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Ultracold molecular collisions in magnetic fields: Efficient incorporation of hyperfine
structure in the total rotational angular momentum representation
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The effects of hyperfine structure on ultracold molecular collisions in external fields are largely unexplored
due to major computational challenges associated with rapidly proliferating hyperfine and rotational channels
coupled by highly anisotropic intermolecular interactions. We explore an efficient basis set for incorporating
the effects of hyperfine structure and external magnetic fields in quantum scattering calculations on ultracold
molecular collisions. The basis is composed of direct products of the eigenfunctions of the total rotational
angular momentum (TRAM) of the collision complex Jr and the electron- and nuclear-spin basis functions
of the collision partners. The separation of the rotational and spin degrees of freedom ensures rigorous
conservation of Jr even in the presence of external magnetic fields and isotropic hyperfine interactions. The
resulting block-diagonal structure of the scattering Hamiltonian enables coupled-channel calculations on highly
anisotropic atom-molecule and molecule-molecule collisions to be performed independently for each value of
Jr . We illustrate the efficiency of the TRAM basis by calculating state-to-state cross sections for ultracold He +
YbF collisions in a magnetic field. The size of the TRAM basis required to reach numerical convergence is eight
times smaller than that of the uncoupled basis used previously, providing a computational gain of three orders of
magnitude. The TRAM basis is therefore well suited for rigorous quantum scattering calculations on ultracold
molecular collisions in the presence of hyperfine interactions and external magnetic fields.
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I. INTRODUCTION

Ultracold molecular gases offer novel opportunities for
searches of new physics beyond the Standard Model [1,2],
quantum information science [3–5], and quantum control of
chemical reaction dynamics [6–9]. Understanding the quan-
tum dynamics of ultracold molecular collisions is essential
to realizing these opportunities by enabling the production of
denser and cold molecular ensembles, and to controlling inter-
molecular interactions within the ensembles. This is because
collisional interactions determine the properties of ultracold
molecular gases, such as their stability. In particular, inelas-
tic collisions and long-lived complex formation lead to trap
loss [10,11], which limits the lifetime of trapped molecules,
whereas elastic collisions result in thermalization, which is
beneficial for evaporative and sympathetic cooling [1,2,12–
14].

The most detailed theoretical understanding of com-
plex molecular collisions is gained from rigorous quan-
tum coupled-channel (CC) calculations, which solve the
Schrödinger equation exactly for a given form of the inter-
action potential between the molecules [15,16]. Because they
involve no approximations, these calculations can be used
to interpret experimental observations and to relate them to the
underlying microscopic interactions between the molecules
[17–26]. These calculations also serve as a benchmark for
approximate methods and can be used to estimate inelastic
collision rates [27] and the density of scattering resonances
in ultracold atom-molecule [12,13,28–30] and molecule-
molecule [28] collisions.

However, acquiring such a detailed understanding of ul-
tracold molecular collisions has been a major challenge due
to the need to account for the numerous molecular degrees
of freedom, which include rotational, vibrational, fine, and
hyperfine structure, in addition to the interaction with ex-
ternal electromagnetic fields. In order to obtain numerically
converged solutions of CC equations, one needs to use a
very large number of molecular basis functions, which grows
rapidly with the size and mass of the colliding molecules [31].
While efficient techniques have been developed for reducing
the size of rotational basis sets in the absence [31,32] and in
the presence [33–36] of external electromagnetic fields, there
has been very little work on hyperfine basis sets.

Molecular hyperfine structure arises due to nonzero nuclear
spins in one (or both) of the collision partners interacting
with unpaired electrons and/or with molecular rotation [37].
These interactions result in energy-level splittings on the order
of a few tens of kHz [38] to GHz [39,40], which can eas-
ily exceed the energy scale of ultracold molecular collisions
(E � 100 kHz). Thus, hyperfine interactions are expected
to profoundly affect ultracold collision dynamics by shifting
and splitting collision thresholds and modifying zero-energy
crossings of molecular bound states, which give rise to mag-
netic Feshbach resonances [41]. Indeed, with a few exceptions
(such as collisions of spin-polarized species in strong mag-
netic fields [12–14]), it is impossible to accurately describe
the magnetic-field dependence of scattering cross sections at
ultralow temperatures without taking into account the hy-
perfine structure. The lifetimes of collision complexes may
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be affected by the hyperfine structure [10,42] and strong ef-
fects of hyperfine interactions have been observed in product
state distributions of the ultracold chemical reaction KRb +
KRb → K2 + Rb2 [43,44]. Many recent experimental studies
of ultracold atom-molecule [45–49] and molecule-molecule
[9,50,51] collisions involve alkali-metal dimer molecules with
a pronounced hyperfine structure.

These considerations strongly motivate including hyper-
fine interactions in rigorous CC calculations on molecular
collisions in external fields. However, most of the previous
calculations have neglected these interactions, as their inclu-
sion leads to formidable computational difficulties associated
with the rapid expansion of the Hilbert space. A single mag-
netic nucleus with spin I gives rise to a (2I + 1)fold increase
in the number of molecular basis states, leading to a sev-
eralfold increase in the number of scattering channels. For
example, in the case of cold He + YbF collisions considered
in this paper, nearly converged results can be obtained with
1131 channels in the fully uncoupled basis [52–54] in the
absence of hyperfine structure. Incorporating the hyperfine
structure of YbF rises this number by a factor of 2, and the
computational cost by a factor of 8. It is therefore not surpris-
ing why so few CC calculations on ultracold atom-molecule
collisions have included hyperfine interactions. These calcu-
lations are reviewed below.

Lara et al. included hyperfine structure in their scattering
calculations of ultracold Rb + OH collisions in the absence
of external fields [55,56]. Tscherbul et al. performed quan-
tum scattering calculations on He + YbF collisions in a
magnetic field [54], which highlighted the importance of in-
cluding hyperfine structure in CC calculations of cold and
ultracold atom-molecule scattering. This work was extended
to collisions of 3� molecules with atoms by González-
Martínez and Hutson [57]. Nuclear-spin relaxation in weakly
anisotropic He + 13CO collisions has recently been explored
by Hermsmeier et al. in converged CC calculations in the
temperature range 0.1–10 K [58]. Hyperfine structure was
included in model CC calculations on ultracold collisions
of RbCs molecules [59] and on the chemical reactions Li
+ CaH → LiH + Ca [60] and Na + NaLi → Na2 + Li
[49,61] in the presence of an external magnetic field. These
calculations, however, used restricted CC basis sets containing
only the lowest rotational states [49,61], and did not produce
converged results when hyperfine interactions were included.

The vast majority of the previous CC calculations that
included molecular hyperfine structure used “uncoupled”
channel basis sets of the form | fmol〉 |lml〉, where | fmol〉 are
the basis functions that depend on the molecular (internal)
degrees of freedom and |lml〉 are the partial wave basis states,
which are the eigenfunctions of the orbital angular momentum
squared of the collision complex l̂2 and of its space-fixed
(SF) projection l̂Z . Because these basis states are not the
eigenfunctions of the total angular momentum of the col-
lision complex, they could provide converged results only
for moderately anisotropic systems, such as He + YbF and
Mg + NH, where only a few rotational states and partial
waves are necessary to properly describe the anisotropy of
the atom-molecule interaction potential. However, with the
exception of collisions involving light atoms (such as He,
He∗, and Li) and molecules (such as H2, CaH, NH, and O2)

[17–20,22–24,62], ultracold atom-molecule collisions studied
experimentally thus far (such as Rb + CaF [63], Na + NaLi
[64,65], K + NaK [45,46], and Rb + KRb [47]) are charac-
terized by deep and strongly anisotropic interactions, which
couple hundreds of rotational states at short range [13,14].

Obtaining converged results for such collisions requires
the use of the total angular momentum (TAM) represen-
tation [32], which leverages the rotational invariance of
intermolecular interactions to block diagonalize the scat-
tering Hamiltonian in the absence of external fields. The
TAM representation has been widely used to study ultracold
atom-molecule and molecule-molecule collisions and chemi-
cal reactions under field-free conditions [7,66,67] and in the
presence of external electromagnetic fields [12,13,29,33–36].
However, the hyperfine effects are yet to be incorporated in
TAM calculations in the presence of external fields.

Here, we explore an alternative basis set that combines the
computational efficiency of the TAM basis with the ease of
evaluation of matrix elements pertinent to the fully uncoupled
basis. The basis is obtained by coupling all rotational angu-
lar momenta in the Hamiltonian to form the total rotational
angular momentum (TRAM) of the collision complex. To
our knowledge, the TRAM basis was first used by Simoni
and Launay [68] in their model CC calculations of ultracold
Na + Na2 collisions. More recently, similar treatments have
been used for ultracold three-atom recombination reactions
[69–71]. However, the calculations of Ref. [68] were per-
formed in the absence of external fields and did not include
the intramolecular spin-rotation and anisotropic hyperfine in-
teractions, which are generally non-negligible in ultracold
atom-molecule collisions [54,57]. In addition, the CC ba-
sis sets employed in Ref. [68] were too small to produce
converged results, leaving the question open of whether the
TRAM basis could be used for efficient CC computations
on ultracold molecular collisions in magnetic fields. Here,
we address this question by systematically considering all
intramolecular interactions in 2� molecules and performing
converged CC calculations on ultracold He + YbF colli-
sions in an external magnetic field. Our results show that
the TRAM basis offers a computationally efficient way of
handling hyperfine interactions in ultracold atom-molecule
collisions mediated by strongly anisotropic interactions. Ad-
ditional advantages of the TRAM basis include (i) the absence
of unphysical states in the ground rotational manifold of the
diatomic molecule and their low density in rotationally excited
manifolds, and (ii) its superior computational efficiency over
the TAM basis in situations, where ultracold scattering is dom-
inated by isotropic hyperfine and Zeeman interactions. These
results open up the possibility of rigorous quantum scattering
calculations on ultracold atom-molecule collisions of current
experimental interest [45,47,65].

The structure of this paper is as follows. In Sec. II we
define the TRAM basis set and highlight its computational
advantages. In Sec. III we apply the theory to calculate the
cross sections for cold He + YbF collisions, a system with
a pronounced hyperfine structure, which presented significant
computational challenges in a previous theoretical study using
an uncoupled space-fixed basis set [54]. We show how these
challenges can be efficiently overcome using the TRAM basis
set, leading to an order-of-magnitude reduction in the number

053317-2



ULTRACOLD MOLECULAR COLLISIONS IN MAGNETIC … PHYSICAL REVIEW A 108, 053317 (2023)

of coupled channels (from 1920 to 240), which translates to a
nearly three-orders-of-magnitude reduction in computational
effort. Section IV concludes and outlines several possible
directions for future work.

II. THEORY

In this section, we define the TRAM basis set and present
expressions for the matrix elements of the scattering Hamil-
tonian in the TRAM representation. We then discuss several
computational advantages of the TRAM basis, which make
it an attractive choice for quantum scattering calculations
on strongly anisotropic molecular collisions in an external
magnetic field in the presence of hyperfine structure. We will
consider two cases of interest: collisions of 2� molecules
with structureless atoms, and collisions of 2� molecules
with atoms in electronic states of 2S symmetry. Open-shell
2� molecules such as SrF, CaF, or YbF have recently been
laser cooled and trapped by a number of research groups
[72–77]. Ultracold atom-molecule collisions are relevant for
sympathetic cooling, in which molecules thermalize with an
ultracold gas of atoms [12–14,78]. Recently, several experi-
mental groups have measured the cross sections for ultracold
Rb + CaF [63] and Na + NaLi collisions [48,64,65] and
observed magnetic Feshbach resonances in ultracold Na +
NaLi [48,49,65] and K + NaK [45,46] mixtures.

A. Collisions of 2� molecules with 1S0 atoms

Before introducing the TRAM basis, we will briefly review
the key aspects of quantum scattering theory as they apply
to ultracold atom-molecule collisions in the presence of an
external magnetic field. The reader is referred to Refs. [8,79]
for a detailed account of the theory.

The Hamiltonian of a 2� diatomic molecule colliding
with a spherically symmetric 1S0 atom in a magnetic field
may be written as (using atomic units, in which h̄ = 1)
[33,36,52,53,79]

Ĥ = − 1

2μR

∂2

∂R2
R + l̂2

2μR2
+ V̂ (r, R, θ ) + Ĥmol, (1)

where θ is the angle between the Jacobi vectors R and r,
which span the configuration space of the atom-molecule
collision complex, μ is the reduced mass of the triatomic
complex, and l̂2 is the squared orbital angular momentum
for the collision. The atom-molecule interaction potential V̂
is a scalar function of the atom-molecule center-of-mass sep-
aration R = |R|, the internuclear distance of the diatomic
molecule r = |r|, and θ . We will adopt the rigid-rotor approx-
imation by setting r = re, where re is the equilibrium distance
of the diatomic molecule.

Here, we focus on the simplest yet common example of
hyperfine structure, which arises in 2� molecules bearing a
single magnetic nucleus, such as laser-coolable SrF, CaF, YbF,
and YO molecules [40,72–74,80–83]. The internal structure
of such molecules and their interaction with an external mag-
netic field are described by the Hamiltonian, which consists
of three parts:

Ĥmol = Ĥ rot
mol + Ĥ spin

mol + ĤSR
mol, (2)

where

Ĥ rot
mol = BeN̂2 (3)

is the rotational part, N̂ is the rotational angular momentum
of the molecule, and Be is the rotational constant. The spin
part, which only depends on the electron- and nuclear-spin
operators, is given by

Ĥ spin
mol = gSμ0BŜZ + (b + c/3)Î · Ŝ, (4)

where the first term on the right-hand side is the Zee-
man Hamiltonian, μ0 is the Bohr magneton, gS � 2.0 is the
electron-spin g factor, and B is the magnitude of the external
magnetic field, which defines the quantization axis of the SF
coordinate frame.

In Eq. (4) Ŝ and Î are the electron- and nuclear-spin op-
erators [the eigenvalues of Ŝ2 are given by S(S + 1) with
S = 1/2 for 2� molecules]. The isotropic (or Fermi contact)
hyperfine interaction [37] is given by the last term in Eq. (4),
where a = b + c/3 is the corresponding hyperfine constant
expressed via the constants b and c introduced by Frosch and
Foley in Ref. [37].

The interaction Hamiltonian couples the rotational and spin
degrees of freedom:

ĤSR
mol = γSRN̂ · Ŝ + c

√
6

3

(
4π

5

)1/2

×
2∑

q=−2

(−1)qY2−q(θr, φr )[Î ⊗ Ŝ](2)
q (5)

where the electron-spin–rotation interaction γSRN̂ · Ŝ is
parametrized by the coupling constant γSR, and the anisotropic
hyperfine interaction is parametrized by the constant c. The
spherical harmonics Y2−q depend on the angles θr and φr ,
which specify the orientation of the molecular axis in the
SF frame. We neglect the nuclear spin-rotational interaction
CÎ · N̂, which for YbF is three orders of magnitude smaller
than the electron-spin–rotation interaction [54].

As illustrated in Fig. 1, the commuting operators Ĥ rot
mol and

Ĥ spin
mol act in different subspaces of the total Hilbert space of

the molecule, which is a direct product of rotational and spin
subspaces (with the latter including both the electron- and
nuclear-spin subspaces).

Our goal is to solve the time-independent Schrödinger
equation Ĥ |�〉 = E |�〉 with the Hamiltonian given by
Eq. (1). To this end we expand the solution at fixed total
energy E in channel functions |	n〉:

|�〉 = 1

R

∑
n

Fn(R) |	n〉 , (6)

where Fn(R) are the radial functions, which satisfy the stan-
dard CC equations (in atomic units, h̄ = 1)

[ d2

dR2
+ 2μE

]
Fn(R) = 2μ

∑
n′

〈	n|V̂ (R, θ ) + l̂2

2μR2

+ Ĥmol|	n′ 〉Fn′ (R). (7)

The asymptotic behavior of the radial functions defines the
scattering S matrix, from which all scattering observables can
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FIG. 1. (a) Schematic representation of the total molecular
Hilbert space as a direct product of two subspaces correspond-
ing to molecular rotations (left diamond) and to the electron- and
nuclear-spin degrees of freedom (right diamond). The yellow and
orange wavy lines represent, respectively, the anisotropy of the
electrostatic atom-molecule interaction potential (left diamond) and
the isotropic (Fermi contact) hyperfine interaction (right diamond).
Matrix representation of the molecular Hamiltonian in the TRAM
basis (b) and in the TAM basis (c). The color coding scheme is as
follows: gray, rotational kinetic energy and adiabatic interaction po-
tential; blue, isotropic hyperfine and Zeeman interactions; green and
violet, electron-spin–rotation interaction and anisotropic hyperfine
interactions.

be obtained, including differential and integral cross sections,
transition rates, and collision lifetimes.

1. Matrix elements in the TRAM basis: Intramolecular rotational,
hyperfine, and Zeeman interactions

We expand the solution of the time-independent
Schrödinger equation (6) in a space-fixed TRAM basis:

|	n〉 = |(Nl )JrMr〉|ns〉, (8)

where |(Nl )JrMr〉 are the eigenstates of the TRAM of the
collision complex Ĵr = N̂ + l̂, and its projection on the Z
axis ĴrZ , and |ns〉 are the basis functions for the electron- and
nuclear-spin degrees of freedom (see below).

The eigenstates of Ĵ2
r and ĴrZ are obtained by coupling the

eigenstates of N̂2 and N̂Z and those of l̂2 and l̂Z [84]:

|(Nl )JrMr〉 =
∑

MN ,ml

〈NMN lml |JrMr〉|NMN 〉|lml〉, (9)

where |lml〉 are the eigenstates of l̂2 and l̂Z , |NMN 〉 are those
of |N̂|2 and N̂Z , and 〈 j1m1 j2m2| jm〉 are the Clebsch-Gordan
coefficients. Note that Ĵr = N̂ + l̂ is different from the total

angular momentum operator Ĵ = N̂ + l̂ + Ŝ + Î = Ĵr + Ŝ + Î
unless I = S = 0.

Below we will evaluate the matrix elements of the scat-
tering Hamiltonian in the TRAM basis. We also discuss the
structure of the coupling matrix elements, which makes clear
the unique advantages offered by this basis for incorporating
hyperfine structure and magnetic fields in quantum scattering
calculations on molecular collisions in external fields.

We begin with the Hamiltonian of the diatomic molecule
(2). Taking advantage of the structure of the TRAM basis,
which is a direct product of basis functions for the rotational
and spin degrees of freedom, we find

〈(Nl )JrMr |〈ns|Ĥmol|(N ′l ′)J ′
rM ′

r〉|n′
s〉

= δnsn′
s

〈
(Nl )JrMr

∣∣Ĥ rot
mol

∣∣(N ′l ′)J ′
rM ′

r

〉
+ δNN ′δll ′δJr J ′

r
δMr M ′

r
〈ns|Ĥ spin

mol |n′
s〉

+ 〈(Nl )JrMr |〈ns|ĤSR
mol|(N ′l ′)J ′

rM ′
r〉|n′

s〉. (10)

We observe that the purely rotational part of the Hamiltonian
Ĥ rot

mol is diagonal in the spin degrees of freedom, whereas the
spin part Ĥ spin

mol (including the Zeeman interaction) is diag-
onal in the rotational degrees of freedom, as expected. The
spin-rotation interaction ĤSR

mol couples the rotational and spin
degrees of freedom.

To proceed, we need to specify the basis ket vectors |ns〉
for the spin degrees of freedom. Here, as in our previous
work [54], we use the fully uncoupled spin basis set |ns〉 =
|SMS〉 |IMI〉, although the coupled hyperfine basis |ns〉 =
|FmF 〉 could be used as well. The first term on the right-hand
side of Eq. (10) is diagonal since the basis states |(Nl )JrMr〉
are eigenstates of N̂2:

〈(Nl )JrMr |〈SMS|〈IMI |Ĥ rot
mol|(N ′l ′)J ′

rM ′
r〉|SM ′

S〉|IM ′
I〉

= δMI M ′
I
δMSM ′

S
δNN ′δll ′δJr J ′

r
δMr M ′

r
BeN (N + 1). (11)

The matrix element of Ĥ spin
mol = aÎ · Ŝ + gSμ0BŜZ in the sec-

ond term is straightforward to derive since our spin basis states
|SMS〉|IMI〉 are eigenstates of ŜZ and ÎZ , and thus [see, e.g.,
Eq. (7) of Ref. [54]]

〈(Nl )JrMr |〈SMS|〈IMI |aÎ · Ŝ|(N ′l ′)J ′
rM ′

r〉|SM ′
S〉|IM ′

I〉
= δNN ′δll ′δJr J ′

r
δMr M ′

r
a[δMI M ′

I
δMSM ′

S
MI MS

+ 1
2δMI ,M ′

I ±1δMS ,M ′
S∓1C±(I, M ′

I )C∓(S, M ′
S )] (12)

where C±(J, M ) = [J (J + 1) − M(M ± 1)]1/2. Note that the
spin Hamiltonian Ĥ spin

mol is diagonal in Jr because the isotropic
hyperfine and Zeeman interactions do not act on the rotational
degrees of freedom. This is a key difference between the
TRAM basis and the more familiar total angular momentum
basis, in which the Zeeman interaction couples basis states
with different J [33,36].

Finally, the spin-rotation coupling matrix element [the
third term in Eq. (10)] is the sum of the matrix el-
ements of the electron-spin–rotation interaction ĤESR

mol =
γSRN̂ · Ŝ and of the anisotropic hyperfine interaction ĤAHF

mol =
c
√

6
3 ( 4π

5 )1/2 ∑2
q=−2(−1)qY2−q(θr, φr )[Î ⊗ Ŝ](2)

q [see Eq. (5)].
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The matrix elements of the electron-spin–rotation interaction in the TRAM basis are given by (see Appendix A)

〈(Nl )JrMr |〈SMS|〈IMI |ĤESR
mol |(N ′l ′)J ′

rM ′
r〉|SM ′

S〉|IM ′
I〉 = δMI M ′

I
δll ′δNN ′γSR p3(N )p3(S)[(2Jr + 1)(2J ′

r + 1)]1/2

×
∑

p

(−1)p(−1)Jr−Mr (−1)N+l+J ′
r+1(−1)S−MS

{
N Jr l
J ′

r N 1

}

×
(

Jr 1 J ′
r

−Mr p M ′
r

)(
S 1 S

−MS −p M ′
S

)
(13)

where p3(X ) = [(2X + 1)X (X + 1)]1/2. It follows from Eq. (13) that the electron-spin–rotation interaction couples TRAM basis
states with Jr − J ′

r = ±1. This interaction conserves the value of Mr + MS as well as the total angular momentum projection
M = Mr + MS + MI . This coupling is typically much weaker than either the rotational energy scale or the Zeeman interaction
at moderate and high magnetic fields. Nevertheless, it plays an important role in collisions of 2� molecules with structureless
atoms [17,53]. In order to account for this interaction, it is therefore necessary to include at least two Jr blocks (Jr = 0−1 for
the initial N = 0 states).

The matrix elements of the intramolecular anisotropic hyperfine interaction take the form (see Appendix B)

〈(Nl )JrMr |〈SMS|〈IMI |ĤAHF
mol |(N ′l ′)J ′

rM ′
r〉|SM ′

S〉|IM ′
I〉

= δll ′c

√
30

3
(−1)Jr−Mr+l+J ′

r p3(I )p3(S)[(2Jr + 1)(2J ′
r + 1)]1/2

×[(2N + 1)(2N ′ + 1)]1/2

{
N Jr l
J ′

r N ′ 2

}(
1 1 2

MI − M ′
I MS − M ′

S Mr − M ′
r

)

×
(

Jr 2 J ′
r

−Mr Mr − M ′
r M ′

r

)(
N 2 N ′
0 0 0

)(
I 1 I

−MI MI − M ′
I M ′

I

)(
S 1 S

−MS MS − M ′
S M ′

S

)
. (14)

The anisotropic hyperfine interaction couples the states with
Jr − J ′

r = ±2 and with N − N ′ = ±2 but conserves the total
angular momentum projection M. Thus, in order to account
for this interaction, it is necessary to include at least three
lowest Jr blocks (Jr = 0–2 for the initial N = 0 states).

The spectroscopic constants of YbF(2�) are (in units
of cm−1) c = 2.848 75 × 10−3, γSR = 4.4778 × 10−4, b =
4.729 83 × 10−3, and Be = 0.241 29. The anisotropic hyper-
fine interaction is thus 6.4 times stronger than the electron-
spin–rotation interaction, but two times weaker than the
isotropic (Fermi contact) hyperfine interaction parametrized
by a = b + c/3 = 5.6794 × 10−3 cm−1.

2. Matrix elements in the TRAM basis: Orbital angular
momentum and interaction potential

To complete the parametrization of CC Eqs. (7) in the
TRAM basis, we need to evaluate the matrix elements of
the centrifugal kinetic energy and of the atom-molecule in-
teraction potential. As the TRAM basis functions (8) are
eigenfunctions of l̂2, the centrifugal kinetic energy has only
diagonal matrix elements:

〈(Nl )JrMr |〈ns| l̂2

2μR2
|(N ′l ′)J ′

rM ′
r〉|n′

s〉

= δNN ′δll ′δJr J ′
r
δMr M ′

r
δnsn′

s

l (l + 1)

2μR2
. (15)

The adiabatic interaction potential between a 2� molecule
and a 1S atom is independent of the electron and nuclear
spins, so its matrix elements are diagonal in ns. Expand-
ing the potential in Legendre polynomials as V (R, θ ) =∑

λ Vλ(R)Pλ(cos θ ) and using the Wigner-Eckart theorem, we

find the matrix elements [85]:

〈(Nl )JrMr |〈ns|V (R, θ )|(N ′l ′)J ′
rM ′

r〉|n′
s〉

= δnsn′
s
δJr J ′

r
δMr M ′

r
(−1)Jr+N+N ′

[(2N + 1)(2N ′ + 1)

× (2l + 1)(2l ′ + 1)]1/2
∑

λ

Vλ(R)

{
N l J
l ′ N ′ λ

}

×
(

N λ N ′
0 0 0

)(
l λ l ′
0 0 0

)
. (16)

The matrix elements are diagonal in Jr . Because the couplings
between the different Jr blocks due to the spin-rotation in-
teractions are weak (see the previous section), the scattering
Hamiltonian is approximately block diagonal in the TRAM
representation as shown in Fig. 1(b). Thus, one might expect
that numerical solutions of CC equations may be efficiently
obtained with only the few lowest Jr blocks retained in the
basis. As shown in Sec. III below, this expectation turns out
to be true. This advantage of the TRAM basis is similar to
that provided by the total angular momentum representation
[33,35].

The matrix elements (16) have a simple form, which does
not increase in complexity as additional hyperfine or electron-
spin degrees of freedom are added. The underlying reason for
this simplicity is that in the TRAM representation one only
couples the rotational angular momenta, on which the interac-
tion potential actually depends. By contrast, in the space-fixed
TAM representation, one needs to couple all angular mo-
menta regardless of whether or not they are coupled by the
interaction potential, leading to a nested hierarchy of partially
coupled basis functions, whose complexity increases rapidly
as more angular momenta are added [35,36].
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B. Collisions of 2� molecules with 2S atoms

The Hamiltonian of the collision complex formed by a 2�
molecule and an 2S0 atom may be written as

Ĥ = − 1

2μR

∂2

∂R2
R + l̂2

2μR2
+ V̂int + Ĥmol + Ĥatom + V̂MDD,

(17)
where all the terms except for the interaction potential oper-
ator V̂int and the new terms Ĥatom and V̂MDD (see below) have
the same meaning as in Eq. (1). The Hamiltonian (17) differs
from Eq. (1) in three significant respects.

First, the 2S1/2 atomic collision partner (such as an alkali-
metal atom) has internal structure described by the hyperfine-
Zeeman Hamiltonian

Ĥatom = gSμ0BŜaZ + AaÎa · Ŝa, (18)

where Ŝa and Îa are the atomic electron- and nuclear-spin
operators, and Aa is the atomic hyperfine constant. For
simplicity, we will neglect the dependence of atomic and
molecular hyperfine constants on R, r, and θ as well as ten-
sor hyperfine couplings of the form Ŝ · T(R, θ, r) · Îa, where
T(R, θ, r) is a second-rank tensor that describes the cou-
pling of the molecule’s electron spin with the nuclear spin
of the atom. Other forms of the tensor hyperfine coupling
are possible, such as Ŝa · Ta(R, θ, r) · Î, which describes the
coupling of the atom’s electron spin with the nuclear spin of
the diatomic molecule. These expressions can be expanded in
either Cartesian or spherical tensor products (see Refs. [86,87]
for more details). While these tensor interactions are typically
weaker than those already included in Eqs. (2) and (18) (see,
e.g., Refs. [88,89]), they can become substantial in the short-
range collision complex region [90]. These interactions can
be handled by evaluating their matrix elements in the TRAM
basis, and will result in additional mixing between the states
of different Jr similar in form to the couplings induced by the
magnetic dipole-dipole interaction as described below.

Second, the interaction potential between a 2� molecule
and a 2S atom is no longer a single scalar function of the
internal coordinates R, r, and θ as was the case for interactions
with structureless atoms (see Sec. II A), but depends on the
eigenvalues ST (ST + 1) of Ŝ2

T , where ŜT = Ŝ + Ŝa is the total
spin of the atom-molecule collision complex [13]:

V̂int =
∑

ST ,MST

V ST (R, r, θ )|ST MST 〉〈ST MST | (19)

where VST (R, r, θ ) are the adiabatic potential-energy surfaces
(PESs) for the singlet (ST = 0) and triplet (ST = 1) electronic

states. These PESs are typically very different at short range,
where strong exchange interactions lead to large singlet-triplet
energy gaps, as in the case of two interacting hydrogen or
alkali-metal atoms [41,91].

Finally, the magnetic dipole-dipole interaction between the
electron spins of the open-shell collision partners takes the
form [13,35,53,92]

V̂MDD = −
(

24π

5

)1/2
α2

R3

∑
q

(−1)qY2,−q(R̂)[Ŝ ⊗ Ŝa](2)
q (20)

where the spherical harmonic Y2,−q(R̂) depends on the ori-
entation of vector R̂ = R/R in the space-fixed frame, and
[Ŝ ⊗ Ŝa](2)

q is a second-rank tensor product of the molecular
and atomic electron-spin operators.

The TRAM basis for collisions of 2� molecules with 2S
atoms is a direct product of basis states for the structureless
atom collision problem [Eq. (8)] with atomic spin basis func-
tions |n(a)

s 〉:
|	n〉 = |(Nl )JrMr〉|ns〉|n(a)

s 〉. (21)

As before, we choose the molecular and atomic spin basis
functions in the uncoupled angular momentum representation
[52,53]:

|ns〉 = |SMS〉|IMI〉 = |SMSIMI〉,∣∣n(a)
s

〉 = |SaMSa〉|IaMIa〉 = |SaMSa IaMIa〉. (22)

Alternatively, one could use a coupled representation, where
|ns〉 = |(IS)FMF 〉 and |n(a)

s 〉 = |(IaSa)FaMFa〉.
The matrix elements of the molecular Hamiltonian (2)

and of the centrifugal kinetic energy are diagonal in atomic
spin quantum numbers n(a)

s . The expressions for these matrix
elements are identical to those already presented in Sec. II A.
We now proceed to evaluate the matrix elements of the three
remaining terms (18)–(20).

The matrix elements of the atomic Hamiltonian are diago-
nal in all molecular quantum numbers:

〈(Nl )JrMr〈ns

∣∣〈n(a)
s

∣∣Ĥatom|(N ′l ′)J ′
rM ′

r〉|n′
s〉

∣∣n(a)′
s

〉
= δNN ′δll ′δJr J ′

r
δMr M ′

r
δnsn′

s

〈
n(a)

s

∣∣Ĥatom

∣∣n(a)′
s

〉
. (23)

Choosing the fully uncoupled representation for the atomic
basis functions, the right-hand side evaluates to, in close anal-
ogy with Eq. (12),

〈SaMSa |〈IaMIa |Ĥatom|SaM ′
Sa

〉|IaM ′
Ia
〉 = δMIa M ′

Ia
δMSa M ′

Sa
gSμ0BMSa + Aa

[
δMIa M ′

Ia
δMSa M ′

Sa
MI MS

+ 1
2δMIa ,M ′

Ia
±1δMSa ,M ′

Sa
∓1C±(Ia, M ′

Ia
)C∓(Sa, M ′

Sa
)
]
. (24)

The interaction potential between a 2� molecule and a 2S atom is expressed in terms of projectors on eigenstates of the total
electron spin |ST MT 〉 of the atom-molecule system (19). Its matrix elements in the TRAM basis factorize into the rotational and
electron-spin parts:

〈(Nl )JrMr |〈SMSIMI |〈SaMSa IaMIa |V̂int|(N ′l ′)J ′
rM ′

r〉|SM ′
SIM ′

I〉SaM ′
Sa

IaM ′
Ia
〉

= δMI M ′
I
δMIa M ′

Ia

∑
ST ,MST

〈(Nl )JrMr |〈ns|V ST (R, r, θ )|(N ′l ′)J ′
rM ′

r〉〈SMS|〈SaMSa |ST MST 〉〈ST MST |S′M ′
S〉|SaM ′

Sa
〉. (25)

053317-6



ULTRACOLD MOLECULAR COLLISIONS IN MAGNETIC … PHYSICAL REVIEW A 108, 053317 (2023)

The total spin eigenfunctions are expressed in terms of the uncoupled spin functions as |ST MST 〉 =∑
MS

〈SMS, SaMSa |SMST 〉|SMS〉|SaMSa〉 [53]. Multiplying the Hermitian conjugate of this expression by |SM ′
S〉|S′

aM ′
Sa

〉 and
integrating over the spin degrees of freedom, the spin overlaps in Eq. (25) can be expressed in terms of the Clebsch-Gordan
coefficients, e.g., 〈ST MST |S′M ′

S〉|SaM ′
Sa

〉 = 〈SM ′
S, SaM ′

Sa
|ST MST 〉. Substituting the rotational matrix elements of V S (R, θ, r) from

Eq. (16), we obtain the final result:

〈(Nl )JrMr |〈SMSIMI |〈SaMSa IaMIa |V̂int|(N ′l ′)J ′
rM ′

r〉|SM ′
SIM ′

I〉|SaM ′
Sa

IaM ′
Ia
〉

= δMI M ′
I
δMIa M ′

Ia
δJr J ′

r
δMr M ′

r
(−1)Jr+N+N ′

[(2N + 1)(2N ′ + 1)(2l + 1)(2l ′ + 1)]1/2
∑

ST ,MST

(−1)2(S−Sa+MST )(2ST + 1)

×
(

S Sa ST

MS MSa −MST

)(
S Sa ST

M ′
S M ′

Sa
−MST

) ∑
λ

V ST
λ (R, r)

{
N l J
l ′ N ′ λ

}(
N λ N ′
0 0 0

)(
l λ l ′
0 0 0

)
, (26)

where the spin-dependent Legendre expansion coefficients are defined by V ST (R, θ, r) = ∑
λ V ST

λ (R, r)Pλ(cos θ ) for each ST =
|S − Sa|, . . . , S + Sa. The matrix of the electrostatic interaction potential is diagonal in Jr , which is significant because the
anisotropic atom-molecule interactions can be block diagonalized, enabling the scattering problem to be solved independently
for each Jr even in the presence of the Zeeman and isotropic hyperfine interactions (since, as shown above, these interactions
are diagonal in Jr). The only interactions that couple the states of different Jr are the spin-rotation interactions (see above and
Fig. 1), which are weak, so only a few values of Jr are sufficient to achieve numerical convergence of scattering observables, as
demonstrated below.

The interaction potential matrix is also diagonal in the atomic and molecular nuclear-spin projections, since the potential
does not depend on the nuclear-spin operators. The interaction potential couples the states with different MS and MSa and the
same MS = MS + MSa due to the difference between the potentials with different ST at short range (this is analogous to the
spin-exchange interaction in alkali-metal dimers). The only exceptions are the states with the maximum possible MS and MSa ,
which correspond to the fully stretched basis states |S, MS = S〉 and |Sa, MSa = S〉 with ST = S + Sa. These states occur in
collisions of fully spin-polarized molecules and/or atoms, whose collision dynamics can often be adequately described by a
single, high-spin PES [13,35].

Finally, the magnetic dipolar interaction is a contraction of tensor operators (20), which depend on the orientation of the
atom-molecule axis in the SF frame [via the term Y2,−q(R̂)] and on the spin degrees of freedom [via the term [Ŝ ⊗ Ŝa](2)

q ]. The
matrix element of Eq. (20) in the TRAM basis then takes the form

〈(Nl )JrMr |〈SMSIMI |〈SaMSa IaMIa |V̂MDD|(N ′l ′)J ′
rM ′

r〉|SM ′
SIM ′

I〉|SaM ′
Sa

IaM ′
Ia
〉

= −
(

24π

5

)1/2
α2

R3
δMI M ′

I
δMIa M ′

Ia

∑
q

(−1)q〈(Nl )JrMr |Y2,−q(R̂)|(N ′l ′)J ′
rM ′

r〉〈SMS|〈SaMSa |[Ŝ ⊗ Ŝa](2)
q |SM ′

S〉|SaM ′
Sa

〉. (27)

Using the definition of the tensor product [84] to evaluate the matrix element of [Ŝ ⊗ Ŝa](2)
q and then applying the Wigner-

Eckart theorem, one obtains (see Appendix C)

〈(Nl )JrMr |〈SMSIMI |〈SaMSa IaMIa |V̂MDD|(N ′l ′)J ′
rM ′

r〉|SM ′
SIM ′

I〉|SaM ′
Sa

IaM ′
Ia
〉

= −√
30α2

R3
δMI M ′

I
δMIa M ′

Ia
δNN ′ (−1)2Jr−Mr+N+l ′+l [(2Jr + 1)(2J ′

r + 1)]1/2

(
Jr 2 J ′

r
−Mr Mr − M ′

r M ′
r

){
l Jr N
J ′

r l ′ 2

}

× [(2l + 1)(2l ′ + 1)]1/2

(
l 2 l ′
0 0 0

)
p3(S)p3(Sa)

(
1 1 2

MS − M ′
S MSa − M ′

Sa
Mr − M ′

r

)
(−1)S−MS+Sa−MSa

×
(

S 1 S
−MS MS − M ′

S M ′
S

)(
Sa 1 Sa

−MSa MSa − M ′
Sa

M ′
Sa

)
. (28)

The magnetic dipolar interaction is seen to be diagonal in the
nuclear-spin quantum numbers and to couple the TRAM basis
states with values of Jr differing by 2. The minimum TRAM
basis for the magnetic dipolar interaction should therefore
contain at least three Jr blocks (Jr = 0–2 for the initial N = 0
states) as in the case of the anisotropic hyperfine interaction
considered above. Unlike the atom-molecule interaction po-
tential, the magnetic dipolar interaction does not separately
conserve the rotational and spin angular momentum projec-
tions Mr , MS , and MSa , but does conserve the sum MS + MSa +
Mr .

We now summarize the key advantages of the TRAM basis,
which follow from the above discussion.

(1) Most of the terms in the scattering Hamiltonian,
including the interaction potential (16), the interaction of
the molecule and atom with an external magnetic field,
and the isotropic hyperfine interaction [Eqs. (2) and (18)],
are diagonal in the TRAM quantum number Jr . Thus, the
atom-molecule scattering Hamiltonian is strongly diagonally
dominant in the TRAM representation as shown in Fig. 1(a).
While this nearly block-diagonal structure is superficially
similar to the one which occurs in the TAM basis [33,36],
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there are important differences. Specifically, the Zeeman in-
teraction is the only interaction which is nondiagonal in J
[33,36].

(2) Couplings between the different values of Jr arise only
due to the interaction of molecular rotations with the electron
and/or nuclear spins. These interactions can originate either
from within the diatomic molecule, due to the spin-rotation
interaction (5), or from the intramolecular magnetic dipole-
dipole interaction. These couplings are typically weak.

(3) Because of the nearly block-diagonal structure of the
Hamiltonian in the TRAM basis, one might expect that effi-
cient numerical solutions of CC equations may be obtained
with only the few lowest Jr blocks retained in the basis. As
shown in Sec. III below, this expectation turns out to be true.
This is a key advantage of the TRAM basis, which allows
efficient handling of strongly anisotropic interactions. This
advantage is similar to that provided by the total angular
momentum basis [33,35].

III. RESULTS

In this section, we apply the TRAM representation devel-
oped in the previous section to calculate the cross sections for
ultracold collisions between YbF(2�) molecules and He
atoms in the presence of an external magnetic field. YbF
is of interest for precision searches for the electric dipole
moment of the electron [93], and it has recently been laser
cooled [75]. YbF has a pronounced hyperfine structure, whose
marked effect on cold and ultracold He + YbF collisions
was studied in our previous work using a fully uncoupled
angular momentum basis [54]. These calculations provide a
convenient benchmark, against which we will test our TRAM
approach.

A. Hyperfine-Zeeman energy levels and unphysical states

Figure 2 shows the lowest hyperfine-Zeeman energy levels
of YbF(2�) as a function of magnetic field. The physical
energy levels shown by straight lines are obtained by di-
agonalization of the isolated YbF Hamiltonian (2) in the
single-molecule basis |NMN 〉|SMS〉|IMI〉. The eigenvalues of
the same Hamiltonian in the TRAM basis obtained by diago-
nalizing the matrix in Eq. (10) are shown by symbols. We note
that these sets of levels are not necessarily identical because
the spin-rotation and anisotropic hyperfine interactions couple
the states of different Jr (see Fig. 1). Since our TRAM basis is
truncated at a finite value of Jmax

r , the couplings between the
Jr th and (Jr + 1)th blocks are excluded from consideration,
leading to the appearance of unphysical energy levels, just as
in the case of the TAM representation [33,34,36].

In further analogy with the unphysical states that occur in
the TAM representation [33,34,36], the eigenvectors of the
unphysical states are dominated by contributions from the
highest value of Jr included in the TRAM basis. Consider,
e.g., the unphysical state with the largest deviation from any
physical hyperfine-Zeeman state in the N = 1 manifold. This
state is marked by an arrow in Fig. 2 and its eigenvector can
be expanded in the TRAM basis states |Jr, Mr, MI , MS〉 at
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FIG. 2. Hyperfine-Zeeman energy levels in the ground (N = 0,
bottom) and the first rotationally excited (N = 1, top) manifolds of
YbF(2�) plotted as a function of magnetic field. Solid lines, phys-
ical hyperfine-Zeeman levels; circles, eigenvalues of the molecular
Hamiltonian in the TRAM basis calculated for Nmax = 4, Jmax

r = 2,
and M = 1. The inset shows a portion of the energy-level spec-
tra at higher fields. For N = 0 the deviation of the eigenvalues of
the asymptotic Hamiltonian in the TRAM basis from the physical
hyperfine-Zeeman levels of YbF (�0.01%) is much less than the size
of the symbols.

B = 10−3 T:

|u〉 = 0.83
∣∣2, 2,− 1

2 ,− 1
2

〉 − 0.31
∣∣2, 0, 1

2 , 1
2

〉
+ 0.225

∣∣1, 1, 1
2 ,− 1

2

〉 + · · · , (29)

where the quantum numbers that take fixed values (N = 1 and
l = 2) have been omitted from basis kets for clarity. We see
that by far the largest contribution to the unphysical state is
given by the states in the Jr = 2 block. This suggests that, as
shown in the next section, the unphysical states do not affect
the results of quantum scattering calculations on ultracold
molecular collisions, which are determined by the lowest Jr

states in the TRAM basis.
As shown in the lower panel of Fig. 2, the N = 0 eigen-

states computed in the TRAM basis are nearly identical to
the physical hyperfine-Zeeman states of YbF, with the rel-
ative deviations not exceeding 0.01%. This is because the
different Jr blocks are only coupled by the relatively weak,
field-independent spin-rotation and anisotropic hyperfine in-
teractions. This is in contrast to the TAM representation,
where the different J blocks are coupled by the external
magnetic field, causing the appearance of distinct unphysical
Zeeman states in all N manifolds even in the absence of
hyperfine structure [33,34,36].

The N = 1 manifold has more unphysical states especially
at smaller magnetic fields, where the couplings between the
different Jr blocks are larger than the Zeeman interaction.
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Even for these states, the relative deviation between the phys-
ical and unphysical energies does not exceed 0.07%. The
largest deviation occurs for the state closest to state |9〉 marked
by an arrow in Fig. 2. In addition, the density of unphysi-
cal states in the TRAM basis is significantly lower than in
the TAM representation, where most of the N = 1 states are
unphysical [36]. The lower density of unphysical states rep-
resents an advantage of the TRAM basis over the TAM basis
[33,34,36].

B. Ultracold atom-molecule collision dynamics
in the TRAM basis

To gauge the accuracy and computational efficiency of our
TRAM basis, we have developed a scattering code imple-
menting CC equations in this basis for 2� molecule–1S atom
collisions as described in Sec. II A. The CC equations are
parametrized by the matrix elements of the intramolecular
Hamiltonian of YbF and of the He-YbF interaction potential
as described in Ref. [54] and in Sec. II A.

For comparison with previous quantum scattering calcu-
lations on He + YbF [54] using the fully uncoupled basis,
we used the same cutoff parameter for the rotational states
Nmax = 8, but varied the cutoff parameter Jmax

r = 2 and 3. The
CC equations are integrated using the log-derivative propaga-
tor [94,95] on a grid of R extending from 3.84 to 80 a0 with
the grid step of 0.04 a0. The following values of atomic and
molecular masses were used in CC calculations (in atomic
mass units): mHe = 3.016 03 and mYbF = 192.937 265 2. At
the end of the propagation, the log-derivative matrix is trans-
formed to the basis, in which the asymptotic Hamiltonian
is diagonal, and then matched to the asymptotic boundary
conditions to produce the reactance (K) and scattering (S)
matrices, from which the integral cross sections are obtained
using the standard expressions

σγ→γ ′ = π

k2
γ

∑
M

∑
l,l ′

∣∣δγ γ ′δll ′ − SM
γ l,γ ′l ′

∣∣2
, (30)

where the index γ = 1, 2, . . . labels the eigenvalues of the
asymptotic Hamiltonian in the order of increasing energy (see
Fig. 2). The unphysical states are assigned to the physical
eigenstates that are closest in energy. The calculated cross
sections are converged to � 5%.

Figure 3 compares state-to-state cross sections for ultracold
He + YbF collisions calculated using the TRAM basis set
with reference calculations [54]. The cross sections calcu-
lated using these completely unrelated bases are in excellent
agreement with each other across the entire range of magnetic
fields, validating the accuracy of our TRAM calculations.
Taking the |4〉 → |1〉 transition as an example, the relative dif-
ferences between the TRAM cross sections and the reference
data do not exceed 0.1% at magnetic fields below 0.04 T (for
Jmax

r = 3). The deviations increase to a few percent at higher
magnetic fields, most likely due to incomplete convergence of
the reference results [54].

Using a minimal basis set including the three lowest Jr

blocks (Jmax
r = 2) is sufficient for magnetic fields below 0.1 T.

Above this field value, a higher value of Jmax
r = 3 is required

for the hyperfine transitions |4〉 → |1〉 and |4〉 → |2〉. As
shown in Fig. 2, the final states |1〉 and |2〉 are low-field seek-

FIG. 3. Magnetic-field dependence of the integral cross sec-
tions for ultracold He + YbF collisions with YbF molecules initially
in the fully spin-polarized state |4〉 (see Fig. 2) and the final states
|3〉 (circles), |2〉 (squares), and |1〉 (triangles). Solid lines, TRAM
calculations with Jmax

r = 3; dashed lines, TRAM calculations with
Jmax

r = 2; symbols, benchmark calculations using the fully uncou-
pled basis [54]. The collision energy is 1 mK.

ing, whereas the initial state |4〉 is high-field seeking. Thus,
the transitions |4〉 → |1〉 and |4〉 → |2〉 release an increasing
amount of energy with increasing magnetic field, leading to
the population of higher partial wave states in the outgoing
collision channel, and necessitating the use of larger Jmax

r .
The reference calculations employed the fully uncoupled

basis set with Nmax = 8 and lmax = 9 [54], leading to 2262
coupled channels for the total angular momentum projection
M = 0. By comparison, the TRAM basis with the same num-

FIG. 4. Magnetic-field dependence of the integral cross sec-
tions for ultracold He + YbF collisions with YbF molecules initially
in the rotationally excited state |16〉 and the final Zeeman states
|8〉 (circles), |4〉 (squares), |3〉 (triangles), |2〉 (diamonds), and |1〉
(stars) (see Fig. 2). TRAM calculations with Jmax

r = 3 (solid lines)
are compared with benchmark calculations (symbols) using the fully
uncoupled basis [54]. The collision energy is 1 mK.
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ber of rotational states and Jmax
r = 2 includes 274 channels

for the same value of M, a reduction in the number of coupled
channels by the factor of 8.2. The computational cost of solv-
ing CC equations scales as N3 with the number of channels.
Thus, using the TRAM basis leads to a 550-fold increase
in computational efficiency compared to the fully uncoupled
basis used in the previous calculations [54].

Figure 4 shows the inelastic cross sections for YbF
molecules initially in the highest low-field seeking hyperfine-
Zeeman sublevel of the N = 1 rotational state (state |16〉 in
Fig. 2). Inelastic collisions with He atoms can either conserve
or change the rotational state of YbF. All the state-to-state
cross sections calculated using the TRAM basis are in ex-
cellent agreement with the benchmark values, demonstrating
the ability of the TRAM basis set to accurately describe
ultracold collisions of rotationally excited molecules. The
unphysical states shown in the upper panel of Fig. 2 do not
affect the results of CC calculations for reasons discussed in
Sec. III A.

IV. SUMMARY AND OUTLOOK

Hyperfine interactions play an essential role in ultracold
atomic and molecular collisions, being largely responsi-
ble, for, e.g., positions and widths of magnetic Feshbach
resonances in ultracold collisions of alkali-metal atoms [41].
Quantum scattering calculations must therefore account for
hyperfine structure in order to provide a realistic picture of
ultracold atom-molecule and molecule-molecule collision dy-
namics in the presence of external electromagnetic fields.

While it is possible to include the hyperfine structure di-
rectly in the TAM representation, this approach is hindered
by two difficulties. First, unphysical states show up in the
spectrum of threshold energy levels in the presence of external
fields [33,34,36]. Even though these states do not affect the
dynamics of ultracold collisions, and they can be eliminated
by augmenting the basis set [36], they can pose a challenge
for bound-state calculations [36,96]. Second, constructing the
TAM basis functions requires multiple angular momentum
coupling operations to form the eigenstates of Ĵ2 and ĴZ . This
leads to complicated expressions for the matrix elements of
the interaction potential and/or the centrifugal kinetic energy
[33,35], which can be challenging to implement in actual
numerical calculations.

Here, we have explored an alternative basis set composed
of products of eigenfunctions of the TRAM of the collision
complex Jr and the spin basis functions of its constituent
atoms and molecules. In the absence of spin-rotation in-
teractions, Jr is conserved and the scattering problem can
be rigorously block diagonalized and solved separately for
each value Jr even in the presence of external magnetic field
and isotropic hyperfine interactions. This makes the TRAM
basis particularly promising for molecules, whose collision
dynamics is dominated by the isotropic hyperfine and Zee-
man interactions (in addition to the electrostatic interaction
potential). By contrast, the scattering Hamiltonian in the TAM
representation [33,34] is not block diagonalizable in the pres-
ence of external magnetic fields.

In addition, the matrix elements of the Hamiltonian in the
TRAM basis are simple to evaluate and program, and the

unphysical states are eliminated for N = 0. Even though such
states are still present for N � 1, their density is significantly
reduced compared to that in the TAM representation [36].
This is because the unphysical states in the TRAM basis arise
due to the matrix elements of the anisotropic hyperfine and
spin-rotation interactions that are off diagonal in Jr and inde-
pendent of magnetic field. These matrix elements are small
compared to those of the Zeeman interaction at moderate to
strong magnetic fields (above � 100 G). As a result, most of
the eigenvalues of the asymptotic Hamiltonian in the TRAM
basis are close to the physical hyperfine-Zeeman states, and
thus the density of unphysical states is low. By contrast, in
the TAM representation, the matrix elements off diagonal in
J responsible for the unphysical states are due to the Zeeman
interaction [33], which is generally much stronger, and causes
a substantially higher density of unphysical states, especially
for N � 1 [36].

We formulate the quantum scattering problem in the
TRAM basis for collisions of 2� molecules with 1S atoms
(Sec. IIA) and with 2S atoms (Sec. IIB). The generalized
spin-rotation interactions, which couple the different values
of Jr , include the electron-spin–rotation and anisotropic hy-
perfine interactions, as well as the intermolecular magnetic
dipole-dipole interaction (see Fig. 1). When these interactions
are non-negligible, they can be incorporated in a straight-
forward manner by including several Jr states in the TRAM
basis as discussed in Sec. II. This is demonstrated by our
CC calculations on ultracold s-wave He + YbF(2�) col-
lisions in the regime where the electron-spin–rotation and
anisotropic hyperfine interactions in YbF are non-negligible
(see Sec. III). With the three lowest Jr blocks in the basis, we
observe excellent agreement of state-to-state scattering cross
sections with prior calculations [54] using eight times fewer
TRAM basis functions, leading to a computational gain of
about three orders of magnitude over the fully uncoupled basis
[54]. Even larger gains are expected for ultracold collisions of
2� molecules with 2S atoms considered in Sec. IIB.

Despite mounting experimental studies of Feshbach res-
onances in ultracold atom-molecule [45,46,48,65,97,98] and
molecule-molecule [51] collisions, rigorous quantum dynam-
ics calculations on such collisions are currently beyond reach.
As discussed above, this is partly due to the difficulties as-
sociated with including the effects of atomic and molecular
hyperfine structure and/or external fields. It is our hope that
the computationally efficient and easy-to-implement TRAM
representation will facilitate such calculations in the near
future. It would also be interesting to extend the TRAM ap-
proach to ultracold molecule-molecule collisions and to other
types of CC basis sets, such as those defined in the body-fixed
coordinate frame [13,33,99].

ACKNOWLEDGMENTS

We thank Dr. Masato Morita for verifying Eq. (28). The
work at the University of Nevada, Reno was supported by
the NSF through the CAREER program (Grant No. PHY-
2045681). The work at JILA was supported by the NSF (Grant
No. PHY-2012125) and by NASA Jet Propulsion Laboratory
(Grant No. 1502690).

053317-10



ULTRACOLD MOLECULAR COLLISIONS IN MAGNETIC … PHYSICAL REVIEW A 108, 053317 (2023)

APPENDIX A: MATRIX ELEMENTS OF THE ELECTRON-SPIN–ROTATION INTERACTION IN THE TRAM BASIS

Here, we derive the matrix elements of the intramolecular electron-spin–rotation interaction in the TRAM basis. Expanding
the spin-rotation interaction in rank-1 spherical tensor operators N̂ (1)

±1 = ∓ 1√
2
N̂± = ∓ 1√

2
(N̂X ± N̂Y ) and N̂ (1)

0 = N̂Z (and similarly

for Ŝ(1)
p ) [84],

γSRN̂ · Ŝ = γSR

1∑
p=−1

(−1)qN̂ (1)
p Ŝ(1)

−p, (A1)

and using the direct-product structure of the TRAM basis gives (omitting the basis functions |IMI〉 for clarity)

〈(Nl )JrMr |〈SMS|γSRN̂ · Ŝ|(N ′l ′)J ′
rM ′

r〉|SM ′
S〉 = γSR

1∑
p=−1

(−1)q〈(Nl )JrMr |N̂ (1)
p |(N ′l ′)J ′

rM ′
r〉〈SMS|Ŝ(1)

−p|SM ′
S〉. (A2)

Applying the Wigner-Eckart theorem to the rotational matrix element on the right-hand side,

〈(Nl )JrMr |N̂ (1)
p |(N ′l ′)J ′

rM ′
r〉 = (−1)Jr−Mr

(
Jr 1 J ′

r
−Mr p M ′

r

)
〈(Nl )Jr ||N̂ (1)||(N ′l ′)J ′

r〉, (A3)

and simplifying the resulting double-bar matrix element [84] we get

〈(Nl )JrMr |N̂ (1)
p |(N ′l ′)J ′

rM ′
r〉 = (−1)Jr−Mr

(
Jr 1 J ′

r
−Mr p M ′

r

)
δll ′ (−1)N+l+J ′

r+1[(2Jr + 1)(2J ′
r + 1)]1/2

×
{

N Jr l
J ′

r N 1

}
[(2N + 1)N (N + 1)]1/2δNN ′ . (A4)

Using

〈SMS|Ŝ(1)
−p|SM ′

S〉 = (−1)S−MS

(
S 1 S

−MS −p M ′
S

)
[(2S + 1)S(S + 1)]1/2 (A5)

in combination with Eqs. (A4) and (A2), we obtain Eq. (13) of the main text.

APPENDIX B: MATRIX ELEMENTS OF THE ANISOTROPIC HYPERFINE INTERACTION IN THE TRAM BASIS

The anisotropic hyperfine interaction given by the last term in Eq. (5) is composed of three tensor operators, which depend
on the rotational, electron-spin, and nuclear-spin variables:

ĤAHF
mol = c

√
6

3

(
4π

5

)1/2 2∑
q=−2

(−1)qY2−q(θr, φr )[Î ⊗ Ŝ](2)
q . (B1)

Taking the matrix elements of this expression in the TRAM basis, we find

〈(Nl )JrMr |〈SMS|〈IMI |ĤAHF
mol |(N ′l ′)J ′

rM ′
r〉|SM ′

S〉|IM ′
I〉 = c

√
6

3

(
4π

5

)1/2 2∑
q=−2

(−1)q〈(Nl )JrMr |Y2−q|(N ′l ′)J ′
rM ′

r〉

× 〈SMS|〈IMI |[Î ⊗ Ŝ](2)
q |SM ′

S〉|IM ′
I〉. (B2)

The first matrix element on the right-hand side can be evaluated using the Wigner-Eckart theorem [84]

〈(Nl )JrMr |Y2−q|(N ′l ′)J ′
rM ′

r〉 = (−1)Jr−Mr

(
Jr 2 J ′

r
−Mr −q M ′

r

)
〈(Nl )Jr ||Y (2)||(N ′l ′)J ′

r〉 (B3)

with the double-bar matrix element given by [84]

〈(Nl )Jr ||Y (2)||(N ′l ′)J ′
r〉 = δll ′ (−1)l+J ′

r [(2Jr + 1)(2J ′
r + 1)]1/2

{
N Jr l
J ′

r N ′ 2

}(
5

4π

)1/2

[(2N + 1)(2N ′ + 1)]1/2

(
N 2 N ′
0 0 0

)
.

(B4)

It remains to consider the spin matrix element

〈SMS|〈IMI |[Î ⊗ Ŝ](2)
q |SM ′

S〉|IM ′
I〉 =

∑
qI ,qS

(−1)q
√

5

(
1 1 2
qI qS −q

)
〈IMI |Î (1)

qI
|IM ′

I〉〈SMS|Ŝ(1)
qS

|SM ′
S〉 (B5)

053317-11



TIMUR V. TSCHERBUL AND JOSE P. D’INCAO PHYSICAL REVIEW A 108, 053317 (2023)

where we have used the definition of the tensor product of two spherical tensor operators [84]. Using once again the Wigner-
Eckart theorem

〈IMI |Î (1)
qI

|IM ′
I〉 = (−1)I−MI

(
I 1 I

−MI qI M ′
I

)
[(2I + 1)I (I + 1)]1/2 (B6)

and the corresponding expression for the matrix elements of Ŝ(1)
qS

, we obtain

〈SMS|〈IMI |[Î ⊗ Ŝ](2)
q |SM ′

S〉|IM ′
I〉 =

∑
qI ,qS

(−1)q
√

5

(
1 1 2
qI qS −q

)
(−1)I−MI +S−MS

(
I 1 I

−MI qI M ′
I

)

× [(2I + 1)I (I + 1)(2S + 1)S(S + 1)]1/2

(
S 1 S

−MS qS M ′
S

)
. (B7)

This expression, combined with Eqs. (B4) and (B2), gives Eq. (14) of the main text.

APPENDIX C: MATRIX ELEMENTS OF THE MAGNETIC DIPOLE-DIPOLE INTERACTION IN THE TRAM BASIS

Finally, we consider the matrix elements of the magnetic dipole-dipole interaction, which does not affect the nuclear-spin
degrees of freedom, and is thus diagonal in MI and MIa . Omitting the nuclear-spin basis functions and using the shorthand
notation |MSMSa〉 for the electron-spin basis functions |SMS〉|SaMSa〉 the matrix elements take the form

〈(Nl )JrMr |〈MSMSa |V̂MDD|(N ′l ′)J ′
rM ′

r〉|M ′
SM ′

Sa
〉 = −

√
24π

5

α2

R3

∑
q

(−1)q〈(Nl )JrMr |Y2,−q(R̂)|(N ′l ′)J ′
rM ′

r〉

× 〈MSMSa |[Ŝ ⊗ Ŝa](2)
q |M ′

SM ′
Sa

〉. (C1)

The Wigner-Eckart theorem allows us to factorize the orbital matrix element involving the spherical harmonics Y2,−q(R̂) as

〈(Nl )JrMr |Y2,−q(R̂)|(N ′l ′)J ′
rM ′

r〉 = (−1)Jr−Mr

(
Jr 2 J ′

r
−Mr −q M ′

r

)
〈(Nl )Jr ||Ŷ (2)||(N ′l ′)J ′

r〉. (C2)

Evaluating the double-bar matrix element [84] we obtain

〈(Nl )JrMr |Y2,−q(R̂)|(N ′l ′)J ′
rM ′

r〉 = (−1)Jr−Mr

(
Jr 2 J ′

r
−Mr −q M ′

r

)
δNN ′ (−1)N+l ′+Jr [(2Jr + 1)(2J ′

r + 1)]1/2

{
l Jr N
J ′

r l ′ 2

}

× (−1)l [(2l + 1)(2l ′ + 1)]1/2

√
5

4π

(
l 2 l ′
0 0 0

)
. (C3)

The spin matrix element in Eq. (C1) can be evaluated as described in Appendix B:

〈MSMSa |[Ŝ ⊗ Ŝa](2)
q |M ′

SM ′
Sa

〉 =
∑

qS ,qSa

(−1)q
√

5

(
1 1 2
qS qSa −q

)
(−1)S−MS+Sa−MSa

(
S 1 S

−MS qS M ′
S

)

× [(2S + 1)S(S + 1)]1/2[(2Sa + 1)Sa(Sa + 1)]1/2

(
Sa 1 Sa

−MSa qSa M ′
Sa

)
. (C4)

Combining this result with Eq. (C3) and setting qS = MS − M ′
S , qSa = MSa − M ′

Sa
, and −q = Mr − M ′

r , we obtain Eq. (28) of
the main text.
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