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State-dependent potentials for the 1S0 and 3P0 clock states of neutral ytterbium atoms
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We present measurements of three distinctive state-dependent wavelengths for the 1S0-3P0 clock transition
in 174Yb atoms. Specifically, we determine two magic wavelengths at 652.281(21) and 542.502 05(19) THz,
where the differential light shift on the 1S0-3P0 clock transition vanishes, and one tune-out wavelength at
541.8325(5) THz, where the polarizability of the 1S0 ground state exhibits a zero crossing. The two magic
wavelengths are identified by spectroscopically interrogating cold 174Yb atoms on the clock transition in a
one-dimensional optical lattice. The ground-state tune-out wavelength is determined via a parametric heating
scheme. With a simple empirical model, we then extrapolate the ground- and excited-state polarizability over a
broad range of wavelengths in the visible spectrum.

DOI: 10.1103/PhysRevA.108.053325

I. INTRODUCTION

State-dependent optical potentials play an important role
in the context of quantum simulation [1], computation [2],
and metrology [3] with neutral atoms. The application of
local differential light shifts enables high-fidelity preparation
of tailored initial states for quantum simulation of out-of-
equilibrium dynamics [4–8], facilitates improved cooling and
adiabatic state preparation schemes [9–11], and provides
an invaluable resource for quantum-computing protocols
[12–18]. In the context of quantum simulation they further
offer prospects to realize more complex model Hamiltonians,
where different internal states are interpreted as independent
species [19–21], thereby significantly reducing experimental
complexity compared to atomic mixture experiments.

State-dependent potentials have so far been mostly realized
with the bosonic alkali-metal atoms rubidium (Rb) [12,22–25]
and cesium (Cs) [26,27] due to their large fine-structure split-
ting �FS. The coherence time in this case is fundamentally
limited by the use of near-resonant light, the detuning of
which must be smaller than �FS. Hence, state-dependent po-
tentials can introduce heating due to spontaneous emission.
Alkaline-earth(-like) atoms, such as ytterbium (Yb) and stron-
tium (Sr), on the other hand have two valence electrons. The
two lowest-lying electronic states (1S0 and 3P0) belong to the
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singlet and triplet manifold and are connected by an ultranar-
row doubly forbidden electric dipole transition. This renders
both states stable on typical experimental timescales [28] and
enables state-dependent potentials with low scattering rates
[16,29–32], as demonstrated in Refs. [19,21,33]. This is par-
ticularly relevant for fermionic quantum simulations because
all fermionic alkali-metal atoms have a small fine-structure
splitting.

While state-dependent potentials can be harnessed for
many applications, they can be detrimental for cooling and
trapping of neutral atoms [34–36], in particular, for high-
fidelity imaging in quantum gas microscopes [37,38] and
tweezer arrays [39–43]. Moreover, in the context of metrology
with optical lattice clocks, state-dependent terms need to be
finely compensated [3,44,45] in order to reach high precision
and accuracy [46–48].

In general, an accurate prediction of the ac polarizabilities
from ab initio calculations [49] can be extremely challenging.
In this paper we present experimental measurements of three
distinctive points of the ac polarizability for the 1S0-3P0 clock
transition of bosonic 174Yb atoms: one tune-out wavelength
[50–54], where the potential for the 1S0 state vanishes, and
two magic wavelengths [28,49,55], where the potentials for
1S0 and 3P0 are identical [Fig. 1(c)]. Our paper constitutes
the first measurement of a tune-out wavelength for the 1S0

state of 174Yb and complements the currently known magic
wavelengths at 759.3 [56] and 397.6 nm [57]. Moreover, we
use our experimental results to develop a simple empirical
model to estimate the 1S0 and 3P0 ac polarizabilities over a
wide range of visible frequencies.

II. AC POLARIZABILITIES AND EXPERIMENTAL SETUP

The dynamic (ac) polarizability characterizes the response
of an atomic system to an applied electromagnetic field.
An atomic state experiences a shift in energy Vac that is
proportional to the real part of the frequency-dependent
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FIG. 1. Dominant transitions in 174Yb and ac polarizabilities for
the 1S0 and 3P0 states. (a) Simplified level scheme for 174Yb. The
clock transition to the metastable 3P0 state is addressed via magneti-
cally induced clock spectroscopy to admix the 3P1 state, rendering the
linewidth � magnetic-field (B-field) dependent. (b) Fourier-limited
clock spectroscopy. Single-shot data points are fitted using a Rabi
line shape (solid line; see Appendix A) to yield the linewidth and
position. For this dataset we find a full width half maximum of
26.7(6) Hz. The excitation fraction is calculated by imaging 1S0 and
3P0 independently. (c) Intensity-normalized light shift Vac/I of the
1S0 and 3P0 states as a function of wavelength; here I denotes the
intensity. Magic wavelengths measured in this paper are indicated by
circles. At these points the 1S0 and 3P0 polarizabilities are equal in
magnitude and sign (schematic in round inset). The square refers to
the measured 1S0 tune-out wavelength, where the polarizability of the
1S0 state vanishes (schematic in square inset).

polarizability α, which itself depends on the frequency and
strength of transitions to higher-lying energy levels. Since the
1S0 and 3P0 states belong to different spin manifolds, they
couple to different sets of higher-lying states, which in turn
leads to different wavelength dependencies of their respective
ac polarizabilities [Fig. 1(c)]. For Yb, the ground-state polar-
izability for visible wavelengths is dominated by the broad
transition to the (6s6p)1P1 state at 399 nm and the narrow
intercombination transition to the (6s6p)3P1 state at 556 nm
(Fig. 1). By contrast, the metastable excited-state polarizabil-
ity is mainly affected by a number of visible and infrared
transitions to the 3S and 3D orbital angular momentum mani-
folds.

To determine the precise location of the magic and tune-
out wavelengths [circles and square in Fig. 1(c)], we utilize
both spectroscopic (Sec. III) and parametric heating measure-
ments (Sec. IV). In both cases the experimental sequence
starts by loading �107 174Yb atoms from a Zeeman-slowed
atomic beam into a three-dimensional (3D) magneto-optical

trap (MOT) operating at the narrow 1S0-3P1 transition. We
enhance the capture efficiency of the MOT using a set of
crossed slowing beams on the 1S0-1P1 transition [58]. For
the measurement of the tune-out (magic) wavelength, we di-
rectly load �70×103 (�300×103) atoms from the MOT into
a �390Erec (�730Erec) deep one-dimensional (1D) optical
lattice at the λlat = 759.3 nm magic wavelength [56]; here
Erec = h2/(2mλ2

lat ) denotes the recoil energy, h is Planck’s con-
stant, and m is the mass of 174Yb. During the measurements,
the atoms are trapped at an axial temperature of �12 µK in
the lattice as shown in Appendix A. Since the bosonic isotope
174Yb exhibits zero nuclear angular momentum, neither the
1S0 nor the 3P0 state possesses hyperfine structure, and the
clock transition at 578 nm is induced via a magnetic field,
which admixes a small fraction of the 3P1 state to the 3P0 state
[59]. Here we apply a B field of �100 G to coherently excite
the 3P0 state [Fig. 1(b)]. To obtain the excited-state fraction,
we separately detect the fraction of atoms in the 1S0 and 3P0

states. To this end, atoms in the 3P0 state are repumped using
the 3P0-3D1 transition [60].

III. MAGIC WAVELENGTH MEASUREMENTS

At magic wavelengths the differential polarizability for a
given pair of states vanishes. Its precise location is commonly
determined by measuring the wavelength-dependent differen-
tial light shift induced by an optical potential via spectroscopy
on the respective transition (see, e.g., Ref. [56]). To this end
we overlap an almost collinear additional frequency-tunable
laser beam (dipole beam) with the 1D lattice [Fig. 2(a)]
and perform spectroscopy measurements with and with-
out the dipole beam [Fig. 2(b)]. The induced line shift in
turn depends linearly on the applied laser power, as shown
in Fig. 2(c), and the corresponding slope determines the
wavelength-dependent differential light shift [Fig. 2(d)]. For
small detunings � from the magic wavelength, the differential
light shift scales approximately linearly with detuning and the
magic wavelength can be extracted with a least-squares fit of
a linear function [Fig. 2(d)]. This yields a value of

fm1 = [542 502.05 ± 0.08stat (
+0.01
−0.11)sys] GHz

for the magic wavelength close to the 1S0-3P1 transition. The
statistical uncertainty is given by the 1σ error of the fit.

We minimize systematic errors due to slow drifts during
a single measurement by randomizing the sequence of clock
laser detunings δ at which the dipole beam is toggled. Further-
more, we ensure a homogeneous resonance shift across the
atomic cloud by choosing the dipole beam waist w0 = 125 µm
to be much larger than the transverse cloud size and about
twice the waist of the 1D lattice w0 � 2wlat. We calibrate the
dipole beam power prior to the start of each measurement
and keep track of its spatial overlap with the lattice using a
camera. Over the course of the measurement, we observe a
small position drift, which we estimate to result in a reduc-
tion of the intensity of the dipole beam of at most 7% at
the location of the atoms. Assuming this drift to be linear,
we obtain a conservative estimate for the systematic error of
−0.11 GHz. A second contribution of +0.01 GHz stems from
the calibration uncertainty of the dipole beam intensity, which
is caused by étaloning induced by a bandpass filter mounted
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FIG. 2. Magic-wavelength measurement. (a) Schematic drawing of the experimental setup. The 1D magic lattice (gray) and the additional
dipole beam (green) intersect at an angle of � 1◦ (sketch not to scale) to avoid backreflections of the latter. The spectroscopy laser (yellow)
is collinear with the 1D lattice and its polarization (double arrow) is parallel to the direction of the magnetic field B. All beams overlap at the
position of the atoms (blue). (b) Resonance spectrum without (gray) and with dipole beam (green). The resonance shift is extracted by fitting
a Rabi line shape (solid line). The result is shown as a white hexagon in (c). (c) Resonance shift as a function of the dipole beam power. Each
data point consists of an average of three individual spectroscopy measurements as shown in (b). The frequency dependence of the slope is
evaluated using linear fits (solid lines) with vanishing offset. The respective data points are shown as white hexagons in (d). (d) Fitted light
shifts extracted from measurements as shown in (c) as a function of the frequency of the dipole beam relative to the magic wavelength fm1

(see main text). The error bars correspond to the standard deviation (c) and 1σ -fit uncertainty (d) and are smaller than the data points. Inset:
Zoom-in on the region close to the magic wavelength.

on the intensity stabilization photodiode, as discussed in
Appendix A.

We repeat the same measurement in the blue optical spec-
trum and obtain the following value for the magic frequency:

fm2 = [652 281 ± 10stat (
+11
−0 )sys] GHz.

The corresponding data are shown in Appendix A. We note
a substantially larger statistical error compared to fm1. This
is due to less available dipole beam laser power at this wave-
length and a smaller slope of the differential polarizability. To
obtain the same measurement precision, we therefore require
larger detunings � from the magic wavelength. However, for
large detunings a significant deviation from a simple linear
dependence of the differential light shift is expected. To es-
timate the corresponding systematic error we calculate the
theoretically expected polarizability for the detunings sam-
pled in the experiment and determine the difference between
the expected zero crossing and the one extracted with a linear
fit. We find that for a detuning range of ±1 THz the systematic
error amounts to 11 GHz. We therefore limit the range of
detunings to this regime. In Appendix A we show that further
sources of systematic uncertainties are negligible compared to
the dominant error sources described above.

IV. TUNE-OUT WAVELENGTH MEASUREMENT

The tune-out condition refers to a zero crossing of the
frequency-dependent polarizability for a certain state. These
points can be useful for tests of fundamental physics, since
the respective frequencies can be determined with high
precision, as they do not require exact measurements of
light intensities or transition strengths [61]. Several tech-
niques have been employed in the past to locate tune-out
frequencies based on Kapitza-Dirac diffraction [52,62–65],
interferometric techniques [53,66], periodic modulation
[33,67,68] or measurements of trap frequencies [61].

For our measurement we employ parametric heating in-
duced by an additional perturbing lattice near the tune-out

wavelength, similar to Ref. [33]. After loading the atoms from
the MOT into the �390Erec deep magic lattice, we increase
its depth to � 730Erec within 10 ms. Subsequently, we turn
on the second lattice within 5 ms, copropagating with the
main lattice as schematically shown in Fig. 3(a). As outlined
in Appendix A, this lattice is several orders of magnitude
weaker to ensure that the trap parameters are still dominated
by the magic lattice. By modulating the amplitude of this
additional lattice we induce controlled heating, which we
detect via atom-loss measurements. Since the magic and tune-
out wavelengths are incommensurate, the modulation causes
both phase and amplitude modulation in the combined lattice.
Hence, the modulation introduces excitations to higher-lying
vibrational bands that are separated by one or two motional
quanta, in contrast to pure phase or amplitude modulation. An
example spectrum is shown in Fig. 3(b), where we can in-
deed identify two dominant resonances. Assuming the lattice
potentials are locally well described by a harmonic poten-
tial, those correspond to excitations by one, |n〉→|n + 1〉,
or two, |n〉→|n + 2〉, harmonic oscillator quantum numbers,
respectively. For technical reasons, we choose to implement
a square-amplitude modulation with a modulation amplitude
of 100%, which allows us to precisely control the intensity.
This explains the additional less pronounced resonances at
one third of these frequencies in Fig. 3(b). To avoid systematic
errors we take data with and without the perturbation lattice at
each modulation frequency and randomize the order in which
the data points are taken.

Selecting the |n〉→|n + 2〉 resonance, we then scan the
time during which we hold and modulate the atoms in the
combined lattice and observe the resulting loss in atom pop-
ulation from the trap [Fig. 3(c)]. By fitting the data using
an exponential decay and comparing the lifetime τ with the
lifetime in the bare magic lattice without probe light τ0, we
extract an excess loss rate �exc ≡ 1/τ − 1/τ0 [Fig. 3(c), bot-
tom panels]. At the tune-out wavelength, the ground state
experiences no trapping potential and the excess loss rate
approaches zero.
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FIG. 3. Tune-out-wavelength measurement. (a) Sketch of the
experimental setup. The shallow tune-out lattice (green) is super-
imposed onto the deep magic lattice (gray). (b) Loss spectrum of
1S0 atoms as a function of the modulation frequency (green) after
40×103 modulation periods at a detuning of 327 GHz from the
tune-out wavelength. Each data point consists of two measurements
and the error bar is the corresponding standard deviation. Reference
measurement without tune-out lattice is shown in gray. Transitions
to higher motional states are observed at 89 and 178 kHz, which
correspond to excitations by one or two harmonic oscillator quanta,
respectively. The smaller resonance features correspond to third har-
monics, resulting from the square-pulse amplitude modulation. The
lines connecting the data points are a linear interpolation. The ver-
tical dashed line (gray) indicates the modulation frequency used for
the following measurements. (c) Excess loss rate �exc of ground-state
atoms calculated by subtracting the bare loss rate 1/τ0 from the loss
rate obtained with modulation 1/τ . The solid green line is the fitted
quadratic function without offset. For each value of the detuning �,
three measurements are taken. The error bars for each data point
correspond to the standard deviation of the fit uncertainties of the
respective decay curves. Insets: Schematic drawings of the ampli-
tude of the two lattices: magic (gray) and tune-out (green). Lower
panels: The bare loss rate (gray) and the loss rate with modulation
(green) are obtained from fitting the ground-state atom population
as a function of the modulation time with an exponential decay and
zero offset. Displayed as solid lines are the exponential fits. The cor-
responding data points are indicated by white hexagons in the upper
panel.

Since we rely only on intensity modulation of the trap
for parametric heating, we may assume a quadratic scaling
behavior for the excess loss rate of the form �exc ∝ α2 ∝ �2

[33,69]. Fitting the excess-loss-rate data using this scaling, we

extract the value of the tune-out wavelength for the 1S0 state
to be

fto = [541 832.49 ± 0.23stat (
+0.05
−0.24)sys] GHz,

where the statistical uncertainty is given by the 1σ -fit uncer-
tainty.

The systematic uncertainty is dominated by the effect of
anharmonic deviations of the trap loss rate at large detun-
ings. We observe that for � � 21 GHz the measured excess
loss rate is lower than expected. We evaluate the correspond-
ing systematic error in two ways: First, we calibrate the
reduction of the loss rate experimentally by increasing the
modulation amplitude at fixed detuning, correct the data ac-
cordingly, and fit the value of the tune-out wavelength using
the same quadratic function as mentioned above. We find that
in this case the tune-out wavelength is shifted by +0.05 GHz
with respect to fto. Second, we successively limit the fit
range to smaller detuning values. For the smallest detuning
range where the deviations are negligible, i.e., |�| < 12 GHz,
we obtain a maximum systematic offset of −0.24 GHz;
see Appendix A. Additional systematic errors, e.g., due to
pointing drifts or intensity calibrations, are found to be
negligible.

In order to estimate the excited-state polarizability at the
tune-out wavelength, we employ the same experimental setup
as described in Sec. III. We set the frequency of the dipole
beam to be equal to the previously determined tune-out wave-
length fto in order to determine the light shift induced on
the clock transition. Since the tune-out frequency is almost
700 GHz detuned from the magic wavelength, the light shift
at the maximum available power is substantial. We therefore
limit the dipole beam power and hence the observed frequency
shifts to less than −500 Hz to mitigate broadening of the light-
shifted resonance due to the nonuniformity of the Gaussian
intensity profile of the dipole beam. We find the following
intensity-normalized potential for the 3P0 state at the 1S0 tune-
out wavelength:

Vac/I = h × [−3.8 ± 0.07stat (
+1.1
−1.6)sys] Hz/

W

cm2
.

The statistical uncertainty is given by the 1σ error of the
fit, while the systematic error stems from the uncertainty in
determining the intensity of the dipole beam. The largest con-
tributions arise from the estimated uncertainties in the waist
of the dipole beam and its longitudinal focus position overlap
with the lattice focus, as discussed in Appendix A.

V. EMPIRICAL MODEL FOR AC POLARIZABILITY

The position of the measured tune-out and magic wave-
lengths entails valuable information about the ground and
excited clock-state polarizability. In particular, it allows for
direct feedback to elaborate many-body perturbation (MBPT)
or configuration-interaction (CI) theory models to provide
more accurate predictions of the ac polarizability of either
state [30,32,70]. Here, we present a simple empirical model
in order to extrapolate the ac polarizability between the mea-
sured magic wavelengths at 459.6 and 759.3 nm, covering a
broad range of the visible spectrum, and benchmark it with
additional experimental results.
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(a) (b)

FIG. 4. Empirical model for the ac polarizability of the 1S0 and 3P0 states. (a) Energy levels and transitions taken into account for the
empirical ac polarizability model. For 1S0 we find levels beyond the core-excited state (7/2, 5/2)J=1 sufficiently captured by a global offset.
In the case of 3P0, we use an effective transition to absorb all states lying higher than (6s8s)3S1. (b) Position of measured magic and tune-out
wavelengths, and the magic wavelength measured in Ref. [56]. Note that the vertical position of the 459.6- and 552.6-nm magic wavelength
markers is only determined by the crossing of the polarizability curves. The error bar for the 759.3-nm magic wavelength is determined
based on polarizability estimates from several experiments [19,56]. Inset: Zoom-in on the 552.6-nm magic wavelength and the measured
polarizabilities at the 1S0 tune-out wavelength close to the 1S0-3P1 transition at 555.8 nm.

Starting from the ac polarizability in second-order pertur-
bation theory, the normalized potential induced by a laser
beam of intensity I can be written as

Vac/I = −
∑

J ′

ωJ ′J

3h̄ε0c

|〈J||d||J ′〉|2
ω2

J ′J − ω2
,

with h̄ = h/2π , ε0 the vacuum permittivity, and c the speed of
light. Here we sum over all electric dipole transitions J ↔ J ′

with corresponding angular frequency ωJ ′J of the respective
state |J〉 [71,72]. Note that due to the vanishing nuclear spin
and the consequential absence of hyperfine splitting in 174Yb
the only contribution to the light shift is the scalar polariz-
ability α(0) and we can write J and J ′ instead of F and F ′

throughout. We can further relate the modulus squared of the
reduced matrix element |〈J||d||J ′〉|2 to the linewidth �J ′J of the
corresponding transition [73].

Figure 4(a) gives an overview of the transitions that were
taken into account. For the 1S0 state, the polarizability at
the measured wavelengths is largely defined by just three
transitions: the broad transition to 1P1 at 399 nm, the nar-
row intercombination line to the 3P1 state at 556 nm, and
a transition to the electronic core-excited state denoted as
(7/2, 5/2)J=1 at 347 nm [74,75]. Similarly, the polarizabil-
ity of the 3P0 state is dominated by the four lowest-lying
transitions to the S and D manifold, in particular the transi-
tion to (6s5d )3D1 at 1389 nm, the 3P0-(6s7s)3S1 transition at
649 nm, and the 3P0-(6s6d )3D1 transition at 444 nm [76,77].
However, for some of the 3P0 transitions, only the lifetime of
the corresponding excited states has been measured, but the
exact decay rate to the 3P0 state is not precisely known. In

that case we estimate the respective decay rate by calculating
the branching ratio into all lower-lying dipole-allowed states,
treating the involved states as eigenstates |J〉 = |LSJ〉 of the
angular momentum operators, as shown in Appendix B. Note
that, especially for the 3P0 state, there are many more transi-
tions to higher-lying excited states that will also play a role in
determining the precise polarizability at a given wavelength.
For the wavelength range we are studying, these can be treated
as sufficiently far detuned such that we can describe them
as a single effective transition. Both the effective transition
wavelength and linewidth are then free parameters of our 3P0

polarizability model.
For the ground state, the neglected higher-lying transitions

are even further detuned such that we can absorb their ef-
fect in a small overall offset as the only free fit parameter.
This offset is fixed to −0.8 Hz/ W

cm2 by requiring that the 1S0

polarizability is zero at the measured tune-out wavelength.
As this also determines the 3P0 polarizability at the experi-
mentally known magic wavelengths, we fit an effective tran-
sition with linewidth �eff = 2π×23 MHz at a wavelength of
λeff = 376 nm to these three values. The resulting polarizabil-
ity predictions are close to the measured 3P0 polarizability
at the 1S0 tune-out wavelength [Fig. 4(b), inset]. Moreover,
we benchmark our model against measured polarizability ra-
tios at 670, 671.5, and 690.1 nm [19,21], showing excellent
agreement within error bars as discussed in Appendix B. In
addition, we note that our 3P0 results match the CI+MBPT
predictions from Ref. [30] well, whereas for the 1S0 state we
observe a deviation for wavelengths below �556 nm, with
a discrepancy of �10–15% in between the blue and green
magic wavelength.
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VI. SUMMARY AND CONCLUSION

In this paper, we have presented measurements of three
state-(in)dependent wavelengths, which open possibilities for
state-selective manipulation of the Yb 1S0 and 3P0 optical
clock state pair. Using a tweezer array at the tune-out wave-
length enables selective trapping of atoms in the 3P0 state
while leaving 1S0 atoms unaffected. This may pave the way
for novel tweezer rearrangement and local addressing tech-
niques. The 459.6- and 552.6-nm magic wavelengths on the
other hand may prove valuable for cooling and trapping.
In particular, the blue magic wavelength at 459.6 nm may
constitute a promising alternative [17]. Specifically, optical
tweezers at this wavelength not only benefit from the larger
polarizability compared to 759.3 nm, but also from the shorter
wavelength, allowing for almost seven times deeper potentials
with the same amount of laser power. Accurate knowledge of
the ac polarizabilities opens up possibilities for novel quan-
tum computing protocols [16,17] and applications in quantum
simulation. This includes the engineering of artificial mag-
netic fields [29,78], lattice gauge theories [79], twisted-bilayer
models [80–83], or analog quantum chemistry simulations
[84]. Our measurements also serve as a benchmark for exist-
ing theoretical polarizability models, enhancing the accuracy
of predictions. Experimental results for distinctive points in
the ac polarizability are vital for benchmarking of transition
matrix elements and to enhance the accuracy of theoretical
predictions [31,52,53,55,65,66].

The data that support the plots within this paper and other
findings of this paper are available in Ref. [85].
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APPENDIX A: EXPERIMENTAL TECHNIQUES

1. Experimental sequence

We begin our measurements by loading a MOT from a
commercial cold atomic beam system (AOSense Yb Beam

FIG. 5. Sideband spectrum showing the carrier transition and red
and blue motional sidebands. The position of the sidebands allows
us to determine the longitudinal trap frequency fz, while the ratio of
red to blue sideband area determines the corresponding longitudinal
temperature Tz. By fitting (5) to the blue sideband it is possible to
extract the radial temperature Tr . The solid line consists of the fitted
Lorentzian line shapes to the carrier and the sharp sideband edges as
well as (5) fitted to the red and blue shallow sideband slopes.

RevC). The MOT is operated on the narrow 1S0-3P1 transition,
and we routinely load � 10×106 174Yb atoms into the MOT
within 300 ms. To bring atoms from the cold atomic beam
(exit velocity � 40 m/s) within the capture velocity of our
MOT, we employ a set of crossed slowing beams operated on
the broad 1S0-1P1 transition following the scheme in Ref. [58].

After loading the MOT, the cold atomic beam and crossed
slowing beams are switched off, and we compress the MOT
within 100 ms. At the end of the compression, we keep the
magnetic-field gradient as well as the MOT intensity and
detuning constant for another 100 ms. During this time, we
load the one-dimensional optical lattice by linearly ramping
its depth to �730 Erec for the magic-wavelength measure-
ments. For the tune-out-wavelength measurements, the lattice
is first ramped to a lower lattice loading depth of �390 Erec

within 100 ms and is subsequently ramped to the same final
lattice depth of �730 Erec within 10 ms, after the MOT light
and magnetic-field gradient are turned off. Depending on the
initial depth, we load between 70×103 and 300×103 atoms
into the optical lattice, before turning off the MOT beams.

2. Initial state

From the MOT, atoms are loaded into a magic 1D optical
lattice at λlat = 759.3 nm, generated by a titanium:sapphire
ring laser (Sirah Matisse CS), which is digitally locked to a
wavemeter (High-Finesse WS8). To measure the depth of our
lattice and the temperature of the atoms, we perform sideband
spectroscopy [87]. The atoms in the lattice are probed with
the clock laser along the tightly confined longitudinal axis
of the lattice, here defined as the z axis. By scanning the
clock laser at high power and a large magnetic field of 400 G
over a range of detunings δ and measuring the excited-state
fraction we are able to resolve the carrier transition as well as
the corresponding red and blue motional sidebands, as shown
in Fig. 5. On resonance, we measure a Rabi frequency of
�0 = 2π×2.8(1) kHz. It is assumed that the atomic popula-
tion in different motional states follows a thermal distribution
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and that individual transitions between motional states may
accurately be described by a Lorentzian line shape with a
width given by �0. We use this line shape to fit the sharp
edge of the blue sideband and extract the longitudinal trap
frequency fz from the center of the Lorentzian.

The shape of the shallow sideband slope towards the carrier
is given by a weighted sum of individual absorption cross
sections [87]:

σ (δ) ∝
Nz∑

nz=0

e−Enz /kBTzσnz (δ) (A1)

where

σnz (δ) = β2

γ̃ (nz)

(
1 − δ

γ̃ (nz)

)
e
−β

(
1− δ

γ̃ (nz )

)
�[γ̃ (nz) − δ],

with β = [γ̃ (nz)/ frec](h fz/kBTr ), the Heaviside function �,
the radial temperature Tr , the longitudinal trap frequency
fz, and γ̃ (nz) = fz − frec(nz + 1) the energy difference be-
tween longitudinal harmonic oscillator states nz, where frec =
h/(2mλ2) is the lattice recoil frequency, kB the Boltzmann
constant, and h Planck’s constant. This form of the shallow
sideband edge originates in the radial motion of the atoms
along the weakly confined axis. By fitting (5) to the blue
sideband we extract the radial temperature of Tr � 20.0(5) µK
at a lattice depth of 728(2) Erec.

The longitudinal temperature Tz � 11.9(2) µK is obtained
by numerically computing the sideband area ratio.

3. State-selective absorption imaging

We perform absorption imaging on the 1S0-1P1 transition
along an axis tilted away from the longitudinal axis of the
lattice by � 10◦. Since our imaging intensity is close to the
transition saturation intensity of Isat = 60 mW/cm2, we com-
pensate the nonlinear dependency of the optical density on the
imaging intensity following the procedure in Ref. [88].

To detect atoms in the clock state 3P0, we employ a
repumping scheme on the 3P0-3D1 transition [60] with subse-
quent absorption imaging on the same transition used for the
ground-state atoms. Using two subsequent absorption images,
one before repumping and one after repumping, we always
determine both the atomic density distribution in 1S0 and 3P0.
The repumping efficiency for transferring population from 3P0

via the 3P0-3D1 transition to the ground state is estimated by
comparing the ground- and excited-state atom number after a
resonant π pulse when we toggle the clock beam. Owing to
the finite branching ratio from the 3D1 state to the metastable
3P2 state one would naïvely assume a difference of �3%
between the excited-state population with the clock beam on
and the ground-state population with deactivated clock beam.
However, we find a repumped fraction of 84(1)%. We attribute
this lower value to the rapid loss of excited-state atoms due
to inelastic collisions before they are repumped back to the
ground state. We account for the finite repumped fraction by
correcting the excited-state population in 3P0 accordingly for
all measurements reported in this paper.

4. Clock spectroscopy

To drive the clock transition, we employ a commercial
laser system (Toptica TA-SHG pro) with up to � 700 mW
at 578 nm. A small fraction of the seed laser power at the
fundamental wavelength of 1156 nm is used to lock the laser
onto a commercial optical reference cavity (Menlo Systems
ORC-Cylindric) using the Pound-Drever-Hall stabilization
technique [89]. At this wavelength the finesse of the optical
cavity is >4×105. This was determined by measuring the
cavity photon lifetime after suddenly extinguishing the inci-
dent light using an acousto-optical modulator (AOM). The
residual linear drift of the cavity corresponds to � 60 mHz/s
and is compensated with feed-forward on the offset lock using
a fiber-coupled waveguide electro-optical modulator. For all
spectroscopy data, we fit the excitation fraction using the
well-known Rabi line shape

P(δ) = a
4

π2
sinc2

(
π

2

�

�0

)
, (A2)

where � = √
�0 + δ is the generalized, �0 the resonant Rabi

frequency, a the amplitude, and δ the detuning.

5. Systematic uncertainties in the magic-wavelength
measurements

To determine the differential light shift induced by the
frequency-tunable dipole beam we perform clock spec-
troscopy with and without the additional beam and fit the
spectra with Rabi line shapes, as defined in Eq. (A2). The
frequency-tunable laser source for the magic-wavelength
measurement in the green spectral range, to determine fm1,
is a vertical-external-cavity surface-emitting laser (VECSEL,
Vexlum VALO-SHG-SF), while the one for measuring fm2 in
the blue spectral range is a widely tunable optical parametric
oscillator (Hübner Photonics C-WAVE VIS+IR Low Power
[86]).

a. Light-shift data and systematic uncertainties
in the measurement of the magic wavelength fm2

The experimental results for the wavelength-dependent
light shift used to fit the value of fm2, as reported in the main
text, are shown in Fig. 6 together with the least-squares fit
of the linear function. The dominant systematic uncertainty
is determined by deviations from the linear approximation
for the large detuning range of ±1 THz, as discussed in the
main text. To assess the systematic uncertainty due to rela-
tive pointing drifts between the lattice and dipole beam, we
image the position of both beams in a plane that is approxi-
mately conjugate to the plane of the atoms. For a quantitative
analysis, we assume the measured drift to be linear in time,
starting from an initially perfect overlap. To calculate the
corresponding correction to the measured light shifts, it is
necessary to estimate the integrated dipole beam intensity
reduction experienced by the atoms as the drift increases. We
therefore fit a rotated 3D Gaussian to a set of representative
atom-cloud images to obtain the cloud size in the lattice
[σz = 288(18) µm, σr = 16.52(4) µm], which is then inte-
grated over the Gaussian dipole beam intensity distribution
to obtain the weighted mean of the intensity experienced by

053325-7



TIM O. HÖHN et al. PHYSICAL REVIEW A 108, 053325 (2023)

FIG. 6. Wavelength-dependent light shift around the magic
wavelength fm2. Similar to Fig. 2 in the main text, we fit a linear
function to the light shift and extract the magic wavelength at the
zero crossing of the fit function. The error bars are determined in
identical fashion to those of Fig. 2 in the main text.

the atoms. The resulting correction to the light shifts leads to
a systematic uncertainty of 0.3 GHz and is much smaller than
the statistical error associated with this measurement. We note
that a potential mismatch between the imaging and atomic
plane would lead to an increased apparent pointing drift and
thus to an overestimate of the systematic error.

b. Systematic uncertainties in the measurement
of the magic wavelength fm1

One important systematic uncertainty for this measure-
ment is due to relative position drifts of the lattice and the
dipole beam. The corresponding analysis has been performed
as described in the previous paragraph and gives a value
of −0.11 GHz. A second contribution stems from étaloning
induced by a spectral filter that is mounted onto the pho-
todetector used to measure the intensity of the beam. This
introduces a wavelength-dependent correction for the inten-
sity, which results in an additional sinusoidal modulation on
top of the light-shift measurements, which are expected to
scale linearly with detuning (Fig. 7). In order to correct for this
nonlinearity we simultaneously calibrate the laser beam with
an integrating sphere (Thorlabs S140C). We find a sinusoidal
dependence on the wavelength, with a relative amplitude dif-
ference of 20% and a periodicity of 9.34(6) GHz. We fit a sine
function to these data with four free fit parameters (frequency,
phase, amplitude, and background) and use this to rescale the
measured light shifts at the respective laser frequencies to
obtain the data shown in the main text Fig. 2(d). In Fig. 7
we show an alternative fit function, where the sinusoidal cor-
rection is included in the fit function. Both methods yield the
same value for the magic frequency within the statistical error
uncertainty of the fit. The corresponding systematic error is
computed by a linear error propagation of the fit uncertainties
and amounts to 10 MHz.

6. Scattering rate at the green magic wavelength fm1

To benchmark photon scattering due to the nearby 1S0-3P1

transition, we measure the lifetime of atoms in the ground
state 1S0 in the 1D lattice with the dipole beam on and off.

FIG. 7. Systematic uncertainty due to étaloning in the light-shift
measurements for determining fm1. Measured wavelength-dependent
light shifts, as in Fig. 2 in the main text, without correcting for
the étaloning. The solid line shows the linear fit function taking the
calibrated sinusoidal corrections due to étaloning into account.

The experimental sequence is similar to the one described in
the main text. We load cold atoms from the MOT into the 1D
lattice at �390 Erec. For the measurements we then increase
the depth to �730 Erec within 10 ms and turn on the dipole
beam within 5 ms. At a maximally attainable incident dipole
beam power of �230 mW, we measure a 1/e decay rate of
� = 46.3(10) mHz when the dipole beam is on. Compared to
the case where the dipole beam remains off, we measure an
excess loss rate of �exc = 0.1(8) mHz which is consistent with
no lifetime difference within the error bars.

7. Parametric heating

For the tune-out wavelength measurement we superimpose
a weak frequency-tunable lattice (VECSEL) with the deep 1D
lattice. To find the parametric heating resonances we use the
same sequence as described in the main text. We load atoms
into a �390 Erec deep lattice, ramp the intensity to �730 Erec

within 10 ms, turn on the shallow lattice within 5 ms, and
hold while modulating its intensity using a square-wave signal
generated by a function generator at a frequency fmod. The
function generator modulates the shallow lattice by periodi-
cally turning the AOM on and off. The modulation frequency
fmod is large enough (on the order of a few tens to a few
hundred kHz) to prevent significant signal distortion due to
the bandwidth limit of the intensity stabilization. This allows
us to accurately stabilize the averaged intensity of our lattice
for the whole modulation frequency range. Fourier transform-
ing the modulated amplitude confirms a clean rectangular
modulation signal, where the only significant peaks appear
at uneven multiples of fmod and fall off in amplitude as f −1.
The observed modulation resonance fres = 89 kHz and its first
multiple 2 fres (cp. Appendix A 2) correspond to phase and
amplitude modulation in the combined lattice (see Ref. [33]
for further details). The discrepancy between the parametric
heating resonance and the lattice trap frequency fz = 107 kHz
independently measured using sideband spectroscopy is most
likely due to the anharmonicity of the higher-lying lattice
energy levels, which are strongly populated as the atoms
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(a) (b) (c)

FIG. 8. Correction of the parametric heating saturation effect. (a) Accumulation of the unphysical fit offset c as a function of the detuning.
As larger detunings are included in the fit, the offset increases as the deviation from a quadratic behavior around fto increases. (b) Excess
loss rate measurement at constant detuning but varying tune-out lattice power. For large loss rates we observe a deviation from the expected
quadratic behavior (dotted line). We model this flattening behavior with a quartic function (solid line). Inset: Rescaling factor determined with
the quartic fit to correct the observed loss rate for the anharmonicity at large detunings. (c) Excess loss rate �exc(�) as a function of detuning
� from fto when we employ the rescaling curve displayed in (b). Uncorrected values are shown in gray. In (b) only excess loss rates �40 mHz
were measured, so we disregard two data points beyond this threshold (red).

are heated out of the lattice. Note that close to the tune-out
wavelength the polarizability is small and we can assume that
the 1D lattice parameters are independent of the power of the
weak perturbing lattice. Indeed, we estimate a trap frequency
of f � 40 Hz for the largest detuning of �35 GHz, which is
more than three orders of magnitude smaller than fz.

8. Excess loss rate and tune-out wavelength determination

The extraction of loss rates � is performed with a least-
squares fit to the atom number N (t ) using a single exponential
function:

N (t ) = N0e−�t . (A3)

For our lattice parameters (waist wlat = 66.5 µm, lattice spac-
ing λlat/2, mean occupation number per layer N̄z � 55), we
expect the particle densities to be too low for two- or three-
body losses to play a significant role within our measured
lifetimes [90,91]. We test this statement by comparing the
single exponential fit to superexponential decay functions that
take two-body or three-body losses into account. We find that
both loss rates are consistent with zero within error bars. We
therefore use a simple exponential decay for all lifetime fits
in this paper. We further confirm that the lifetime in the deep
1D lattice is not modified by the presence of the static shallow
tune-out lattice.

Since we modulate the tune-out lattice at fm = 2 fres, we
expect amplitude modulation to be the main reason for heating
and additional atom loss. In this case, modulation-induced
loss can be described as [69]

�exc = π2 f 2
mSε (2 fm ) ∝ f 2

mα2I2
to, (A4)

where Ito denotes the intensity of the tune-out lattice and we
use the fact that the one-sided modulation power spectrum,
Sε (2 fm ), is proportional to the squared modulation ampli-
tude of the tune-out lattice, Sε (2 fm ) ∝ α2I2

to. For constant
lattice intensity this translates into �exc(�) ∝ α2(�) ∝ �2 for
a small range around the tune-out frequency fto, where the
polarizability is approximately linear in � [33]. Within this

approximation the tune-out frequency fto can be determined
by fitting a simple quadratic function without offset.

Experimentally, however, we find that for the range of
detunings probed in the experiment a simple quadratic fit does
not capture the data sufficiently well. Adding a constant offset
instead appears more accurate. However, this offset is not
supported by the vanishing measured excess loss rate close
to fto, where we would expect the heating rate to be zero. In
order to understand the origin of the offset, we fit the quadratic
function for various detuning ranges [Fig. 8(a)] and find that
the offset only becomes significant for detunings that exceed
|�|�21 GHz. This seems to imply that for large detunings the
loss rate is suppressed compared to the simple approximate
scaling �exc ∝ �2.

To gain more insight, we measure �exc at a fixed detun-
ing of �25 GHz and vary the power of the tune-out lattice
[Fig. 8(b)]. Indeed, we observe a deviation from the quadratic
prediction for large modulation amplitudes, which limits the
observed excess loss rates to �40 mHz. Empirically, we find
that a quartic polynomial with an additional term ∝ I4

to de-
scribes this behavior more accurately. In order to estimate
the effect of the quartic correction on the value of the ex-
tracted tune-out frequency fto, we use the quartic fit shown in
Fig. 8(b) in order to rescale the measured loss rates [Fig. 8(c)]
and compare the result of quadratic fits with and without
offset, yielding a difference of 53 MHz, which we use as the
positive systematic error contribution. Furthermore, we find
that within the fit uncertainty the offset indeed vanishes for the
corrected data. Note that there are two data points with excess
loss rates >40 mHz. Since we only calibrated loss rates of up
to 40 mHz in Fig. 8(b) our empirical correction model is not
applicable for these values. Therefore they are excluded from
the fit.

For the evaluation of the data shown in Fig. 3(c) in the
main text, we fit a quadratic function without offset. To
evaluate the systematic uncertainty introduced by the devia-
tions from the quadratic scaling described above, we analyze
the data for various detuning ranges |�| < |�c| around the
tune-out frequency fto, where |�c| denotes the cutoff for the
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FIG. 9. Fitted tune-out frequency for constrained datasets. We
restrict the range of tune-out lattice laser detunings |�| to variable
maximal values and fit the quadratic fitting function without offset
for each dataset. For very few data points the asymmetrically spaced
detunings lead to a strong bias towards lower frequencies. However,
upon including data points at |�c| > 11.5 GHz the fitted minimum
deviation remains within �250 MHz (inset). The gray shaded area
displays the detuning range used to extract the systematic uncertainty
from the heating saturation.

detuning range considered for the evaluation. We then perform
the quadratic fit without offset for this range to obtain the
minimum f̃to and evaluate the shift of the tune-out frequency
from the value reported in the main text � fto = fto − f̃to. The
results are shown in Fig. 9. The large error bars of � fto for
small detuning ranges �c are due to the limited number of
data points as well as their asymmetric spacing within the
detuning range. For larger detuning ranges |�c| �11.5 GHz,
we find that the shift � fto varies around small negative shifts
and does not exceed −250 MHz.

For the uncorrected data set (as used for the evaluation in
the main text) large detuning ranges are unreliable for |�c| �
21 GHz as discussed above (Fig. 8). Hence, we restrict our
evaluation to detuning ranges 11.5 � |�c| � 21 GHz. Within
this range the largest deviation from zero is −243 MHz at
|�c|�12 GHz, which we identify as the dominant system-
atic uncertainty of this measurement. Since we consistently
observe shifts to lower frequencies, apart from one outlier at
large detunings, we do not extract a positive systematic error
contribution from this method.

9. Estimating the 3P0 polarizability at the tune-out wavelength

We examine the polarizability of the 3P0 state at the tune-
out wavelength by measuring the light shift induced on the
clock transition by a dipole beam operating at the tune-out
wavelength. We make use of the fact that the 1S0 state ex-
periences no trapping potential at the ground-state tune-out
wavelength and thus any light shift induced on the clock
transition at this wavelength originates from the finite ac po-
larizability of the 3P0 state. Due to the significant differential
light shift at the tune-out wavelength, we expect significant
broadening of the resonance for large shifts. To ensure that
the clock resonance linewidth is only limited by the laser
linewidth and not by the spatial inhomogeneity of the dipole

beam we measure only at low dipole beam powers of up to
�35 mW.

To compute the intensity-normalized potential Vac/I , we
divide the measured light shift by the effective dipole beam in-
tensity. The latter is again estimated by integrating the dipole
beam intensity distribution over the atomic cloud. We further
take the measured dipole beam waist and the small angle
of 0.76(12)◦ between the dipole beam and the lattice into
account.

The conservatively assessed uncertainties in each of these
measurements, i.e., the atom cloud size, beam waist, and
angle, are used to compute the linear sum of the propa-
gated uncertainties, yielding a systematic error contribution
of 0.85 Hz/ W

cm2 . As for the remaining sources of systematic
errors, we account for a potentially imperfect focus overlap
between lattice and dipole beam, the uncertainties stemming
from our reference photodiode calibration, our integrating
sphere and powermeter, and the finite transmission through
our glass cell.

As pertains to imperfect foci overlap, we assume the
mismatch to be limited to the longitudinal axis. This is a
reasonable assumption given that we optimize the pointing of
the dipole beam (and thus the radial axis) by maximizing the
induced light shift prior to our measurements. However, the
lattice and dipole beam are focused onto the atoms through
the same lens. Therefore, the longitudinal overlap is only
determined by the relative collimation accuracy of the lattice
and dipole beam prior to this focusing lens. From our beam
profiler measurements of the lattice and dipole beams, we
assume a worst-case longitudinal focus mismatch of 5 mm.
This amounts to an asymmetric error of −0.48 Hz/ W

cm2 . To
calibrate the reference photodetector, we compare the mea-
sured photodetector signal with that of our integrating sphere
powermeter measuring the dipole beam power incident on the
atoms. We perform this comparison for multiple powers and
fit the resulting data using a linear fit. The associated fit un-
certainty is added to the inherent uncertainty of the integration
sphere. Finally, we measure the transmission of the dipole
beam through our glass cell and assume the transmission
through both windows to be the same. For the systematic
error estimate, we conservatively assume that either the first
or the second window transmits everything while the other
window leads to the measured overall intensity reduction,
thus either enhancing or reducing the dipole beam intensity
at the atom plane. Summing the respective absolute values
of these sources of uncertainty, we obtain a systematic error
contribution of 0.24 Hz/ W

cm2 .

APPENDIX B: DERIVATION OF THE EMPIRICAL
AC POLARIZABILITY MODEL

We study the ac polarizability in the semiclassical case
using a classical electric light field

E = E(+)e−iωt + c.c., (B1)

where E(+) = ε̂E (+) is the positive-frequency electric-field
amplitude vector and ω is the light’s angular frequency, in-
teracting via V = −E · d with a quantum mechanical atom
with electric dipole operator d as discussed in depth in
Refs. [71,72]. The second-order ac Stark shift for a state |J〉
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FIG. 10. Level scheme of all levels and transitions used for the
empirical estimate of the 1S0 and 3P0 polarizabilities. For clarity, the
core-excited states were arbitrarily assigned to the S and P column,
respectively. Frequency values are taken from Ref. [92].

can then be expressed as [73]

�EJ = −Re[αJ (ω)]|E (+)|2 (B2)

with |E (+)|2 = 1
4 |E |2 and

αJ (ω) = 1

3h̄

∑
n′J ′

(−1)J ′+1|〈n′J ′|ε̂ · d|J〉|2

×
(

1

ωn′J ′J + ω + i�n′J ′J/2

+ 1

ωn′J ′J − ω − i�n′J ′J/2

)
(B3)

where ωn′J ′J and �n′J ′J denote the angular frequency and
linewidth of the electronic transition from J to n′J ′. Note
that we made use of the absence of hyperfine structure in
174Yb and J = 0 for both the 1S0 and 3P0 state to drop all
but the scalar contributions to the ac polarizability. Omitting
the complex terms as we are only interested in polarizabilities
far detuned from any resonance and using the fact that only
transitions J = 0 → J ′ = 1 will contribute significantly, we

can write [73]

αJ (ω) =
∑
n′J ′

2ωn′J ′J |〈n′J ′|ε̂ · d|J〉|2
3h̄

(
ω2

n′J ′J − ω2
) . (B4)

By inserting this expression for α(ω) into Eq. (B2) and using
I = ε0c

2 |E |2 we receive the formula mentioned in the main
text.

The standard relation between a fine-structure transition
decay rate �J ′J and the corresponding reduced matrix element
|〈J ′||d||J〉| is given by [73]

�J ′J = ω3
J ′J

3πε0 h̄c3

2J + 1

2J ′ + 1

∣∣〈J||d||J ′〉∣∣2
(B5)

where we can make use of J = 0. In the case that �J ′J is
unknown and only the lifetime τ of the excited state has been
measured we estimate the decay rate to the respective state by
calculating the branching ratio [19,76]

β(J ′, J ) = ω3
J ′J |〈J ′||d||J〉|2∑

J ′′ ω3
J ′J ′′ |〈J ′||d||J ′′〉|2 (B6)

under the LS coupling approximation that we can describe
the involved states as eigenstates of the angular momentum
and spin operators L and S, thus disregarding configuration
mixing. We further require |J ′′〉 to be a lower-lying level than
|J ′〉. We can then decompose the reduced matrix element into
spin and angular momentum parts [73]

〈J ′||d||J〉 = 〈L′||d||L〉(−1)J ′+L+S+1
√

(2L + 1)(2J ′ + 1)

×
{

L L′ 1
J ′ J S

}
δS′S (1 − δ�′�) (B7)

with � = (−1)l1+l2 being the parity and l1 and l2 being the
electronic orbitals of the two valence electrons such that all
selection rules are respected [19]. Owing to the selection rule
L = L′′ = L′ + 1, the generally unknown orbital angular mo-
mentum matrix elements in the numerator and denominator in
the calculation of β cancel, and �J ′J = β(J ′, J )/τ . In total we
calculate the decay rates for two transitions from the 1S0 and
five from the 3P0 state in addition to three (1S0) and two (3P0)
experimentally known decay rates, respectively [57,74–77].

We treat the 1S0 polarizability as sufficiently described by
the known transition wavelengths and decay rates apart from

(a) (b) (c)

FIG. 11. Effect of reducing the number of 1S0 and 3P0 (insets) transitions on the fit parameters, ordered by their frequency. Since the
1S0 offset is only fitted to 1S0 data, this parameter is independent of the 3P0 transition set. We observe that the 1S0 and 3P0 parameters are
well decoupled if we take the transition to the core-excited state (third 1S0 transition) into account. Insets: For 3P0 the four lowest transitions
are sufficient to describe the polarizability landscape above ≈420 nm without visible changes compared to the full dataset as higher-lying
transitions are absorbed by the effective transition.
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FIG. 12. Effect of including a global offset as a third free parameter for the 3P0 polarizability. In this case, the fitted function crosses the
1S0 polarizability curve precisely at the three magic wavelengths. However, the deviation �Vac/I to the case without 3P0 offset is minimal
and the curves lie on top of each other in the whole wavelength range above ≈420 nm. The deviation �Vac/I which is displayed on the right
shows only marginal discrepancies for wavelengths above the blue magic wavelength, but starts to grow below due to a different effective
resonance position, becoming sizable for wavelengths <420 nm. Since the polarizabilities at the 459.6- and 552.6-nm magic wavelengths have
not been experimentally determined so far, they are shown as gray dotted vertical lines; the magic wavelength at 759.3 nm is displayed at the
1S0 polarizability prediction with gray dotted error bars illustrating the polarizability range obtained from Refs. [19,56].

a global offset. This offset is motivated by transitions to very
high-lying energy levels that are sufficiently far blue-detuned
(>200 nm) to leave the form of the polarizability curve un-
changed, but lead to a small overall attractive shift (Fig. 10).
Note that due to spin selection rules the strongest lowest-lying
transitions from the 1S0 state go to 1P1 states, so we only take
these into account aside from the 555.8-nm intercombination
line to (6s6p)3P1 which gives rise to the green magic and
tune-out wavelength and therefore has to be included. All
contributions from higher-lying transitions to triplet states can
safely be assumed to be captured in the offset as well. We note
that even without offset, the tune-out wavelength predicted
with this model is accurate within 0.05 nm. Therefore, fitting
the polarizability curve to the exact position of the tune-out
wavelength only leads to a small global offset.

For 3P0 the situation is slightly more complex owing to a
series of broad transitions to 3S1 and 3D1 states at wavelengths
just below the blue magic wavelength [77,92]. In particular the
3P0 → (6s6d )3D1 transition at 444.0 nm is crucial, but also
the 411.1-nm 3P0 → (6s8s)3S1 transition has to be taken into
consideration. We further note that while the reduced dipole
matrix element |〈(6s5d )3D1||d||3P0〉| of the repump transition
has been measured with high precision [76], the uncertainties
of some of the measured lifetimes of higher-lying states are
larger and could introduce significant systematic shifts. Due
to the proximity of the green and red magic wavelength to
the corresponding transition at 649.1 nm, for the polarizability
calculation especially the lifetime of the (6s7s)3S1 state is
of importance, where the disagreement between the reported
values from Refs. [77,93] amounts to �25%. We rely on the
value from Ref. [77] as we find very good agreement of our
computed decay rate with the value from Ref. [94]. Again, we
only take transitions into account where the selection rules are
fulfilled, and disregard higher-order effects such as mixing. To
compensate for this simplification and our limited transition
dataset we introduce the effective resonance mentioned in
the main text as otherwise the intensity-normalized poten-
tial would be blueshifted by a few Hz/ W

cm2 . Taking the 1S0

polarizability curve as fixed, we can fit to its values at the
three experimentally determined magic wavelengths, yielding

an effective transition at λeff � 379 nm with a linewidth of
�eff � 16 MHz. This effective resonance is thus embedded in
the pair of transitions to the (6p2)3P1 and (6s7d )3D1 levels
at �375 nm and we can let the actual transitions be absorbed
by the effective one, increasing its linewidth accordingly. We
can further disregard the weak core-excited-state transition to
4 f 135d6s6p(7/2, 5/2)J=1 at 397.6 nm described in Ref. [57]
such that eventually we require only four transitions to de-
scribe the 3P0 polarizability for the wavelength range �420 nm
[Figs. 11(b) and 11(c) insets and Table I], making this minimal
model less prone to errors from, e.g., the branching ratio
estimate. Similarly, we study the effect of reducing the 1S0

transition dataset on the fitted outcome. As expected, the
strong transitions to (6s7p)1P1 at 246.5 nm and (6s8p)1P1 at
227.2 nm change the fitted offset slightly but do not lead to
a significant deviation of the polarizability curve, which is
confirmed by the small change in the fitted effective 3P0 reso-
nance (Fig. 11). However, we observe a significant effect from
the electronic core excitation to the 4 f 135d6s2(7/2, 5/2)J=1

state, in line with what has been observed in complex
configuration-interaction calculations [30]. The final fitted
parameters with the reduced transition dataset are c1S0

=
−0.79 Hz/ W

cm2 , λeff = 376.1 nm, �eff = 2π×22.9 MHz as de-
scribed in the main text.

TABLE I. Overview of the transition parameters used for the em-
pirical 1S0 and 3P0 polarizability model. The initial state is denoted
as |J〉 and the final state is denoted as |J ′〉, in analogy to (B5).

|J〉 |J ′〉 ωJ ′J/2π (THz) �J ′J/2π (MHz) Ref.

1S0 (6s6p)3P1 539.386800 0.183 [74,76]
(6s6p)1P1 751.526389 29.127 [75]

(7/2, 5/2)J=1 865.111516 11.052 [74]
3P0 (6s5d )3D1 215.870446 0.308 [76]

(6s7s)3S1 461.867846 1.516 [77]
(6s6d )3D1 675.141040 4.081 [77]
(6s8s)3S1 729.293151 0.625 [77]
Empirical 797.204099 22.889 Fit
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Extracting the 3P0/
1S0 polarizability ratios from our model

at 670, 671.5, and 690.1 nm yields the values 3.24, 3.065, and
1.939 in comparison to the measured ratios 3.3(2), 3.06(4),
and 1.97(5) [19,21].

Since the polarizabilities at the measured magic wave-
lengths are a priori undetermined, we rely on lattice depths
measured in various optical lattice clock experiments for the
red magic wavelength. In Ref. [56], a value of 500 Erec for
a waist � 30 µm and power � 1 W is stated, correspond-
ing to an intensity-normalized potential of −7.0 Hz/ W

cm2 in
contrast to our model’s prediction of −8.9 Hz/ W

cm2 . Using
our lattice parameters as a second reference, we obtain a
value of −10.4 Hz/ W

cm2 , which is similar to the value we can
extract from Ref. [19]. We therefore use the polarizability
values from Ref. [56] and our experiment as bounds on the
red magic wavelength polarizability in Fig. 4. In the case
where we also include higher-lying levels and in particular the

4 f 135d6s6p(7/2, 5/2)J=1 core-excitation transition we can
use the antitrapping magic wavelength at 397.6 nm measured
in Ref. [57], and again we find excellent agreement within
the uncertainty of the measured value, both in frequency
and polarizability. We further note that in this wavelength
range, the agreement of our 3P0 polarizability model with
the ab initio calculations in Ref. [30] is very high, with a
maximum deviation of � 5%, while the corrected 1S0 polariz-
ability calculation predicts a � 8% smaller absolute value at
532 nm.

As a last check, we add a global offset also to the 3P0 state
fitting function, such that we fit three free parameters to three
magic wavelengths. This offset would incorporate transitions
at wavelengths well below the fitted effective transition more
accurately. For wavelengths above 420 nm the difference be-
tween the fitted curves is only minimal, though, such that we
can safely rely on the two-parameter fit (Fig. 12).
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M. S. Safronova, I. Bloch, and S. Blatt, State-dependent optical
lattices for the strontium optical qubit, Phys. Rev. Lett. 124,
203201 (2020).

[34] J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C.
Nägerl, D. M. Stamper-Kurn, and H. J. Kimble, State-
insensitive cooling and trapping of single atoms in an optical
cavity, Phys. Rev. Lett. 90, 133602 (2003).

[35] N. R. Hutzler, L. R. Liu, Y. Yu, and K.-K. Ni, Eliminating light
shifts for single atom trapping, New J. Phys. 19, 023007 (2017).

[36] G. Kestler, K. Ton, D. Filin, C. Cheung, P. Schneeweiss, T.
Hoinkes, J. Volz, M. S. Safronova, A. Rauschenbeutel, and J. T.
Barreiro, State-insensitive trapping of alkaline-earth atoms in a
nanofiber-based optical dipole trap, PRX Quantum 4, 040308
(2023).

[37] R. Yamamoto, J. Kobayashi, T. Kuno, K. Kato, and Y.
Takahashi, An ytterbium quantum gas microscope with narrow-
line laser cooling, New J. Phys. 18, 023016 (2016).

[38] J. Trisnadi, M. Zhang, L. Weiss, and C. Chin, Design and
construction of a quantum matter synthesizer, Rev. Sci. Instrum.
93, 083203 (2022).

[39] A. Cooper, J. P. Covey, I. S. Madjarov, S. G. Porsev, M. S.
Safronova, and M. Endres, Alkaline-earth atoms in optical
tweezers, Phys. Rev. X 8, 041055 (2018).

[40] M. A. Norcia, A. W. Young, and A. M. Kaufman, Microscopic
control and detection of ultracold strontium in optical-tweezer
arrays, Phys. Rev. X 8, 041054 (2018).

[41] S. Saskin, J. T. Wilson, B. Grinkemeyer, and J. D. Thompson,
Narrow-line cooling and imaging of ytterbium atoms in
an optical tweezer array, Phys. Rev. Lett. 122, 143002
(2019).

[42] J. P. Covey, I. S. Madjarov, A. Cooper, and M. Endres, 2000-
times repeated imaging of strontium atoms in clock-magic
tweezer arrays, Phys. Rev. Lett. 122, 173201 (2019).

[43] D. Okuno, Y. Nakamura, T. Kusano, Y. Takasu, N. Takei, H.
Konishi, and Y. Takahashi, High-resolution spectroscopy and
single-photon Rydberg excitation of reconfigurable ytterbium
atom tweezer arrays utilizing a metastable state, J. Phys. Soc.
Jpn. 91, 084301 (2022).

[44] J. Ye, H. J. Kimble, and H. Katori, Quantum state engineer-
ing and precision metrology using state-insensitive light traps,
Science 320, 1734 (2008).

[45] S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N.
Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M.
Robinson, W. Zhang, B. J. Bloom, and J. Ye, A Fermi-
degenerate three-dimensional optical lattice clock, Science 358,
90 (2017).

[46] T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti,
B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S.
Safronova, G. F. Strouse, W. L. Tew, and J. Ye, Systematic
evaluation of an atomic clock at 2×10−18 total uncertainty,
Nat. Commun. 6, 6896 (2015).

[47] I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori,
Cryogenic optical lattice clocks, Nat. Photon. 9, 185 (2015).

[48] W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K.
Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani,
M. Schioppo, T. H. Yoon, and A. D. Ludlow, Atomic clock
performance enabling geodesy below the centimetre level,
Nature (London) 564, 87 (2018).

[49] J. Mitroy, M. S. Safronova, and C. W. Clark, Theory and ap-
plications of atomic and ionic polarizabilities, J. Phys. B 43,
202001 (2010).

[50] L. J. LeBlanc and J. H. Thywissen, Species-specific optical
lattices, Phys. Rev. A 75, 053612 (2007).

[51] B. Arora, M. S. Safronova, and C. W. Clark, Tune-out wave-
lengths of alkali-metal atoms and their applications, Phys. Rev.
A 84, 043401 (2011).

[52] C. D. Herold, V. D. Vaidya, X. Li, S. L. Rolston, J. V. Porto,
and M. S. Safronova, Precision measurement of transition ma-
trix elements via light shift cancellation, Phys. Rev. Lett. 109,
243003 (2012).

[53] W. F. Holmgren, R. Trubko, I. Hromada, and A. D. Cronin,
Measurement of a wavelength of light for which the energy shift
for an atom vanishes, Phys. Rev. Lett. 109, 243004 (2012).

[54] Y. Cheng, J. Jiang, and J. Mitroy, Tune-out wavelengths for the
alkaline-earth-metal atoms, Phys. Rev. A 88, 022511 (2013).

[55] Y.-H. Zhang, L.-Y. Tang, J.-Y. Zhang, and T.-Y. Shi, Magic
wavelengths for the helium 23S1 → 21P1 forbidden transition,
Phys. Rev. A 103, 032810 (2021).

[56] Z. W. Barber, J. E. Stalnaker, N. D. Lemke, N. Poli, C. W.
Oates, T. M. Fortier, S. A. Diddams, L. Hollberg, C. W. Hoyt,
A. V. Taichenachev, and V. I. Yudin, Optical lattice induced
light shifts in an Yb atomic clock, Phys. Rev. Lett. 100, 103002
(2008).

053325-14

https://doi.org/10.1103/PhysRevLett.105.045303
https://doi.org/10.1038/nphys1916
https://doi.org/10.1103/PhysRevA.96.011602
https://doi.org/10.1103/PhysRevLett.128.093401
https://doi.org/10.1103/PhysRevLett.103.233001
https://doi.org/10.1088/0953-4075/46/10/104006
https://doi.org/10.1103/PhysRevA.69.021403
https://doi.org/10.1088/1367-2630/12/3/033007
https://doi.org/10.1088/0953-4075/43/7/074011
https://doi.org/10.1103/PhysRevA.92.040501
https://doi.org/10.1103/PhysRevA.98.022501
https://doi.org/10.1103/PhysRevLett.124.203201
https://doi.org/10.1103/PhysRevLett.90.133602
https://doi.org/10.1088/1367-2630/aa5a3b
https://doi.org/10.1103/PRXQuantum.4.040308
https://doi.org/10.1088/1367-2630/18/2/023016
https://doi.org/10.1063/5.0100088
https://doi.org/10.1103/PhysRevX.8.041055
https://doi.org/10.1103/PhysRevX.8.041054
https://doi.org/10.1103/PhysRevLett.122.143002
https://doi.org/10.1103/PhysRevLett.122.173201
https://doi.org/10.7566/JPSJ.91.084301
https://doi.org/10.1126/science.1148259
https://doi.org/10.1126/science.aam5538
https://doi.org/10.1038/ncomms7896
https://doi.org/10.1038/nphoton.2015.5
https://doi.org/10.1038/s41586-018-0738-2
https://doi.org/10.1088/0953-4075/43/20/202001
https://doi.org/10.1103/PhysRevA.75.053612
https://doi.org/10.1103/PhysRevA.84.043401
https://doi.org/10.1103/PhysRevLett.109.243003
https://doi.org/10.1103/PhysRevLett.109.243004
https://doi.org/10.1103/PhysRevA.88.022511
https://doi.org/10.1103/PhysRevA.103.032810
https://doi.org/10.1103/PhysRevLett.100.103002


STATE-DEPENDENT POTENTIALS FOR THE … PHYSICAL REVIEW A 108, 053325 (2023)

[57] W. F. McGrew, An ytterbium optical lattice clock with eigh-
teen digits of uncertainty, instability, and reproducibility, Ph.D.
thesis, University of Colorado, 2020.

[58] B. Plotkin-Swing, A. Wirth, D. Gochnauer, T. Rahman, K. E.
McAlpine, and S. Gupta, Crossed-beam slowing to enhance
narrow-line ytterbium magneto-optic traps, Rev. Sci. Instrum.
91, 093201 (2020).

[59] A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt,
Z. W. Barber, and L. Hollberg, Magnetic field-induced spec-
troscopy of forbidden optical transitions with application to
lattice-based optical atomic clocks, Phys. Rev. Lett. 96, 083001
(2006).

[60] N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D.
Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D.
Ludlow, An atomic clock with 10−18 instability, Science 341,
1215 (2013).

[61] B. M. Henson, J. A. Ross, K. F. Thomas, C. N. Kuhn, D. K.
Shin, S. S. Hodgman, Y.-H. Zhang, L.-Y. Tang, G. W. F. Drake,
A. T. Bondy, A. G. Truscott, and K. G. H. Baldwin, Measure-
ment of a helium tune-out frequency: An independent test of
quantum electrodynamics, Science 376, 199 (2022).

[62] J. Catani, G. Barontini, G. Lamporesi, F. Rabatti, G.
Thalhammer, F. Minardi, S. Stringari, and M. Inguscio, Entropy
exchange in a mixture of ultracold atoms, Phys. Rev. Lett. 103,
140401 (2009).

[63] F. Schmidt, D. Mayer, M. Hohmann, T. Lausch, F. Kindermann,
and A. Widera, Precision measurement of the 87Rb tune-out
wavelength in the hyperfine ground state F = 1 at 790 nm,
Phys. Rev. A 93, 022507 (2016).

[64] W. Kao, Y. Tang, N. Q. Burdick, and B. L. Lev, Anisotropic
dependence of tune-out wavelength near Dy 741-nm transition,
Opt. Express 25, 3411 (2017).

[65] A. Ratkata, P. D. Gregory, A. D. Innes, J. A. Matthies, L. A.
McArd, J. M. Mortlock, M. S. Safronova, S. L. Bromley, and
S. L. Cornish, Measurement of the tune-out wavelength for
133Cs at 880 nm, Phys. Rev. A 104, 052813 (2021).

[66] R. H. Leonard, A. J. Fallon, C. A. Sackett, and M. S. Safronova,
High-precision measurements of the 87Rb D-line tune-out wave-
length, Phys. Rev. A 92, 052501 (2015).

[67] B. M. Henson, R. I. Khakimov, R. G. Dall, K. G. H. Baldwin,
L.-Y. Tang, and A. G. Truscott, Precision measurement for
metastable helium atoms of the 413 nm tune-out wavelength at
which the atomic polarizability vanishes, Phys. Rev. Lett. 115,
043004 (2015).

[68] R. Bause, M. Li, A. Schindewolf, X.-Y. Chen, M. Duda, S.
Kotochigova, I. Bloch, and X.-Y. Luo, Tune-out and magic
wavelengths for ground-state 23Na40K molecules, Phys. Rev.
Lett. 125, 023201 (2020).

[69] T. A. Savard, K. M. O’Hara, and J. E. Thomas, Laser-noise-
induced heating in far-off resonance optical traps, Phys. Rev. A
56, R1095 (1997).

[70] K. Guo, G. Wang, and A. Ye, Dipole polarizabilities and magic
wavelengths for a Sr and Yb atomic optical lattice clock,
J. Phys. B 43, 135004 (2010).

[71] F. Le Kien, P. Schneeweiss, and A. Rauschenbeutel, Dynam-
ical polarizability of atoms in arbitrary light fields: General
theory and application to cesium, Eur. Phys. J. D 67, 92
(2013).

[72] N. Manakov, V. Ovsiannikov, and L. Rapoport, Atoms in a laser
field, Phys. Rep. 141, 320 (1986).

[73] D. A. Steck, Quantum and Atom Optics (2007).
[74] K. Blagoev and V. Komarovskii, Lifetimes of levels of neu-

tral and singly ionized Lanthanide atoms, At. Data Nucl. Data
Tables 56, 1 (1994).

[75] Y. Takasu, K. Komori, K. Honda, M. Kumakura, T. Yabuzaki,
and Y. Takahashi, Photoassociation spectroscopy of laser-
cooled ytterbium atoms, Phys. Rev. Lett. 93, 123202 (2004).

[76] K. Beloy, J. A. Sherman, N. D. Lemke, N. Hinkley, C. W. Oates,
and A. D. Ludlow, Determination of the 5d6s3D1 state lifetime
and blackbody-radiation clock shift in Yb, Phys. Rev. A 86,
051404(R) (2012).

[77] M. Baumann, M. Braun, A. Gaiser, and H. Liening, Radiative
lifetimes and gJ factors of low-lying even-parity levels in the
Yb I spectrum, J. Phys. B 18, L601 (1985).

[78] D. Jaksch and P. Zoller, Creation of effective magnetic fields in
optical lattices: The Hofstadter butterfly for cold neutral atoms,
New J. Phys. 5, 56 (2003).

[79] F. M. Surace, P. Fromholz, N. D. Oppong, M. Dalmonte, and
M. Aidelsburger, Ab init io derivation of lattice gauge theory
dynamics for cold gases in optical lattices, PRX Quantum 4,
020330 (2023).

[80] A. González-Tudela and J. I. Cirac, Cold atoms in twisted-
bilayer optical potentials, Phys. Rev. A 100, 053604 (2019).

[81] X.-W. Luo and C. Zhang, Spin-twisted optical lattices: Tunable
flat bands and Larkin-Ovchinnikov superfluids, Phys. Rev. Lett.
126, 103201 (2021).

[82] Z. Meng, L. Wang, W. Han, F. Liu, K. Wen, C. Gao, P.
Wang, C. Chin, and J. Zhang, Atomic Bose-Einstein condensate
in twisted-bilayer optical lattices, Nature (London) 615, 231
(2023).

[83] L. Du, P. Barral, M. Cantara, J. de Hond, Y.-K. Lu, and W.
Ketterle, Atomic physics on a 50 nm scale: Realization of a
bilayer system of dipolar atoms, arXiv:2302.07209.

[84] J. Argüello-Luengo, A. González-Tudela, T. Shi, P. Zoller,
and J. I. Cirac, Analogue quantum chemistry simulation,
Nature (London) 574, 215 (2019).

[85] https://doi.org/10.17617/3.GCILRP.
[86] J. Sperling, M.-H. Schubert, M. Wenderoth, and K. Hens,

Breakthrough instruments and products: Laser light tunable
across the visible up to mid-infrared: Novel turnkey cw OPO
with efficiency-optimized design, Rev. Sci. Instrum. 92, 129502
(2021).

[87] S. Blatt, J. W. Thomsen, G. K. Campbell, A. D. Ludlow,
M. D. Swallows, M. J. Martin, M. M. Boyd, and J. Ye,
Rabi spectroscopy and excitation inhomogeneity in a one-
dimensional optical lattice clock, Phys. Rev. A 80, 052703
(2009).

[88] G. Reinaudi, T. Lashazye, Z. Wang, and D. Guéry-Odelin,
Strong saturation absorption imaging of dense clouds of ultra-
cold atoms, Opt. Lett. 32, 3143 (2007).

[89] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M.
Ford, A. J. Munley, and H. Ward, Laser phase and frequency
stabilization using an optical resonator, Appl. Phys. B 31, 97
(1983).

[90] M. Kitagawa, K. Enomoto, K. Kasa, Y. Takahashi, R. Ciuryło,
P. Naidon, and P. S. Julienne, Two-color photoassociation

053325-15

https://doi.org/10.1063/5.0011361
https://doi.org/10.1103/PhysRevLett.96.083001
https://doi.org/10.1126/science.1240420
https://doi.org/10.1126/science.abk2502
https://doi.org/10.1103/PhysRevLett.103.140401
https://doi.org/10.1103/PhysRevA.93.022507
https://doi.org/10.1364/OE.25.003411
https://doi.org/10.1103/PhysRevA.104.052813
https://doi.org/10.1103/PhysRevA.92.052501
https://doi.org/10.1103/PhysRevLett.115.043004
https://doi.org/10.1103/PhysRevLett.125.023201
https://doi.org/10.1103/PhysRevA.56.R1095
https://doi.org/10.1088/0953-4075/43/13/135004
https://doi.org/10.1140/epjd/e2013-30729-x
https://doi.org/10.1016/S0370-1573(86)80001-1
https://doi.org/10.1006/adnd.1994.1001
https://doi.org/10.1103/PhysRevLett.93.123202
https://doi.org/10.1103/PhysRevA.86.051404
https://doi.org/10.1088/0022-3700/18/17/001
https://doi.org/10.1088/1367-2630/5/1/356
https://doi.org/10.1103/PRXQuantum.4.020330
https://doi.org/10.1103/PhysRevA.100.053604
https://doi.org/10.1103/PhysRevLett.126.103201
https://doi.org/10.1038/s41586-023-05695-4
http://arxiv.org/abs/arXiv:2302.07209
https://doi.org/10.1038/s41586-019-1614-4
https://doi.org/10.17617/3.GCILRP
https://doi.org/10.1063/5.0080023
https://doi.org/10.1103/PhysRevA.80.052703
https://doi.org/10.1364/OL.32.003143
https://doi.org/10.1007/BF00702605


TIM O. HÖHN et al. PHYSICAL REVIEW A 108, 053325 (2023)

spectroscopy of ytterbium atoms and the precise determinations
of s-wave scattering lengths, Phys. Rev. A 77, 012719 (2008).

[91] T. Fukuhara, S. Sugawa, Y. Takasu, and Y. Takahashi, All-
optical formation of quantum degenerate mixtures, Phys. Rev.
A 79, 021601(R) (2009).

[92] W. Meggers and J. Tech, The first spectrum of ytterbium (Yb I),
J. Res. Natl. Bur. Stand. (1977) 83, 13 (1978).

[93] W. Lange, J. Luther, and A. Stendel, in Proceedings of the
Second Conference of the European Group for Atomic Spec-
troscopy, 1970 (unpublished).

[94] J. W. Cho, H.-G. Lee, S. Lee, J. Ahn, W.-K. Lee, D.-H. Yu,
S. K. Lee, and C. Y. Park, Optical repumping of triplet-p
states enhances magneto-optical trapping of ytterbium atoms,
Phys. Rev. A 85, 035401 (2012).

053325-16

https://doi.org/10.1103/PhysRevA.77.012719
https://doi.org/10.1103/PhysRevA.79.021601
https://doi.org/10.6028/jres.083.003
https://doi.org/10.1103/PhysRevA.85.035401

