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Cold atom-ion systems in radio-frequency multipole traps: Event-driven molecular dynamics
and stochastic simulations
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We study the general aspects of the dynamics of an ion trapped in an ideal multipolar radio-frequency trap
while interacting with a dense cold atomic gas. In particular, we explore the dynamical stability, the energy
relaxation, and the characteristic harmonic motion exhibited by a trapped Yb+ ion in different multipolar
potentials and immersed in various cold atomic samples (Li, Na, Rb, Yb). For this purpose, we use two different
molecular-dynamics simulations, one based on a time-event drive algorithm and the other based on the stochastic
Langevin equation. Relevant values for experimental realizations, such as the associated ion’s lifetimes and
observable distributions, are presented along with some analytical expressions that relate the ion’s dynamical
properties with the trap parameters.
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I. INTRODUCTION

The realization of cold hybrid atom-ion systems has revo-
lutionized the field of atomic, molecular, and optical physics,
leading to a new venue for studying impurity physics [1–4],
atom-ion collisions [5–9], and quantum information sciences
[10,11]. However, most ion-atom systems require a time-
dependent trap to hold the ion. At the same time, the ion
is brought in contact with an atomic gas. As the atom
approaches the ion, it is pulled away from the center of the
trap, leading to the well-known micromotion heating [12–14].
This effect represents a problem for most applications in the
cold and ultracold regimes. For example, in quantum informa-
tion sciences, micromotion heating can reduce the efficiency
of sympathetic ion cooling, enhancing atom losses due to
laser heating caused by successive gates [15]. Similarly, in
cold chemistry, the time-dependent trap induces long-lived
ion-atom complexes that could potentially affect the stability
of the ion [16].

One solution to curb micromotion heating is implementing
higher-order multipole radio-frequency traps for ion confine-
ment [6,17]. These traps create an almost boxlike trapping
potential with a sizable flat potential or field-free region in the
center, reducing the heating effects [18]. However, despite the
advantage of lowering micromotion effects, the multipole trap
has some weaknesses. For example, the trapping properties
depend on the ion’s average distance to the trap’s center,
leading to a stochastic stability parameter. Additionally, no
analytical solution can be found to the equations of motion,
and the numerical study of the collisional dynamics is very
cumbersome [17,19]. Generally, the trapping stability is char-
acterized by a molecular-dynamics approach, leading to a
partial understanding of thermalized ions’ energy distribution

and position as a function of the trap’s nature [17,19]. On
the other hand, a stochastic approach based on the Langevin
equation was recently developed for ions in a quadrupole
trap [14,20]. The time-continuous nature of the stochastic
approach allows for describing the relaxation process of
the ion or spectral composition of the motion and the time
dependence of the resulting ion’s distributions, which is
not considered in molecular-dynamics simulation [17,19]. In
addition, the stochastic formulation typically results in shorter
simulation times than elaborate molecular-dynamics simula-
tions. For example, as the trap order increases, the free-field
region of the potential reduces micromotion heating, and the
stochastic Langevin simulation approach will become highly
efficient for simulating ion dynamics in a buffer gas for any
mass ratio.

This work theoretically explores the dynamics of a sin-
gle ion in a multipole trap in contact with an atomic gas.
To this end, we use two different simulation methods. One
is based on an event-driven molecular-dynamics simulation
method via sampling collisional times from realistic atom-
ion collisions. The other relies on the Markovian Langevin
equation. The first is highly efficient for studying the stability
of atomic mixtures of interest at different temperatures and
initial conditions. In contrast, the second, which is cheaper
computationally speaking, gives a precise understanding of
the thermalization process. As a result, we can describe the ion
stability in the discrete- and continuous-time domains, leading
to new insights into the thermalization of the ion. This paper
is divided as follows. Section II introduce the main aspects
relates with the dynamic of an ion in a multipolar trap, the
effective potential and the stability parameters. Section III
explain the time-event drive molecular dynamics algorithm
for the study of the ion dynamics. Sections IV and V focus on
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the dynamics stabilities and energy distributions of the trapped
ions using the event-drive molecular dynamics. Section VI is
devoted to the ion’s dynamics using the Langevin equation,
which is valid for multipolar traps where thermal behavior
dominates the final distributions or, equivalently, where mi-
cromotion heating effects are reduced. Finally, Section VII
summarizes the main results of the work and present some
perspectives.

II. TRAP DEPTH AND DYNAMIC STABILITY
FOR A SINGLE ION

The dynamics of an ion in a radio-frequency (rf) multipole
trap can be described using the adiabatic approximation (see
Appendix A). Within this approximation, the slow secular
motion is decoupled from the fast micromotion, and the sta-
bility of the ion is described with a single dynamic stability
parameter [21]:

η = qn(n − 1)

(
r

r0

)n−2

, (1)

where n is the trap order, r0 is the radius of the trap, and
q = 2eUAC

mionr2
0 �2

rf
. In this equation, UAC stands for the voltage on

the electrodes, e is the atomic ion charge, mion represents
the ion’s mass, and �rf is the trap frequency. Therefore, the
dynamic stability for a single ion in a trap with n > 2 depends
on the distance of the ion to the center of the trap, becoming
a stochastic variable due to collisions with the gas. As a
result, for a given maximum value of the dynamic stability
parameter ηmax, there is always a distance of the ion at which
the dynamics become unstable, given by

rcri = r0

(
ηmax

qn(n − 1)

)1/(n−2)

, (2)

where, generally, ηmax = 0.33 [22].
Next, following Refs. [23,24], we introduce the trapping

volume as the region where no effective energy transfer occurs
between the ion and the field, also known as the field-free
region. This region is bounded by rcri when rcri < r0 and by
r0 otherwise, as illustrated in Fig. 1(a). Hence, as Fig. 1(a)
suggests, the effective trapping depth is a function of the rf
and the q parameter, given by

Vdepth(�; q) = mion
(qn�)2

16

r2n−2
tr

r2n−4
0

, (3)

where rtr = min(rcri, r0).
Due to the lack of stability diagrams in multipole traps, it is

preferable to take the effective depth of the trapping potential
as the reference to define stable trap parameters. Figure 1(b)
displays the effective depth of the trapping potential as a
function of q for �rf = 2π MHz, showing a maximum depth
at rcri = r0, as expected in light of Eq. (3). Similarly, we notice
that low-order traps show a larger trap depth than higher-order
traps, indicative of the stronger stability of low-order traps
versus high-order ones. As a result, for a given �rf , we chose
the initial dynamical stability η based on the q value where
the maximum trap depth is observed. However, this choice
will not guarantee the stability of the ion due to the inherent

FIG. 1. Dependence of the effective trapping potential on the trap
parameters. (a) shows it schematically for a dodecapolar trap. The
red clouds represent the homogeneous atomic clouds. For different
values of the q parameter the critical radius rcri can be larger (region
I) or smaller (region II) than the trap radius. (b) shows the variation
of the effective potential depth as a function of the q parameter for
Yb+ in different multipolar traps with a fixed rf of �rf = 2π MHz.
Peaks of the effective depth define the transition between the regime
where rcri < r0 (region I) and region II and allow us to define a region
of q where ion dynamics is more confined and stable.

position-dependent stability. Hence, an approach based on the
dynamics of the ion is required.

III. EVENT-DRIVEN MOLECULAR-DYNAMICS
SIMULATIONS

Event-driven molecular-dynamics simulations generalize
the simulation approach of Zipkes et al. [25] to the case of
multipole traps. In our approach, we assume instantaneous
hard-sphere collisions with an energy-independent scattering
rate adequate for the Langevin model for ion-atom collisions.
However, because of the lack of analytical expressions for
the ion’s motion in a multipolar potential, we propagate the
equations of motion from one collision event to the next one.
Additionally, we consider a homogeneous atomic density. The
event-driven algorithm consists of the following steps:
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Initialization: We initialize the trap parameters (�rf , q, r0),
including n, the temperature and density of the atomic cloud
(T, ρ), and the ion initial conditions. Typically, we place the
ion at a distance of 0.01r0 at rest, vion,0 = 0.

Event time: Once the initial conditions for the experiment
are set up, we compute the event time tc, associated with an
atom-ion collision. This time is sampled from a Poisson dis-
tribution with mean value τ = 1/�Lang., where the Langevin
scattering rate �Lang. depends on the atom-ion long-range co-
efficient C4 and the atom-ion reduced mass μ as (in atomic
units)

�Lang. = 2π

√
C4

μ
. (4)

Preparing the collision: With the event time computed, we
propagate the ion in the trap from the initial condition to the
collision time. The propagation is carried out using a fourth-
order Runge-Kutta method to integrate the ion’s equation of
motion,

mion
d2r(t )

dt2
= F(r) = eUACn

rn
0

cos(�rft )rn−1erf , (5)

where erf represents the unitary vector of the trapping force,
which depends on the azimuthal angle φ. At the same time, we
pick up an atom from the ensemble. The velocity of the atom
is sampled from a Maxwell-Boltzmann distribution associated
with the temperature T of the gas. If the final position of
the ion satisfies rion < r0, a collision is produced; if not, the
propagation will break up, and the ion is lost.

Hard-sphere collision: If the collision takes place, the ion’s
velocity changes following a hard-sphere collision with the
atom, going from the initial value vion,0 to

vion,f = (1 − β )vion,0 + βR(θ, φ)vion,0,

where β = 1
1+ζ

, ζ = matom/mion, and R(θ, φ) represents the
rotation matrix depending on the collision angles θ and φ,
which are sampled homogeneously in the range [0, 2π ], fol-
lowing the Langevin cross section. The position of the ion
remains unchanged.

Saving the observables: For the energy of the ion we com-
pute the secular velocity given by

vsec,f = (1 − β )vsec,0 + βRvsec,0 + β(R − 1)vmm.

The micromotion component vmm is computed using

vmm ≈ −qn�rf

2
sin(�rft )rn−1

sec erf (6)

and using rsec = rion, the ion’s position at the end of the
propagation. Then, the new velocity and position are settled as
the initial conditions, and we loop back to compute the event
time.

The algorithm will finish upon reaching the total number
of collisions or when the ion gets lost from the trap.

IV. STABILITY OF A SINGLE ION IN A MULTIPOLE TRAP

We explore the stability of a Yb+ ion immersed in different
cold atomic baths using the event-driven molecular-dynamic
simulation approach. In particular, we are interested in some

FIG. 2. Stability as a function of the trap order for different
atomic species and initial dynamical stabilities. As mentioned in the
text, we have defined stability as the survival probability of the ions at
500 collisions after thermalization. Because of the statistical nature
of our simulation, we show the deviation as bar errors. All the simu-
lations were performed at T = 1 × 10−3K and ρ = 1 × 1018m−3.

atomic species previously studied in the context of cold col-
lisions [26–29]. In this study, stability is given as the survival
probability of the ion once it reaches thermalization with the
bath. Specifically, for each atom-ion mixture, we simulate
1000 sympathetic cooling experiments. Once the ion thermal-
izes, we let the ion evolve for 500 extra collisions with the bath
atoms. Once the simulations are finished, stability is defined
as the number of surviving trapped ions Ns over the number
of experiments NTot.

The results for our simulations are shown in Fig. 2, where
the survival probability of the ion as a function of the trap
order and initial η value is displayed. All the simulations
are carried out at T = 1 × 10−3 K and a sample density of
ρ = 1 × 1018 m−3. As Fig. 2 shows, low-order traps represent
high stability but are prone to present rf heating. Therefore, a
dodecapolar trap is the best choice based on stability and rf
heating. Furthermore, we have computed the average number
of collisions before the ion abandons the trap and its lifetime,
as displayed in Table I. Table I presents the lifetimes and
the mean number of collisions for some of the previously
explored unstable configurations. There is remarkable vari-
ance associated with the lifetimes, showing the high sensi-
tivity of the system to initial conditions as well as initial
collisions events. The thermalization rate, reported for each
mixture at different temperatures, is not affected by the trap
properties and is reported for each mixture. In general, from
the data, it can be seen that most of the systems reach thermal-
ization before the ion leaves the trap.

Based on our study, ion losses usually take place after
thermalization when an ion reaches the critical radius rcri

with a velocity larger than the minimum value vcri required
to overcome the rf potential barrier. Hence, the time-average
probability of losses after thermalization should satisfy

P̄loss ∝ P̄(r; rcri )P̄(v; vcri ), (7)
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TABLE I. Mean lifetime and the number of collisions for the Yb+ ion in a multipole trap with n = 6 and n = 8 at a temperature of
T = 1 × 10−3 K and gas density ρ = 1 × 1018 m−3. Results are shown for different atomic baths, as indicated in the first column. Two
different initial stability parameters are displayed for the n = 6 case, while only one is shown for n = 8, given its low stability. The mean
number of collisions for thermalization NT

coll is also reported.

n = 6 n = 8,

η = 0.005 η = 0.01 η = 0.005 No trap

Atom τ (×10−3 s) Ncoll τ (×10−3 s) Ncoll τ (×10−4 s) Ncoll NT
coll

Li 3.5 ± 2.1 167 2.8 ± 1.8 136 10.8 ± 8.1 57 27
Na 6.8 ± 4.2 154 4.2 ± 3.0 111 8.1 ± 5.4 22 8
Rb 6.1 ± 4.0 141 3.4 ± 2.1 73 5.9 ± 4.2 14
Yb 10.8 ± 8.2 124 5.1 ± 3.8 59 9.6 ± 7.5 11 < 5

where P̄(r; rcri ) is the time-average probability of finding the
ion at the critical position given by Eq. (2) and P̃(v; vcri ) is
the probability of the ion having a velocity larger than vcri. In
general, the form of the distribution depends on the multipolar
order; for low-order traps the micromotion heating leads to
the long-tail behavior, which is notorious as the atom-to-ion
mass ratio increases. Then, a Tsallis-type distribution properly
captures this behavior [14,17]. However, for trap order n > 4,
which we are more interested in here, the distributions tend to
a thermal behavior, as shown in Fig. 3. Therefore, the average
position distribution P̄(r) satisfies

P̄(r) ∝ exp[−Veff (r)/kBT ], (8)

going from a Gaussian-type distribution when n = 2 to a
boxlike homogeneous distribution as the polar order tends
to infinity. This boxlike distribution tendency, displayed in
Fig. 3(b), gives rise to a free-field region where the ion can
move almost freely. As a result, in higher-order multipole
traps, the ion is less localized, reaching more considerable
distances from the trap’s center, eventually leading to ion
losses. However, the instability depends on the velocity of the
ion at the critical distance too.

P̄(v|vcri ) indicates the probability that the ion will show a
larger velocity than a critical value vcri, which is the minimum
value for having ion losses at the critical position and depends
on the trap parameters. Assuming n > 4, we can approximate
the distribution to a thermal form as

P̄(v|vcri ) ∝ �(v − vcri )ve
−mv2

kBT , (9)

where �(x) is the Heaviside function of argument x and vcri

depends on the trap properties. In general, vcri is influenced
by micromotion effects, as well as by possible collisions
at the boundary where the field rises to its highest value.
However, it is possible to determine when the ion’s kinetic
energy at the boundary is equal to the effective potential
depth,

Vdepth(�rf ; q) = mion
(qn�rf )2

16

r2n−2
tr

r2n−4
0

= 1

2
mionv

2
cri, (10)

which leads to the following relations:

vcri(n; q) =
⎧⎨
⎩

n�rf r0√
8

q, if r0 � rcri,

n�rf r0√
8

(
ηmax

n(n−1)

) 2n−2
2n−4 q

1
2−n , if rcri � r0.

(11)

Figure 4 shows vcri for different multipole traps, comparing
the full numerical approach based on event-driven molecular
dynamics with our analytical results from Eq. (11). As a
result, it is observed that for increasing values of q, Eq. (11)
overestimates the value of vcri because it ignores micromotion
and collision effects that could increase the secular velocity
at the limit distance, producing losses for lower velocities
than predicted. However, the model shows good agreement

FIG. 3. Distributions of Yb+ in two different multipolar traps and
in the presence of an Rb cold atomic gas. (a) shows the kinetic-energy
distributions for the ion in quadrupolar (n = 2) and dodecapolar (n =
6) traps and the corresponding thermal fitting; the mean value of the
energy depends on the trap order, as explained in Sec. V. (b) shows
the position distributions for the same conditions.
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FIG. 4. Ion critical velocity for two different trap orders. The
dots correspond to numerical simulation, and lines are the fit follow-
ing Eq. (11). An overestimation of the analytical model results from
not considering micromotion and collision effects at the boundary of
the field.

for low values of q and an adequate qualitative description of
the loss dynamics. Hence, as the temperature decreases, the
stability will increase following the velocity distribution for
a fixed trap configuration. Once the temperature is such that
the critical velocity is not reached, the ion can be lost only
through collision events at the boundary.

V. MEAN KINETIC ENERGY OF AN ION

In the adiabatic approximation, the virial theorem
2
3 〈Ek〉 = (n − 1)〈Veff〉

holds, resulting in the ratio 〈Veff〉/〈Ek〉 = 2/3(n − 1), and the
ion’s mean kinetic energy is

〈E〉 =
[

3

2
+ 1

n − 1

]
kBT . (12)

However, it is possible to include mass effects assuming
that micromotion degrees of freedom are assigned to the atom
dynamics [17]. We can then arrive at the expected value for
the atomic energy

〈Ea〉 = 3
2 kBT + ζVeff (r), (13)

where ζ = matom/mion is the mass ratio. Combining Eqs. (12)
and (13), we propose that the mean kinetic energy of the ion
can be described as

〈E〉 = 3

2
kBT + kBT

n − 1
+ α(n, ζ )ζ

n − 1
kBT, (14)

where α(n, ζ ) is a free parameter that must be determined,
depending on the trap order and mass ratio.

Figure 5 compares the results for the mean energy of a Yb+
ion trap in a multipolar trap in the presence of different atomic
baths obtained from the numerical event-driven molecular-
dynamics simulations and from the analytical expression (14).
For low mass-ratio values, the required fitting parameter from
Eq. (14) is independent of the trap order. However, when the
mass ratio approaches 1, the trap order has a strong effect on

FIG. 5. Ion energy for different trap orders n. The orange points
corresponds to the results from the event-driven molecular-dynamics
simulation, while blue points are the values obtained from Eq. (14);
the dashed line is added to visualize the functional behavior.

the mean kinetic energy of the ion. In that case, Eq. (14) is
still applicable but has a fitting parameter for each trap order.

From Eq. (14), it is possible to identify the nonthermal
component of the mean kinetic energy of the ion as

�E = kBT

n − 1
+ α(n, ζ )ζ

n − 1
kBT . (15)

When this term is small compared to the thermal component
of the ion kinetic energy, it is possible to use temperature to
describe the ion rather than its mean kinetic energy. Further-
more, note that Eq. (14) allows expressing the contributions
of the effective potential in Eq. (13) as thermal contributions,
where the trap-parameter modifications are incorporated only
in the fitting parameter α, which can easily be computed.

VI. LANGEVIN EQUATION MODEL

The dynamics of a trapped ion in a neutral sea can be
described via the Langevin stochastic equation of motion [14].
In this approach, all degrees of freedom of the bath are substi-
tuted by an effective stochastic force modeled by a Gaussian
white noise ζ (t), whose components satisfy

〈ζ j (t )〉 = 0, 〈ζ j (t )ζi(s)〉 = Dδi jδ(t − s), (16)

where D is the diffusion coefficient related to the friction
coefficient γ by means of the fluctuation-dissipation theorem,
γ = D

2kBT . Therefore, the diffusion and friction coefficients
are related at a given temperature T . The friction coefficient
γ encapsulates details of the atom-ion scattering through
the thermally averaged diffusion cross section, following the
Chapman-Enskog approximation [14].

Here, the stochastic equations of motion are formulated
in Cartesian coordinates, using a multipolar expansion based
on the analytical function z = (x + iy)n to obtain the rf field
for a given trap order n. The explicit derivation is shown in
Appendix B. The equations of motion for each component of
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FIG. 6. Distributions obtained from the Langevin equation for
the ion’s (a) energy and (b) position in a dodecapolar trap. Here, the
distribution does not depend on the atomic mass, but it does depend
on the relaxation time. The thermal distribution is displayed to verify
the thermal behavior in this formulation.

the ion’s radial position r j is given by

d2r j

dt2
+ γ

mion

dr j

dt
+ �2

rfq j

2
cos(�rft )

∂

∂r j
Un(x, y) = ζ j (t )

mion
,

(17)

where Un(x, y) represents the spatial dependence of the mul-
tipolar field, which can be written as

Un(x, y) =
m∑

k=0

(
2m

2k

)
x2(m−k)(−1)ky2k (18)

if n is even (n = 2m, with m ε N+) and

Un(x, y) =
m∑

k=0

(
2m + 1

2k

)
x2(m−k)+1(−1)ky2k (19)

if n is odd (n = 2m + 1, with m ε N+).
Equation (17) represents a coupled stochastic differential

equation for any n > 2, in contrast to the case of a Paul trap
[14]. Furthermore, Eq. (17) contains explicit time-dependent
terms, and as a result, there is no stationary solution for the
associated Fokker-Planck equation. However, thanks to the
Gaussian noise term (stochastic force) ζ j , the variables r j

and vi will follow a time-averaged thermal distribution, as
shown in Fig. 6, where a comparison between the Langevin
approach and the thermal distribution is displayed. The energy
distribution of the ion is shown in Fig. 6(a), where wonderful
agreement between our Langevin simulation and the ther-
mal distribution is seen. Similarly, in the case of the spatial
distribution of the ion [Fig. 6(b)], the Langevin formulation
described the ion position extremely well in a thermal bath,
given by Eq. (8).

The stochastic formulation of the trapped-ion dynamics
in a neutral bath has allowed us to explore the continuous-
time evolution of the physical quantities and, consequently,
distributions, which is the primary advantage of a stochastic
approach versus a molecular-dynamics one. Here, we solve
Eq. (17) using the leapfrog Verlet algorithm [30] and take the
average over 105 realizations of the ensemble to report on
the mean time evolution of different quantities. We will use
brackets to denote the ensemble average and an overbar for
the time average.

Figure 7 displays the evolution of the mean radial kinetic
energy, 〈Ek〉 = 〈Ek,x〉 + 〈Ek,y〉, for a single Yb+ ion trapped
in a dodecapolar trap (n = 6) in the presence of a Rb cloud at

FIG. 7. Time evolution of the mean kinetic energy of Yb+ in
the presence of an Rb cloud at T = 1 × 10−3 K inside a dodecap-
olar ion trap (n = 6) using the Langevin equation model (LE). In
(a) the sample density is ρ = 1.0 × 1018m−3, and the friction coef-
ficient corresponds to γ = 1.25 × 10−19 kg/s, while in (b) we have
ρ = 7.2 × 1017 m−3 and γ = 5.3 × 10−20 kg/s. For the shorter re-
laxation time in (a) we notice an energy metastable state resulting
from the boxlike potential nature of the n = 6 trap; here, we also
show the evolution of the mean kinetic energy from the molecular-
dynamics simulation (MD).

T = 1 × 10−3 K. Figure 7 shows that the energy goes through
a metastable state before thermalization. The process goes as
follows: First, the ion energy reaches a field-free value of
kBT according to the equipartition theorem. Then, once the
potential starts to act significantly on the ion, energy is not
a conserved quantity. The kinetic energy becomes a function
of time and rapidly reaches a second time-ensemble average
value, which is approximately equal to 2kBT , associated with
the two micromotion degrees of freedom. The first quasither-
mal state occurs if the relaxation time τR = m/γ is less than
the time it takes for the ion to leave the field-free region of
the trap. Therefore, the thermalization process is drastically
affected by the density of the neutral bath, as one can see by
comparing Figs. 7(a) and 7(b). Figure 7(a) shows a higher-
density bath than Fig. 7(b), and as a consequence, Fig. 7(a)
shows more abrupt thermalization dynamics in comparison
with Fig. 7(b). Additionally, in Fig. 7(a), one also notices how
the event-driven molecular-dynamics simulation describes a
tendency to the same mean energy value similar to that in the
Langevin equation model. However, the quasithermal state is
not observed due to the discrete steps in the simulation. Note
that this observation validates the field-free approximation
for the ion around the central region of the trap, which is
absent in low-order traps, in which a metastable state is not
reached [14].
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FIG. 8. Time evolution of the mean kinetic energy for different
trap characteristics. (a) shows the change in the thermalization time
for different trap properties, while (b) shows the thermal evolution,
which is trap independent. For all the simulations we use T = 1 ×
10−3 K, ρ = 1 × 1018 m−3, and γ = 1.25 × 10−19 kg/s.

The time to reach the thermalization value depends on
the trap order and q, as illustrated in Fig. 8. Increasing the
q parameter for the same trap order results in a lower crit-
ical radius; then, the effect of the field is felt by the ion at
shorter distances, leading to shorter thermalization times, as
shown in Fig. 8(a). In the same panel, we notice that for
the same q parameter, a higher-order trap leads to shorter
thermalization time than in the case of low trap order, which
is a consequence of the dependence of the effective poten-
tial amplitude on n2. Finally, Fig. 8(b) corroborates how the
field-free dynamics is the same for each case because all of
them have the same thermal and atomic properties of the
bath.

Another signature of the free-field evolution is a diffusive
evolution at short times, characterized by a quadratic-to-linear
evolution of the mean-square radial displacement 〈r2〉 =
〈x2〉 + 〈y2〉, as displayed in Fig. 9. On the contrary, at suf-
ficiently long times, 〈r2〉 saturates in a way characteristic of
bounded stochastic motion. All these remarkable aspects of
the time-continuous evolution of the ion’s distributions result
in a better understanding of the sympathetic cooling process
and a helpful criterion for choosing traps to enhance the
stability of the ion and its localization or control relaxation
processes.

FIG. 9. Time evolution of the mean-square radial displacement
of Yb+ in the presence of a Rb cloud with density ρ = 1 × 1018 m−3

at T = 1 × 10−4 K inside a dodecapolar ion trap (n = 6). The inside
reveals the diffusive behavior at early times.

VII. CONCLUSIONS

In this work, we have implemented two methodologies to
simulate the dynamics of a single trapped ion in a multipolar
trap immersed in a cold gas; these methodologies are our
generalizations of previous methods used in the study of this
system but only in Paul traps. First, we introduced the event-
driven molecular-dynamics simulation to explore the dynamic
stability of the ion in this system. In addition, we developed a
stochastic approach based on the Langevin equation. The first
technique presents an analysis of the ion-bath dynamics in a
multipole trap from a discrete-time perspective. In contrast,
the stochastic approach leads to a continuous-time description
of the dynamics.

The event-driven molecular dynamics is an ideal tool for
trap-stability studies. For example, the dodecapolar trap rep-
resents the optimal choice to reduce micromotion heating
while the ion shows stable dynamics. Similarly, ion losses
usually occur after thermalization for the range of considered
temperatures, around T = 1 × 10−3 K. In addition, thanks to
the event-driven molecular-dynamics simulations, we derived
an expression for the mean kinetic energy of the ion that
generalizes previous attempts in the literature [17]. On the
other hand, the stochastic approach is a good fit for ther-
malization studies since it is a continuous-time approach and
computationally cheap. Using this methodology, we predict a
two-step thermalization mechanism of the ion. First, the ion
reaches a quasithermal state with the same value of kBT as
in the free-field case, while in the second step, it reaches the
expected 2kBT .

Finally, the methods presented here are readily extensible
to more involved experimental scenarios, including an excess
of micromotion and imperfections in electrodes. Therefore,
these techniques could potentially impact the field of a hybrid
ion-atom system.
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APPENDIX A: DYNAMIC STABILITY PARAMETER

In the case of multipole traps, for η < ηmax the adiabatic
approximation is valid [22], and in the absence of a dc voltage,
the multipole-trap potential is given by

Vrf,n = UAC

rn
0

cos(�rft )rn.

Therefore, the ion’s equation of motion reads

mi
d2r(t )

dt2
= F(r) = eUACn

rn
0

cos(�rft )rn−1erf , (A1)

where erf represents the unitary vector of the trapping force,
which depends on the azimuthal angle φ.

Let us assume that within the adiabatic approximation the
position of the ion can be written as r(t ) = rsec(t ) + rmm(t ),
where rsec and rmm correspond to the secular and micromo-
tion components of the ion’s motion, respectively, satisfying
|rsec| � |rmm| and |r̈sec| � |r̈mm|. Then, Eq. (A1) reads

mi
d2

dt2
[rsec(t ) + rmm(t )] ≈ F(rsec) + (rmm∇)F(rsec), (A2)

where a Taylor expansion has been performed on the force
term up to first order in rmm. Equating the most relevant
terms on both sides of the equation, we find the differential
equation for the micromotion as

d2

dt2
rmm = F(rsec) = −eUACn

mirn
0

cos(�rft )rn−1
sec erf , (A3)

which is easily solvable by taking into account that the micro-
motion and secular motion are decoupled, leading to

rmm ≈ eUACn

mirn
0�

2
rf

cos(�rft )rn−1
sec erf . (A4)

Using this approximate solution, we find the equation for the
secular motion as

d2

dt2
rsec = 1

mi
(rmm∇)F(rsec)

≈ e2U 2
ACn2

m2
i r2n

0 �2
(n − 1) cos2(�rft )r2n−3

sec er, (A5)

where er is the radial unitary vector. Averaging over the fast
rf oscillations, we see that the secular component follows the
equation

d2

dt2
rsec = q2n2�2

4
(n − 1)

r2n−3
sec

r2n−4
0

, (A6)

with q = 2eUAC

r2
0 mi�

2
rf

.
Equation (A6) represents the periodic motion of the ion in

the pseudopotential

Veff (r) = mion
q2n2�2

16

r2n−2
sec

r2n−4
0

, (A7)

generated from averaging the energy associated with the mi-
cromotion.

This adiabatic decomposition of the ion’s motion is valid
as long as we keep the conditions |rsec| � |rmm| and |r̈sec| �
|r̈mm|, as mentioned previously. The validity of this condition

is evaluated through the quotient between the two terms on
the right-hand side of Eq. (A2). This leads us to define the
stability parameter [17]

η = qn(n − 1)

(
r

r0

)n−2

. (A8)

APPENDIX B: MULTIPOLAR POTENTIAL
IN CARTESIAN COORDINATES

The previous formulations can also be described in terms
of Cartesian coordinates. This version could be more conve-
nient for some numerical applications, as in the case of the
Langevin equation described in Sec. VI. Then, it is imperative
to write the spatial part of the multipolar potential in Cartesian
coordinates as shown here.

The radial part of this potential can be written as

Vrf,n(x, y, t ) = [UDC + UAC cos(�rft )]Un(x, y), (B1)

where UDC and UAC refer to the continuum and alternating po-
tential amplitudes in the electrodes and Un(x, y) is the spatial
dependence of the potential.

Un(x, y) is a harmonic function, and it can be built up, in
the ideal electrode case, from the real part of the analytical
complex function [31]

zn = (x + iy)n = Un(x, y) + iVn(x, y).

If n is even (n = 2m, with m ε N+), we can write the
potential as

Un(x, y) =
m∑

k=0

(
2m

2k

)
x2(m−k)(−1)ky2k ;

x and y will have the same even exponents between 0 and
n. From this potential, we derive the spatial part of the force
components,

∂Un(x, y)

∂x
=

m−1∑
k=0

(
2m

2k

)
2(m − k)x2(m−k)−1(−1)ky2k

= 2m
m−1∑
k=0

(
2m − 1

2k

)
x2(m−k)−1(−1)ky2k (B2)

and

∂Un(x, y)

∂y
=

m∑
k=1

(
2m

2k

)
2(k)x2(m−k)−1(−1)ky2k−1

= 2m
m∑

k=1

(
2m − 1

2k − 1

)
x2(m−k)(−1)ky2k−1. (B3)

Then, both of the components of the force have the same
number of terms with the same binomial coefficients.

For an odd-n trap (n = 2m + 1, with m ε N+), the spatial
dependence of the forces takes the form

∂Un(x, y)

∂x
= (2m + 1)

m∑
k=0

(
2m

2k

)
x2(m−k)(−1)ky2k (B4)
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FIG. 10. Power spectrum of the 〈r2〉 and 〈v2〉 evolution for a Yb+

ion in the presence of an atomic cloud of Rb with T = 1 × 10−3 K,
ρ = 1 × 1018 m−3, and γ = 1.25 × 10−19 kg/s. The peaks are
located at the even harmonics of the trap frequency, and the noise
comes from the nonaveraged thermal fluctuations.

and

∂Un(x, y)

∂y
= (2m + 1)

m∑
k=1

(
2m

2k − 1

)
x2(m−k)+1(−1)ky2k−1,

(B5)

and the components do not have either the same number of
terms or the same binomial coefficients. This results in a
remarkable difference between the x and y dynamics.

APPENDIX C: HARMONIC CONTRIBUTION
TO 〈r2〉 AND 〈v2〉

Additional dynamical aspects can be studied using the
Langevin dynamics methodology, which sheds light on some
questions, for instance, the ion’s localization. Here, we ad-
dress the harmonic behavior of the mean-square velocity and
the position of the ion. Figure 10 shows the power spec-
trum for the evolution of 〈r2〉 and 〈v2〉. From this plot, two
main aspects can be highlighted: The first is the remark-
able difference between the amplitudes of the radio-frequency
oscillations in the evolution of 〈v2〉 and 〈r2〉. The amplitude of
the oscillations in 〈r2〉 is so small compared to its mean value
that it can be approximated to a time-independent variable.
Second, we notice that the evolution of 〈v2〉 contains more
harmonic contributions from the fundamental trap frequency
�rf than 〈r2〉. Furthermore, only even harmonic contributions

FIG. 11. Power spectrum of the evolution of 〈v2〉 for two differ-
ent multipole traps with the same parameters as in Fig. 10. It can be
seen that for n = 4 (m = 2) even and odd harmonic contributions
of the trap frequency appear, while for n = 6 (m = 3) only odd
contributions appear. The n = 4 case has been averaged over 1 × 106

realizations to further avoid thermal noise.

appear. These two properties are only characteristic of traps
where n = 2m and m is an odd number, as is the case for the
dodecapolar trap (n = 6, m = 3).

To understand why this happens we can notice that the
spatial parts of the trapping force for the x and y components
are, following Eq. (18),

∂

∂x
Un(x, y) =

m−1∑
k=0

2(m − k)

(
2m

2k

)
x2(m−k)−1(−1)ky2k,

∂

∂y
Un(x, y) =

m−1∑
k=0

2k

(
2m

2k

)
x2(m−k)(−1)ky2k−1, (C1)

respectively. Further manipulation of the y component leads
us to the expression

∂

∂y
Un(x, y)

= (−1)m
m−1∑
k=0

2(m − k)

(
2m

2k

)
y2(m−k)−1(−1)kx2k, (C2)

which is exactly the x component, but with the change x → y
and the leading sign (−1)m.

Now, for long times (t � τc) we can express the solution
for the mean-square value of each position component as a
Fourier series [14,20]:

〈r2
j 〉 =

∑
n

r j,ne−in�rf t , (C3)

where the Fourier coefficients r j,n depend, among other
things, on the nth power of the q parameter [14,32]. Then, if
m is odd, the spatial part of the trapping force will be the same
for the x and y components, but with opposite signs because
of the (−1)m term [see Eqs. (C1) and (C2)]. We can assign
these different signs to the q factor as usual in the linear Paul
trap such that qx = −qy; doing this, all the Fourier coefficients
become identical for 〈x2〉 and 〈y2〉, but with different signs,
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which manifests only in the odd powers of the q factor. This
means that a negative sign will lead to the odd harmonic
contribution for the y component. As a consequence, when
defining 〈r2〉 for long times, we have

〈r2〉 = 〈x2〉 + 〈y2〉
= (x0 + x1e−i�rf t + · · · ) + (x0 − x1e−i�rf t + · · · )

= 2x0 + 2x2e−i�2rf t + · · · = 2
∑

n

x2ne−2in�rf t . (C4)

So the first time-dependent contribution is second order in q,
which is small for most of the stable configurations found in

Sec. II. In general, this time independence of the mean-square
radial displacement results in better localization properties of
the ion inside the trap. We should also note that high-order
contributions of the harmonics for the mean-square velocity
are larger than the one for the mean-square position, which
results in the strong time dependence of 〈v2〉. The same
arguments in Eq. (C4) remain for 〈v2〉. In Fig. 11 we
show the power spectrum of 〈v2〉 for the n = 6 and n =
4 traps. The octupolar trap shows three additional peaks
in the spectrum, one at the fundamental rf and the other
two at the third and fifth harmonics, verifying the previous
analysis.
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