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Multicomponent states for trapped spin-1 Bose-Einstein condensates in the presence
of a magnetic field
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In the presence of a magnetic field, multicomponent ground states appear in trapped spin-1 Bose-Einstein
condensates for both ferromagnetic and antiferromagnetic types of spin-spin interaction. We aim to produce
an accurate analytical description of the multicomponent states which is of fundamental importance. Despite
being in the so-called regime of the Thomas-Fermi approximation (condensates with large particle number),
the scenario of multicomponent states is problematic under this approximation due to the large variation in
densities of the subcomponents. We generalize the variational method that we have introduced [P. K. Kanjilal
and A. Bhattacharyay, Eur. Phys. J. Plus 137, 547 (2022)] to overcome the limitations of the Thomas-Fermi
approximation. We demonstrate that the variational method is crucial in identifying multicomponent ground
states. A comparison of the results of the variational method, which is multimodal by construction, with that of
the single-mode approximation is also presented in this paper to demonstrate a marked improvement in accuracy
over the single-mode approximation. We have also looked into the phase transition between phase-matched and
polar states in a trapped condensate using the variational method and have identified substantial change in the
phase boundary. The correspondence of the phase diagram of the trapped case with the homogeneous one iden-
tifies other limitations of the Thomas-Fermi approximation as opposed to the more accurate variational method.
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I. INTRODUCTION

The successful experimental realization of Bose-Einstein
condensates (BECs) with alkali-metal atoms [1–3] inside a
magnetic trap spurred renewed interest [4–6] in ultracold
atomic physics. Soon it attracted a lot of attention from both
atomic and condensed-matter physics communities as it pro-
vided an ideal test bed as a quantum simulator [7–12] and
precision measurements [13–18] for its unprecedented exper-
imental control.

Early experiments on BECs [19,20] were done in a mag-
netic trap, which only captures atoms with weak-field-seeking
hyperfine states; thus, the magnetic degrees of freedom were
frozen in the resulting BEC. Later, with the optical trapping
technique, this limitation was overcome, and spinor BECs
were created with all the hyperfine states of the constituent
spin- f atoms ( f is an integer) [21–23]. The order parameter of
such a system has (2 f + 1) components. Due to the interplay
of magnetic field and interatomic interaction, the spinor BEC
shows a rich variety of phenomena, including spin textures
[24,25], domain structures [26–45], and topological phases
[46]. Spinor BECs also attracted a lot of attention due to
their complex soliton structures [47–50], interesting few-body
physics in low dimensions [51].

The role of accurately known density profiles of the mul-
ticomponent ground state is crucial in dealing with a plethora
of interesting phenomena that occur in spinor BECs. As a
result, there have been a lot of studies on multicomponent
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ground states [52–55]. But, most of those analytical stud-
ies are based on the Thomas-Fermi (TF) approximation and
single-mode approximation (SMA) for the sake of simplicity.
However, there exists scope for a wrong interpretation of the
ground-state structure of multicomponent BECs under the TF
approximation and similarly wrong estimation of ground-state
density profiles under the SMA which could lead to problems
in the presence of closely competing candidate states.

Both of these problems could be overcome by the method
of variational analysis [56] of the ground-state profile in a
multimodal manner. One can accurately identify the struc-
ture of the tail of density profiles using low-lying oscillator
states in a harmonic trap along with the correction to the
subcomponent density in the central region of the trap. In the
present paper, we identify the problems with the TF approx-
imation and SMA interpretations and compare the results of
these methods vis-à-vis the more accurate variational method
[56] extended to work for a wide range of magnetic field
conditions.

In this paper, we look at confined spin-1 BECs in
the presence of the magnetic field in the absence of any
finite-temperature [57–59] or interparticle correlation effects
[60]. To get to the ground state, one has to solve the
Gross-Pitaevskii (GP) equations which govern the dynamics
of the three-component order parameter (the mean fields ψ1,
ψ0, and ψ−1). In the absence of trapping, solving the GP equa-
tions, one can get to the phase diagram in p, q parameter space
[23,61,62], where p and q are the linear and quadratic Zeeman
terms, respectively, that capture the contribution coming from
the magnetic field.

We first consider quasi-one-dimensional 87Rb and 23Na
systems under harmonic trapping. For the 87Rb, the TF
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approximation predicts a domainlike structure between the
phase-matched (PM) state near the center of the trap followed
by the polar state outside. Similarly, for a specific choice of
Zeeman terms, the TF approximation predicts the ground state
to be a domain structure between the antiferromagnetic and
ferromagnetic states in 23Na. For multicomponent states in the
presence of the magnetic field, i.e., for a nonzero contribu-
tion of the linear and quadratic terms, no matter how large
the number of particles present in the condensate may be,
the TF approximation indicates the domain structure in the
ground state, which numerical results do not validate. Using
the generalized multimodal variational method, we establish
that there is no domain structure in the ground states of the
above-mentioned cases. The multicomponent stationary state
at the core of the trap is the ground state in all the cases.

We also take into account the results of the SMA, which is
widely used to capture the physics of spin-oscillation dynam-
ics [53,62–65], for a comparison with those of our variational
method. We look into an experimentally relevant case where
the contribution coming from the linear Zeeman term is by-
passed by moving to a rotating frame to effectively set p = 0
[66]. This is a standard procedure for the application of the
SMA. However, the SMA does not provide a good estimation
of the subcomponent density profiles for the ground state
of the 87Rb condensate particularly having large deviations
from numerical results across the whole density range. Our
multimodal variational method works quite accurately in com-
parison to the SMA to account for the ground-state density
profiles. This further emphasizes the merit of the variational
method to analytically capture the multimodal nature of states.

Having shown these results for a quasi-one-dimensional
trap that standardizes the variational method to its multimodal
form, in this paper we embark on identifying the phase bound-
ary between the PM and the polar state for a three-dimensional
condensate in isotropic harmonic trapping. The phase diagram
between the PM and the polar state is known in the homo-
geneous (untrapped) case. From the variational method, we
show that there arises a significant shift in the phase boundary
in the trapped case, which the numerical results also verify.
However, the phase boundaries for different particle numbers
in the trapped case could be collapsed to manifest the cor-
respondence between the trapped and homogeneous systems.
The single parameter, dependent on the number of particles
in the trapped condensate, that scales the phase boundaries
is the value qtr

t of q′ at p′ = 0, where the phase transition
happens (p′ and q′ are in dimensionless representation, which
we introduce later). This parameter comes out to scale with the
particle number as qtr

t ∼ N3/4. An equivalent parameter from
the mapping of the TF approximated trapped condensate to its
homogeneous equivalent results in qTF

t ∼ N2/5. This presents
a clear distinction of the results of the variational method in
comparison to the TF approximation which could be probed
by experiments.

For a condensate with the ferromagnetic type of spin-spin
interaction initially in a ground state that corresponds to the
polar state, if the magnetic field is rapidly quenched to a
smaller q for a constant p, across the phase boundary, the
ground state is supposed to change to that of the PM state,
i.e., the broken-axisymmetry phase [62]. This sudden quench
in the magnetic field (quench in q at p = 0; see Sec. 5.9 of

Ref. [62]) across the phase transition boundary between the
PM state and the polar state is of high importance in the
context of the Kibble-Zurek mechanism and the associated
creation of spin vortices [67–69]. Thus, an accurate estimation
of the phase boundary of the PM state and the polar state for a
trapped condensate, shown in this article, is of high relevance
from an experimental point of view as well.

The article is organized in the following way. In Sec. II,
we discuss the mean-field theory of the spin-1 trapped BEC in
the presence of the magnetic field. In Sec. III we focus on the
analytical description of the phase-matched state and the an-
tiferromagnetic state that become ground states for 87Rb and
23Na, respectively. We start with the TF approximated results
and then we provide a description based on the variational
method and compare it with the numerical simulation. We
compare the results of the SMA with those of the variational
method to demonstrate the improvement offered by the latter.
Following this, in Sec. IV, we estimate the phase boundary be-
tween the PM state and the polar state for a similar condensate
in an isotropic three-dimensional harmonic trap to explore the
correspondence to the homogeneous case. This is followed by
a discussion on the generality of the treatment presented here
and possible directions to explore.

II. MEAN-FIELD THEORY: GP EQUATION

The dynamics of the mean fields for a trapped spin-1
BEC in the presence of a magnetic field is captured in the
GP equation [45,52,62,70],

ih̄
∂ψm

∂t
=
(

− h̄2∇2

2M
+ U (�r) − pm + qm2 + c0n

)
ψm

+ c1

1∑
m′=−1

�F · �fmm′ψm′ , (1)

where the first term on the right is the kinetic energy contri-
bution for particles of mass M. The second term is due to the
confining potential and the presence of the magnetic field is
captured by the linear and quadratic Zeeman terms p and q,
respectively. We assume a two-body contact interaction that
can be decomposed into spin-independent (the term involving
c0) and interspin interactions (the term with c1). As this is a
spin-1 system, the subscripts m and m′ take the values 1, 0,
and −1.

The total density n is defined as

n(r) =
1∑

m=−1

|ψm|2, (2)

and the local spin density �F is

�F =
1∑

i, j=−1

ψ∗
i

�fi jψ j, (3)

where the �f is defined via the spin-1 Pauli matrices [62].
The GP equation [Eq. (1)] is a set of three coupled nonlinear
partial differential equations that yields the order parameter
(ψ1, ψ0, ψ−1) as its solution.
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The mean-field approximated total energy [62],

E =
∫

d�r
1∑

m=−1

ψ∗
m

(
− h̄2∇2

2M
+ U (�r) − pm + qm2

)
ψm

+ c0

2
n2 + c1

2
| �F |2, (4)

can be compared for different stationary states to get to the
ground state of the system. In this paper, we represent the
stationary states as (n1,n0,n−1), where nm is the placeholder
for the binary notation, 0 or 1. If the subcomponents are
populated we represent it as 1 and if empty we represent it
as 0. In this notation, for example, the ferromagnetic state
is represented as (1,0,0) or (0,0,1), where the subcomponent
corresponding to m = 1 or m = −1 is populated.

To simplify the GP equations further, one can write the
mean fields in terms of the density and corresponding phase,

ψm(�r, t ) =
√

nm(�r) exp

(
− iμt

h̄

)
exp(−iθm), (5)

where the parameter μ stands for the chemical potential. One
can get the number and phase dynamics separately [45] by
using this ansatz in Eq. (1),

ṅ0(�r) = −4c1n0
√

n1n−1 sin θr

h̄
, (6)

ṅ±1(�r) = 2c1n0
√

n1n−1 sin θr

h̄
, (7)

h̄θ̇0 = 1√
n0(�r)

(H − μ)
√

n0(�r)

+ c1(n1 + n−1 + 2
√

n−1n1 cos θr ), (8)

h̄θ̇±1 = 1√
n±1(�r)

(H − μ)
√

n±1(�r) ± c1(n1 − n−1) + q

∓ p + c1n0

⎛
⎝1 +

√
n∓1(�r)

n±1(�r)
cos θr

⎞
⎠, (9)

where H = − h̄2∇2

2M + U (�r) + c0n and θr is the relative phase
which is defined as θr = θ1 + θ−1 − 2θ0 [62]. The same ansatz
[Eq. (5)] makes the energy a function of the subcomponent
number density and the relative phase,

E =
∫

d�re(�r)

=
∫

d�r
(

−
1∑

m=−1

√
nm(�r)

h̄2∇2

2M

√
nm(�r)

+ U (�r)n(�r) − p(n1 − n−1) + q(n1 + n−1)

+ c0

2
n2(�r) + c1

2
(n1 − n−1)2

+ c1n0[n1 + n−1 + 2
√

n1n−1 cos θr]

)
, (10)

where e(�r) is the energy density. Note that, in this article, we
are not looking for vortex solutions. Thus, in Eqs. (6)–(10)
we have neglected the spatial variation of the subcomponent

phases, assuming that the phases are either constant or varying
slowly.

For the stationary states, there is no temporal variation of
the subcomponent number densities and the subcomponent
phases; i.e., the left-hand sides of Eqs. (6)–(9) can be equated
to zero. From Eqs. (6) and (7), one can conclude that at
least one of the subcomponents should be empty to satisfy
the equations. Otherwise, the relative phase has to be either
zero or π when all the subcomponents are populated. Such
a stationary state is also known as the phase-matched (PM)
state for θr = 0 and the anti-phase-matched (APM) state for
θr = π . The subcomponent phase equations [Eqs. (8) and (9)]
for a particular stationary state can be solved to get the sub-
component number densities and, therefore, the total energy.
Before going into that, we will rewrite these equations in a
nondimensional form.

We consider the system to be in quasi-one-dimensional
harmonic confinement; i.e., the condensate is elongated along
the x axis. This means the trapping frequency along the
x direction is much less than the geometric mean of the
trapping frequencies along the other two directions; i.e., ωx 	
ωyz, where ωyz = √

ωyωz. The number density and the inter-
action parameters are scaled as [56]

c0 = 2π l2
yzlxλ0h̄ωx, c1 = 2π l2

yzlxλ1h̄ωx, (11)

um = 2π l2
yzlxnm, r = lxζ , (12)

where l2
x = h̄/(mωx ), l2

yz = h̄/(mωyz ), and N is the total num-
ber of particles in the condensate. As a result, the parameters
λ0, λ1, ζ , and um become all dimensionless.

The phase equations can now be written as [imposing the
stationarity condition in Eqs. (8) and (9)]{

−1

2

d2

dζ 2
+ 1

2
ζ 2 + λ0u − μ′

+ λ1(u1 + u−1 + 2
√

u−1u1 cos θr )

}√
u0 = 0, (13){

−1

2

d2

dζ 2
+ 1

2
ζ 2 + λ0u − μ′ ± λ1(u1 − u−1) ∓ p′ + q′

}

× √
u±1 + λ1u0(

√
u±1 + √

u∓1 cos θr ) = 0, (14)

where, μ′, p′, and q′ correspond to the dimensionless forms
of chemical potential, and the linear and quadratic Zeeman
terms, respectively. The scaling is done by dividing the pa-
rameters with the factor h̄ωx. The subcomponent densities
add up to provide the total density of the system; i.e., u =
u1 + u0 + u−1.

If the kinetic energy contribution is negligible in com-
parison to the interaction terms, then one can use the TF
approximation and solve Eqs. (13) and (14) to get the
subcomponent number densities and, hence, the energy den-
sity or the total energy for different stationary states. The
TF-approximated results of ground states of our present in-
terest are detailed in Table I.

III. MULTICOMPONENT STATIONARY STATES

Consider a quasi-one-dimensional cigar-shaped harmonic
confinement of trapping frequency along the elongated
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TABLE I. The density and the energy density expressions corresponding to different stationary states at λ1 
= 0 obtained via TF
approximation [45]. All the parameters in this table are in dimensionless form. One can use Eqs. (11) and (12) to convert the expressions
into dimensional forms. The two possible ferromagnetic states are abbreviated as F1 and F2, while P and AFM stand for the polar state and
the antiferromagnetic state, respectively. The energy expressions and the density expressions for PM and APM states are identical. However,
PM and APM states are restricted in space where the APM state exists if the absolute value of the linear Zeeman term is higher than that of the
quadratic Zeeman term and the PM state exists otherwise.

States Variation of density Energy density Restriction

(1,0,0) (λ0 + λ1)u(ζ ) = μ′ + p′ − q′ − ζ 2/2 [ζ 2/2−p′+q′][μ′+p′−q′−ζ 2/2]
(λ0+λ1 ) + [μ′+p′−q′−ζ 2/2]2

2(λ0+λ1 ) none
F1

(0,1,0) λ0u(ζ ) = μ′ − ζ 2/2 ζ 2/2[μ′−ζ 2/2]
λ0

+ [μ′−ζ 2/2]2

2λ0
none

P

(0,0,1) (λ0 + λ1)u(ζ ) = μ′ − p′ − q′ − ζ 2/2 [ζ 2/2+p′+q′][μ′−p′−q′−ζ 2/2)]
(λ0+λ1 ) + [μ′−p′−q′−ζ 2/2]2

2(λ0+λ1 ) none
F2

(1,0,1) λ0u(ζ ) = μ′ − q′ − ζ 2/2 [ζ 2/2+q′][μ′−q′−ζ 2/2]
λ0

+ [μ′−q′−ζ 2/2]2

2λ0
− p′2

2λ1
none

AFM and (u1 − u−1) ≡ Fz = p′
λ1

(1,1,1) (λ0 + λ1)u(ζ ) = k1 − ζ 2/2 ζ 2/2[k1−ζ 2/2)]
λ0+λ1

+ λ1
2

[ k1−ζ 2/2
λ0+λ1

− p′2−q′2
2q′λ1

]2 + λ0
2

[ k1−ζ 2/2
λ0+λ1

]2
PM(|p′| < |q′|)

(A)PM where k1 = μ′ + (p′2−q′2 )
2q′ APM (|p′| > |q′|)

direction, ωx = 2π × 50 Hz, and the geometric mean of the
trapping frequencies along the transverse direction, ωyz =
2π × 1261 Hz. In Ref. [56], it was shown that for one-
dimensional (1D) trapping geometry with the same trapping
frequency, the TF approximation gives reasonably good re-
sults in predicting the number density for single-component
stationary states for N � 500 in the absence of a magnetic
field. There is reason to believe that the TF approximation
might produce fairly accurate results for multicomponent sta-
tionary states in the presence of a small magnetic field if N �
500. For the following case studies, the number of condensate
particles is fixed at N = 5000 for which the TF approxima-
tion should produce even better results. However, in what
follows we will show that even at such a high particle number,
TF-approximated results falter and corrections are needed.

Our present focus is on the PM state which is a multicom-
ponent state that appears as a ground state for a range of p and
q values in condensates with the ferromagnetic spin-spin in-
teraction, e.g., 87Rb. The antiferromagnetic state that becomes
the ground state for 23Na where the spin-spin interaction is
of antiferromagnetic type [62] is also discussed in this paper.
Note that the quasi-one-dimensional confinement is taken for
convenience in numerical simulation.

A. PM state: TF approximation

For a 87Rb condensate with ferromagnetic-type interaction,
the numerical values of the parameters corresponding to the
trap geometry are lx = 1.53 µm, lyz = 0.30 µm, λ0 = 17.66 ×
10−2, and λ1 = −6.22 × 10−4. In this section, to compare
the TF-approximated result with the numerical profile, as a
case study, the linear and quadratic Zeeman terms are fixed at
p′ = 0.01 and q′ = 0.3. The stationary state that is energeti-
cally favorable to be the ground state at these parameter values
is the PM state. Note that the conclusions, however, are not
dependent on a specific choice of parameter values but rather
will remain valid for a range of p′ and q′ values for which the
PM state is favorable as the ground state.

The subcomponent number densities of the PM state
are [45]

uTF
1 = (p′ + q′)2

4q′2

⎡
⎣μ′ + (p′2−q′2 )

2q′ − 1
2ζ 2

λ0 + λ1
+ q′2 − p′2

2λ1q′

⎤
⎦, (15)

uTF
−1 = (p′ − q′)2

4q′2

⎡
⎣μ′ + (p′2−q′2 )

2q′ − 1
2ζ 2

λ0 + λ1
+ q′2 − p′2

2λ1q′

⎤
⎦, (16)

uTF
0 = (q′2 − p′2)

2q′2

⎡
⎣μ′ + (p′2−q′2 )

2q′ − 1
2ζ 2

λ0 + λ1
− q′2 + p′2

2λ1q′

⎤
⎦, (17)

which can be compared with the numerically simulated pro-
files. For the purpose of numerical simulation, imaginary time
propagation in the split-step Fourier method [71] is used. The
number density profiles as predicted by the TF approximation
are used as initial seeds.

Comparison of the subcomponent densities of
TF-approximated profiles with the numerical ones reveals
very good agreement for the subcomponents u1 and u−1. The
profile for the u0 component also agrees in the high-density
region of the trap [Fig. 1(a)], but starts to deviate when the
other components u1 and u−1 vanish, which for these param-
eter values is at around ζ TF

±1 = ±10.3. Note that ζ TF
±1 is the TF

radius of the u±1 components. The numerical results suggest
that the u0 component falls much more sharply for |ζ | > |ζ TF

±1 |
than the TF-approximated profile of the u0 component
[Eq. (17)]. Naturally, one might expect that, beyond the point
ζ TF
±1 , the summation of the TF-approximated subcomponent

number densities (i.e., utot = u1 + u0 + u−1 with u±1 = 0 for
|ζ | > |ζ TF

±1 |) will not agree with the numerical profile as there
is a significant mismatch in the u0 component.

This is quite natural as the PM state is only valid as long
as all the subcomponents are populated. However, according
to the TF approximation, the u±1 components vanish at ζ =
10.3, which is the TF radius of these two subcomponents. So,
within the TF approximation, it can be said that near the center
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FIG. 1. (a) The TF-approximated subcomponent number densities for the PM state are compared with the numerical densities for the
parameter values (dimensionless) p′ = 0.01, q′ = 0.3, λ0 = 17.66 × 10−2, and λ1 = −6.22 × 10−4. In this and all subsequent figures (unless
otherwise specified), the numerical profile of u1, u0, and u−1 is shown in red triangles, green circles, and blue inverted triangles, respectively,
while the analytical profile (in this figure, the TF profile) is shown in red dashed, green solid, and blue dash-dotted lines, respectively. The
TF-approximated u0 expression corresponding to the PM state starts to disagree with that of the numerical simulation beyond |ζ | > 10.3,
which is the TF radius of the u±1 component. The dimensionless quantity |ζ | represents the distance from the center of the trap. (b) The
analytical profile of the u0 component corresponding to the TF-predicted domain structure and the numerically estimated u0 are plotted against
the distance from the trap center. The analytical profile of the u0 follows the TF expression of the PM state when all the subcomponents are
populated, i.e., |ζ | < |ζ TF

±1 |, followed by the TF expression of the polar state. Dashed lines are placed at the TF radius ζ TF
±1 = ±10.3, which

marks the domain boundary. Note that a discontinuity appears in the analytical u0 at the domain boundary (inset) while the numerical profile
is smooth. In this and in subsequent figures, the quantities u1, u0, u−1, and ζ are dimensionless.

of the harmonic trap, the PM state is occupied, and beyond the
TF radius of u±1, the PM state ceases to exist. In this region,
only the u0 component is present, which signifies that it is
(0,1,0) or the polar state (see Table I) that occupies the low-
density region of the trap.

The subcomponent number densities for such a construct
can be given as

uTF
1 = (p′ + q′)2

4q′2

⎡
⎣μ′ + (p′2−q′2 )

2q′ − 1
2ζ 2

λ0 + λ1
+ q′2 − p′2

2λ1q′

⎤
⎦, (18)

uTF
−1 = (p′ − q′)2

4q′2

⎡
⎣μ′ + (p′2−q′2 )

2q′ − 1
2ζ 2

λ0 + λ1
+ q′2 − p′2

2λ1q′

⎤
⎦,

uTF
0 =

⎧⎪⎨
⎪⎩

(q′2−p′2 )
2q′2

[μ′+ (p′2−q′2 )
2q′ − 1

2 ζ 2

λ0+λ1
− q′2+p′2

2λ1q′
]

if |ζ | � ∣∣ζ T F
±1

∣∣
μ′

polar− 1
2 ζ 2

λ0
otherwise.

(19)

Note that, additionally for the stability of the domain structure,
the chemical potentials of the PM state (μ′) and that of the
polar state (μ′

polar) have to be the same. For N = 5000, the
chemical potential comes out to be μ′ = μ′

polar = 95.63. As
can be seen in Fig. 1(b) this domainlike explanation works
really well as we compare the subcomponent density with
the numerical u0, but there is a discontinuity at |ζ | = |ζ TF

±1 |.
The slope of analytical u0 also changes drastically around this
point, resulting in a lot of kinetic energy cost. The sharper
decrease of the u0 component happens as the TF radius of the
polar state is much lower than the projected TF radius of the
u0 of the PM state.

The above conclusion about the discontinuity in the u0

component and hence the limitations of the TF approxima-
tion can be further strengthened if we compare numerical
simulation and TF-approximated prediction for a different
spin-spin interaction, c1 −→ 5cRb

1 , while keeping all other pa-
rameter values the same. Experimentally, this is possible via
Feshbach resonance [72]. This corresponds to a change in
λ1 = −3.11 × 10−3 for the same spin-independent interac-
tion term, λ0 = 17.66 × 10−2. We numerically simulate the
condensate profile for these interaction parameters and for
the same and p′ = 0.01 and q′ = 0.3 to compare it with the
domainlike prediction of the TF approximation.

For this choice of parameter values, the domainlike struc-
ture predicted by the TF approximation, with μ′ = μ′

polar =
94.73, has a similar discontinuity (Fig. 2) for the subcom-
ponent u0 at |ζ | = |ζ TF

±1 | = 13.13. The total density for this
domainlike structure will also have that same discontinuity.
Note that the numerical profile of the condensate (specifi-
cally of the u0 component) is smooth and does not show any
discontinuity in Figs. 1 and 2. The numerical data suggest
a non-negligible presence of the u±1 beyond their TF radius
|ζ TF

±1 |. Additionally, from the numerical data we find that the
phase-matching condition, i.e., θr  0, is satisfied throughout
the trap, which indicates that the PM state is the only ground
state that is present in all regions of the trap.

B. PM state: The variational method

In Ref. [56], a multimodal variational method was in-
troduced which incorporates the kinetic energy contribution
and produces the subcomponent number density profiles of a
stationary state with great accuracy. The variational method
(VM) was developed for a spin-1 BEC in the absence of a
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FIG. 2. The subcomponent u0 for the TF-approximated
PM-polar domains (green solid line) is compared with the numerical
profile (green circles) for the same p′ = 0.01 and q′ = 0.3 and
λ0 = 17.66 × 10−2 with a different spin-dependent interaction
coefficient, λ1 = −3.11 × 10−3, which is now five times λ1

corresponding to 87Rb for this trap geometry. The analytical u0

follows the TF profile of the PM state near the center of the trap,
and the TF profile of the polar state beyond |ζ TF

±1 | = 13.13 (vertical
dashed lines mark this point). The analytical profile of the u0,
corresponding to the domain structure, has a distinct discontinuity at
|ζ TF

±1 | (see inset).

magnetic field, which works really well even for condensates
with a small number of particles where the TF approximation
was shown to be no longer valid. The PM state was also
analyzed using the multimodal VM, but for p = 0 and q = 0,
the subcomponents of the PM state follow the same spatial
mode, which reduces the complexity significantly.

We extend the same procedure here in presence of a mag-
netic field. If the subcomponents do not follow the same
spatial variation, the situation is much more complex but the
extended VM tackles it with ease. In this section we will
briefly discuss the procedure; for a more elaborate description
see Appendix A.

For the variational method to work, we assume the sub-
component densities as

uin
±1,0 = g±1,0(μ′, ζ ) for |ζ | � ζ mat

±1,0, (20)

uout
±1,0 = (a±1,0 + c±1,0|ζ | + d±1,0ζ

2) exp

(
− ζ 2

b±1,0

)

for |ζ | � ζ mat
±1,0,

(21)

where g±1,0(μ′, ζ ) is the functional form of the subcomponent
density u±1,0 for a particular stationary state near the center of
the trap, which is, as noted earlier, obtained from the solution
of Eqs. (13) and (14), neglecting the Laplacian term [for the
functional form of g±1,0(μ′, ζ ) for the PM state please see
Eqs. (A4)–(A6) in Appendix A]. In the low-density region,
we assume the number density (or the wave function) taking
into account the first few lowest harmonic oscillator states.

To determine the unknown coefficients am, bm, cm, and dm

with m = ±1, 0, we impose a smooth matching condition at
|ζ | = ζ mat where the

√
u±1,0 and their first three derivatives

become equal for low- and high-density expressions. The
third derivative matching also ensures a smooth kinetic energy
profile. From these four conditions, one can determine all
four coefficients appearing in Eq. (21), which now become
functions of μ′ and ζ mat

±1,0. If we integrate the subcomponent
densities and add them, the result would correspond to the
total number of condensate particles. From this number con-
servation equation, the parameter μ′ can be expressed in terms
of ζ mat

±1,0 (see Appendix A for more details). Following this
step, the densities and thus the total energy can be written
only as a function of the matching points ζ mat

±1,0 which are the
only variables left. The matching points can be found from the
minimization of the total energy. Once the matching points are
obtained, we can write the analytical expressions for all the
subcomponent densities.

Before we implement the VM, note that if we add the TF-
approximated subcomponent densities of the PM state given
by Eqs. (15)–(17), we arrive at the total number density,

uPM
tot =

μ′ + (p2−q2 )
2q − 1

2ζ 2

λ0 + λ1
. (22)

This expression of the total TF-approximated density has
a curious character. The number densities of the individual
components uTF

±1 reach zero at a radius |ζ | = |ζ TF
±1 |, which is

smaller than the radius where the uTF
0 comes to zero. However,

beyond |ζ | = |ζ TF
±1 |, the expression of uPM

tot keeps on counting
the negative contribution of densities uTF

±1 [Eqs. (15) and (16)]
until the uTF

0 component [Eq. (17)] reaches zero to conserve
the number of particles under the TF approximation. Thus,
the uTF

0 that exists in the TF approximation beyond |ζ TF
±1 | is

actually an overcount to which, when the negative densities of
uTF

±1 add up, it gives a total density according to Eq. (22). This
is a feature of the TF approximation.

This shows up clearly in the TF-approximated expres-
sion of the u0 component [Eq. (17)] deviating from the
numerical estimation [Fig. 1(a)] beyond the TF radius |ζ TF

±1 |
beyond which uTF

±1 < 0 [in Eqs. (15) and (16)]. However, the
TF-approximated total density [Eq. (22)] is seen in Fig. 3
to match the numerical profile when the negative densities
uTF

±1 < 0 are added to the TF-approximation prescribed u0.
Since we build the VM solution with a reference to the TF-
approximated profile at the core, in what follows we will use
uTF

±1 and the density profile uPM
tot to develop VM in a multi-

modal approach. This approach would work fine, but not the
one that includes uTF

0 in the place of uPM
tot , because uTF

0 is an
overcount beyond |ζ TF

±1 |. The expression of u0 can be later
found out by subtracting the sum of variational profiles of
u±1 from the total number density profile, i.e., uVM

0 = uVM
tot −

uVM
1 − uVM

−1 . Note that, for the PM state, the spatial mode for
the u1 and u−1 are equivalent, so the matching point for those
two subcomponents will be the same, i.e., ζ mat

1 = ζ mat
−1 . Thus,

the minimization of the total energy in the two-dimensional
parameter space of ζ mat

1 and ζ mat
tot will determine the energy

itself as well as approximate values of these parameters.
For this particular case, we find that ζ mat

±1 = 8.5 and ζ mat
tot =

13.43 minimizes the total energy. These matching points
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FIG. 3. The total density (dimensionless) obtained from numer-
ical simulation (for p′ = 0.01, q′ = 0.3, λ0 = 17.66 × 10−2, and
λ1 = −6.22 × 10−4) matches quite well with Eq. (22), which is the
TF-approximated expression corresponding to the total density of the
PM state. This expression of total number density is only valid as
long as all the subcomponents are populated. Beyond |ζ TF

±1 |, Eq. (22)
incorporates the negative density contribution from uTF

±1. Inset: The
same expression matches with the numerical total density even be-
yond the TF radius |ζ TF

±1 |  10.3.

also determine the parameter μ′ = 95.6 from the number
conservation equation. Thus, number densities can be written
in an analytical form as

uVM
1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.5173(53.1007 − 0.5ζ 2) if |ζ | � 8.5
1.5173(114177.278 − 31226.158|ζ |

+ 2184.067ζ 2) exp(−0.0824ζ 2)
otherwise,

(23)

uVM
−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.3278(53.1007 − 0.5ζ 2) if |ζ | � 8.5
1.3278(114177.278 − 31226.158|ζ |

+ 2184.067ζ 2) exp(−0.0824ζ 2)
otherwise,

(24)

uVM
tot =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5.6839(95.4599 − 0.5ζ 2) if |ζ | � 13.425
5.6839(4.8883 × 1025 − 7.4283 × 1024|ζ |

+ 2.8227 × 1023ζ 2) exp(−0.2779ζ 2)
otherwise,

(25)

where the numbers are rounded up to four decimal places. The
analytical expressions of the subcomponent densities obtained
from the VM is in excellent agreement with the numerical
profiles [see Fig. 4(a)]. Note that in Eq. (25) the coefficients of
the total number density might look very large, but for |ζ | �
13.43 where the expression is valid, the contribution from the
exponential part is so small that the combined contribution
asymptotically goes to zero at large distances and matches
quite accurately with the numerical profile [see the inset of
Fig. 4(b)].

We have made a case study of the PM state, a multicompo-
nent stationary state that becomes the ground state for a range
of linear and quadratic Zeeman strengths. For the purpose of
comparison with numerical simulation, we have chosen 1D
harmonic trapping and particular values of p′, q′, and the
number of condensate particles, N . The procedure and the
conclusions do not depend on the particular choices of these
parameters and are valid as long as the PM state is favored to
be the ground state.

As the GP equations are coupled, the low-density behavior
of u±1 stemming from the Laplacian term [Eqs. (13) and (14)]
cannot be neglected and it affects the u0 component [Eq. (13)]
as well. The variational method accurately estimates the effect
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FIG. 4. (a) The subcomponent number density of the PM state obtained via the numerical and variational methods is plotted against the
distance from the trap center ζ , for p′ = 0.01, q′ = 0.3, λ0 = 17.66 × 10−2, and λ1 = −6.22 × 10−4. The VM produces a very good analytical
profile that describes the numerical data quite well even in the tail part of the condensate. The VM rules out any domainlike possibility and
analytically estimates the u0 component that is quite accurate in comparison to the numerical profile (see inset). (b) The VM provides an
excellent analytical profile of the total density to match the numerical result near the core of the trap as well as in the low-density region
(inset), where it gives an analytic estimate of the condensate density which asymptotically goes to zero at a large distance.
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of the Laplacian term and estimates u±1 in the low-density
region of the trap. Note that the PM state can only be present
as long as all the subcomponents are populated. Beyond ζ TF

±1 ,
according to the TF approximation, the u±1 components are
zero, which indicates the polar state being occupied there,
whereas the finite presence of these components beyond ζ TF

±1 ,
which the VM estimates, indicates that the PM state is present
throughout the trap, which numerical results also validate.
Note that the VM is an approximation scheme that works
really well in estimating the subcomponent number densities
(also the mean fields), which produces a very good estimation
of the vector order parameter of the spin-1 system. Like other
approximate methods, it has some limitations as well. For
example, at a large distance from the center of the trap (very
large ζ ), where the total density uVM

tot and uVM
±1 are very close

to zero and can be considered negligible, we find that the total
density is slightly lesser than the combined contribution of
the ±1 subcomponents, hence making uVM

0 slightly negative
which is not physical. For this reason, we have taken the
contribution up to a large ζ after which we assume that u0

goes to zero. Thus the kinetic energy contribution is included
and considered up to a large distance without discontinuity.

Note that, the ratio of the spin-dependent and spin-
independent interaction coefficients, for 87Rb, is really small
(|λ1|/λ0 ∼ 1/300). The spin-spin interaction affects the sub-
component density distributions. As a result, a natural query
may arise about what would happen if |λ1| and λ0 are of
comparable strength. We verified that the accuracy of the
variational method remains unaffected in such a situation even
when there is a sufficient increment in the strength of the
Zeeman terms (see Fig. 11 in Appendix A).

Comparison with single-mode approximation (SMA)

The single-mode approximation is a widely adopted
method for the study of spin-oscillation dynamics in spinor
condensates. Under the SMA, all the subcomponents are as-
sumed to follow the same spatial variation [62],

ψm(�r, t ) =
√

Nξm(t )ψSMA(�r) exp

(
− iμt

h̄

)
, (26)

where ψSMA(�r) is the spatial mode and ξm(t ) is, in general,
a complex quantity that obeys

∑m=1
m=−1 |ξm(t )|2 = 1. For 1D

harmonic confinement, one can use the same scaling as in
Eqs. (11) and (12), where

ψSMA(ζ ) =
√

2π l2
yzlxψSMA(�r). (27)

The mode function ψSMA(ζ ) can be determined by solving[
−1

2

d2

dζ 2
+ 1

2
ζ 2 + λ0N |ψSMA(ζ )|2

]
ψSMA(ζ ) = μ′ψSMA(ζ ),

(28)
subjected to the constraint∫ ∞

0
dζ |ψSMA(ζ )|2 = 1. (29)

The solution of the equations

i
dξ±1

dτ
= (∓p′ + q′)ξ±1 + λ̃1

[
(ρ±1 + ρ0 − ρ∓1)ξ±1 + ξ 2

0 ξ ∗
∓1

]
,

(30)

i
dξ0

dτ
= λ̃1[(ρ1 + ρ1)ξ0 + 2ξ1ξ−1ξ

∗
0 ], (31)

provides the dynamics of the normalized spinor ξm, where
ρm ≡ |ξm(t )|2 and τ is related to time t as, τ = ωxt .
The effective volume of the system, V eff ≡ 4π lxl2

yx(
∫∞
−∞ dζ

|ψSMA(ζ )|4)−1, determines the parameter λ̃1 [62]:

λ̃1 ≡ c1N

h̄ωxV eff
= λ1N

2

∫ ∞

−∞
dζ |ψSMA(ζ )|4. (32)

Rewriting the normalized spinor,

ξm = √
ρm exp(−iθm) exp(ip′mτ ), (33)

simplifies Eqs. (30) and (31),

dρ0

dτ
= −2λ̃1ρ0

√
(1 − ρ0)2 − f 2

z sin θr, (34)

dθr

dτ
= −2λ̃1

(1 − 2ρ0)(1 − ρ0) − f 2
z√

(1 − ρ0)2 − f 2
z

cos θr + 2q′

− 2λ̃1(1 − 2ρ0), (35)

where fz = |ξ1|2 − |ξ−1|2, and θr is the relative phase. From
ρ0, one can get to the population fraction in the other two
components, i.e., ρ±1 = (1 − ρ0 ± fz )/2 [62].

We select an experimentally relevant case of p = 0 and
q = 0.3, which also corresponds to the PM state in the ground
state, to compare the SMA with the numerical results. The
numerical solution of Eq. (28) estimates the mode function
which is the same for all the spin components under the SMA.
Following that, the stationarity condition can be employed
in Eqs. (34) and (35) to find the population fraction for dif-
ferent subcomponents. When fz = 0, for PM state (θr = 0),
we find λ̃1  −0.2703, ρ0  0.777, and ρ±1  0.111. These
population fractions determine the subcomponent densities as
uSMA

m = Nρm|ψSMA(ζ )|2.
The total density profile obtained from the SMA

(N |ψSMA(ζ )|2) is in good agreement with the numerically
obtained total number density. This is important for an ac-
curate determination of λ̃1 [Eq. (32)]. Still, the subcomponent
density profiles as obtained from the SMA do not agree with
the numerically obtained profiles [see Fig. 5(a)]. Note that
it is well known that the SMA is not exact, even in the
ground state for the PM state, which is also known as the
broken-axisymmetry phase [62]. The inaccuracy of SMA fur-
ther emphasizes the fact that the subcomponents do not follow
a single spatial mode for the PM state. Thus, a multimodal
analysis is required. In Fig. 5(b) we demonstrate that the sub-
component density distribution with ζ mat

±1 = 8.495 and ζ mat
tot =

13.425 and μ′ = 95.46 as obtained from the multimodal VM
is in excellent agreement with the numerical simulation for
this experimentally relevant case.

In the next section, we will do a brief case study on the
antiferromagnetic state which is the other possible multicom-
ponent stationary state that becomes the ground state for 23Na.

C. Antiferromagnetic state

For the 23Na condensate, we set the same trapping frequen-
cies corresponding to 1D confinement as mentioned earlier for
the ferromagnetic-type condensate. The oscillator length in
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FIG. 5. (a) The subcomponent density profiles obtained from the SMA are compared with the numerical profiles for p′ = 0, q′ = 0.3,
λ0 = 17.66 × 10−2, and λ1 = −6.22 × 10−4. Though the SMA estimated total number density profile agrees with the numerical total number
density distribution (not shown here), the subcomponent density profiles are not in agreement. (b) The VM-estimated subcomponent profiles
with ζ mat

±1 = 8.495 and ζ mat
tot = 13.425 and μ′ = 95.46 for the case of p′ = 0 and q′ = 0.3 match quite well with the multimodal distribution

obtained from the numerical estimation.

the elongated direction is lx = 2.97 µm, and in the transverse
direction is lyz = 0.59 µm. Note that, although we consider the
same trapping geometry, the oscillator length scales for 23Na
and 87Rb condensates are different due to the different masses
of the species. The spin-independent and spin-spin interac-
tion parameters are λ0 = 46.16 × 10−3 and λ1 = 7.43 × 10−4

corresponding to the values given in Ref. [62]. The positive
spin-spin interaction coefficient signifies the antiferromag-
netic type of spin interaction for the 23Na condensate. For a
range of linear and quadratic Zeeman terms, the antiferromag-
netic (AFM) state is found to be favorable as the ground state,
but for the purpose of numerical study, we will focus on the
case where p′ = 0.2 and q′ = −0.5.

As long as the u1 and u−1 subcomponents are nonzero, the
TF approximation gives an estimation of the total as well as
subcomponent number densities (see Table I),

uTF
1 = μ′ − q′ − ζ 2/2

2λ0
+ p′

2λ1
, (36)

uTF
−1 = μ′ − q′ − ζ 2/2

2λ0
− p′

2λ1
. (37)

As the chosen value of p′ is positive (also, λ1 > 0), the u−1

component goes to zero much faster than the other one. So
beyond the TF radius of the u−1 component, the AFM state
ceases to exist but the sole presence of the u1 component
signifies the ferromagnetic state. So according to the TF ap-
proximation, the situation is domainlike with the AFM state
at the center of the trap followed by the ferromagnetic state
outside (for |ζ | > ζ T F

−1 ).
Similar to the case for the PM state that we have seen

earlier, the numerical simulation does not vindicate the do-
mainlike prediction; rather the AFM state is found to be
present for all values of ζ . Following the same procedure as
described for the PM state, one can apply the VM for the total
density and the subcomponent density u−1. The u0 component
is empty and there will be two matching points ζ mat

tot and ζ mat
−1

which are to be found out from the minimization of the total

energy. For the previously mentioned p′ and q′ values, we get
these two matching points to be ζ mat

tot = 8.36 and ζ mat
−1 = 6.08.

These also produce the analytical formulas of the total density
and the u−1 components. The density expression for the u1

component is obtained by subtracting the other subcomponent
u−1 from the total density.

The VM shows that the domainlike situation that the TF
approximation predicts is incorrect and justifies the fact that
the kinetic energy terms cannot be neglected near the TF
radius for the subcomponent which is of smaller density—
in this case, the u−1 component. The VM also produces a
low-density expression of the u−1 component which has a
small but nonzero presence beyond uTF

−1. Thus, it is only the
AFM state that is present for all regions of space. Moreover,
the analytic number density expressions obtained from VM
corresponding to each subcomponent are in fair agreement
with the numerically obtained profiles (see Fig. 6).

IV. PHASE TRANSITION BETWEEN PM AND POLAR
STATES UNDER CONFINEMENT

In the previous section, we have shown that the results of
the TF approximation and the SMA are inaccurate for the
multicomponent ground states under 1D harmonic confine-
ment. The variational method, on the other hand, analytically
obtains the correct profile of the condensate ground states (PM
state) as opposed to the TF-approximated domains of PM and
polar states.

Using this variational method one can estimate the phase
transitions between different ground states of a trapped spin-1
BEC, especially when the multicomponent states are involved.
We will choose the case of spin-1 BEC with the ferromag-
netic type of spin-spin interaction inside a three-dimensional
(3D) isotropic harmonic confinement. While the numerical
simulation is costlier in higher dimensions, the VM can be
implemented to analytically obtain the phase boundaries in-
volving multicomponent states.
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FIG. 6. Subcomponent density expressions obtained via VM are
compared with the numerical profile for the antiferromagnetic state
with the Zeeman terms fixed at p′ = 0.2 and q′ = −0.5 for λ0 =
46.16 × 10−3 and λ1 = 7.43 × 10−4.

In the absence of confinement (hence, a constant number
density), the phase diagram for the homogeneous spin-1 con-
densate is well known. When the spin-spin interaction is of
ferromagnetic type (c1 < 0), the phase diagram of the homo-
geneous condensate, Fig. 7 [62], shows different stationary
states favorable as the ground state in certain regions of the
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FIG. 7. The phase diagram of the spin-1 condensate with a ferro-
magnetic type of spin-spin interaction (c1 < 0) in the absence of any
confinement. The ferromagnetic, PM, and polar states are favorable
to become the ground states depending on the linear and quadratic
Zeeman terms, p and q. The number density n, being a constant over
space in the absence of any confinement, can be used to scale the
p and q axes. In this scaling, the phase diagram becomes universal
in the sense that this diagram does not change for a change in num-
ber density (constant over space, i.e., homogeneous). The quantities
p/(|c1|n) and q/(|c1|n) are dimensionless.

q, p parameter space. For the negative quadratic Zeeman
term, the ferromagnetic states are the ground states, where
one of them is favorable depending on the sign of the linear
Zeeman term. In the positive half, if the quadratic Zeeman
term is greater than the absolute value of the linear term
(i.e., q � |p|) then the PM state becomes the ground state as
long as p2 � q2 − 2|c1|nq is satisfied, followed by the polar
state in the remaining part of the q, p parameter space. For
the homogeneous condensate, the PM-polar phase transition
occurs at p2 = q2 − 2|c1|nq.

For an isotropic 3D confinement of trapping frequency ω,
we scale the number density and the interaction parameters as

c0 = 4π

3
l3
oscλ0h̄ω, c1 = 4π

3
l3
oscλ1h̄ω, (38)

um = 4π

3
l3
oscnm, r = loscζ , (39)

where, l2
osc = h̄/(mω) is the oscillator length scale for this ge-

ometry. For this choice of scaling, the phase equations would
assume a similar structure as in Eqs. (13) and (14) with the
Laplacian term to be replaced with − 1

2
1
ζ 2

d
dζ

(ζ 2 d
dζ

), the radial
part (of the Laplacian) in the spherical polar coordinate (see
Appendix B for details).

We first implement the VM for a condensate under a
3D isotropic harmonic confinement of trapping frequency
ω = 2π × 100 Hz. For 87Rb, the oscillator length scale cor-
responding to this choice of trapping frequency is losc =
1.07 µm and the corresponding interaction parameters de-
fined in Eqs. (38) and (39) are λ0 = 1.484 × 10−2 and λ1 =
−5.249 × 10−5.

The VM estimates total energy of the polar state (see
Appendix B) and the PM state for different p′ and q′, a
comparison of which would reveal the phase boundary for
the trapped condensate. For a homogeneous condensate, if
we look at the energy difference between these two states for
p = 0 [Fig. 8(a)], one can see that the energy of the PM state is
lower than the polar state for small positive values of q. As the
strength of the quadratic Zeeman term is increased, the energy
difference reduces, and at the transition point qhom

t = 2|c1|n,
it vanishes.

The number density of the m = ±1 projection for the ho-
mogeneous case (Eq. 96 in Ref. [62]),

n±1|hom = (q ± p)2

4q2

(
−p2 + q2 + 2c1nq

2c1nq

)
n, (40)

decreases with increasing q at a constant p. For p = 0, this
vanishes at q = qhom

0 = 2|c1|n, which is the same q value as
that of the transition, i.e., qhom

t = qhom
0 . Hence, beyond the

phase boundary (also for p 
= 0), the PM state is nonexistent.
An equivalent of the qhom

0 for the trapped case can be
estimated from the TF-approximated peak density, i.e., the
number density at the center of the harmonic trap of the u±1

component. Note that the TF approximation is quite accurate
near the center of the trap. We can also find the same from the
VM, which would produce the same estimation as it is built
with reference to the TF solution at the core. For simplicity,
if we follow the TF profile, we can notice that the increment
in q′ would lower the peak density of the u± component as
λ1 < 0. The value of q′ for which the peak density of the u±1
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FIG. 8. (a) For condensates with the ferromagnetic type of spin-spin interaction (c1 < 0), the energy difference of the PM and the polar
states, scaled with the constant number density, is plotted against the variation of q at p = 0 for condensates in the absence of any trapping.
The energy difference after scaling with |c1|n2 and q/(|c1|n), shown in the axes, is dimensionless. At q ≈ 0, the energy corresponding to
the PM state is lower than that of the polar state, making the PM state favorable to become the ground state. As q increases, the energy
difference reduces, and at the transition point (qhom

t = 2|c1|n at p = 0), the PM state energy becomes equal to that of the polar state. At this
point, the subcomponent density n±1 vanishes. Hence beyond this point, the PM state does not exist. (b) The VM estimated energy difference
(dimensionless) between the PM and polar state under the 3D harmonic trapping for 5000 condensate particles with varying q′ at p′ = 0 (both
are dimensionless). The total energy of the PM state is lower than that of the polar state for small values of the quadratic Zeeman term. The
energy difference in the trapped situation indicates that the phase transition happens at q′  0.0027, which is much lower than q′  0.0377,
beyond which the PM state ceases to exist.

vanishes (at p′ = 0) is qtr
0 (tr in the superscript is shorthand

for “trapped”), which is equivalent to qhom
0 of the homoge-

neous counterpart in the sense that, for the homogeneous case
and TF as well, the PM state cannot exist beyond these values
of q and q′, respectively.

The VM estimated energy difference between the PM and
the polar states [Fig. 8(b)] for N = 5000 indicates that the
phase transition happens at qtr

t = 0.0027, which is an order
of magnitude lower than qtr

0  0.0377. This means, unlike
the homogeneous case where the PM state is favored as the
ground state in its entire region of existence (for q > 0 and
below qhom

0 ), the trapped situation is different and there exists
a range of q′ values (qtr

t < q′ < qtr
0 ) for which the PM state,

although present, is not selected as the ground state. This
crucial result, i.e., qtr

t < qtr
0 , that we analytically obtained via

VM is also verified numerically in Appendix C.
As is evident from Fig. 7, for the homogeneous condensate,

the constant number density is used in the scaling of p and q.
As a result, the whole phase diagram is universal with respect
to number density variation for any homogeneous spin-1 con-
densate with the ferromagnetic type of spin-spin interaction.
In contrast, in the presence of confining potential, the number
density varies over space and even the peak density (number
density at the center of the trap) is different for different
stationary states. In this case not the number density but the
number of condensate particles is of importance.

For a choice of p′, the VM is employed to estimate the q′
value for which the energy difference of the PM and the polar
states vanishes. Following the same procedure for different
choices of p′, one can get the phase boundaries [Fig. 9(a)] in
the q′, p′ parameter space for a range of condensate particles.
Note that these phase transition boundaries are similar and

asymptotically approach the |p′| = q′ line for large values of
q′. At the same value of the linear Zeeman term p′, with an
increase in the number of particles, the phase transition hap-
pens at a higher value of q′. For example, at p′ = 0, the phase
transition happens at qtr

t = 0.0027 for 5000 particles, which
gets shifted to qtr

t = 0.005 for N = 10 000 (qtr
0 = 0.0498)

and to a higher value of qtr
t = 0.0083 for 20 000 particles

(qtr
0 = 0.0658).
A natural query, therefore, would be whether there exists

a scaling factor for a trapped condensate which brings these
phase boundaries for different numbers of condensate parti-
cles [Fig. 9(a)] to the same plot. The asymptote of unit slope
indicates, if we scale the p′ and q′ with qtr

t (N ), which is the q′
value at p′ = 0, where the transition happens for a particular
N , then all these phase boundaries merge [Fig. 9(b)] and ap-
proximately follow (q′/qtr

t )2 − (p′/qtr
t )2 = 1, the equation of

a hyperbola, similar to the homogeneous condensate.
To determine the dependence of the scaling factor qtr

t on
the number of condensate particles, we additionally estimated
qtr

t for N = 7000, 15 000, 30 000, 40 000, and 50 000 par-
ticles. Assuming a power-law dependence, from the log qtr

t
vs log N plot, we find that the scaling factor depends on the
number of particles roughly as qtr

t ∼ N3/4 [Fig. 10(a)].
Note that, in the absence of trapping, the PM-polar phase

transition happens at a quadratic Zeeman term, qhom
t = 2|c1|n

at p = 0. In that case, the number density is a constant.
If we map the TF-approximated trapped condensate to the
homogeneous counterpart by replacing the constant density
with the TF-approximated average density, one can get to an
estimation of the qTF

t .
The total number present in the condensate can be ob-

tained by integrating the number density, which in the TF
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FIG. 9. (a) PM-polar phase transition boundary in q′, p′ parameter space under harmonic confinement for 5000, 10 000, and 20 000
condensate particles (in the red circle, blue triangle, and brown square markers). All the phase boundaries asymptotically follow the |p′| = q′

line for large values of p′ and q′, similar to the homogeneous condensate, while if we increase the number of particles, the range of q′ at p′ = 0
for which the PM state becomes the ground state increases. (b) The phase boundaries are plotted by scaling the quadratic and linear Zeeman
terms with qtr

t , where qtr
t is the quadratic Zeeman strength for which the PM-polar transition happens at p′ = 0 for a particular N . In these

scaled coordinates, all the phase boundaries approximately follow the equation (q′/qtr
t )2 − (p′/qtr

t )2 = 1, the equation of a hyperbola, similar
to the homogeneous condensates. All the quantities shown in this figure are dimensionless.

approximation ∫ R

0
4πζ 2[μ′

TF − 1

2
ζ 2]dζ ∼ N, (41)

gives a relation between the TF radius R and the number of
particles, N . As μ′

TF = R2/2, the TF radius varies with N as
R ∼ N1/5, which leads to the volume V ∼ R3 ∼ N3/5. So, the
average density in the TF approximation depends on N as,
navg = N/V ∼ N2/5.

If we replace the constant density with the TF-
approximated average density, one can estimate qTF

t ∼ N2/5,
which is in contrast to the more accurate estimation obtained
from the multimodal VM. On the other hand, the parameter qtr

0
depends on the number as qtr

0 ∼ N2/5. As a result, the ratio of

these two parameters varies as qtr
t /qtr

0 ∼ N7/20 ∼ N0.35, which
is verified from the slope of the log10(qtr

t /qtr
0 ) vs log10 N plot

in Fig. 10(b).
For a condensate under 3D harmonic confinement, the

VM estimates that qtr
t < qtr

0 , which the numerical results also
agree with (see Appendix C). In the particle number regime
that we have considered, the ratio (qtr

t /qtr
0 ) is small but it

increases when we increase the particle number [see inset in
Fig. 10(b)]. This ratio gives an idea about the range of q′ where
although the PM state exists, it does not exist as a ground state
(qtr

t < q′ < qtr
0 ).

Now it can be physically understood why there is a
significant shift in the phase boundary for a trapped sit-
uation compared to the homogeneous counterpart. For a
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t = m log10N + c
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slope (m) = 0.7516
intercept (c) = -5.3211
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FIG. 10. (a) The scaling qtr
t to vary with the number of particles as a power function qtr

t ∝ Nm. Using a linear fit, the slope of log qtr
t vs

log N , which corresponds to the power m, is obtained, i.e., m ≈ 0.75. This shows that the scaling factor qtr
t varies approximately as qtr

t ∝ N3/4

for 3D isotropic harmonic trapping. (b) The ratio qtr
t /qtr

0 depends on N as a power law, qtr
t /qtr

0 ∼ N0.35 ∼ N7/20. As, qtr
t ∼ N3/4, qtr

0 depends
on N as qtr

0 ∼ N2/5. Inset: The ratio qtr
t /qtr

0 increases with an increase in N .
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homogeneous condensate, the energy (or the energy density)
of the PM and polar states are compared by keeping the same
constant density for these two states. However, in a trapped
situation, the density varies over space. Even the average
total density or the peak density is different for these two
states. While the spin-spin interaction term (λ1) appears in
the subcomponent as well as the total density distribution for
the PM state, the polar state density profile does not depend
on λ1. If we increase |λ1| (keeping p′ and q′ unchanged), the
peak density of the PM state gets increased [as λ1 < 0 and
it comes in the density expression roughly as uPM ∼ 1/(λ0 +
λ1)], while the polar state remains unaffected. For the trapped
situation, one has to do the comparison for a fixed number of
condensate particles, which is realistic as well. The mismatch
in the density profile would contribute to a different potential
energy, kinetic energy, and even a different spin-independent
interaction energy (∼λ0

∫
dζ ζ 2u2

tot ) for the PM state and the
polar state. On the other hand, there would be a significant
contribution of the tail part of the condensate in the kinetic
energy, the potential energy caused by external trapping, and
the interaction energy which is completely neglected in the TF
approximation.

The strength of q′, which causes the energy balance at the
phase boundary, has to be estimated keeping all the energy
contributions coming from the full condensate profile of both
the states. This is exactly what the VM does, which results
in an accurate total energy comparison of these two states to
locate the phase boundary that cannot be trivially calculated
by extrapolating the homogeneous results.

V. DISCUSSION

We have presented, in this paper, an accurate analytical
description of the multicomponent ground states of a harmon-
ically trapped spin-1 condensate. Even in the so-called TF
regime, where the overall density of the condensate is high
enough to supposedly neglect the kinetic energy contribution,
the TF approximation can go wrong when applied to multi-
component states. On the other hand, the SMA can, as well,
be significantly inaccurate in handling such multicomponent
situations. This requires a general multimodal treatment tak-
ing into consideration the kinetic energy term, which the VM
provides. The VM correctly captures multicomponent ground
states because it can accurately estimate trapped density pro-
files even in the low-density regions. These tail parts of low
densities are where the kinetic energy contribution is more
significant than the interaction energy.

Moreover, the VM can be easily implemented for 3D har-
monic trapping, where doing numerical simulation is well
known to be computationally expensive. Utilizing this ad-
vantage, we further explored the phase boundary between
the phase-matched and the polar state under isotropic har-
monic trapping. We have presented a detailed analysis of
the shift of the phase boundary in the trapped case, which
numerical results also support. Despite the significant shift,
these boundaries bear clear qualitative correspondence with
the homogeneous case. The scaling of these phase boundaries
with the particle number of trapped condensates is found out.
This scaling deviates significantly from that estimated from a

TF-approximated trapped case equivalent to the homogeneous
case.

The data sets generated and analyzed during the current
study are available from the corresponding author at a reason-
able request.
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APPENDIX A: VARIATIONAL METHOD

To work with the nonzero contribution of p and q, we
extend the variational method introduced in Ref. [56]. First,
we will present the general method in a brief manner and then
we will implement that for the PM state and the AFM state,
which are the multicomponent states of interest to this article.

To implement the variational method, in the presence of
quasi-one-dimensional harmonic trapping, one needs to solve
the GP equations [Eqs. (13) and (14)] by getting rid of the
kinetic energy terms which will yield the subcomponent den-
sities in the high-density region near the center of the trap,
where the kinetic energy can be neglected in comparison to
the interaction terms. The subcomponent densities will get a
functional form specific to different stationary states. Next,
we assume that, near the low-density region where the kinetic
energy is of relevance and the interaction terms are very small,
the mean fields can be described in terms of the first few low-
est harmonic oscillator states. Thus the density distributions
can be written as

uin
±1,0 = g±1,0(μ′, ζ ) for |ζ | � ζ mat

±1,0, (A1)

uout
±1,0 = (a±1,0 + c±1,0|ζ | + d±1,0ζ

2) exp

(
− ζ 2

b±1,0

)

for |ζ | � ζ mat
±1,0,

(A2)

where uin(out)
±1,0 are the subcomponent densities in the high-

density (low-density) region. Now we impose the condition
that for each subcomponent the low-density

√
uout

±1,0 and the
high-density

√
uin

±1,0 expressions match at a point ζ mat. Not
only do they match but their first three derivatives also match.
These four constraints provide the four unknowns a, b, c, and
d for each subcomponent in terms of the matching points and
the parameter μ′. Note that imposing the matching condition
up to three derivatives also gives a smooth profile of the
corresponding kinetic energy.

Once all the coefficients in Eq. (A2) are known, the sub-
component density profile only depends on the parameter μ′
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and the matching points. The parameter μ′ can be obtained as
a function of the matching points from

1∑
m=−1

[∫ ζ mat
m

0
uin

m (μ′, ζ )dζ +
∫ ∞

ζ mat
m

uout
m

(
μ′, ζ , ζ mat

m

)
dζ

]
= N,

(A3)

where N is the total number of condensate particles. Note
that one might expect that the right side should be N/2 as the
integration is running in only one direction from the center of
the trap, but it is N in the right side due to Eqs. (11) and (12),
which we used to write the GP equation in nondimensional
form. From Eq. (A3) the parameter μ′ can be written as a
function of the matching points for a particular N .

Thus the subcomponent number densities and hence the
total energy of a stationary state [Eq. (10)] also become the
function of the matching points only. From the minimization
of the total energy in the parameter space of the matching
points, one can determine the matching points as well as the
total energy.

1. Variational method for the PM state

For the PM state, all the subcomponents are populated
followed by the phase-matching condition, i.e., the relative
phase being θr = 0. One can solve the phase stationary equa-
tions [Eqs. (13) and (14)] by ignoring the kinetic part to get the
functional form of the subcomponent densities g±1,0(μ′, ζ ) in
the high-density region as

uin
m = km

[
μ′

m − ζ 2/2

λ0 + λ1

]
, (A4)

where

k1 = (p′ + q′)2

4q′2 , k0 = q′2 − p′2

2q′2 , k−1 = (p′ − q′)2

4q′2 ,

(A5)
and

μ′
±1 = μ′

eff + (λ0 + λ1)
q′2 − p′2

2λ1q′ ,

μ′
0 = μ′

eff − (λ0 + λ1)
q′2 + p′2

2λ1q′ ,

μ′
eff = μ′ + p′2 − q′2

2q′ .

(A6)

Applying the four matching conditions mentioned earlier, the
unknown coefficients in the low-density expression for each
subcomponent can be obtained as

am = 1

−8μ′
m + 4ζ 2

m

(
μ′

m

(−56μ′
m + 70ζ 2

m + 4κm
)

− 3ζ 2
m

(
14ζ 2

m + κm − 6μ′
m

))
exp

(
12ζ 2

m

κm

)
, (A7)

bm = κm

12
, (A8)

cm = 48ζ 3
m

(−12μ′
m + 6ζ 2

m + κm
)

κ2
m

exp

(
12ζ 2

m

κm

)
, (A9)

dm = 1

2ζ 2
m

(− 2μ′
m + ζ 2

m

)
(

− ζ 2
m

(
κm + 13ζ 2

m − 6μ′
m

)

− 12(μ′
m)2 + μ′

m

(
14ζ 2

m + κm
))

exp

(
12ζ 2

m

κm

)
,

(A10)

where ζm is an abbreviation for the matching point ζ mat
m and

κm = 6μ′
m − 9ζ 2

m +
√

36(μ′
m)2 − 12μ′

mζ 2
m + 33ζ 4

m, (A11)

given the subcomponent densities in the low-density region
are represented as

uout
m = km

λ0 + λ1
(am + cm|ζ | + dmζ 2) exp

(
− ζ 2

bm

)
.

(A12)

Now applying Eq. (A3) one can find the parameter μ′ [see the
μ′

eff expression in Eq. (A6)] for different values of ζm. Note
that, as μ′

1 = μ′
−1 [see Eq. (A6)], the matching points are the

same for these two components, i.e., ζ mat
1 = ζ mat

−1 . The total
energy [Eq. (10)] for the PM state becomes only a function of
the matching points.

From a physical perspective, the high-density expressions
of u0 and u±1 were found by getting rid of the kinetic terms in
Eqs. (13) and (14). So the high-density expressions given in
Eq. (A4) are true as long as all the subcomponents are in the
high-density region. If we focus on the case presented in the
article, for p′ = 0.01 and q′ = 0.3, near the TF radius the u±1

subcomponent does not follow the high-density expressions.
As a result, one can neglect the derivative term in Eq. (13) but
cannot neglect the same in Eq. (14). This precisely makes the
multicomponent stationary states beyond the reach of the TF
approximation as long as the subcomponents do not follow the
same spatial distribution.

Precisely for the reason stated above, one has to shift
the focus toward the total density. So, instead of using the
high-density expression uin

0 we will use the total density
expression,

uin
tot = ktot

[
μ′

eff − ζ 2/2

λ0 + λ1

]
, (A13)

written in the same fashion as Eq. (A4), where ktot = 1.
Now instead of the m = 0 component, the same expressions
[Eqs. (A7)–(A10)] would also provide the total density
expression in the low-density region [uout

tot in Eq. (A12)]. The
u0 component can be found by subtracting the other two
component densities from the total density.

Thus, the total energy of the PM state only becomes a func-
tion of the two matching points, ζ mat

tot and ζ mat
±1 . Minimizing

the total energy with respect to these two parameter variations
one can get the matching points and the total energy itself.
And as the matching points are found, the analytical density
expressions are also obtained.

Note that the spin-spin interaction strength (λ1) is re-
sponsible for the subcomponent density distribution. For
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FIG. 11. Number density profile of the PM state in quasi-
one-dimensional harmonic confinement with p′ = 0, q′ = 10, λ0 =
17.66 × 10−2, and λ1 = −0.2 × 17.66 × 10−2. The subcomponent
densities u0, u1, and u−1 obtained from the variational method (lines)
and numerical simulation (markers) are in agreement even if the
spin-dependent and spin-independent interaction coefficients are of
comparable strengths. The total density profiles (numerical in black
squares and VM profile in black dashed lines) are also in agreement.

87Rb, the ratio of the spin-interaction coefficient with the
spin-independent interaction strength is very small (|λ1|/λ0 ∼
1/300). The accuracy of the variational method does not
depend on this ratio being small; rather it works perfectly
even when spin-spin and spin-independent interactions are of
comparable strength (Fig. 11).

2. Variational method for the AFM state

When the u1 and the u−1 components are populated
(even though they are unequally populated for nonzero val-
ues of p′; see Table I) the stationary state is referred to as
the antiferromagnetic or, in short, AFM state. When both
the subcomponents are in the high-density regions, one can
write the densities by neglecting the derivative terms in the
phase equations as

uin
±1 = k±1

[
μ′

±1 − ζ 2/2

λ0

]
, (A14)

where k±1 = 1/2 and

μ′
±1 = μ′ − q′ ± λ0

λ1
p′. (A15)

The subcomponent density u0 is zero throughout.
Note that the high-energy expressions are valid as long as

the subcomponent density is high enough so that the derivative
terms can be safely ignored. But for p′ = 0.2 and q′ = −0.5
(the case we discussed), the u−1 component has a lesser TF
radius than the other component. As a result of it near the
TF radius of the u−1 component, the high-density expression
of the u1 component would be invalid, for the reasons stated

earlier. So, we will take the total density and the u−1 compo-
nent to implement the variational method.

In the high-density region, the total density can be
written as

uin
tot = ktot

[
μ′

tot − ζ 2/2

λ0

]
, (A16)

where ktot = 1. Now one can write the low-density expres-
sions as

uout
m = km

λ0
(am + cm|ζ | + dmζ 2) exp

(
− ζ 2

bm

)
, (A17)

where uout
−1, and uout

tot represents the m = −1 subcomponent
and the total density in the low-density region of the trap.
The coefficients will have the same expressions as Eqs. (A7)–
(A11). Following the same method as explained earlier one
can minimize the total energy corresponding to this stationary
state in the parameter space of the matching points ζ mat

tot and
ζ mat
−1 which provides the analytical form of the full profile

of the condensate in terms of the total density and the u−1

component. By subtracting the u−1 component from the total
density profile one can get to the u1 component.

APPENDIX B: VARIATIONAL METHOD IN 3D ISOTROPIC
HARMONIC CONFINEMENT

If we consider a condensate trapped inside an isotropic
3D harmonic confinement with trapping frequency ω, one
can write the GP equation in a nondimensional form using
Eqs. (38) and (39),{

−1

2

1

ζ 2

d

dζ
(ζ 2 d

dζ
) + 1

2
ζ 2 + λ0u − μ′

+ λ1
(
u1 + u−1 + 2

√
u−1u1 cos θr

)}√
u0 = 0, (B1){

−1

2

1

ζ 2

d

dζ
(ζ 2 d

dζ
) + 1

2
ζ 2 + λ0u − μ′ ± λ1(u1 − u−1)

∓ p′ + q′
}√

u±1 + λ1u0(
√

u±1 + √
u∓1 cos θr ) = 0,

(B2)

where, due to isotropy, we have only considered the radial part
of the Laplacian in the spherical polar coordinate.

Similar to the 1D situation one can estimate the high-
density expressions by neglecting the Laplacian term for a
stationary state, followed by the assumption in Eq. (A12) serv-
ing as the number density profile in the low-density region.
Here, ζ is the radial distance from the center of the trap. The
unknown parameters in Eq. (A12) for the PM state under 3D
harmonic confinement assume the same expressions given in
Eqs. (A7)–(A10).

The only difference with the 1D situation is in the form
of the relation that is used to estimate the parameter μ′.
Integrating the subcomponent densities would provide the
total number of condensate particles, which in the nondi-
mensional form can be written as [following the scaling in
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FIG. 12. Numerical profiles for u0 (shown in green circles), u1 (red triangles) and u−1 (blue inverted triangles) at λ0 = 1.484 × 10−2 and
λ1 = −0.2 × 1.484 × 10−2. Starting with the same initial condition at p′ = 0, (a) the PM state becomes the ground state at q′ = 0.6 and (b) the
polar state is selected as the ground state at q′ = 2.6. These numerical results verify the VM estimation that the PM-polar phase boundary is at
qtr

t < qtr
0 (as qtr

0 ≈ 3.28). All the quantities shown in this figure are dimensionless.

Eqs. (38) and (39)]

1∑
m=−1

[∫ ζ mat
m

0
uin

m (μ′, ζ )ζ 2dζ

+
∫ ∞

ζ mat
m

uout
m

(
μ′, ζ , ζ mat

m

)
ζ 2dζ

]
= N

3
. (B3)

From this equation, one can estimate μ′ for the matching
points ζ mat

m for a condensate with N particles. And following
the procedure of minimization of the total energy, the match-
ing points are obtained.

For the polar state, the implementation of the variational
method is straightforward. Only the u0 component is popu-
lated for the polar state; hence Eq. (B1) becomes trivial. The
number density expression in the high-density region for this
state can be obtained by neglecting the Laplacian term in
Eq. (B2):

uin
0 |polar = μ′ − 1

2ζ 2

λ0
. (B4)

The number density in the low-density region would follow,

uout
0 |polar = 1

λ0
(a0 + c0ζ + d0ζ

2) exp

(
−ζ 2

b0

)
, (B5)

where the coefficients a0, b0, c0, and d0 follow the same
expressions as Eqs. (A7)–(A10).

For the polar state, only one component being present
makes the variational method even easier to implement. Fol-
lowing the same method discussed earlier, one has to estimate
the matching point ζ mat

0 by minimizing the total energy in the
one-dimensional parameter space of ζ mat

0 . Note that the total
energy of the polar state does not depend on the linear and
quadratic Zeeman terms.

APPENDIX C: NUMERICAL RESULTS IN 3D ISOTROPIC
HARMONIC CONFINEMENT

In Sec. IV, using the variational method we estimated the
phase boundary for an isotropic 3D harmonic trapping. At

p= 0, it is shown that the phase transition happens at q′ = qtr
t ,

whereas the PM state ceases to exist at qtr
0 , with qtr

t < qtr
0 .

We used the imaginary time propagation method (split-step
Fourier method [71]) as a numerical scheme to get to the
ground state. In this scheme, in the presence of competing
ground-state candidates with very closely separated energy,
it takes a very large number of steps to converge to a solution.
In close proximity of the phase boundary, this problem would
arise, and exactly at the phase boundary one of the degenerate
states would be favored depending on the initial condition
after an extremely long time evolution. On top of that, the
numerical value of the spin-spin interaction term (λ1) that
we considered is very small. As λ1 causes the spin-exchange
interaction [71], starting with an arbitrary initial condition it
takes a very long time to converge to the ground state even
when the simulation is done avoiding the proximity of the
phase boundary.

To get rid of this limitation, we did the numerical sim-
ulation, for the same λ0 = 17.66 × 10−2 but increasing the
strength of λ1 to λ1 = −0.2 × λ0, which resulted in much
faster convergence to the ground state. For this value of λ1

at N = 10 000, the VM suggests that the phase transition at
p′ = 0 happens at qtr

t ≈ 1.6, while qtr
0 ≈ 3.28 (for q′ > qtr

0 ,
the PM state does not exist). So, in the region qtr

t < q′ < qtr
0 ,

according to the VM, the PM state, although it exists, is not
favored as the ground state.

Avoiding the close proximity of the VM estimated
phase boundary (for the previously mentioned reason), we
did numerical simulation at q′ = 0.6 (< qtr

t ), and q′ = 2.6
(> qtr

t ) starting with the same initial condition of uini
0 =

600 exp(−0.18 ζ 2), uini
±1 = 10 exp(−0.18 ζ 2). The numerical

results shown in Fig. 12(a) verify that the PM state is the
ground state (at q′ < qtr

t ).
On the other hand, at q′ = 2.6 (which is in the region

qtr
t < q′ < qtr

0 ), the polar state emerges as the ground state
[Fig. 12(b)]. This numerical result verifies the VM estimation
of the phase transition to happen at qtr

t < qtr
0 . Note that, at

q′ = 2.6, although the PM state exists with the peak density
of u±1(ζ = 0) ≈ 26, the numerical result clearly shows it is
not selected as the ground state.
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