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Two-dimensional supersolidity in a planar dipolar Bose gas
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We investigate the crystalline stationary states of a dipolar Bose-Einstein condensate in a planar trapping
geometry. Our focus is on the ground-state phase diagram in the thermodynamic limit, where triangular, honey-
comb, and stripe phases occur. We quantify the superfluid fraction by calculating the nonclassical translational
inertia, which allows us to identify favorable parameter regimes for observing supersolid ground states. We
develop two simplified theories to approximately describe the ground states and consider the relationship to
roton softening in the uniform ground state. This also allows us to extend the phase diagram to the low density
regime. While the triangular and honeycomb states have an isotropic superfluid response tensor, the stripe state
exhibits anisotropic superfluidity.
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I. INTRODUCTION

Experiments with dipolar Bose-Einstein condensates
(BECs) have produced supersolid states [1–3] which ex-
hibit superfluidity and crystalline order. Most experimental
work has used elongated (cigar-shaped) potentials where
one-dimensional (1D) modulation of the spatial density oc-
curs. However, recent work has seen the production of a
two-dimensional (2D) supersolid state [4]. By varying the
geometry of the harmonic trap, experiments have been able
to explore a structural phase transition between a long 1D and
2D supersolid.

The supersolid transition in these systems arises from
an interplay between the short-ranged contact interactions,
long-ranged dipole-dipole interactions (DDIs), and quantum
fluctuations [5]. For the 1D case, the phase diagram and
nature of the transition has been explored in a number of
works [6–10]. In such a system the transition is found to
be continuous over a broad intermediate range of densi-
ties, and coincides with the softening of a roton excitation
in the uniform BEC state (cf. Ref. [11]). The continu-
ous transition makes it feasible to dynamically produce the
supersolid state starting from the BEC by ramping the s-
wave scattering length across the transition using a Feshbach
resonance.

Two-dimensional supersolids will offer a number of
interesting new features, such as different crystal struc-
tures [12,13], a richer excitation spectrum with three gapless
excitation branches [14], and the possibility for the supersolid
to host vortices [15]. In Ref. [13], Zhang et al. produced
a phase diagram for a dipolar Bose gas in a planar sys-
tem in the thermodynamic limit. This work showed that a
triangular supersolid state occurs in the low density regime
and a honeycomb supersolid occurs at higher densities. The
transition from the uniform superfluid to these states is dis-
continuous except at an intermediate density where the states
coexist at a critical point. These results already distinguished
the dipolar case from earlier work on a 2D system with

soft-core interactions, where a phase diagram emerges
with only uniform superfluid and triangular supersolid
ground states and a discontinuous transition between these
states [16–21]. A number of groups have studied the
phase diagram in the finite system with a three-dimensional
pancake-shaped harmonic trap [4,22–26] and found phase
diagrams (see Refs. [23,24,26]) with ground states exhibit-
ing triangular, stripe (or labyrinth), and honeycomb patterns.
Triangular droplet array ground states should be accessi-
ble to current experiments with magnetic atoms, with the
other phases requiring larger atom numbers or stronger DDIs.
These other phases may be easier to explore with molecular
gases [26]. The Feshbach ramps used to prepare 1D dipolar
supersolids will generally not work as well for the 2D case due
to the (generally) discontinuous superfluid-supersolid tran-
sition, in which a metastable excited state is produced by
the nucleation of small incoherent droplets [27–31]. Directly
cooling into the supersolid state has been proposed as an
alternative method to avoid this issue [32].

In this paper we consider the stationary states of a dipolar
Bose gas in a uniform planar potential (see Fig. 1). This sys-
tem is the thermodynamic limit of the pancake-shaped traps
and was originally considered in Ref. [13]. Notably, we locate
a region where a stripe phase is the ground state. This was
not found in the earlier work and provides a connection to the
stripe or labyrinth states found in trapped studies. Our main
results are based on theory using a variational Gaussian treat-
ment of the axially confined direction. The planar direction is
treated numerically with the unit cell geometry constrained to
select states with triangular (including honeycomb) or stripe
geometry. We also develop analytic approximations suitable
for describing the stripe state and a triangular droplet crystal.
We introduce a rigorous method to calculate the superfluidity
of these states by analyzing their nonclassical translational
inertia. The resulting superfluid fraction is a rank-2 tensor,
which is isotropic for the triangular and honeycomb states but
anisotropic for the stripe case.
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FIG. 1. Schematic figure of the planar dipolar Bose gas with the
atoms harmonically confined along z (parallel to the dipole polariza-
tion direction) and free to move in the xy plane.

II. THEORY

A. System

We consider a magnetic dipolar condensate free in the ra-
dial plane and harmonically confined with a trap frequency ωz

in the z direction, described by the single-particle Hamiltonian

Hsp = − h̄2∇2

2m
+ 1

2
mω2

z z2. (1)

The atoms have an interaction of the form

U (r) = gsδ(r) + 3gdd

4πr3
(1 − 3 cos2 θ ), (2)

where the short-ranged interaction is governed by the coupling
constant gs = 4πash̄

2/m with as being the s-wave scattering
length, and the DDI by gdd = μ0μ

2
m/3 with μm being the mag-

netic moment. We take the magnetic dipoles to be polarized
along z by an external bias field, and θ is the angle between r
and the z axis.

The mean-field energy functional describing the system is

E =
∫

dx �∗
[

Hsp + 1

2
�(x) + 2

5
γQF|�|3

]
�, (3)

where

�(x) =
∫

dx′ U (x − x′)|�(x′)|2. (4)

Here we also account for the effects of quantum fluctuations
in the term with coefficient [33–38]

γQF = 128
√

π h̄2a5/2
s

3m

[
1 + 3

2

(
add

as

)2
]
. (5)

B. Unit cell treatment

Our interest is in minimizing the energy per particle for a
system with fixed areal density n. We find that such solutions
are either uniform or have a periodic modulated (crystalline)
density in the plane. In particular, we consider modulated
states both on a triangular unit cell, allowing for a 2D crystal
structure, and on a linear unit cell, allowing for a 1D stripe
crystal.

We take the field to be of the general form

�(x) = √
nψ (ρ)χσ (z), (6)

where we employ a variational Gaussian treatment of the axial
field

χσ (z) = 1

π1/4σ 1/2
e−z2/2σ 2

, (7)

with variational width σ . The planar field ψ (ρ), with ρ =
(x, y), is treated in various ways subject to the nature of the
unit cell, as discussed below. The energy per particle is given
by E = Ez + E⊥, with axial component Ez = h̄ωz(a2

z /4σ 2 +
σ 2/4a2

z ) where az = √
h̄/mωz, and planar component

E⊥ =
∫

uc

dρ

A
ψ∗

[
− h̄2∇2

ρ

2m
+ 1

2
�σ (ρ) + 2

5
gQFn3/2|ψ |3

]
ψ.

(8)

This expression for E is obtained by integrating out the axial
degrees of freedom from Eq. (3), and we introduce gQF =
γ5γQF, γ5 = √

2/5/(
√

πσ )3/2,

�σ (ρ) = nF−1
ρ {Ũσ (kρ )Fρ{|ψ (ρ)|2}}, (9)

where Fρ is the 2D Fourier transform and

Ũσ (kρ ) = {gs + gdd[2 − 3G0(σkρ/
√

2)]}γ4, (10)

with G0(q) = √
πqeq2

erfc(q) and γ4 = 1/
√

2πσ . In Eq. (8)
we carry out the integration over a unit cell, with A being the
unit cell area. Stationary solutions of Eq. (8) satisfy the time-
independent extended Gross-Pitaevskii equation (eGPE)

μψ = LGPψ, (11)

where μ is the chemical potential and we have introduced the
eGPE operator

LGP = − h̄2∇2
ρ

2m
+ �σ (ρ) + gQFn3/2|ψ |3. (12)

1. Uniform state

The uniform state has ψ (ρ) = 1. In this case the unit cell
is arbitrary and the planar energy reduces to

E⊥ = 1
2 (gs + 2gdd )γ4n + 2

5 gQFn3/2. (13)

Its properties are thus determined by minimizing E for fixed n
against the single parameter σ .

2. Triangular unit cell

Here we take ψ (ρ) periodic on a unit cell defined by the
two direct lattice vectors a1 and a2, with |a1| = |a2| ≡ a,
angle π/3 between a1 and a2, unit cell area A = |a1 × a2| =√

3a2/2. The planar field has the normalization condition∫
ucdρ |ψ |2 = A, where the integration is taken over the unit

cell. We note that the triangular unit cell can support both
triangular and honeycomb states (see Sec. III).

The planar energy per particle is evaluated numerically
from Eq. (8), and stationary states are determined by finding
local minima of E for fixed n, with respect to ψ , σ , and a.

3. Stripe state

The striped state is uniform in one direction, which we take
to be y, and we thus set ψ (ρ) → ψ (x), i.e., being periodic on
a 1D unit cell in the x direction with length L, uc = {− 1

2 L �
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x < 1
2 L}. The normalization is

∫
ucdx |ψ (x)|2 = L. The planar

energy per particle is

E⊥ =
∫

uc

dx

L
ψ∗

[
− h̄2

2m

d2

dx2
+ 1

2
�σ (x) + 2

5
gQF|ψ |3n3/2

]
ψ,

(14)

with �σ (x) = nF−1
x {Ũσ (kx )Fx{|ψ (x)|2}}, where Fx is the 1D

Fourier transform. As for the triangular case, we determine
stationary states by locating minima of E for fixed n, with
respect to ψ , σ , and L.

C. Numerical method

In our numerics we represent the planar field in terms of
plane waves associated with the reciprocal lattice vectors of
the unit cell. This allows us to evaluate the kinetic energy and
Fourier transforms (for the interaction terms) with spectral
accuracy. We mainly use a gradient flow method (e.g., see
Refs. [10,39,40]) to determine ψ and minimize the energy
per particle. During the flow we also optimize σ and the unit
cell size. For cases where the convergence is slow we employ
a Newton-Krylov method between applications of gradient
flow. We observe that states on the triangular unit cell exhibit
six-fold mirror symmetry (such that a single dodecant of the
Wigner-Seitz unit cell sufficiently characterizes the state), and
enforce this symmetry to follow metastable states.

D. Superfluid tensor

Due to the spontaneous breaking of translational in-
variance, the modulated ground state can have a reduced
superfluid fraction, even at zero temperature (e.g., see
Refs. [41,42]). We can quantify the superfluidity through the
nonclassical translational inertia, i.e., the momentum response
of the system to moving walls. For walls moving sufficiently
slowly at velocity v = (vx, vy), the normal fluid will move
with the walls while the superfluid will remain at rest. The
superfluid fraction is related to the reduction in translational
inertia from the classical value M = Nm, where N is the
number of atoms in the sample. We can define the superfluid
fraction tensor as

fs,i j = δi j − lim
v→0

1

M

∂Pi

∂v j
, i, j ∈ {x, y}, (15)

where v = |v| and P = −i(nh̄/2)
∫

dρ (ψ∗∇ρψ − ψ∇ρψ
∗)

is the planar momentum (cf. Refs. [6,43]). Within our formal-
ism we can calculate the equilibrium state in a moving frame
by finding stationary states of the eGPE

μvψv = LGPψv + ih̄v · ∇ρψv. (16)

For small velocities we obtain the first order perturbative re-
sult ψv = ψ0eiφ1 , where ψ0 is the ground state in the absence
of motion and φ1 is determined by

h̄

m
∇ρ · (|ψ0|2∇ρφ1) = v · ∇ρ |ψ0|2. (17)

Here the functions ψ0 and φ1 are periodic on the unit cell
and (with the freedom of a global phase choice) we take
φ1 to have an average value of zero in the unit cell. This
linear system can be solved for the phase correction [44,45]

FIG. 2. Ground-state phase diagrams depicting (a) the contrast
C and (b) the superfluid fraction fs. Discontinuities reveal three
different ground-state unit cell geometries, which we denote trian-
gular, stripe, and honeycomb (example states marked × are shown in
Fig. 3). Above the black melting line, the uniform unmodulated state
has the lowest energy (note that in this phase, C = 0 and fs = 1).
The roton boundary (red line) meets the uniform state only at the
critical point (red circle). Results for 164Dy using add = 130.8a0, with
ωz/2π = 72.4 Hz.

and the superfluid tensor determined from Eq. (15) using
P = nh̄

∫
dρ |ψ0|2∇ρφ1. In practice, because the functions

appearing in this expression for P are all periodic, we can
evaluate this result on a single unit cell. This allows us to
employ the same spectral method we use to obtain ψ to
calculate φ1 by solving the linear system Eq. (17).

III. RESULTS

A. Phase diagram

A phase diagram showing the ground-state phase as a
function of density and s-wave scattering length for a fixed
trap frequency ωz is shown in Fig. 2(a). The shading color
indicates the density contrast to characterize the density mod-
ulation of the ground-states in the xy plane. This is defined as

C = max |ψ |2 − min |ψ |2
max |ψ |2 + min |ψ |2 , (18)
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FIG. 3. Selected modulated ground states as indicated on the
phase diagrams in Fig. 2 with ×. Isosurfaces at 50% (red)
and 25% (blue) of the peak density. Parameters for the ground
states are (a) (na2

dd, as/add ) ≈ (0.0959, 0.750), (b) (0.144,0.765),
(c) (0.192,0.780), (d) (0.0844,0.780), (e) (0.0985,0.782), and (f)
(0.123,0.785).

so that a uniform state would yield a contrast of C = 0, a state
for which the planar density n|ψ |2 somewhere goes to zero
yields C = 1 and a crystalline state has C > 0. Using the dif-
ferent unit cell treatments we assess which of the uniform or
various geometry modulated states have the lowest energy. At
high scattering length the ground state is a uniform (unmod-
ulated) BEC, but as the scattering length decreases, a melting
line is crossed and the system transitions to one of three modu-
lated states, examples of which are shown in Fig. 3. In addition
to the stripe state [Fig. 3(b)], the ground state in the triangular
cell can be a triangular array of (droplet-like) density maxima
[Fig. 3(a)] or a honeycomb configuration [Fig. 3(c)]. The
honeycomb state is often similar to an inversion of the density
of the triangular state. The work of Ref. [13] found triangular
and honeycomb phases for the system we consider here.

B. Superfluidity

In Fig. 2(b) we present results for the superfluid fraction
across the phase diagram. The superfluid fraction is unity in
the uniform phase and remains high in the modulated phases
sufficiently close to the melting line. In the triangular and
honeycomb phases, the superfluid fraction tensor is isotropic,
such that fs,i j = fsδi j (e.g., see Refs. [45,46]). In the stripe
phase, the superfluid fraction can be calculated analytically:
from Eq. (17) we obtain

h̄

m
φ′

1(x) = vx

(
1 − cs

|ψ0(x)|2
)

, (19)

where the integration constant cs = L[
∫

ucdx/|ψ0(x)|2]−1 is
determined by the periodicity requirement for φ1.1 Evaluating

1Note that this constant has a form analogous to those of the Leggett
bounds, shown as Eqs. (A5) and (A7) of Ref. [42], which are exact

Eq. (15) with this result, we obtain that the superfluid fraction
tensor is diagonal with

fs,xx = cs, fs,yy = 1. (20)

For nonzero contrast, cs < 1 and the superfluid tensor is
anisotropic, reflecting a difference in the tendency of the sys-
tem to resist motion parallel and perpendicular to the stripes.

For the results in Fig. 2(b) we use the smallest superfluid
fraction for the stripe state (i.e., taking fs = fs,xx). We observe
that generally the superfluid fractions of the triangular and
honeycomb phases are higher relative to fs,xx for the stripe
phase. It is interesting to contrast these results against the
2D soft-core system: there, the triangular state is the only
modulated phase, with stripe and honeycomb states always
being metastable excited states [21].2 This serves to empha-
size the richness of the planar dipolar system. Additionally,
the metastable stripe state in the soft-core system tends to have
a higher superfluid fraction (along the modulated direction)
than the triangular state for the same parameters [45].

C. Critical point

In the phase diagram we find that the different ground
states are separated by first-order phase transitions, with a
continuous critical point where all four phases meet. Our
physical parameters for this phase diagram are the same as
those used in Ref. [13] and we find the critical point at
(ncrita2

dd, as,crit/add ) ≈ (0.0978, 0.784). This is slightly lower
in density and scattering length than the value of (0.110,0.793)
found in Ref. [13], and is likely due to our variational treat-
ment of the axial direction. In Sec. IV A we also consider
a Thomas-Fermi approximation for the axial direction and
identify the critical point within that approximation.

In Fig. 4(a) we present results for the contrast and su-
perfluid density along the melting line [i.e., along the black
line in Figs. 2(a) and 2(b)] over a density region containing
the critical point. Approaching the critical point the contrast
vanishes and the superfluid fraction approaches unity, such
that the transition to the uniform state is continuous at this
point.

D. Roton softening

The quasiparticle excitations of a ground state described
by the eGPE can be obtained by solving the Bogoliubov–de
Gennes equations (e.g., see Refs. [47]). For the uniform BEC
state the excitations are plane waves and with a dispersion
relation

ε(kρ ) =
√

h̄2k2
ρ

2m
�(kρ ), (21)

where

�(kρ ) = h̄2k2
ρ

2m
+ 2nŨσ (kρ ) + 3gQFn3/2. (22)

measures of the superfluidity in one dimension or when the wave
function is separable [11,42].

2A finite moving frame velocity can favor a stripe ground state [19].
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FIG. 4. (a) Contrast and superfluidity of the modulated states
along the melting line. (b) Dispersion relation for the uniform
condensate at the critical density, na2

dd = 0.0978. Local minima rep-
resent roton excitations, the energy of which vanish as as → as,rot =
0.784add. Other parameters for the calculations as specified in Fig. 2.

This is an extension of the results of Ref. [48] to include quan-
tum fluctuations (cf. Ref. [7]). The dipole-dominant regime
occurs when as < add, and in this regime the uniform conden-
sate state can exhibit a roton-like excitation which manifests
as a local minimum in the excitation spectrum at a finite
nonzero wave vector, as shown in Fig. 4(b). By decreasing as

further, the roton softens to zero energy and we can identify a
critical value as,rot (n) with a corresponding roton wavelength
λrot (n) of the soft excitation. Note that for as < as,rot (n) the
uniform state is dynamically unstable. The roton instability
line is indicated on the phase diagram in Fig. 2, and we ob-
serve that the roton line generally lies below the melting line,
with the two lines touching at the critical point. The results in
Fig. 4(b) are at the critical density, and confirm that the roton
softening coincides with the critical point. This scenario is
similar to the continuous transition in 1D supersolids [6,7,11],
although in that case the continuous transition holds for a
range of densities.

E. Solution properties

Here we consider some general properties of the ground
and metastable states across the phase diagram.

FIG. 5. Properties of the various constrained geometry solutions
for a system at the critical density, na2

dd = 0.0978. (a) The energy per
particle relative to the uniform BEC state. (b) The unit cell length
scale L, showing that these converge to the roton wavelength at the
critical point. (c) The variational Gaussian width parameter. Other
parameters for the calculations as specified in Fig. 2.

The results in Fig. 5 are at the critical density. The energy
per particle [Fig. 5(a)] reveals the transition in ground state
from triangular to stripe at as/add ≈ 0.770 (cf. Fig. 2). As
as increases further, the energy of the stripe, triangular, and
honeycomb states converge to the uniform state energy at the
critical point. In Fig. 5(b) we consider the unit cell size L,
which was introduced earlier for the stripe state. We define
the unit cell length for the triangular and honeycomb states
to be3 L = √

3a/2. Approaching the critical point from be-
low, we see that L converges to the roton wavelength at the
critical point for all three modulated states. Note that, while
the triangular and honeycomb states both have a triangular
unit cell, in general the honeycomb solution has a larger cell
size. The axial size σ of the states is shown in Fig. 5(c). We
observe that this is larger for the modulated states than the
uniform state. This occurs because the modulated states are
more susceptible to magnetostriction, where the DDIs cause
the system to expand along the direction of the dipoles.

In Fig. 6 we consider the behavior of the solutions at densi-
ties below and above the critical density, where the transition

3The same scaling factor can be justified for the 2D soft-core
system in Ref. [21].
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FIG. 6. Contrast, unit cell size, and superfluid fraction (a)–(c) be-
low and (d)–(f) above the critical density. The insets in (b) show that
the honeycomb state forms separated droplets at high contrast (top)
and interconnected droplets with smaller cell size at lower contrast
(bottom).

at the melting line is first order. For the lower density case
[Figs. 6(a), 6(b) and 6(c)] the triangular state is the ground
state up to the melting point. The stripe and honeycomb states
are metastable, but both of these states continuously transi-
tion to the uniform state with contrast C → 0 and superfluid
fraction fs → 1. This transition occurs as as → as,rot and with
unit cell size L converging to the roton wavelength.

For the higher density case [Figs. 6(d), 6(e) and 6(f)] the
honeycomb state is the ground state up to the melting point.
Here, the stripe and triangular states are metastable, and both
continuously transition to the uniform state as as → as,rot, and
their unit cell sizes approach λrot. For the range of densities
considered in the phase diagram of Fig. 2 we find that the be-
havior discussed above is general: the metastable modulated
states continuously transition at the roton instability with a
unit cell length of λrot. Related behavior is also observed in
the supersolid transition in a 2D soft-core system [21]. For
this system the triangular state is always the modulated ground
state, but the stripe, honeycomb, and square metastable states
have a continuous transition at the roton instability point, with
a unit cell size of λrot.

In Figs. 6(a), 6(b) and 6(c) we observe that the honeycomb
solution changes character at as ≈ 0.76add. As as increases
through this value, the contrast and unit cell size rapidly drop

and the superfluid fraction saturates to unity. The insets to
Figs. 6(b) show the honeycomb density profile either side
of this transition. For as < 0.76add the honeycomb state is
composed of relatively isolated high-density droplets and the
repulsion between these favors a larger unit cell size. For as >

0.76add the state instead is composed of connected hexagonal
rings of moderate density (with little variation around the
ring), which is conducive of the system exhibiting a high
superfluid fraction.

IV. ALTERNATIVE THEORIES AND EXTENDING
THE PHASE DIAGRAM TO LOW DENSITY

The previous results in the paper were calculated with the
Gaussian variational ansatz for the axial wave function and
a full numerical description of the planar wave function. This
enables us to explore the phase diagram near the critical point.
In this section we first examine how changing the treatment of
the axial wave function to the Thomas-Fermi approximation
affects the phase diagram. We then develop two analytical
treatments for describing the planar field, which provide de-
scriptions of the stripe phase and the low density droplet array.
These theories help predict the phase diagram over a broader
density regime.

A. Thomas-Fermi treatment of χ(z)

For the Thomas-Fermi ansatz for the axial wave function,
we set the axial field to

|χZ (z)|2 = 3 max

[
1 − z2/Z2

4Z
, 0

]
, (23)

with variational width Z . This approach modifies the varia-
tional Gaussian treatment of the ground state (Sec. II B) and
excitation dispersion relation (Sec. III D) by the following
changes in parameters: Ez = (Z/az )2/10, γ4 = 3/5Z , γ5 =
45

√
3π/512Z3/2, and G0 is replaced by Eq. (36) of Ref. [48].

In Fig. 7 we show the roton softening computed using both
the Gaussian and Thomas-Fermi axial treatments. These lines
are in reasonably good agreement, but give a picture of the
sensitivity of our results to the axial treatment. To put these
results into perspective we can also consider the quasi-2D
approximation in which we assume the axial mode is the
harmonic oscillator ground state (i.e., σ = az). The quasi-2D
roton line lies far below the other results, emphasizing that
interaction effects in the confined direction are important in a
quantitative description of this system.

We also compare the effect on the critical point, determined
from analysis of the modulated states [see Fig. 7, inset]. In
the Thomas-Fermi treatment this is at (ncrita2

dd, as,crit/add ) ≈
(0.0996, 0.790), which is in slightly better agreement with the
value in Ref. [13] computed without a variational approxima-
tion in the axial direction [see Sec. III A].

B. CM ansatz and stripe phase properties

It is feasible to produce analytical treatments of the planar
field ψ (ρ) for low contrast states, which can be expanded in
plane waves using a few of the smallest reciprocal lattice wave
vectors (e.g., see Ref. [12]). Here we consider such an ap-
proach for the simplest case of the stripe phase by introducing
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FIG. 7. Roton boundaries (i.e., as = as,rot) across a wide range of
densities for different z profiles, also showing the boundary at which
the energy of the uniform state exceeds the droplet ansatz (DA), with
circles identifying the critical points. The inset shows a magnified
view in the vicinity of the Gaussian and Thomas-Fermi (TF) critical
points. Vertical dotted lines show the cases considered in Fig. 8.

the cosine-modulated (CM) ansatz

ψCM(x) = cos θ +
√

2 sin θ cos(2πx/L), (24)

as in Refs. [7,12]. Here θ is a parameter which controls the
amount of modulation,4 with the state being uniform for θ =
0. The planar energy per particle is

E⊥ = h2 sin2 θ

2mL2
+ 2

5
gQFn3/2�(θ ) + 1

2
γ4n[gs + 2gdd]c(θ )

+ 3

2
γ4ngdd

[
sin2 2θG0(qx ) + 1

2
sin4 θG0(2qx )

]
,

(25)

where qx = √
2πσ/L, c(θ ) = (27 − 4 cos 2θ − 7 cos 4θ )/16,

and �(θ ) = (90 cos θ − 55 cos 3θ − 3 cos 5θ )/32. The varia-

4Note the restriction of θ to the range θ ∈ [0, ϕ] for ϕ ≡
cot−1

√
2 ≈ 0.616, such that |ψCM|2 only exhibits one maximum per

unit cell.

FIG. 8. Energy per particle approaching the melting line for
(a) na2

dd = 7.04 × 10−3 comparing to DA (CM melts at as/add =
0.498) and (b) na2

dd = 7.04 × 10−2 comparing CM and stripe (DA
melts at as/add = 0.620).

tional solutions can be determined by numerically minimizing
the full energy function ECM(σ, L, θ ) = Ez + E⊥. The CM
ansatz provides a reasonable description of the stripe state
at low-to-moderate values of modulation [see Fig. 8(b)]. For
higher modulations (e.g., C � 0.5) plane waves of higher-
order reciprocal vectors become important and the CM ansatz
begins to differ from the numerical calculated stripe state (also
see Refs. [7,9]).

The CM ansatz also gives us some insight on the continu-
ous transition into the stripe phase. Near the transition point θ

is small and to leading order in θ the stationary condition is

dECM

dθ
= 2θ�(2π/L), (26)

where � was introduced in Eq. (22). The stationary points
from this result are either the trivial uniform case θ = 0, or the
modulated case with θ �= 0 and L determined by �(2π/L) =
0. The Bogoliubov spectrum for the excitations for the uni-
form condensate θ = 0 is given by Eq. (21), and so the
condition �(2π/L) = 0 means an excitation of wavelength
L has zero energy and hence we identify this as λrot.

At sufficiently low (na2
dd � 0.012) and high (na2

dd � 0.32)
densities we find that the transition from the stripe state to
the uniform state becomes discontinuous. However, in these
regimes the CM theory predicts a continuous transition that
coincides with the roton softening line. This indicates that
the discontinuous transition arises from higher harmonics of
the spatial wave vector 2π/L that are included in the stripe
solution.

C. Droplet ansatz

Another useful approach can be developed for the modu-
lated state based on a localized Gaussian (droplet) function
in each unit cell. We refer to this as the droplet ansatz,
which is generally applicable to the low density regime5 (cf.
Refs. [7,11,22]). Here we set

ψDA(ρ) =
√

A

πa2
ρ

e−ρ2/2a2
ρ , (27)

where the variational Gaussian width aρ should be much
smaller than a for consistency (cf. Ref. [49]). The planar
energy per particle is then

E⊥ = h̄2

2ma2
ρ

+ γ4c2

4

[
gs−gdd f

(aρ

σ

)]
+ 3sngdd

8π
√

A
+ 4gQFc3

25
,

(28)

with c =
√

nA/πa2
ρ , f as defined in Ref. [50], and

s =
(√

3

2

)3/2 ∞∑
n1,n2=−∞

(
n2

1 + n1n2 + n2
2

)−3/2
, (29)

= 31/4

√
2

ζ

(
3

2
, 0

)[
ζ

(
3

2
,

1

3

)
− ζ

(
3

2
,

2

3

)]
≈ 8.89, (30)

where ζ (3/2, a) is the Hurwitz zeta function.

5This can also apply to higher densities for sufficiently low values
of as/add such that small dense (well-separated) droplets form.
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The results in Fig. 8(a) compare the droplet ansatz to the
general numerical solution for a low density case. In this
regime it is energetically favorable for the atoms to form
well-separated droplets, and the droplet ansatz provides a
better description of the numerical solution relative to the CM
ansatz. The melting point of the droplet ansatz occurs when
the droplet energy exceeds the uniform background state and
the droplet is metastable.

D. Extending the melting line to the low density regime

In Fig. 7 we show the characteristics of the phase diagram
over a much broader density range. We apply our main nu-
merical method to extend the melting line. However, these
calculations become computationally demanding at low den-
sities, and we turn to the CM and droplet ansatz treatments
presented in this section to understand that basic behavior.

At moderate densities in the vicinity of the critical point,
the roton softening line provides a reasonable estimate of the
melting line (and corresponds to the CM melting line). This
can be determined by solving � = 0 from Eq. (22). As noted
in Fig. 2, the roton line is generally slightly below the melting
line, except at the critical point.

As the density decreases the roton line drops rather rapidly
and for na2

dd � 2 × 10−2 the droplet ansatz melting line is
higher. This indicates that at low densities the droplet states
are more stable than CM states at high as values, and thus
provide a better estimate for the melting line. In this regime
the modulated state is formed of relatively isolated (well-
separated) droplets and the melting occurs as the droplets
individually unbind. As the density decreases this unbinding
levels off towards the value of a single droplet in the planar po-
tential. Our full numerical result for the melting line extends
to a minimum density of na2

dd = 7.04 × 10−3 and is seen to
cross over from being well described by the roton line for the
moderate and high density region, to approaching the droplet
ansatz melting line at low densities.

V. CONCLUSION

In this work we investigated various density modulated
stationary states of the planar dipolar Bose gas in the ther-
modynamic limit and obtained a ground-state phase diagram.
The critical point of the phase diagram occurs at an interme-
diate density where the uniform superfluid and the triangular,
stripe, and honeycomb supersolid states all meet. Our main
results use a variational Gaussian treatment that reduces the
computational complexity, and we made comparisons to a
Thomas-Fermi treatment and find good agreement. Compar-
ison to the full 3D result in Ref. [13] shows both ansatzes
to be qualitatively correct. We analyze the behavior of the
metastable modulated states, finding that for moderate den-
sities these tend to transition continuously to the uniform state
with a unit cell size set by the roton wavelength at the tran-
sition point. In contrast, the ground modulated state generally
has a discontinuous transition to the uniform state except at
the critical point.

A feature of our work is that we directly compute the
superfluid fraction tensor of the 2D crystalline states. Our
results show that the superfluidity is isotropic for the tri-
angular and honeycomb phases. Interestingly, for the linear
phase the superfluidity is anisotropic, with reduced superfluid
fraction along the direction of modulation and full superflu-
idity in the perpendicular direction. We note that anisotropic
superfluidity has been previously explored in dipolar BECs,
but using a tilted dipole moment to impose anisotropic in-
teractions [51,52] (also see Refs. [53–56]). More recently,
experiments used an optical lattice to impose a stripe pat-
tern on nondipolar BECs, and subsequently measure the
anisotropic superfluidity [57,58]. The stripe phase in the pla-
nar dipolar system is unique in that it spontaneously breaks
the isotrop, and occurs as a ground state in the phase diagram.
However, this state might be easily deformable, leading it to
form labyrinth patterns, which could restore isotropic super-
fluidity.

The roton line we compute indicates the point of dynamic
instability for the uniform BEC state and gives an estimate
of the potential hysteresis that could occur in ramps across
the transition, i.e., as as is reduced below the melting line,
the uniform BEC state becomes metastable, but only becomes
dynamically unstable when it crosses the roton line. The-
oretical and experimental studies of such scattering length
ramps in pancake shaped traps have revealed complicated
dynamics, often causing the system to end up in an excited
droplet configuration rather than evolving to the ground state
(e.g., see Refs. [28–31,37,59]). Also, our results show that in
many cases (particularly close to the critical point), the energy
differences between the various ground states is quite small
[e.g., see Fig. 5(a)], which could lead to long equilibration
times without dissipation or cooling [32].

The cosine-modulated and droplet ansatzes provide sim-
pler theories for estimating ground-state properties over a
wide parameter regime. Notably, the droplet ansatz allows us
to predict the melting line at low densities, where the system
will exist as a high contrast (low superfluid fraction) triangular
crystal up to the melting line. The system we examined here
has been for 164Dy atoms with a fixed axial harmonic confine-
ment strength, allowing our results to be directly compared
to those of Ref. [13]. The effect of changing confinement has
been considered in Ref. [23].

There remain many topics for further investigation in this
system, such as the dynamical stability of the ground states,
which could be characterized by the excitation spectrum.
Also, the possibility for phases to coexist near the first order
transition boundaries.

Note added. In the late stages of preparation, Ref. [60]
appeared which also shows a striped phase and discusses
alternative approximations for the weakly modulated planar
field. After submission, Ref. [61] appeared which discusses
other metastable states in this system.
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