl (x)|, j ∈ {1, 2}, k �= l, (8)

valid for sufficiently large �i [24,33], the dark state is only
very weakly depopulated.

Rabi frequencies. The Rabi frequencies in the Hamiltonian
(1) considered in this work are due to a standing or running
laser wave or a speckle field. In the former case they are of the
form:

�i(x) = �̃i sin(kix + φ) + �̃0
i . (9)

The ki = 2π/λi and λi is the wavelength of the laser im-
plementing �i(x). The value of ki in Eq. (9) may be also
(smoothly) controlled if the lasers creating the standing wave
propagate at a finite angle with respect to x̂. The intensity of
the lasers controls the amplitude �̃i. Implementation of the
term �̃0

i requires phase coherent projection of a running wave
in the direction perpendicular to the x̂ axis (see Ref. [34]).

The wave number k1 defines the recoil energy:

Er = h̄2k2
1

2m
. (10)

in this work we always use the recoil energy defined with
respect to k1. Thus Er carries no index i.

The potential VD(x) is randomized by using random Rabi
frequency �i(x). That may be accomplished by driving the
corresponding transition with a quasirandom electric field in
the form of the speckle field. It is created by propagating
a laser beam from the direction perpendicular to the x axis
through a diffusive plate, and focusing it with the lens. The
complex amplitude of the electric field along the system, near
the focal point of the lens, is then given by the formula [35]:

F (x) ∼ ei 2π f
λ

iλ f
ei π

λ f x2
∫ R/2

−R/2
dρμ(ρ)w(ρ)ei π

λ f ρ2

e−i 2π
λ f xρ

. (11)

The λ is the laser wavelength, f , the focal distance of the used
lens and R indicates the radius of the diffusive plate (we as-
sume it to be identical to the radius of the lens). Here we skip
the index i. The μ(·) are random complex phases imprinted
by the diffusive surface. They are assumed to be completely
random phase factors with a homogeneous probability density
over a unit circle. The above formula is valid in the paraxial
approximation, namely f 	 R. The ratio R/ f determines the
degree to which the laser field is focused. This ratio controls
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the effective length scale of F (x) (11). Specifically

σR = λ f

πR
,

is the correlation length for the speckle potential, a convenient
length unit for the speckle field. In this work even if several
speckle fields are used simultaneously in some laser config-
uration, it is assumed, for simplicity, that they have the same
σR. We then define

EσR = h̄2

2mσ 2
R

, (12)

as a characteristic speckle energy scale. It is interesting to
compare the above expression to the recoil energy for a laser
with same wavelength. It is

Er = (2 f /R)2EσR , (13)

which for the assumed in this work ratio R/ f = 1/3, leads to
Er = 36EσR . The field F (x) generates a Rabi frequency �i(x),
which may be for convenience expressed as a product of its
mean value �̃i and the dimensionless function Si(x):

�i(x) = �̃iSi(x), (14)

where 1
L

∫ L
0 |S(x)|dx → 1 as L → ∞. The �i as above is

nonzero, but it takes arbitrary small value with a finite prob-
ability. To overcome this problem (recall small �i may be
harmful to our � scheme properties) one can add a phase
coherent laser field, which leads to:

�i(x) = �̃iSi(x) + �̃0
i , (15)

where both �̃0
i , �̃i are independently controlled by intensity

of the respective laser field. Again, without a loss of generality
Si(x), �̃0

i , �̃i ∈ R.
Speckle potential . The speckle laser field can be used to

create an optical speckle potential via the ac-Stark shift in the
two-level system. The speckle laser field with Rabi frequency
�(x), detuned by � from the resonance creates the optical
potential

Vsp(x) = h̄
�2(x)

4�
. (16)

Window function. The formula (11) takes into account the
window function w(·), which can be used to tune the statistical
properties of F (x). We consider windows of the form

w(ρ) = �(|ρ| − R/2 + W ) − �(|ρ| − R/2), (17)

which form a double-slit system [35]. In the simplest case,
W = R/2, w(ρ) = 1 for |ρ| � R/2.

III. DARK-STATE POTENTIAL

The features of the dark-state potential VD(x) depend solely
on those of the dark state |D(x)〉, compare (6). In contrast to
potentials created by ac-Stark shifts, tuning the laser intensity
does not necessarily modify the amplitude of the potential.
Scaling of all �i by a common factor leaves the dressed states
and VD(x) unaffected due to a functional form of |D(x)〉 [see
(2)].

The amplitude and shape of VD(x) is rather controlled
by relative magnitudes of the two Rabi frequencies �1(x)

and �2(x), which prompts us to define the dimensionless
parameter:

ε12 = �̃1

�̃2
= ε−1

21 , (18)

controlling that aspect of the setup. Obviously when in a spe-
cific situation roles of �1(x) and �2(x) are interchangeable,
then configurations for ε12 = ε and ε12 = ε−1 are equivalent.
From Eq. (6) one sees that potential peaks in VD(x) occur
where |D(x)〉 changes substantially over a short distance. This
may occur, e.g., in those places where �1(x),�2(x) go from
�1(x)  �2(x) to �1(x) 	 �2(x) regime or vice versa.

To get more insight into the genesis and shape of VD(x), we
first look in more detail at two important special cases. First,
when �2(x) is due to a speckle field and �1(x) is constant
or slowly varying on a scale much larger than the wavelength
of the speckle. The potential typically consists of double-peak
structures that appear near minima of �2(x). This is discussed
below in Sec. III A together with basic statistical properties of
this potential.

Second, we consider the case when �1(x) is due to a
running wave, Eq. (9). Then VD(x) has sharp potential peaks
near zeros of �1, where �2(x) may be considered constant
locally. To randomize the heights of VD(x) peaks, the �2(x)
may come from a speckle field or a running wave, Eq. (15)
with a wavelength incommensurate with the �1(x), creating a
quasiperiodic pattern.

A. VD(x) near finite minima of �2 due to a speckle field

The �2(x) coming from the speckle field does not feature
exact zeros, but rather it has local minima. Consider a mini-
mum of �2(x) at x = x0. For x ≈ x0 we approximate �2(x)
as:

�2(x) ≡ �̃2

[
b + κ2

2
(x − x0)2

]
. (19)

The part in brackets is a quadratic expansion of the function
S2(x) around a particular minimum. We do not include the
value of b in �̃2 as we assume that the �̃2 is defined by
Eq. (15) for a given realization of �2(x).

We consider �1(x) = �̃1 = const. and |�2(x0)|  �̃1.
Under these assumptions, the dark-state potential VD(x)
reveals, locally, a double-peak structure [see Fig. 2(a)]. An-
alytically, we have (see Ref. [34]):

VD(x) = h̄2κ2

2m

ε2
12κ

2(x − x0)2[
[b + κ2

2 (x − x0)2]2 + ε2
12

]2 , (20)

where ε12 is given by Eq. (18). The value of this parameter
depends only on amplitudes of the Rabi frequencies, and is
the same for different minima of a single realization of �̃1(x).

For arbitrary ε12, b the width of this structure is

�x(b, ε12, κ ) = 2κ−1

√
2

3

√√
4b2 + 3ε2

12 − b (21)

053326-3
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(a)

(b)

(c)

(d)

FIG. 2. (a) Shape of double peak structure of VD(x) potential
for the three-level � system near quadratic minimum of �2(x),
Eq. (19). To reach a substantial peak height, one needs b  ε12  1.
(b) shows two exemplary realizations of the speckle shape functions
Si(x). (c) and (d) show the dark-state potential VD(x) when �2(x) =
�̃2S2(x). (c) is for a constant �1(x) = �̃1 while in (d) �1(x) =
�̃1S1(x). The relative strengths of �1(x) and �2(x) are indicated in
the legends.

and its height is

Vmax(b, ε12, κ ) = h̄2κ2

2m

27ε2
12

(√
4b2 + 3ε2

12 − b
)

8
(
b
(√

4b2 + 3ε2
12 + 2b

) + 3ε2
12

)2
.

(22)
For ε12 	 b the width:

�x(b, ε12, κ ) →
√

8ε12
4
√

3
κ−1, (23)

and the height:

Vmax(b, ε12, κ ) → 3
√

3

8ε12

h̄2κ2

2m
. (24)

If additionally ε12 → 0 the two potential peaks converge to
π

2
√

ε12
δ(x − x0).

For b 	 ε12 the width is

�x(b, ε12, κ ) → 2k−1

√
2

3
b, (25)

and the height of both peaks is

Vmax(b, ε12, κ ) → 27ε2
12

128b3

h̄2κ2

2m
. (26)

Figure 2(c) shows the exemplary dark-state potentials ob-
tained for �2(x) equal to the speckle shown in Fig. 2(b) with
a black line, while �1 remains position independent. The plot
shows two cases ε12 = 1 and ε12 = 0.2 with relative peak
heights following (24) and (26). For fixed ε12 we may ascribe
the value of parameter bi from Eq. (19) to each of the minima
of �2(x) at xi, indexed by i. If the value of ε12 is lowered,
potential peaks for which ε12 	 bi are made higher and nar-
rower, but those that already passed to the opposite ε12  bi

regime have their height further reduced [see Eq. (26)]. De-
crease of ε12 results in fewer sharp peaks in VD(x) but height
of some of those peaks can increase.

Similar observations may be made in the case when �1(x)
is not constant but is due to a speckle field itself. Figure 2(d)
shows the corresponding exemplary potential for same �2(x)
as in Fig. 2(c) and �1(x) given by the red curve in Fig. 2(b).
Most of the potential peaks occur where one of �1(x), �2(x)
has a minimum and the other may be considered approxi-
mately constant. Similarly one can use Eq. (19) applied to
�1(x) or �2(x) and ascribe bi’s to each minimum.

Since now �1(x) is position dependent, in order to charac-
terize individual peaks near minima of �2(x) via (20) we have
to substitute ε12 → ε12,i where

ε12,i = �̃1S1(xi )

�̃2
, (27)

with ε12,i specific for each minimum. In case of the minima of
�1, we consider ε21,i defined as above with swapped �1 and
�2.

Let us consider reducing the amplitude �̃1. As ε12,i ∼ �̃1,
the discussion of regimes ε12,i  bi vs ε12,i 	 bi carried out
for constant �1(x) still applies. The potential peaks near the
minima of �1(x) are characterized by ε21,i ∼ �̃−1

1 . Thus for
smaller and smaller �̃1 height of the latter family of peaks is
reduced as well.

Let us now see how the above observations manifest in sta-
tistical properties of the potential VD(x). Figure 3 presents V̄D,
the mean, and �̄VD, the standard deviation of VD(x) as a func-
tion of �̃1/�̃2 for the case of constant �1(x) = �̃1 [Fig. 3(a)]
and for the case when �1(x) = �̃1S1(x) ]Fig. 3(b)]. In the
latter there is an obvious symmetry (�̃1, �̃2) → (�̃2, �̃1).

In both cases for �̃1/�̃2 < 1, as this ratio decreases, the
standard deviation of VD(x) grows, and mean V̄D converges to
a constant. This is consistent with increasingly more sparse
minima satisfying bi  ε12 [or bi  ε12,i for Fig. 3(b)].

For large values of �̃1/�̃2, in case of constant �1(x) =
�̃1 	 �2(x), we approximately have:

|D(x)〉 ≈ −�2(x)

�̃1
|1〉 + |2〉, (28)
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(a)

(b)

FIG. 3. (a) shows the mean height V̄D (red lines) and standard
deviation �̄VD (black lines) for potential VD(x) for W = R/2 (solid)
and W = R/5 (dashed lines). In both panels �2(x) = �̃2S2(x). In
(a) �1(x) = �̃1 and in (b) �1(x) = �̃1S1(x) is due to a speckle field.

and:

VD(x) ≈ �′
2(x)2

�̃2
1

= (S′
2(x))2ε−2

12 . (29)

This means that both the mean height V̄D and the standard
deviation �̄VD decrease to 0, for increasing �̃1/�̃2. Their
ratio �̄VD/V̄D → 1.32 ± 0.02 as seen in Fig. 3(a). This limit
is larger than the �̄Vsp/V̄sp → 1 for the far-detuned ac-Stark
optical potential Vsp(x) created by laser speckle, in a standard
optical lattice setting where Vsp(x) ∼ �2

1(x)/(4δ) (with δ the
detuning from the resonance).

In the situation when both �1(x) and �2(x) are due to
speckle fields, the standard deviation �̄VD decreases towards
a minimum at exactly �̃1 = �̃2. For both �̃1/�̃2 → 0 and
�̃1/�̃2 → ∞ the behavior of �̄VD is similar to the case of
constant �1(x). The marked difference is that V̄D is �̃1/�̃2

independent. Qualitatively speaking, this is because change of
�̃1/�̃2 has the opposite effect on potential peaks near minima
of �2(x) and �1(x) when it comes to their height and width.

In Fig. 3 we mark with the dashed lines results for two
cases discussed above when the obstacle is put onto the
diffusive plate. We chose to illustrate this by setting the pa-
rameter W = R/5, in Eq. (11) (note that the case W = R/2
corresponds to no obstacle). The obstacle suppresses low
frequencies from the Fourier expansion of the F (x) and the
resulting potential VD(x) has higher mean and variance.

(a)

(b)

(c)

FIG. 4. (a) Shape of peak structure in VD(x) potential for the
three-level � system near a zero of �1(x) at x = x0, Eq. (31) for
different values of �̃2/�̃1. (b) shows VD(x) when both �1(x),�2(x)
are due to a standing wave. The �1(x) = �̃1 sin(k1x) and �2(x) =
�̃2 sin(k2x) + �̃0

2 such that ε+ = 0.15, ε− = 0.1. The ratio k1/k2

takes the examplary value k1/k2 = (1 + √
5)/2. (c) Dark-state po-

tential VD(x) for the � system with �1(x) = �̃1 sin(k1x), �2(x) =
�̃2S2(x) + �̃0

2 such that ε+ = 0.15, ε− = 0.1. The k1 is set such that
k1σR = 1, and R/ f = 1/3.

B. Dark-state potential near zeros of �i’s

Let us now consider the situation when �1(x) posses a zero
over the real axis at x = xi, as in, e.g., the case of �1(x) being
due to a standing wave, Eq. (9). We assume �2(x) to be locally
constant �2(x) ≈ �̃2,i near xi. This creates the setting similar
to the dark-state lattice proposal [24]. We then linearize

�1(x) ≈ �̃1k1(x − x0), (30)

which gives VD(x) of the form:

VD(x) ≈ ε2
21,iEr[

k2
1 (x − x0)2 + ε2

21,i

]2 . (31)

It describes a peak of width ∼ε21,iλ1 and height ε−2
21,iEr with

ε21,i = �̃2,i/�̃1 [see Fig. 4(a)]. In the limit ε21,i → 0 each of
the potential peaks converges to π

2ε21,i
δ(x − x0). If �2(x) were

truly constant, the subsequent peaks would create a lattice of
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narrow peaks of identical shape and height, just as in Ref. [24].
To randomize them, we use pseudorandom �2(x). We discuss
two possibilities.

One option is to choose �2(x) as in Eq. (9) with
k1/k2 �= Q. In that case for different xi such that �1(xi ) =
0 we have ε21,i that vary between ε− = max(0, [−�̃2 +
�̃0

2]/�̃1) and ε+ = [�̃2 + �̃0
2]/�̃1. This translates into pseu-

dorandom height and width of subsequent peaks of VD(x)
determined by subsequent ε21,i’s. The resulting potential
consisting of equidistant pseudorandom peaks is shown in
Fig. 4(b) for ε+ = 0.15 and ε− = 0.1. The expressions for ε−,
ε+ show that one can control the amplitude of the disorder
simply by changing �̃2, �̃0

2, and �̃1

One should note that, in general, there are additional poten-
tial peaks near minima of �2(x) at points designed x′

i . Such
peaks are described by Eq. (31) or Eq. (20) with values of
ε12,i = �1(x′

i )/�2(x′
i ) for x′

i far from any x j we have ε12,i 	
and for x′

i equal to some x j the potential peak is mainly due
to zero of �1(x). These peaks are automatically included in
the numerical treatment of the model that takes exact value of
VD(x).

One can make similar construction with �2(x) due to a
speckle field, Eq. (15). In contrast to the sine function case,
the S2 in Eq. (15) is strictly limited only from below (by zero).
The probability for taking the value above 2 is nevertheless
exponentially suppressed. This means that for most εi charac-
terizing individual peaks, we have εi ∈ [ε−, ε+] where ε− =
max(0, [−2�̃2 + �̃0

2]/�̃1) and ε+ = [2�̃2 + �̃0
2]/�̃1. The re-

sulting potential VD(x) is shown in Fig. (4c) for ε+ = 0.15 and
ε− = 0.1. In broad terms it is similar to the previously consid-
ered �2(x) as in Eq. (9), but differs in statistical properties
of peak heights. This is discussed further in Sec. V where we
calculate tight-binding parameters for movement in this kind
of random potential.

IV. LOCALIZATION

In the case when �1(x) = const. and �2(x) = S2(x)�̃2 the
VD(x) consists of relatively narrow random double peaks. In
this settings it is natural to consider Anderson localization,
which has been traditionally studied in the optical potential
created by a speckle field via ac-Stark effect. To that end we
first discuss the two-point correlation function of the VD(x)
potential in such a case.

A. Correlation functions

Let us consider two-point correlation function

C2(δx) = V (x)V (x + δx).

For random potentials it is directly related to the so-called
Anderson localization length, Lloc of the eigenstates [35,36].
Generically in one-dimensional systems with a random
potential V (x),

H = − h̄2

2m

d2

dx2
+ V (x), (32)

one expects [3,36] that eigenstates ψi(x) are exponentially
localized:

|ψi(x)| ∼ exp[−|x|/Lloc(E )]. (33)

The E in Lloc(E ) is the energy of ψi. Often Lloc(E ) quickly
grows with E .

The localization length may be related to the correlation
function via a series expansion with respect to increasing
powers of [�̄V/

√
EσR (E − V̄ )]1/2, where V̄ , �̄V are the mean

and standard deviation of V (x). Specifically:

L−1
loc (E − V̄ ) =

∑
n�2

γ (n)(E − V̄ ). (34)

The lowest term γ (2) is given by

γ (2)(E − V̄ ) = m

4h̄2(E − V̄ )
C̃2

⎡
⎣2

√
2m(E − V̄ )

h̄2

⎤
⎦. (35)

Here, C̃2 is a Fourier transform of C2. Higher-order terms
contain multipoint correlation functions, beyond two-point
C2. The expansion holds for a small �̄V . The other cases can
be handled by numerical determination of L−1

loc .
For the speckle optical potential, Vsp(x), with a constant

window function W = R/2, the correlation function is

C2(δx) = Vsp
2

{
1 +

[
sin(x/σR)

x/σR

]2
}

, (36)

and its Fourier transform [see Fig. 5(a)]:

C̃2(k) = Vsp
2
{

2π
δ(k)

σR
+ π max

(
0, 1 − |k|σR

2

)}
. (37)

It is important to note that for |k| � k0 = 2
σR

C̃2(k) vanishes
[36,37]. This implies significantly longer localization lengths

for energies E above V̄ + E0, E0 = h̄2k2
0

2m . This is because
the value of Lloc is solely due to higher-order terms in the
expansion (34).

The insertion of the obstacle in the optical system, that
amounts to W �= R/2 in (17), has a profound impact on the
correlation function C̃2(k). For W � D/3 the C̃2(k) vanishes
not only for |k| � k0 but also for some intermediate values
of |k| within the interval [0, k0] as well. This is illustrated
for W = D/5 in Fig. 5(a). Consider now the dark-state po-
tentials VD(x) as in the preceding section, for the case when
�1(x) = �̃1 and �2(x) = �̃2S2(x). For such a configuration
the correlation functions C2 and C̃2 are shown the Fig. 5(b)
and Fig. 5(c). Contrary to the Vsp potential case, here C̃2(k) is
nonzero for large values of momenta, k. This corresponds, in
the position space, to the shape of C2 shown in Fig. 5(c) where
the dark-state C2(x) features a narrow peak. These statements
hold for both W = R/2 and W = R/5. In the latter case, when
the obstacle is put in front of the diffusive plate, the strong
modulation of C̃2(x) occurs.

Let us track the reason why high Fourier components C̃2

behave differently for Vsp and VD(x). The speckle potential
Vsp(x) is proportional to the square of the Rabi frequency
�(x), as in Eq. (16). Taking the square at most doubles the
extent of k that index nonzero Fourier components of Vsp.
This allows C̃2(k) = 0, k � k0. In the case of the dark state
potential, the highly nonlinear dependence of VD(x) on �i(x)’s
in Eq. (11) produces arbitrarily large Fourier components in
VD(x) and there is no reason for C̃2(k) to vanish for large k.
This is a manifestation of the origin of the dark state potential
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(a)

(b)

(c)

(a)

(b)

FIG. 5. (a) shows C̃2 for the speckle potential Vsp for W = D/2
(solid line), W = D/5 (dashed line). (b) same as above for the
dark-state VD(x) potential with �2(x) = �̃2S2(x), a speckle field for
�̃2/�̃1 = 0.1 and W = D/2 (solid line), W = D/5 (dashed line).
The dashed-dotted line shows data for �̃2/�̃1 = 0.3 and W = D/2.
(c) shows the spatial correlation function C2(x) for all of the above
potentials with matching colors. In all of the above the normalization
of the plot has been chosen so that the maximal value of each
line is 1.

coming from position-dependent dark state in contrast to the
conventional ac-Stark shift.

Another feature worth pointing out is that by changing the
ratio �̃2/�̃1 one controls the shape of the potential as proven
by manifestly different C̃2 for �̃2/�̃1 set to two exemplary
values of 0.1 and 0.3. In case of the speckle potential change
of �(x) changes the constant factor in C̃2(x), but keeps the
overall shape of C̃2 from Fig. 5(a).

B. Anderson localization in a dark-state potential

To quantitatively analyze the physical implications of a
particular form of C̃2, we simulate the Anderson localiza-
tion of a particle moving in VD,Vsp. Specifically, we look
for eigenstates of Hamiltonian (32) at energy E such that

(a)

(b)

FIG. 6. Localization lengths Lloc for various considered poten-
tials. (a) compares the localization length in a speckle potential
(dashed lines) and VD potential for the � system with �1(x) =
�̃1, �2(x) = �̃2S2(x). For the speckle field we show two cases V̄ =
�̄V = 0.04EσR , 0.5EσR , respectively, with black dashed and blue
dashed lines. Dark-state potential VD(x) for matching �̄V is shown
with same colors and solid line. Respectively, �̃1/�̃2 = ε12 = 2.357
(black) and ε12 = 0.333 (blue). (b) Shows the effect of putting the
obstacle in optical paths. The solid lines show σR/Lloc for W = R/2
[lines repeated from (a) for easing the comparison] and W = R/5
(dashed lines). The ε12 = 2.357 and 3.398 ensure �̄V = 0.04EσR for
the VD(x) potential for W = R/2 and W = R/5, respectively.

h̄2k2 = 2m(E − V̄ ). The resulting Schrödinger equation is
solved over an interval x ∈ [0, L] with the condition ψ (x) →
e−ikx, x → 0+. This is the outgoing amplitude of a particle
that has entered the sample at x = L. Near x = L the wave
function has the incoming and reflected components ψ (x →
L) = Ae−ikx + Beikx proportional to A and B, respectively. The
values of A, B are determined numerically.

We define the localization length Lloc by the condition

〈log10 |A|〉 → L/Lloc, L → ∞, (38)

where 〈·〉 denotes averaging over disorder realizations.
Figure 6 shows Lloc for large L = 5 × 104σR, and 104

disorder realizations. Let us focus on the black dashed curve
corresponding to σR/Lloc for Vsp with shallow V̄sp = �̄Vsp =
0.04EσR . Its dependence on k shows a kink at k = k0 such
that k0σR = 1. By Eq. (35) this corresponds to a transition
from C̃2 �= 0 for k � 2k0 to C̃2 = 0 for k � 2k0. The kink
is followed by a sudden increase of Lloc as first observed in
Ref. [36].

We now show σR/Lloc computed numerically for the dark-
state potential VD. We focus on the case where �1(x) = �̃1

and �2(x) = �̃2S2(x) and present it in the same Fig. 6(a).
We chose the value of �̃1/�̃2 ≈ 2.357 to ensure that �̄VD =
�̄Vsp = 0.04EσR . One sees that for low momenta, smaller than
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the threshold value set by k0, the localization length is similar
to that for the speckle potential. At k0 both potentials feature
a kink. For such a small potential variance, the main con-
tribution to the correlation length comes from γ (2)(k0). It is
proportional to C̃2(2k0). For k > k0 C̃2(k) = 0 for the speckle
potential while for the dark-state potential a notable kink in
C̃2 at k0 remains.

The main difference comes for kσR � k0σR where the lo-
calization is strongly suppressed in the speckle potential but
not in the dark-state potential VD, again easily explained by
properties of C̃2. Thus the nonlinear dependence of the po-
tential VD on �’s translated directly to an observable much
stronger localization for large particle energies.

For a sufficiently large amplitude of the disordered poten-
tial, the γ (2) term is no longer a dominant contribution to
the inverse localization length. This is evident in Fig. 5(a)
where �̄VD = �̄Vsp = 0.5EσR . The kink at k0 no longer can
be observed in the dependence of σR/Lloc on kσR for both
Vsp and VD, and the localization length is strongly decreased.
Still for large momenta the localization is much stronger in
the nonlinear dark-state potential.

When a nontrivial window function is used, the correlation
function C̃2 for the VD potential, for increasing kσR shows
oscillations as in Fig. 5(b). These oscillations find their way
to the dependence of σR/Lloc on the free momentum of the
wave function [see Fig. 6(b)].

C. Dirac-δ approximation

In this section we determine if localization in the dark-state
potential VD may be approximately described using a potential
consisting of series of Dirac-δ peaks (Kronig-Penney model),
Vδ,D(x):

H = p2

2m
+

∑
n

Vnδ(x − xn)

︸ ︷︷ ︸
Vδ,D (x)

. (39)

Specifically, we compare the Anderson localization length for
both VD and Vδ,D.

To choose Vn and xn for a particular potential realization
of VD(x) and obtain the approximate Vδ,D(x), we define a
sequence of intervals In = (an, bn) ⊂ R such that:

(A) V (x) has at least one local maximum in In,

(B) V (an),V (bn) � δ maxx∈In V (x) for δ being a small
positive real number,

(C) no subinterval contained in In satisfies the above.
Intuitively, we want each interval to contain a large portion

of a single potential peak. The small value of δ ensures that
the V (x) is small outside of each interval In with respect to the
maximum value. On the other hand δ should not be chosen too
small as it would lead to too large In encompassing more than
one peak. We opt to choose δ = 0.25.

The above definition does not automatically imply that
different intervals are disjoint. To ensure that, we actually find
In in the following way:

(1) For numerics we consider a particular realization over
a finite interval x ∈ [0, L].

(2) We store all local maxima of V (x), x ∈ [0, L] in the
decreasing order with respect to their value.

(3) We find the interval I1 encompassing largest maximum
that satisfies (A)–(C),

(4) After first n of intervals In are determined, (A)–(C)
define a candidate for the next interval I ′

n+1. The set In+1 :=
I ′
n+1 \ ⋃n

i=1 Ii is an interval. If it is empty then it is not added
to the In sequence.

Each In allows us to define an effective peak height

Vn =
∫

In

V (x)dx, (40)

and position

xn = 1

Vn

∫
In

xV (x)dx. (41)

Let us note that it is possible that two very close maxima, for
which V (x) does not fall below the threshold defined by the δ

will be approximated by a single Dirac δ.
Localization length calculation. We have performed the

transfer-matrix calculation of σR/Lloc for potentials Vδ,sp and
Vδ,D the Dirac-δ approximations of the potentials Vsp and VD,
respectively. We focus on two cases where the disorder of
the potential is 0.04EσR or 0.5EσR . When generating potentials
Vδ,sp and Vδ,D we assume that it is the variance of the potential
being approximated that is equal to one of the above values.

For the case of low variance of the potentials 0.04EσR the
inverse localization lengths is shown in Fig. 7(a). For small
kσR the inverse localization lengths in all four cases are sim-
ilar. This is because for shallow disorder the series expansion
given by (34) holds and σR/Lloc is determined by the variance
of the potential that closely match.

For kσR near 1, we observe kinks in the dependence of
σ/Lloc on kσR. In case of the speckle potential this is fol-
lowed by a sudden drop of σR/Lloc. This is in a stark contrast
to the Dirac-δ approximation of the speckle potential Vδ,sp

(and Vδ,D). This is not surprising as the speckle potential is
smooth and Fourier transform of its correlation function has
finite support. We saw in previous sections that for dark-state
potentials the C̃2 contained arbitrarily high nonzero Fourier
components explaining why σR/Lloc for VD and Vδ,D are closer
than for Vsp and Vδ,sp. The agreement of σR/Lloc for Vδ,D

of VD may be regarded as at most qualitative for kσR. Still
the Dirac-δ approximation of VD reproduces the fine details
of the dependence of σR/Lloc on kσR such as the kink at
kσR = 1.

For the deeper disorder with potential variance of 0.5EσR ,
we see in Fig. 7(b) that the σR/Lloc for VD and Vδ,D nearly
match. This is because the dark-state potential consists now
of well-defined narrow peaks, which are well approximated
by discrete Dirac-δ peaks of Vδ,D. The difference shows up for
only very high momenta, beginning from kσR ≈ 3.5.

For both shallow and deeper disorder potential, one can
reach the conclusion that the Dirac-δ Vδ,D potential is a valid
approximation for the low-energy part of the spectrum of
Hamiltonian of a particle moving in the dark-state potential VD

(only qualitative for a shallow disorder). This is in contrast to
the localization in a speckle field, which cannot be described
by a Kronig-Penney-like model.
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(a)

(b)

FIG. 7. Inverse localization length σR/Lloc for potentials Vsp, VD

and their Dirac-δ approximations Vδ,sp, Vδ,D (see legend) for [(a)]
shallow disorder: �̄VD = �̄Vsp = 0.04EσR and [(b)] �̄VD = �̄Vsp =
0.5EσR . In all cases the peak approximation parameter δ = 0.25.

V. TIGHT-BINDING DESCRIPTION OF MOVEMENT
IN RANDOM COMB POTENTIAL

In this section we discuss localization in the dark-state
potential VD for the configuration presented in Sec. III B for
�1(x) = �̃1 sin(k1x), �2(x) = �̃2S2(x) + �̃0

2, when the po-
tential consists of narrow peaks separated by a = π/k1. The
low-energy dynamics in such a potential is captured by a
Dirac-δ approximation VD,δ , Eq. (39) with Vn given by (40)
and xn = na. Localization in such a lattice has been previously
intensively studied [38]. Following that review, we consider
the Schrödinger equation in the following form:[

− h̄2

2m

d2

dx2
+

∞∑
n=−∞

Er (V̄ + δVn)δ(k1x − k1xn)

]
ψ (x)

= h̄2q2

2m
ψ (x), (42)

where V̄ + δVn = Vn, 〈δVn〉n∈Z = 0, σ 2 = 〈(δVn)2〉n∈Z  V̄ 2.
Under above assumptions the inverse localization length, Lloc

is

a

Lloc
= 1

8

k2
1 sin qa

q2 sin2 ka

∞∑
l=−∞

〈δVnδVn+l〉n∈Z cos(2kal ). (43)

The wave vector k is obtained from

cos(ka) = cos(qa) + V̄ k1

2Erq
sin(qa) (44)

for those q that correspond to the band in case of δVn = 0.
Equation (43) is valid only for those q’s and it cannot be
applied in the forbidden bands. There, in presence of disorder,
the density of states is exponentially suppressed [39–41], but
it is nonzero. The localization for those energies can be ad-
dressed numerically. Additionally, the analytic expression is
not expected to hold near the bottom and the top of the band.
Another limitation follows from the details of derivation of
Eq. (43) (see Ref. [38]): the latter does not yield an anomaly in
the localization length at the band center. It predicts a smooth
dependence of Lloc.

Random uncorrelated disorder. We first consider (42)
with random, uncorrelated δVn. The exact values Vn = π

2ε
are

based on random value of ε with uniform distribution in
[0.124,0.126] (weak disorder case) and in [0.1,0.15] (strong
disorder case). The mean potential heights are V̄ = 12.56 and
12.73, respectively. The intervals of applicability of Eq. (43)
are q/k1 ∈ [0.9096, 1] and q/k1 ∈ [0.9085, 1]. There (44) can
be solved for Bloch momentum.

In Fig. 8(a) we compare the localization length given by
Eq. (43) to the numerically determined Lloc as the function of
q/k1 for q within the regions of validity marked with vertical
gray dashed lines.1 We find the quantitatively good agree-
ment between the localization length obtained from Eq. (43)
(red lines) and from numerics (black lines). This is true for
both weak disorder (thin lines) and strong disorder cases
(thick lines). The discrepancies appear near band edges where
the analytical expression for the inverse correlation length
diverges or equals to zero The singularity present in the de-
pendence of Lloc on q/k1 determined numerically [see inset in
Fig. 8(a)] is absent in the analytic expression, Eq. (43).

Dark-state potential. We now consider the full dark-state
potential for �1(x) = �̃1 sin(k1x), �2(x) = �̃2S2(x) + �̃0

2.
For comparison, we again consider Hamiltonian Eq. (43) with
δVn based on Vδ,D approximation, Eq. (41) and (40). For the
parameters considered in this section the potential VD con-
sists of isolated, well-defined peaks. This allows us to use
δ = 0.0005, much smaller than δ = 0.25 used in Sec. IV C.
We focus on the strong disorder case where for the dark-state
potential ε+ = 0.15 and ε− = 0.1. The majority of peaks of
the dark-state potential is between 44.4Er and 100Er . When
the integral (40) is calculated, this gives the Vδ,D consisting
of Dirac δ’s with V̄ = 12.51. We can also find parameters
of the Hamiltonian with uncorrelated δVn’s that will have the
same V̄ , the amplitude of the disorder is matched by requiring
that the standard deviation of δVn’s is the same. Fulfilling
those two requirements results in parameters ε+ = 0.1444 and
ε− = 0.1087 for the random δVn case.

We now compare the localization length determined nu-
merically for the dark-state potential VD(x) and for the Vδ,D

Dirac-δ approximation. In Fig. 8(b) we show a/Lloc as the
function of q/k1 (respectively red and green lines). In both

1The line corresponding to q/k1 = 0.9096 is very close to q/k1 =
0.9085 and was thus omitted.
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(a)

(b)

FIG. 8. The inverse localization length in Kronig-Penney-like
potentials with compositional disorder. (a) Random Dirac-δ peaks,
thick lines: ε+ = 0.15, ε− = 0.1, thin lines: ε+ = 0.126, ε− =
0.124; solid black lines: numerical calculation of σR/Lloc for sample
length L = 16 × 106/k1; red dashed lines show analytical, Eq. (43).
The gray areas denote q’s not in applicability interval of this equa-
tion. (b) Green solid line: σR/Lloc for ε+ = 0.15, ε− = 0.1 for Vδ,D,
δ = 0.0005. Black dotted line: random uncorrelated Dirac-δ scatter-
ers ε+ = 0.1444, ε− = 0.1087, Red dashed line: localization length
in the dark-state potential VD for �1(x) = �̃1 sin(k1x), �2(x) =
�̃2S2(x) + �̃0

2, ε+ = 0.15, ε− = 0.1, green: VD,δ approximation of
VD(x) given by the red curves. The k1 is set such that k1σR = 1 and
R/ f = 1/3.

cases the inverse localization length shows a dip for the values
of h̄2q2/2m that can be traced back to the conduction band in
the case of no disorder. The visible difference in the location
of this region in q/k1 is due to a finite width of potential peaks.

One also can observe that the singularity near the band
center is very pronounced. It is much larger than in the random
uncorrelated disorder case [see black dotted line in Fig. 8(b)].

This occurs for both VD(x) potential and its Dirac-δ approxi-
mation Vδ,D(x). This is in contrast to the model with random
and uncorrelated δVn’s with V̄n and the standard deviation of
Vn matching that of Vδ,D(x). We find that correlations between
Vn’s in Vδ,D and in the VD(x) potential enhance the amplitude
of the band center anomaly. This is a known possible effect of
disorder correlation [38,42].

Moreover for the actual dark-state potential VD(x) the lo-
calization length Lloc does not monotonically increase with
q/k1. The maximal Lloc is reached near the anomaly band
center, not at the top of the band like in Vδ,D(x).

VI. CONCLUSIONS AND OUTLOOKS

We have shown the construction of the potential for ultra-
cold atoms using a three-level atomic system. The potential
applies to the ultracold atoms populating the dark state. The
potentials consist of narrow pseudorandom peaks, with ran-
domness driven by the speckle laser field. We have contrasted
the properties of the dark-state potential against the off-
resonant optical lattice potential given by the speckle field.

We have found substantially enhanced localization in the
dark-state potential, especially for high kinetic energy of the
particle. This is explained by a slow decay of the two-point
correlation function in the Fourier space, a manifestation of
the nonlinearity of the dark-state potential. This is rooted in
different mechanism of generation of the dark-state potential
than that of the speckle potential, which is due to far off-
resonant ac-Stark process.

Our findings indicate that the potential generation via a
dark state of a three-level system enhances the resolution of
the speckle potential and preserves its randomness proper-
ties. This can be further extended by replacing speckle fields
generating Rabi frequency �1 with a laser standing wave. It
leads to a completely different class of potentials that consist
of tall, pseudorandom potential peaks implementing, e.g., a
Kronig-Penney model structural disorder akin to Refs. [2,43].
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Baranov, A. V. Gorshkov, P. Zoller, J. V. Porto, S. L. Rolston
et al., Phys. Rev. Lett. 120, 083601 (2018).
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