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Optimizing beam-splitter pulses for atom interferometry: A geometric approach
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We present a methodology for the design of optimal Raman beam-splitter pulses suitable for cold atom inertial
sensors. The methodology, based on time-dependent perturbation theory, links optimal control and the sensitivity
function formalism in the Bloch sphere picture, thus providing a geometric interpretation of the optimization
problem. Optimized pulse waveforms are found to be more resilient than conventional beam-splitter pulses and
ensure a near-flat superposition phase for a range of detunings approaching the Rabi frequency. As a practical
application, we simulated the performance of an optimized Mach-Zehnder interferometer in terms of scale-factor
error and bias induced by interpulse laser intensity variations. Our findings reveal enhancements compared to
conventional interferometers operating with constant-power beam-splitter pulses.
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I. INTRODUCTION

Since the first pioneering experiments of Kasevich and
Chu, light-pulse atom interferometry has been used to mea-
sure inertial effects [1]. The key advantage of this technology
is its high long-term stability [2–6], making it an attractive
prospect for high accuracy navigation, gravity, and gravity
gradient mapping [7–10].

Most applications of atom interferometry to inertial mea-
surement use a scheme of three laser pulses that drive
stimulated Raman transitions [11,12]. The first laser pulse acts
like an optical beam splitter, dividing the atomic wavepacket
into a coherent superposition of the atom’s hyperfine ground
states. The atomic states are inverted by a second pulse that
acts like the interferometer’s mirror, and, finally, recombined
by a third pulse to allow interference. The measurement per-
formance is highly dependent on the fidelity of the Raman
transition process: imperfect pulses cause errors that affect the
accuracy and precision of a cold-atom inertial sensor [13,14].
Imperfection in the mirror process largely affects the contrast
of the interferometric signal [15], while in the beam-splitting
and recombining processes they mainly result in the introduc-
tion of phase errors [13,16,17].

Composite Raman pulse [11,18–20] and optimal control
approaches [21–23] have previously been used to design
pulse sequences that are robust to interferometer imperfec-
tions that affect the pulse detuning and coupling strength.
Within this framework, we present a method to design opti-
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mized beam-splitter pulses that are characterized by a near-flat
superposition phase for a range of detunings approaching
the Rabi frequency. The method, based on time-dependent
perturbation theory, links the sensitivity function formalism
[24] and the Bloch sphere picture [25], providing a geometric
interpretation of the optimization problem.

The structure of the paper is as follows. We first introduce
the motivations behind our work, highlighting the features of
the adopted perturbative approach and the advantages that an
optimized beam splitter brings to a cold atom inertial sensor.
Then, we present the theoretical framework, starting with
time-dependent perturbation theory, and derive the cost func-
tion of the optimization problem, along with its connection
to the sensitivity function formalism. In the second part, we
present the results of our method: an optimized beam-splitter
pulse is obtained in which the laser intensity is modulated
and the Raman phase is constrained to values of 0 and π

radians. We compare the performance of optimized and con-
ventional beam splitters both individually and when included
in a Mach-Zehnder interferometer. Finally, we conduct a sta-
bility and symmetry analysis of the optimized beam splitter
by representing off-resonant Bloch vector trajectories, aiming
to understand the mechanism that leads to the achievement of
a near-flat superposition phase across a range of detunings.

II. MOTIVATIONS

The choice of an optimization method based on time-
dependent perturbation theory relies on the minimization of
errors introduced by off-resonance conditions. The cost func-
tion is obtained analytically as a function of the perturbation
expansion terms, thus not requiring averaging over a spe-
cific atomic ensemble like nonperturbative methods such as
GRAPE [26] and Krotov-based methods [27]. Rather than
trying to reach a target state for a range of specific detunings,
we obtain waveforms that minimize the errors introduced by
off-resonance conditions, adopting an approach similar to the
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one taken in the design of early composite pulses [28–30].
Minimization of the errors avoids the presence of “wobbles”
in the pulse fidelity about the resonance condition that are
characteristic of the ensemble-based optimization methods
[21,31].

Interferometers operating with conventional constant-
power pulses typically require atoms to experience the same
laser intensity during the beam-splitting and recombining pro-
cesses to ensure phase-error compensation. Interpulse Rabi
frequency fluctuations break the symmetry of the Mach-
Zehnder interferometer. As a consequence (i) there is a
residual sensitivity in the case that atoms are prepared with
an asymmetric or nonzero mean velocity distribution [6,17],
(ii) the inertial scale-factor drifts [32], and (iii) intensity vari-
ations affect the bias stability of the interferometer via the
one-photon and two-photon light shifts [13,16]. In contrast,
optimized beam-splitter pulses feature a near-flat dependence
of the superposition phase upon intensity, which automati-
cally improves the resilience of the interferometric phase to
interpulse laser intensity fluctuations, relaxing the need for
Mach-Zehnder laser intensity symmetry. This also facilitates
phase-error compensation by minimizing the phase error ac-
cumulated at the end of the beam-splitting and recombining
processes, ensuring that variations in the interferometric phase
due to off-resonant conditions remain small.

III. BACKGROUND THEORY

A. Time-dependent perturbation theory

Under the rotating wave and adiabatic elimination ap-
proximations, the dynamics of the atomic wave function
undergoing a stimulated Raman transition can be described
by an effective two-level system [33] and the time evolution
of the internal states |g〉 and |e〉 can be found solving the
associated Liouville–von Neumann equation

ih̄
dρ

dt
= [H, ρ], (1)

with ρ the density matrix defined as

ρ =
[
ρgg ρge

ρeg ρee

]
, (2)

and H the two-level Hamiltonian [26]

H = h̄

2

[
δ �0 e−iφL

�0 eiφL −δ

]
. (3)

Here δ, �0, and φL are, respectively, the two-photon detuning,
the effective Rabi frequency, and the effective Raman phase.

By imposing that the Raman phase can only assume values
φL = 0, π , and thus can be given by the sign of the Rabi
frequency, and using the following transformation:

⎛
⎝bx

by

bz

⎞
⎠ =

⎛
⎝ 2 �(ρge)

2 �(ρge)
ρgg − ρee

⎞
⎠, (4)

the Liouville–von Neumann equation can be reduced to the
well-known Bloch equation

d

dt

⎛
⎝bx

by

bz

⎞
⎠ =

⎡
⎣0 −δ 0

δ 0 �0

0 −�0 0

⎤
⎦

⎛
⎝bx

by

bz

⎞
⎠. (5)

Here, bx, by, and bz are the components of the Bloch vector
in the basis defined by the Pauli matrices. For a given atom,
the magnitude of the Bloch vector is one for every value of
δ and �0; hence the trajectory of the Bloch vector on the
unit sphere (Bloch sphere) describes the time evolution of the
internal states of a two-level system.

Equation (5) can be solved analytically in the case of con-
stant δ and �0. Approximate solutions for the time-varying
case can be obtained using time-dependent perturbation the-
ory in the form of Magnus expansion [34] or Dyson series
[35]. In this work we focus on the Dyson series because of
its connection with the sensitivity function formalism and the
geometrical insight it offers into the Bloch sphere picture.

Using the Dyson series, an approximate solution of Eq. (5)
can be found to be

b(t ) = U0(t, t0) b(t0)

+ · · · U0(t, t0)
∫ t

t0

dt ′V(t ′, t0) b(t0)

+ · · · U0(t, t0)
∫ t

t0

∫ t ′

t0

dt ′dt ′′V(t ′, t0)V(t ′′, t0) b(t0)

+ · · · , (6)

where

V(t, t0) = U0
†(t, t0)Mδ(t )U0(t, t0), (7a)

Mδ(t ) =
⎡
⎣ 0 −δ(t ) 0

δ(t ) 0 0
0 0 0

⎤
⎦, (7b)

and U0(t, t0) is the unperturbed propagator, i.e., the state trans-
fer matrix that describes the evolution of the two-level system
from time t0 to time t in the case of zero detuning

U0(t, t0) =
⎡
⎣1 0 0

0 cos θ (t ) sin θ (t )
0 − sin θ (t ) cos θ (t )

⎤
⎦, (8)

where θ (t ) = ∫ t
t0

�0(t ′)dt ′ is the total angle rotated by the
Bloch vector about the x axis, or, equivalently, the pulse area.

B. Link with the sensitivity function formalism

The phase sensitivity function describes the response of
the interferometer to a Dirac delta-function input in detuning
(equivalent to a step change in atom-laser phase) in the limit
of small perturbations [24]. Hence, a natural connection arises
between time-dependent perturbation theory and the sensitiv-
ity function. Considering as the initial condition a basis state
b(t0) = (0 0 1)T , the first-order solution of Eq. (5) is given by⎛

⎝bx(t )
by(t )
bz(t )

⎞
⎠ =

⎛
⎝ 0

sin θ (t )
cos θ (t )

⎞
⎠ +

⎛
⎝

∫ t
t0

g(1)
x (t ′)δ(t ′)dt ′

0
0

⎞
⎠, (9)
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FIG. 1. Bloch sphere representation of two-level quantum sys-
tem dynamics. The North and South poles of the sphere coincide,
respectively, with the basis states |g〉 and |e〉. The blue trajectory
represents the unperturbed error-free evolution of an atom subject
to a beam-splitter pulse. Laser intensity and detuning errors cause
the atomic trajectory to deviate from the unperturbed solution as
represented by the red curve.

where g(1)
x (t ′) = − sin(

∫ t ′

t0
�0(t ′′)dt ′′). The first and second

terms in the right-hand side of Eq. (9) represent, respectively,
the unperturbed solution and the first order correction.

The link with the phase sensitivity function appears if
we express the first-order solution in spherical coordinates.
In particular, considering a Mach-Zehnder interferometer
working on the side of the central fringe [sin θ (t f ) = 1 and
cos θ (t f ) = 0, where t f is the final time instant of the last
beam-splitter pulse], we have(

δ�(t f )
δα(t f )

)
=

(
tan−1

[∫ t f

t0
g(1)

x (t )δ(t )dt
]

0

)
. (10)

Here, δ�(t f ) and δα(t f ) represent the first-order deviations
of the Bloch vector from the ideal path due to a time-varying
detuning. The deviations are expressed, respectively, in terms
of longitude and latitude errors, where the longitude error
represents the angular deviation of the Bloch vector trajec-
tory with respect to the y-z plane. Similarly, latitude error is
the deviation of the Bloch vector from the equatorial plane.
Longitude and latitude are considered positive as in Fig. 1.

In the limit of first-order approximation, a time-varying
detuning produces a longitude error, but no latitude error. The
longitude component of the Bloch vector represents the phase
imprinted by the laser on the atomic wave function during the
pulse sequence, or in other words, the interferometric phase.
Hence, g(1)

x (t ) describes the response of the interferometer to a
time-varying detuning and coincides with the phase sensitivity
function for a time-varying Rabi frequency [36].

Equation (10) is valid both for a Mach-Zehnder interfer-
ometer working on the side of the central fringe and for an
individual beam splitter given the Rabi frequency as function
of time and the sequence duration t f . Hence, the quantity δ�

may represent, to first order, both the phase error impressed

on the atomic wave function at the end of the single beam-
splitter pulse and the phase of the interferometer overall. For
conventional constant-power pulses and constant detuning,
the interferometric phase induced by a single atom can be
computed using Eq. (10)

δ� ≈ δ

�3
− δ

�1
, (11)

where �i is the Rabi frequency at the ith pulse, and we
assumed δ/�i � 1. Equation (11) can be interpreted as fol-
lows: the atomic wave function accumulates phases of −δ/�1

and δ/�3 during the beam-splitter and recombiner pulses,
respectively. Therefore, asymmetries in the laser power con-
figuration with respect to the mirror pulse result in a bias shift
in the case of constant detuning.

IV. METHODS

The beam-splitter divides the atomic wave function into a
coherent superposition of two states and can be represented
as a trajectory on the Bloch sphere. For instance, in the ideal
case of perfect timing and zero detuning, and starting from
the basis state b(t0) = (0 0 1)T , the Bloch vector will end
up at the point b(t ) = (0 1 0)T . Detuning causes a deviation
from this ideal trajectory. In Appendix A, we demonstrate that
odd-order corrections in the Dyson series give longitude error
contributions, while even-order corrections give latitude error
contributions.

The longitude and latitude errors correspond, respectively,
to phase and population amplitude errors that the atomic wave
function accumulates during the beam-splitting process. A
robust beam-splitting process should therefore minimize lon-
gitude and latitude errors for different values of detunings.

We optimize the beam splitter by solving the following
minimization problem:

min
�0(t )

⎡
⎣∑

k,i

w
(k)
i δb(k)

i (t f ) + P

⎤
⎦, ∀ δ = const., (12)

where the generic δb(k)
i is the ith component of the kth-order

Bloch vector correction computed at the final time instant of
the beam splitter as defined in the right-hand side of Eq. (6).
Each correction component is weighted by a dimension-
less coefficient w

(k)
i ; P is a waveform smoothness parameter

proportional to the second derivative of the Rabi frequency
control law [22]. The term in the square brackets in Eq. (12)
is the cost function of the minimization problem.

The output of the optimization problem is an optimal Rabi
frequency waveform �0(t ) = �0 u(t ) that minimizes the de-
viations of the Bloch vector from the ideal trajectory due to
constant detunings. Negative values of the Rabi frequency
correspond to a laser phase of π rad.

The Bloch vector corrections within the cost function are
represented by the integral terms in the Dyson series, which
do not depend on detuning when the latter is held constant.
As a result, the cost function is analytical and does not require
averaging over an atomic ensemble. Nevertheless, due to the
presence of high-order terms in the Dyson series, we compute
the gradient numerically.
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FIG. 2. Optimized beam-splitter waveform (blue) and pulse area
(red). The design Rabi frequency is �0 = 2π × 200 kHz. The length
of the pulse is set to be eight times that of an equivalent mirror pulse.

When implementing the optimization, attention should be
paid to the convergence of the Dyson series. Heuristically,
the series converges if the ratio |δb(k+1)

i (t )|/|δb(k)
i (t )| � 1 ∀ t .

Each correction term in the series expansion is proportional to
(δ/�0)k , and the convergence condition is met if the detuning
is smaller than the Rabi frequency. In general, the convergence
of the series is guaranteed if ‖Mδ(t ) t‖ � 1 [37]. Hence, even
if the detuning is of the same order as the Rabi frequency,
convergence can be achieved by splitting the integration in
Eq. (6) into many time intervals and choosing a sufficiently
small time step. We verified the that the convergence of the
Dyson series is monotonic in the norm using the d’Alembert
criterion. For δ/�0 = 1 and a time step of 
t = 100 ns, the
ratio between the norms of the seventh- and sixth-order Bloch
vector corrections is |δb(7)|/|δb(6)| = 0.014, confirming the
series’ convergence under our operating conditions.

V. RESULTS

A. Optimized beam-splitter pulse

We now present the results of our optimization and com-
pare its performance with a conventional rectangular pulse.

The optimization was performed by solving the problem
stated in Eq. (12), using the MATLAB routine FMINCON with an
active-set algorithm [38], subject to the following nonlinear
constraints: ∫ t f

t0

�0u(t ) dt � π

2
, (13a)

|u(t )| � 1. (13b)

The first of these ensures that the pulse acts as a beam split-
ter. The inequality sign relaxes the constraint allowing the
minimization algorithm to find a better solution. The second
condition is a constraint on the maximum Rabi frequency
value, reflecting practical limits upon the laser intensity. In
this context, the function u(t ) is the dimensionless Rabi fre-
quency waveform, while �0 is the design (or nominal) Rabi
frequency. We note that condition (13b) could be removed by

FIG. 3. Phase-error map for (a) a conventional beam-splitter
pulse and (b) the optimized beam-splitter pulse. In both cases the
nominal Rabi frequency is �0 = 2π × 200 kHz. The phase error
represents the longitude offset of the Bloch vector with respect to the
ideal zero-detuning case, computed at the end of the beam-splitter.

the constraints and included in the cost function by means of
a spill-out norm penalty [39].

Figure 2 shows the resulting optimized beam-splitter wave-
form pulse, obtained using a design Rabi frequency of 2π ×
200 kHz and a total pulse duration of 8 tπ , where tπ is the
duration of an equivalent conventional π pulse having the
same maximum Rabi frequency. We divide the pulse into
200 piecewise-constant segments in which the optimizer can
adjust the Rabi frequency waveform. This corresponds to a
time step 
t = 100 ns, which can be readily handled by the
laser modulation system [21,22,26]. Dyson series terms up to
the seventh order are considered in the cost function.

Figure 3 shows the effects of laser intensity and detuning
errors on the phase error δ� for a conventional rectangular
beam splitter and for the optimized pulse of Fig. 2. The
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FIG. 4. Time evolution of the distribution representing the atomic ensemble E . The value of the distribution at each time instant is
normalized with respect to the maximum value. Upper panel: Latitude-longitude distribution on the Bloch sphere at three different times
throughout our optimized pulse: t/tπ = 2, 4, and 8. The thick meridian is given by the intersection of the Bloch sphere with the y-z plane.
The magenta line represents the Bloch vector trajectory and for δ/�0 = 0.4 and �/�0 = 1. Lower panel: Time evolution of the longitude
distribution on the left and latitude distribution on the right. The magenta line represents, respectively, the longitude and latitude projection of
the aforementioned Bloch vector trajectory.

optimized beam-splitter pulse exhibits a phase error which is
minimized in a range of detunings of ±0.5�0 when � = �0.
In contrast, a conventional rectangular pulse exhibits a phase
error that varies almost linearly with the detuning [31]. It is
worth noting that, over the region shown, the range of detun-
ings for which a minimized phase error is realized increases
as the maximum value of the Rabi frequency decreases with
respect to the design one.

Figure 4 illustrates the simulated evolution of the atomic
ensemble E = {δ/�0 ∈ [−0.8, 0.8] and �/�0 ∈ [0.8, 1.2]}
of 40 000 particles. For the given ensemble, we integrate
numerically the Bloch equations and construct the time-
evolution of the latitude, longitude and latitude-longitude
histograms. We obtain the ensemble distributions normalizing
the histograms with respect its maximum value at each time-
step. The Bloch vector trajectory for δ/�0 = 0.4 and �/�0 =
1 is overlaid in Fig. 4 with snapshots of the latitude-longitude
ensemble distribution mapped on the Bloch sphere at times
t = 2, 4, and 8 tπ . The optimized Rabi frequency waveform
“squeezes” the ensemble distribution reducing phase disper-
sion. Figure 4 also shows the time evolution of the longitude
and latitude distribution, along with projections of the afore-
mentioned Bloch vector trajectory.

B. Interferometer performance

Atoms within the interferometer experience pulse-to-pulse
intensity variations, either because of laser fluctuations or mo-
tion through spatial variations, for instance, with a Gaussian
Raman beam profile with 1/e2 radius of 10 mm and a free-
evolution time T = 10 ms, a 1 g acceleration of the sensor

in the direction transverse to the laser axis will cause the
atomic cloud to move 2 mm from the beam center and see
a recombiner pulse intensity that is only ∼92% of that of the
beam splitter. As well as reducing the interferometer contrast,
Gillot et al. showed that such intensity variations break the
symmetry of the interferometer, rendering it sensitive to any
asymmetry in the velocity distribution or other systematic
detuning, and thus, affecting the bias instability when used
as an inertial sensor [17].

In this section, we analyze the performance of a three-pulse
Mach-Zehnder interferometer formed from our optimized
beam splitter, a conventional constant-power mirror pulse, and
a recombiner that is the power-inverted reverse of the beam
splitter [21]. We compare this “optimized” interferometer se-
quence with a “conventional” Mach-Zehnder interferometer
using constant-power π/2 and π pulses. We explore the ef-
fects of detuning and pulse-to-pulse intensity variations upon
the phase fidelity of the Mach-Zehnder interferometer and, as
an example, the case of an acceleration measurement.

Figure 5 shows the simulated contrast, phase error, and
their product for both the conventional and optimized Mach-
Zehnder interferometers as functions of the Rabi frequency
ratio �3/�1 and the Doppler detuning δ = −keffv, where keff

is the effective wave vector and v is the atomic velocity. We as-
sume that the maximum Rabi frequencies of the beam-splitter
(�1) and mirror (�2) pulses are equal to the design value,
i.e., �1 = �2 = �0 = 2π × 200 kHz, but consider different
values of the recombiner Rabi frequency (�3). For the opti-
mized pulse sequence, the range of detunings over which the
interferometric phase remains small (e.g., <10 mrad) depends
upon the ratio of the Rabi frequencies of the first and last
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FIG. 5. Upper panel: (a) Contrast map, (b) interferometric phase map, and (c) their product of the conventional interferometer. Lower
panel: (d) Contrast map, (e) interferometric phase map, and (f) their product of the optimized interferometer. For both the conventional and
optimized interferometer we assume �1 = �2 = �0 = 2π × 200 kHz.

pulses. However, outside the flattened area, represented in
Fig. 5 by the ±5 mrad contour lines, the phase error of the
optimized sequence grows more rapidly than the phase error
of the conventional one. This behavior stems from the pertur-
bative approach of our optimization method that minimizes
error terms only around the unperturbed solution. Unlike the
conventional interferometer, which exhibits a monotonically
decreasing contrast as |δ| increases, the contrast map of the
optimized interferometer displays a nontrivial behavior with a
nonmonotonic trend.

To include the contribution of the different velocity classes,
the contrast-weighted interferometric phase has to be aver-
aged over the atomic velocity distribution and normalized
with respect the average contrast as reported in [17]

〈δ�〉 =
∫ +∞
−∞ f (v)C(v)δ�(v) dv∫ +∞

−∞ f (v)C(v) dv
, (14)

where 〈δ�〉 is the overall interferometric phase and f (v) is
the velocity distribution of the atomic cloud entering the inter-
ferometer. Because of the odd parity of the contrast-weighted
interferometric phase with respect to the detuning, any asym-
metry or nonzero mean in the atomic velocity distribution
gives rise to a bias. While asymmetries are mainly due to the
velocity selection process [17,40,41], the nonzero mean can
be caused by counterpropagating laser intensity imbalance af-
fecting the release of the atomic cloud from the magnetooptic
trap [41], accelerations in the direction parallel to the Raman
beam, or misalignment of the Raman retroreflecting mirror
with respect to the atomic launch trajectory [42].

Figure 6 shows the simulated average contrast of the con-
ventional and optimized interferometers. In the simulation
we model the velocity distribution along the beam propa-
gation axis as a Gaussian having a standard deviation σv =√

kBT /m, where kB, T , and m are, respectively, the Boltz-

FIG. 6. Average contrast of the conventional (dashed line) and
optimized (continuous line) interferometers. The blue color indi-
cates the case �3/�1 = 1, while the magenta color indicates the
case �1/�3 = 0.8. In all cases we assume that �1 = �2 = �0 =
2π × 200 kHz.
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mann constant, the temperature of the atomic cloud, and the
mass of the atomic species (in our case 85Rb). Although
the contrast maps of the optimized and conventional inter-
ferometers differ, their average contrasts are nearly similar.
This similarity arises because, for the chosen design Rabi
frequency, the average contrast is primarily influenced by the
mirror pulse, which exhibits greater velocity selectivity [40].

1. Acceleration-induced bias

Temporal variations of the Raman laser intensity result
in an imbalance between the Rabi frequencies of the three
pulses. As a test case, we compute the bias induced by the
coupling between the Rabi frequency imbalance and the resid-
ual velocity sensitivity for a cold-atom accelerometer, where
the Rabi frequency variations are considered to stem from the
acceleration of the host vehicle in the direction orthogonal
to the effective wave vector. In the simulation we model the
velocity distribution along the beam propagation axis as a
Gaussian having a standard deviation σv , and mean velocity
vsel. We assume that the Rabi frequency imbalance is due to
the relative motion of the center of mass of the atomic cloud
with respect to the centroid of a Gaussian laser beam with 1/e2

radius w = 10 mm.
Figure 7 shows the bias map for the conventional and

optimized pulse sequence for various transverse accelera-
tions and Doppler frequencies δsel = −keffvsel. The maximum
Rabi frequency experienced by the center of mass of the
atomic cloud during the pulse sequence is modeled as � =
�0 exp [−2(1/2a⊥t2)2/w2], where a⊥ is the transverse ac-
celeration and t = 0 is the time instant at which the first
beam-splitter pulse occurs. In the simulation we consider
a free-evolution time T = 10 ms and a temperature T =
2.1 µK. In the case of the optimized sequence, a bias less than
0.25 μg is achieved for transverse acceleration a⊥ � 1.5 g
over a range |δsel| � 25 kHz. For a⊥ � 1.6 g, or equivalently
�3/�1 � 0.82, the conventional pulse sequence outperforms
the optimized one in agreement with Fig. 5.

2. Sensitivity to laser intensity drifts

An important characteristic of the presented optimization
method is the link with the sensitivity function formalism and
the robustness with respect to interpulse laser intensity varia-
tions. The optimized beam splitter is obtained as minimizing
the phase error accumulated by the atomic wave function. To
the first order, this phase error is proportional to the integral of
the phase sensitivity function g(1)

x (t ), as expressed by Eq. (10).
Moreover, the integral of the phase sensitivity function can be
linked to the intensity sensitivity function, i.e., the response of
the interferometer to an infinitesimal step intensity variation,
δI (t ) = δIθ (t ′ − t ), where θ (t ′ − t ) is the Heaviside function
via the following relation:

gI (t ) =
∫ +∞

t
g(1)

x (t ′)h(t ′) dt ′, (15)

where h(t ) is a modulation function that is one when the
Raman laser is on and null when the laser is off. Note that in
the definition of the intensity sensitivity function we implic-
itly included in the term gI (t ) any constant that depends on

FIG. 7. Bias of a cold-atom-based accelerometer due to the
coupling between Rabi frequency imbalance and residual velocity
sensitivity using (a) conventional and (b) optimized pulse sequence.
We assume free-evolution time T = 10 ms; atomic temperature
T = 2.1 µK; Gaussian beam waist w = 10 mm; �1 = �0 = 2π ×
200 kHz.

the considered mechanism that is affected by laser intensity
fluctuations.

In the limit of small perturbations, the intensity sensitivity
function quantifies the interferometric phase error due to laser
intensity fluctuations that occur on timescales shorter than the
interferometer duration. These fluctuations affect the output
of the interferometer through two main mechanisms: one-
and two-photon light-shifts [13]. The interferometer sensitiv-
ity to time-varying laser intensity is proportional to the area
underneath the function gI (t ) [24,43]. Figure 8 shows the
comparison between the intensity sensitivity function of the
conventional and optimized Mach-Zehnder sequences. The
optimized sequence exhibits a minimized value of the in-
tensity sensitivity function during the free-evolution periods,
thus, ensuring robustness to intensity fluctuations for pulse
sequences in which the free-evolution time T is much larger
than the pulse duration.
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FIG. 8. Intensity sensitivity function for conventional and opti-
mized interferometer sequences, shown as functions of time relative
to the central mirror pulse.

3. Intensity-induced scale-factor error

Laser intensity fluctuations affect the interferometer scale-
factor [6,32]. Variations in the Rabi frequency experienced
by atoms result in a distortion of the temporal profile of the
impulse imparted by the laser field onto the atomic wave
function. As a result, the space-time area enclosed by the the
atomic states, which defines the interferometer scale factor,
slightly deviates from the nominal value [44,45]. The sensitiv-
ity function formalism offers a geometric interpretation of the
interferometer scale factor in the time domain, whereby the
scale factor for a cold-atom accelerometer can be determined
by calculating the area beneath the acceleration response func-
tion [32]. For the conventional Mach-Zehnder interferometer,

the scale-factor error (i.e., deviations from the the ideal scale
factor obtained in the hypothesis of infinitesimal and resonant
pulses keffT 2) can be computed analytically as [32]

SFε = keff

[
1

�3T
tan

θ3

2
+ 1

�1T
tan

θ1

2
+ 2η + o(η2)

]
, (16)

where η = τp/T is the ratio between the duration of the beam-
splitter pulse and the the free-evolution time, and θ j is the
pulse area of the jth laser pulse. Equation (16) highlights that,
to the first order in η, the scale-factor error of the interferom-
eter depends on the value of the Rabi frequency experienced
by the atoms during the first and last pulses. Physically, this
is due to the fact the beam-splitting process has a dominant
effect on the overall space-temporal area enclosed by the
atomic trajectories during the interferometric sequence [44].
Variations of the Rabi frequency from the ideal value can be
due to stochastic laser intensity fluctuations or to the coupling
between spatial intensity inhomogeneities and atomic motion.

Figure 9 shows the accelerometer scale-factor error due
to Rabi frequency imbalance between the first and the third
pulses of the optimized and conventional Mach-Zehnder in-
terferometer. In the case of the optimized sequence, the
scale-factor error was computed numerically, evaluating the
integral of the acceleration response function [36]. Because of
the robustness to laser intensity fluctuations, the scale-factor
error is minimized, thus ensuring an enhanced scale-factor sta-
bility. This can be understood geometrically by representing
the recoil diagrams as in Fig. 9.

The spread between the center of mass of the wavepackets
traveling along the upper and lower arms of the interferometer
is given by (see Appendix B)


 〈x(t )〉 = vrec ha(t ), (17)

with vrec = h̄keff/m the recoil velocity, and ha(t ) the ac-
celeration response function. In the case of a conventional
interferometer, assuming an initial position 〈x(t = −∞)〉 =
0, and considering half of the pulse sequence for symmetry,

FIG. 9. (a) Recoil diagram of the conventional interferometer. The blue-, yellow-, and green-shaded areas represent half of the scale-factor
contribution due to pure free-evolution of the wavepackets, finite mirror duration, and finite beam-splitter duration, respectively. The insets
show details in the proximity of the first conventional and optimized beam-splitter pulses. (b) Recoil diagram of the optimized interferometer.
In this case, there is no contribution due to the beam splitter. For clarity, only one output port per interferometer is represented. (c) Scale-
factor error of a cold-atom accelerometer due to the Rabi frequency imbalance between the third and first beam-splitter pulse. We assume
free-evolution time T = 10 ms; �1 = �2 = �0 = 2π × 200 kHz.
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we obtain

〈x(t = 0)〉 = vrec

(
1

� j
tan

θ j

2
+ T + τp

)
+ o

(
τ 2

p

)
, (18)

where 〈x(t = 0)〉 is the position of the wavepacket traveling
along the upper arm of the interferometer at the midpoint
of the mirror pulse and � j and θ j are the Rabi frequency
and the pulse area of the jth π/2 pulse. The second and
third terms in the round brackets represent the displacement
of the wavepacket due to free-evolution and mirror finite
duration, respectively. Their contributions to the interferom-
eter scale factor are represented geometrically in Fig. 9 with
blue- and yellow-shaded areas. The first term in the round
brackets depends on the beam-splitter Rabi frequency, and its
scale-factor geometric representation is given by the green-
shaded area in Fig. 9. Physically, this term accrues because
of the velocity-dependent phase accumulated by the atomic
wavepacket during the beam-splitting process. Hence, varia-
tions in the nominal Rabi frequency during the beam-splitting
process determine scale-factor instability for a conventional
interferometer. In contrast, an interferometer operating with
optimized beam-splitter pulses exhibits reduced scale-factor
instability due to the fact that, at the end of the beam-
splitting process, the velocity-dependent phase is minimized
[i.e., (∂δ�/∂ p)p→0 ∼ 0]. This is shown geometrically in
Fig. 9, where the optimized interferometer does not exhibit
any beam-splitter-dependent contribution to the scale factor.

C. Symmetry and stability analysis of Bloch vector trajectories

The robustness of the optimized interferometer against
inter-pulse laser intensity variations is attributed to the near-
flat superposition phase accumulated by the atomic wave
function at the end of the beam-splitting process. Therefore, it
is interesting to explore why and how the optimized waveform
achieves a minimized phase error by analyzing the trajectories
of the off-resonant Bloch vectors.

From the analysis of Fig. 4 (lower left panel), we note
a symmetric pattern with respect to the unperturbed solu-
tion (zero longitude locus), meaning that the Bloch vector
trajectories characterized by detunings of opposite signs are
steered in opposite directions. As a consequence, negative and
positive detuning paths cross each other at multiple times.
Nevertheless, at the end of the pulse, the ensemble recom-
bines, converging to the unperturbed target state.

The symmetric pattern is due to the fact that atomic states
are steered on the Bloch sphere by just controlling the ampli-
tude of the field vector (aligned with the x axis) and limiting
the laser phase to 0 − π values [31]. On resonance, the tra-
jectory described by the Bloch vector lies in the y-z plane;
off-resonance the plane is inclined according to the sign of the
detuning. This means that the trajectories of atoms character-
ized by positive detunings have opposite longitude positions
with respect to atoms characterized by negative detunings.

To understand when the convergence of the trajectories to
the unperturbed solution occurs, we report a stability analy-
sis based on the sign of the variation of the longitude error
angular rate with respect to the longitude error itself. Recom-
bination of the ensemble after each crossing point suggests
that there must be a condition that forces the different tra-

FIG. 10. Stability map of Bloch vector trajectories for the opti-
mized beam-splitter pulse. The Rabi frequency is considered equal
to the design value.

jectories to converge towards the unperturbed solution, at the
end of the pulse, minimizing the longitude error. This stability
condition is given by

S (δ, t ) = ∂ ˙δ�

∂δ�
< 0, (19)

where δ� and ˙δ� are, respectively, the longitude error and the
longitude error rate.

Figure 10 shows the stability map S (δ, t ) for the case
� = �0: Bloch vector trajectories characterized by detunings
within areas in which the stability condition is fulfilled con-
verge to the unperturbed solution. At the end of the pulse,
atoms characterized by detunings in the range ±0.5�0 fulfill
the stability condition: this result is in agreement with the
phase-error map shown in Fig. 3 in which the optimized beam
splitter exhibits a minimized phase error in the same detuning
range.

The stability map gives unique insights into the behavior of
Bloch vector trajectories of far-detuned and near-to-resonance
atoms. Focusing on the final part of the pulse, for t/tπ � 7,
two conclusions can be drawn. First, Bloch vector trajectories
of near-to-resonance atoms are steered to the unperturbed
solution before the end of the pulse and converge smoothly
to it as highlighted by the relative large stability (blue color
scale) region; on the other hand, trajectories of far-detuned
atoms transit from a stable region to an unstable (yellow color
scale) region, meaning that they cross the zero longitude point
before the end of the pulse, and the sign of the phase-error
changes. Second, for t/tπ < 8, the detuning range for which
the stability condition is fulfilled becomes larger. This result
agrees with Fig. 3 in which the detuning range of the min-
imized error phase grows as the maximum Rabi frequency
becomes lower than the design value.

VI. DISCUSSION

In this paper, we introduce a method based on time-
dependent perturbation theory for designing optimized beam-
splitter pulses that links the Bloch sphere picture with the
sensitivity function formalism. By solving a constrained min-
imization problem with higher-order terms in a Dyson series,
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we obtain a pulse with time-dependent Rabi frequency. We
analyze the waveform properties in terms of phase-error and
Bloch vector trajectories and carry out a stability analysis to
understand the behavior of atomic ensembles under the action
of the pulse. Our findings demonstrate that this approach to
beam-splitter pulse design is an effective way to minimize
phase errors over a range of detunings and laser intensities.

Furthermore, we show that the optimized beam-splitter
pulse designed using our method reduces bias and scale-factor
errors in three-pulse Mach-Zehnder interferometers, improv-
ing performance over conventional sequences. Our findings
highlight the potential for optimal control in the design of
beam-splitter pulses for the next generation of cold-atom iner-
tial sensors, enhancing their bias and scale-factor stability by
providing robustness to laser intensity and detuning errors.

Future work may involve the extension of the proposed
method to the design of optimal mirror pulses and interferom-
eter sequences. Moreover, further constraints can be imposed
on the shape of the Rabi frequency waveform to achieve
enhanced high-frequency phase noise rejection [36].
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APPENDIX A: TIME-DEPENDENT PERTURBATION
THEORY FOR RAMAN PULSES

In the framework of time-dependent perturbation theory,
the solution of the Bloch equation can be written as a series
expansion

b(t ) = b(0)(t ) + δb(1)(t ) + δb(2)(t ) + · · · , (A1)

where b(0) is the unperturbed solution and δb(k)(t ) refers to
the kth-order correction.

Assuming constant detuning, constant Rabi frequency, and
initial condition b(t0) = (0 0 1)T , we find the following cor-
rections in the Dyson series up to third order:

δb(1)(t ) =

⎛
⎜⎝

−2s2
θ
2

0
0

⎞
⎟⎠ δ

�0
, (A2a)

δb(2)(t ) =

⎛
⎜⎜⎝

0

−cθ

[
sθ − s2θ

4 − θ
2

] − 2sθ s4
θ
2−sθ

[
sθ − s2θ

4 − θ
2

] − 2cθ s4
θ
2

⎞
⎟⎟⎠ δ2

�2
0

, (A2b)

δb(3)(t ) =

⎛
⎜⎝

2s2
θ
2
− θ

2 sθ

0
0

⎞
⎟⎠ δ3

�3
0

, (A2c)

where sθ = sin θ , cθ = cos θ , and θ = �0t is the angle by
which the Bloch vector rotates about the x axis.

TABLE I. Longitude and latitude error terms computed for dif-
ferent orders of time-dependent perturbation theory in the case of a
conventional beam-splitter pulse.

Order δ� δα

First − δ

�0
0

Second 0 (1 − π

4 ) δ2

�2
0

Third (1 − π

4 ) δ3

�3
0

0

We define the angles δ� and δα, respectively, as the longi-
tude deviation from the y axis and the latitude deviation from
the equatorial plane

δ� = tan−1

(
bx

by

)
, (A3a)

δα = sin−1 (bz ). (A3b)

Following this definition, the angle δ� is the geometric repre-
sentation of the phase dispersion error imparted on the atomic
wave function. Analogously, the angle δα is linked to the
errors in atomic population.

As an example, we compute the longitude and latitude er-
rors in the case of a beam-splitter pulse (θ = π/2) considering
corrections up to the third order. The results are reported in
Table I. The kth-order longitude and latitude errors are com-
puted by substituting in Eqs. (A3) the unperturbed solution
and the corresponding kth-order correction. The computed
expressions agree with results reported in [45].

In the case of an atomic wave function initially prepared
in a basis state, odd-order correction terms produce phase dis-
persion errors, while even-order terms are linked to population
amplitude errors.

APPENDIX B: LINK BETWEEN SENSITIVITY FUNCTION
AND ATOMIC TRAJECTORIES

The mean position of an atomic wavepacket can be ob-
tained by solving the differential equation [46]

d 〈x〉
dt

= −
∫ +∞

−∞
|�(k)|2 ∂ω

∂k
dk, (B1)

where �(k) and ∂ω/∂k are, respectively, the initial
momentum-space wave function and the group velocity
associated to the atomic wavepacket. Assuming that the
wavepacket is narrow in momentum space around k = 0, we
obtain

d 〈x〉
dt

≈ −h̄
∂ω

∂ p

∣∣∣∣
p→0

, (B2)

with p = h̄ k, momentum. The angular frequency ω(v, t ) is
the time derivative of the phase accumulated by the atomic
wave function at time t and can be computed with time-
dependent perturbation theory. [47] Hence, using Eq. (10) and
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assuming δ = keff v we have

d 〈x〉
dt

≈ −vrec gφ (t ), (B3)

where the phase sensitivity function, g(1)
x (t ) is renamed

gφ (t ) and vrec = h̄keff/m is the recoil velocity. Integration of
Eq. (B3) leads to the determination of the spread between the
center of mass of the wavepackets traveling along the upper
and lower arms of the interferometer


 〈x(t )〉 = vrec ha(t ), (B4)

where ha(t ) = ∫ +∞
t gφ (t ′)dt ′ is the acceleration response

function. Thus, the acceleration response function provides a
representation of the space-time area spanned by the center of
mass of the wavepackets during the pulse sequence. Figure 11
shows the spread function 
 〈x(t )〉 for both the conventional
and optimized interferometers. As expected, the maximum
separation between the arms of the interferometer occurs dur-
ing the mirror pulse. The optimized interferometer exhibits
a zero spread value at the end of the the first pulse. This is
a consequence of the optimization condition for which we
imposed that the velocity-dependent phase δ� is minimized
at the end of the beam-splitter pulse. Because of the symmetry
with respect to the midpoint of the mirror pulse, the spread is
also zero at the start of the last pulse.

FIG. 11. Spread between the arms of the interferometer for both
the optimized and conventional pulse sequences. We assume the
same maximum Rabi frequency. The red-shaded areas represent the
pulse duration for the optimized interferometer. The spread function
of the optimized interferometer crosses zero at the end (start) of the
first (last) pulse, ensuring robustness of the scale-factor error to laser
intensity variations.
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