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Faraday waves on a bubble-trapped Bose-Einstein-condensed binary mixture
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By studying the dynamic stability of Bose-Einstein-condensed binary mixtures trapped on the surface of an
ideal two-dimensional spherical bubble, we show how the Rabi coupling between the species can modulate
the interactions leading to parametric resonances. In this spherical geometry, the discrete unstable angular
modes drive both phase separations and spatial patterns, with Faraday waves emerging and coexisting with
an immiscible phase. Noticeable is the fact that, in the context of discrete kinetic energy spectrum, the only
parameters to drive the emergence of Faraday waves are the s-wave contact interactions and the Rabi coupling.
Once analytical solutions for population dynamics are obtained, the stability of homogeneous miscible species
is investigated through Bogoliubov–de Gennes and Floquet methods, with predictions being analyzed by full
numerical solutions applied to the corresponding time-dependent coupled formalism.
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I. INTRODUCTION

Spatial pattern formations can be observed in different
branches of physics, whenever describing nonlinear wave
propagations such as in fluids outside equilibrium and non-
linear optics [1]. Indeed, surface wave excitations, which
appear as patterns on liquids inside a vibrating receptacle,
were first noticed and described by Faraday in 1831 [2], fol-
lowing his famous experiments on the formation of patterns
in vibrating surfaces. Over the past few-decades progress
achieved in reaching near-zero temperatures, allowing the
feasibility of Bose-Einstein condensates (BECs) in ultracold
gases [3–5], together with new advanced techniques to con-
trol particle interactions, have opened new ways to explore
and investigate how some well-known classical phenomena
can stand and be realized in atomic trapped quantum fluids
[6,7]. In atomic gases, spatial patterns can be led by para-
metric modulations, with the emergence of Faraday waves
being reported in several experimental and theoretical inves-
tigations [8–18]. Particularly concerning theoretical activities
on two-dimensional (2D) parametric instabilities in quantum
gases, we have the recent work by Fujii et al. [19] in which
past and present studies can be traced from the references
therein. With Faraday patterns in a two-component superfluid,
quite recently we had a report in [20] on the observation of
massless and massive collective excitations. Time-dependent
modulations in trap potential or scattering length manipula-
tions via Feshbach mechanisms [21] are able to drive systems
to target excited states [22], induce time-crystal formations
[23], manipulate population dynamics [24,25], as well as
explore the Bardeen-Cooper-Schrieffer and BEC crossover,
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as was recently reported in [26] for the bubble-trapped two-
component atomic Fermi superfluid. On the actual possible
technological applications related to manipulations of ultra-
cold atoms in matter waves, the so-called atomtronics, we
have a recent review in [27]. In binary dipolar quantum gases,
it was also demonstrated in [28] the possibility to create per-
sistent density waves, with Faraday instabilities generated by
the population imbalance between the two hyperfine states.
Another interesting way to induce Faraday waves was pro-
posed in [29], considering interactions effectively modulated
by the Rabi coupling between states. An effective interaction
actually leads the dynamics [30,31], being able to trigger
parametric resonances [32]. Also applied by Raman-induced
spin-orbit coupling [33], this approach suggests some advan-
tages in dealing with condensate mixtures.

Currently, condensate mixtures can be performed with
the same atomic species initially set into different hyperfine
states [34], but also can be handled with different atomic
species [35]. It is possible to study how one species is
affected by the presence of another one [36]. We can observe
how the elementary excitations can grow and induce phase
separation depending on the interaction parameters [37,38].
An open question is how Faraday waves can be achieved
in closed geometries, especially when the excitation is led
by Rabi coupling. We turn our attention to two-dimensional
(2D) bubble shells in the spherical closed geometry, where
the spectrum of elementary excitation is discrete, and
therefore spatial patterns need very special conditions to be
accomplished. Following previous theoretical investigations
considering 2D shell-like potentials [39,40] confining
condensates in spherical and/or ellipsoidal surfaces, the
recent particular interest is concerned to microgravity
Bose gas experiments performed aboard the International
Space Station [41–43], although bubble BEC has not yet
been achieved in space. Looking for alternative closed 2D
geometries, Earth experiments have been reported on a shell

2469-9926/2023/108(5)/053315(17) 053315-1 ©2023 American Physical Society

https://orcid.org/0000-0003-3627-6474
https://orcid.org/0000-0002-2811-9797
https://orcid.org/0000-0003-4720-3203
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.053315&domain=pdf&date_stamp=2023-11-16
https://doi.org/10.1103/PhysRevA.108.053315


BRITO, TOMIO, AND GAMMAL PHYSICAL REVIEW A 108, 053315 (2023)

bubble BEC produced by exploring the immiscibility of
two species [44], as well as by controlling a quantum gas
confined onto a shell-shaped surface [45]. In this context,
several related problems can be traced through recent works
[46–51] in which fundamental properties can be found.
More specifically, among others, we have studies on vortex
dynamics and stability [38,52–54], dipole interactions
[55,56], Berezinskii-Kosterlitz-Thouless transition [57],
thermodynamics properties [58,59], and bubble mixtures [60].

Our focus in the present work is on homogeneous conden-
sates coupled by Rabi oscillations in a 2D spherical hollow
shell. Inspired by the results given in [29], we expect that
the stability dynamics would be strongly affected by the Rabi
coupling, triggering unstable modes, which can lead to the
rising of new spatial patterns, eventually evolving to Faraday
waves. In fact, our findings point out that the Rabi oscillations
are able to drive the condensates to states where the Faraday
pattern coexists with an immiscible phase, where unstable
modes are identified by wave number. The same unstable
angular modes which break a condensate into pieces [38] are
able to induce Faraday patterns’ excitations. We first study
the stability dynamics by a comparative analysis of the ele-
mentary excitations spectrum obtained via the Bogoliubov–de
Gennes (BdG) [7] method with the Floquet approach [24].
Next, by performing the full dynamics with the corresponding
Gross-Pitaevskii (GP) formalism, we observe that the Floquet
approach is more suitable to study our coupled system than
the BdG scheme because the Floquet method takes into ac-
count dynamical effects which cannot be assimilated by the
BdG approach. By tuning the Rabi coupling under the given
conditions, Faraday waves can emerge, persisting even in the
immiscible phase.

The next sections are organized as follows. In Sec. II, we
present the theoretical model for a Rabi-coupled two BEC
mixture confined in the surface of a rigid spherical shell. The
stability analyses are provided in Secs. III and IV by applying,
respectively, the BdG approach to stationary solutions and
the Floquet method to homogeneous oscillating solutions.
In Sec. V, the atom-population dynamics is performed by
solving the full GP formalism in which stability predictions
are checked and we can observe the emergence of Faraday
waves. Finally, in Sec. VI, we have our main conclusions
with some perspectives. Among the four appendices with
complementary material, particular attention should be given
to Appendix B, which provides exact analytical solutions for
binary density oscillations in a spherical bubble.

II. RABI-COUPLED BEC MIXTURE
ON A RIGID SPHERICAL SHELL

We consider a binary BEC mixture with two atomic species
sharing the same mass M, which can be in two different
hyperfine states. Our study is performed by assuming that
both condensates are trapped on the surface of a rigid spheri-
cal shell, aiming to mimic the cold-atom bubble experiments
currently being performed in microgravity environments. For
that a reduction of the original three-dimensional (3D) GP
coupled equation is performed to a corresponding 2D for-
malism. The 2D approximation is reasonable as long as the
radial excitations are inaccessible regarding the large amount

of energy needed for it. This is true when the thickness δR
of the 3D spherical shell of radius R is comparatively very
small (δR � R), as was extensively discussed in [38]. We also
stress that our main concern is on the dynamic stability of the
system, i.e., a context where we are not taking into account
energetic instabilities, which could be triggered by a thermal
cloud that is neglected here.

The condensates can be described in the mean-field ap-
proach as a system of two coupled GP equations [6,7], with
atoms transferred from one state to the other by Rabi oscilla-
tions [29], by taking into account real Rabi coupling �. With
the total number of atoms N , the coupled condensates with
respective populations are given by N1(t ) and N2(t ). They
interact with each other through their nonlinear two-body
parameters gi j ≡ 4π h̄2ai jN/M (i, j = 1, 2), where a j j and
a12 = a21 are, respectively, the intra and interspecies s-wave
atom-atom scattering lengths. With this definition, we assume
the total wave function normalized to 1, with each component
j = 1, 2 normalized to Nj (t )/N . Throughout this paper, with
the exception of Appendix A, we use dimensionless variables
and quantities by taking the bubble radius R as the length unit,
with h̄2/(MR2) and MR2/h̄ being the energy and time units,
respectively. The dimensional reduction, from three to two
dimensions is detailed in Appendix A, with the adimensional-
ization being explained at the end by factoring the energy unit.
In this way, we end up with the following 2D coupled GP
formalism describing each wave function � j ≡ � j (θ, φ; t )
normalized to Nj :

i∂t� j=1,2 = − 1

2 sin θ

[
∂θ (sin θ ∂θ ) + 1

sin θ
∂2
φ

]
� j

+
∑
i=1,2

g ji|�i|2� j + (−1) j i��3− j, (1)

where θ ∈ [0, π ] and φ ∈ [0, 2π ] are, respectively, the usual
polar and azimuthal angular positions in the sphere and, the
notation ∂χ is being used for partial derivative of χ . Also,

represented in the 2D spherical surface gi j =
√

8πai j N
δR (with

δR being the thickness of the bubble shell) are the nonlinear
parameters for the inter and intraspecies interactions, derived
in Appendix A from the original 3D formalism after factoring
the energy unit.1 Our purpose is to study the stability of
a miscible homogeneous system under different conditions,
considering stationary as well as time-oscillating solutions.

The spatial part of (1) is directly proportional do the
square of the angular momentum L, given by L2/(2h̄2),
with the exact discrete 
-state eigenvalues ε
 = 
(
 + 1)/2
corresponding to the spherical harmonics eigenfunctions
Y
,m(θ, φ). Therefore, it is appropriate to redefine the com-
ponent wave functions for specific 
 states as � j (θ, φ; t ) ≡
ψ j,
(t )Y
,m(θ, φ), such that, as −
 � m � 
, we can have
2
 + 1 states with the same eigenvalue ε
. For convenience,
the explicit time and 
 labels will be removed within the redef-
inition ψ j ≡ ψ j,
(t ). To verify the time-dependent oscillatory

1The constant factor in the definition of gi j is model dependent,
with the given factor obtained by assuming a Dirac-delta-like radial
Gaussian function with center in R and width δR � R.
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behavior of ψ j , let us assume the simplest case with � = 0,
Nj = N/2, g j j = g, and g21 = g12, with the stationary-state
wave functions identical for both components

ψ
(s)
j =

√
1

8π
exp

[
−i

(
g + g12

8π

)
t

]
, (2)

where (g + g12)/(8π ) is the chemical potential. This station-
ary case can be easily extended to homogeneous periodic
solutions for g12 = g and � �= 0. By including a time-
dependent oscillating factor in the normalization implying
in the periodic exchange of atoms between the species, the
coupled wave functions are expressed by(

ψ
(0)
1

ψ
(0)
2

)
=
√

1

4π

(
cos

(
�t + π

4

)
sin
(
�t + π

4

)
)

exp
[
−i
( g

4π

)
t
]
. (3)

The period of oscillations is given by 2π/�, which does not
depend on the interactions being two times the period for the
densities T0 ≡ π/�. For � �= 0 and g12 �= g, a more general
periodic solution of (1) can be derived with

ψ j (t ) = f j (t ) exp (−iγ jt ), (4)

where f j (t ) are periodic complex functions [satisfying | f j (t +
T )|2 = | f j (t )|2 for a period T ], with γ j being real and time-
independent phases. An equivalent approach is to write f j (t )
as real functions with the time-dependent phases to be de-
termined. By assuming both states are equally populated at
t = 0, we have |ψ j (0)|2 = 1/(8π ). The atom-number ratios
of the two-atomic species, given by Nj (t )/N = 4π |ψ j (t )|2,
oscillate periodically within a cycle given by the period T and
amplitude A (maximum exchange number-ratio of particles),
which, in general, are functions of the Rabi parameter � and
nonlinear interactions gi j . As shown for g12 = g, T = T0 =
π/� does not depend on the interactions, with each density
|ψ (0)

j (t )|2 oscillating between zero and 1/4π . However, it can
be shown that the period decreases as |g − g12| increases, with
the maximum occurring when g12 = g [29].

By considering (4) with �g ≡ (g12 − g) �= 0 and � �= 0,
as shown in Appendix B, one can obtain the general solution
with time-dependent phases γ j not identical for both species
[as verified in (B18), where γ j is replaced by γ̄ j (t ), the phases
will depend on the respective densities |ψ j |2]. However, for
the following stability analyses we can consider they are
carrying only the identical constant part γ1 = γ2 ≡ γ0 = (g +
g12)/(8π ), such that the time-dependent parcel of the phases
is retained by the complex functions f j , which in this case are
satisfying

∂tt f j +
[
�2 + (�g)2

( | f2|2 − | f1|2
2

)2
]

f j = 0. (5)

The derivation of the above, obtained from (1) with (4),
follows analogously as shown in Appendix B, from (B1) to
(B4). For g12 = g, this equation is identified with the har-
monic oscillator equation having the frequency given by the
Rabi parameter. The atom-ratio difference, which is defined
by ν(t ) ≡ N2−N1

N = 4π (| f2|2 − | f1|2) = 4π (|ψ2|2 − |ψ1|2),
satisfies the undamped unforced Duffing oscillator motion

described by [61,62],

∂ttν + 4

[
�2 + 1

2

(
�g

8π

)2

ν2

]
ν = 0, (6)

which has the exact solutions given by Jacobi elliptic periodic
functions for which the period is expressed by

TK (�,α) = 2√
�2 + α2

K

( −α2

�2 + α2

)
, (7)

with α ≡
(A�g

8π

)
, (8)

where A is the amplitude of the density difference ν oscilla-
tions, with K (x) being the first-kind Jacobi elliptic function
[63]. For details, see Appendix B, where it is shown that this
oscillating period is exact and can be obtained even before
the explicit form of ν(t ) is obtained. Here, for a convenient
resemblance with the harmonic oscillator sinusoidal form, we
assume ν(t ) identified with

ν(t ) = A sin

[
2t

√
�2 + α2

2

(νA

A
)2
]
, (9)

where, for the moment, A and νA are parameters which can
be obtained from the exact solution of the Duffing equation.
Within the present normalization of the coupled equation A �
1, with 1 being for (�g) = 0. As derived in the Appendix B,
constrained by the periodic conditions, A is a function of the
ratio (�g)/� given by

A
8π

=
√

2
�

�g

⎡
⎣
√

1 +
(

�g

8π�

)2

− 1

⎤
⎦

1/2

. (10)

With the atom-ratio difference expressed by (9), the exchange
oscillating time interval (from A to −A) is one-half of the
density period given by

T = π√
�2 + α2

2

(
νA
A
)2

, (11)

which has an exact agreement with (8) for α = 0 (�g = 0),
K (0) = π/2. By matching (11) with (8) in the other extreme,
� = 0 (the stationary limit), we obtain(νA

A
)

=
(

π√
2K (−1)

)
= 1.6945. (12)

In Fig. 1, where we display the exact numerical results for
the dependence of the oscillating period T on the interaction
difference �g for a few values of the Rabi frequency �

[Fig. 1(a)], we also show the perfect agreement between the
expressions (11) and (8) in Fig. 1(b). In Fig. 1(a), one can also
notice explicitly how the oscillation period diminishes as the
Rabi coupling increases.

To illustrate the density behavior, when considering dif-
ferent Rabi couplings and interactions, we also present two
panels in Fig. 2, with few samples of full-numerical solu-
tions for the corresponding density oscillations, together with
close-approximated analytical solutions obtained by consid-
ering (5), as detailed in Appendix B. Figure 1(a) shows the
behavior of the densities for the particular cases with g12 = g
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FIG. 1. In panel (a), the density oscillating period T is given
as a function of the absolute difference of the interaction param-
eters |�g| for three different Rabi couplings �, as indicated. In
panel (b), the perfect agreement between analytical expressions for
the Duffing period TK (empty-triangles) and T (solid-line), respec-
tively, is shown, multiplied by �, given by (8) and (11), with
α = A�g

8π
. Within the defined units all quantities are presented as

dimensionless.

FIG. 2. Time evolution of the atom-number ratio Nj (t )/N ≡
4π |ψ j (t )|2 ≡ 4πnj , with initial condition Nj (0) = N/2 for given
Rabi couplings �. In both panels, (a) for |�g| = 0 and (b) for
|�g| = 10, the initially decreasing (increasing) lines refer to species
1 (species 2) (horizontal line for � = 0). In panel (b), the full-
numerical solutions (legend box) match with the corresponding solid
lines, given by (9) for (A, �) = (0.7873, 0.2), (0.6261, 0.1), and
(0.2214, 0.01), with (νA/A) = π/(

√
2K (−1)) = 1.6945. Within

the defined units all quantities are presented as dimensionless.

when the two components follow the simple analytical ex-
pressions (3). In contrast, Fig. 1(b) illustrates the behavior
of a more general case with g12 �= g, according to (4), when
the solutions deviate from the simple sinusoidal form. For
a given Rabi parameter �, as the differences between the
interactions (|g − g12|) increase, the number of particles being
exchanged (represented by the corresponding amplitudes) de-
creases, oscillating within a smaller interval. Correspondingly,
also noticeable in Figs. 1 and 2, is the effect of symme-
try breaking; when we break the perfect balance between
intra and interspecies interactions the intercondensate atom
exchange frequency increases.

The perfect agreement between the expressions (11) and
(8) is shown in Fig. 2(b), which implies that (9) is a close ap-
proximation to the exact solution of the Duffing equation. This
fact is confirmed by some sample results shown in Fig. 2(b),
where analytical results are compared with full numerical
ones. From (9) both densities can be written as

| f j (t )|2 = 1

8π
+ (−) j A

8π
sin

[
2t

√
�2 + α2

2

(νA

A
)2
]

−→ 1

4π

{
cos2(�t )

sin2(�t )
for �g → 0 (A → 1). (13)

As the coupled system is normalized to 1, with one den-
sity orthogonal to the other, the extremes for the difference
are ±A, which happens when one of the species is at the
maximum with the other at the minimum. When � → 0
[or � � |�g|/(8π )], we have the other extreme, with (13)
satisfying the stationary case (2), with both densities be-
ing identical, | f j |2 = 1/(8π ). As |�g| increases, the periodic
atom exchange between the coupled condensates decreases till
reaching the stationary limit.

With respect to the Rabi frequency �, more time is needed
for an oscillating solution to complete each cycle with lower
values of � than for higher ones. As verified in Fig. 2, for the
initial time interval, lower frequencies provide almost linear
behaviors (increasing or decreasing) with time when com-
pared with the corresponding behavior obtained with higher
frequencies. So, at short times, when the Rabi coupling is
weak (� → 0), stationary solutions and oscillating ones are
likely to be the same. This is no longer true for strong cou-
pling.

III. BOGOLIUBOV–DE GENNES STABILITY ANALYSIS

The role of the Rabi coupling � on stationary solutions
(2) is studied in this section by performing a dynamic stability
analysis, using the BdG method [37,38]. Within this approach,
small amplitude oscillations are considered around the uni-
form stationary solution (3). With the perturbations being
eigenfunctions of the kinetic energy operator, we can express
the perturbed wave functions by 
-angular-mode oscillations,
in terms of the spherical harmonics Y
,m(θ, φ):

ψ
(s)
j,
 (θ, φ; t ) =

{√
1

8π
+ u(s)

j,
Y
,m(θ, φ)e−iω
t

+ v
(s)∗
j,
 Y ∗


,m(θ, φ)eiω∗

 t

}
e−iμt , (14)
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where u(s)
j,
 and v

(s)
j,
 are complex parameters to be determined.

The spectral solutions are given by ω
, with 
 being the spe-
cific angular mode oscillations. Therefore, all the perturbation
terms of (14) are exact solutions of the linear part of (1) [38],
with eigenvalues ε
 ≡ 
(
 + 1)/2. The particular simplified
symmetric form of (1) allows us to assume perturbations with
no dependence on the azimuthal mode excitation, given by m
(an integer running from −
 to +
), which can be arbitrar-
ily chosen. Therefore, in the exponential factors of (14), the
frequency parameters ω
 are excitation modes that carry only
the angular momentum index 
. They are, in general, complex
numbers, with nonzero imaginary parts when the system be-
comes dynamically unstable. By initially assuming they are
real numbers, we consider parameters such that the system
is in a stable configuration. As we vary these parameters,
for some specific modes of oscillation the system becomes
unstable, acquiring nonzero imaginary parts.

By inserting the perturbation (14) into (1) and neglecting
the second and higher-order amplitude terms, we obtain the
corresponding BdG matrix equation

[M(s) − ω
]u(s)

 = 0, (15)

where M(s) contains the model parameters gi j and �,

M(s) =

⎡
⎢⎢⎢⎢⎣

ε
 + g
8π

g
8π

g12

8π
− i� g12

8π

− g
8π

−ε
 − g
8π

− g12

8π
− g12

8π
− i�

g12

8π
+ i� g12

8π
ε
 + g

8π

g
8π

− g12

8π
− g12

8π
+ i� − g

8π
−ε
 − g

8π

⎤
⎥⎥⎥⎥⎦,

(16)

and u(s)

 is the column vector defined by the perturbed ampli-

tudes in (14) with transpose [u(s)
1,
 v

(s)
1,
 u(s)

2,
 v
(s)
2,
]T. By solving

the corresponding determinant, four possible solutions for
each 
 mode are obtained given by

ω2

,± =

(
ε2

 + ε
 g

4π

)
+ �2 ± 2

√(
ε2

 + ε
 g

4π

)
�2 + ε2


 g2
12

(8π )2
.

(17)

However, two of them with opposite overall signs are redun-
dant as they correspond to exchanging signals in the original
definitions, such that only the positive ones will be considered.
The system is said to be dynamically stable if these frequen-
cies are real: Im(ω
,±) = 0; becoming dynamically unstable
when some of the solutions became complex: Im(ω
,±) �= 0.
In Fig. 3, we present a BdG stability diagram, which depicts
how large the stable region is as one varies the interactions.
By comparing the Figs. 3(a) and 3(b), we verify that the Rabi
strength has an important role in rising new stability regions.

IV. FLOQUET STABILITY ANALYSIS

Let us now consider the evolution of the system given by
the homogeneous oscillating solutions (4) under small ampli-
tude oscillations to better take into account the role of Rabi
coupling in the dynamics. For that we can study the solutions
dynamically by the time-dependent Floquet method [29,33],
using small amplitude oscillations. For the present Floquet

FIG. 3. BdG stability diagrams for the interaction parameters
g12 versus g, as given by (17). Stable regions [Im(ω
,±) = 0] are
represented in black, with unstable 
 modes [Im(ω
,±) �= 0] (with 


values indicated inside the regions) are in colors (violet for 
 = 1 and
orange for 
 = 2). The Rabi couplings � = 0.1, 0.9 are indicated at
the top of the respective panels. Within the defined units all quantities
are presented as dimensionless.

stability analysis, we are considering that the phases of the
wave-function component ψ j (θ, φ; t ) have a common time-
independent part given by γ j = γ = (g + g12)/(8π ), with
f j (t ) being complex, carrying any other relevant part of the
phases. Another equivalent approach, with time-dependent
phases γ j and real f j (t ), is detailed in Appendix B. In this
case, by applying small amplitude oscillations in (4), we have

ψ j (θ, φ; t ) = f j (t ) exp (−iγ t )

+ [u j,
Y
,m(θ, φ) + v∗
j,
Y

∗

,m(θ, φ)]e−iγ t , (18)

where the amplitudes u j,
 ≡ u j,
(t ) and v j,
 ≡ v j,
(t ) are peri-
odic time-dependent functions, with the same period T as f j ,
such that |ψ j (t + T )|2 = |ψ j (t )|2. By inserting (18) into (1)
and neglecting the second and higher-order terms, we obtain
the following matrix equation [29]:

i
d

dt

⎡
⎢⎢⎢⎣

u1,


v1,


u2,


v2,


⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

D1 G11 D12 G12

−G∗
11 −D1 −G∗

12 −D∗
12

D∗
12 G12 D2 G22

−G∗
12 −D12 −G∗

22 −D2

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

u1,


v1,


u2,


v2,


⎤
⎥⎥⎥⎦,

(19)

where the elements are Dj ≡ (ε
 − γ ) + 2g| f j |2 + g12| f3− j |2,
D12 ≡ g12 f1 f ∗

2 − i�, and Gi j ≡ gi j fi f j (g j j = g). When the
system is driven by a periodic time-dependent Hamiltonian,
the Floquet theorem [24] predicts that the solutions u
(t ) can
be written as

u
(t ) = exp (λ
t )p
(t ), (20)

where p
 are periodic functions, which, in our case, satisfy
the same periodicity of the densities. The factor λ
 stands for
the Floquet exponent. From its periodic property at the time
t = T , p
(T ) = p
(0), we obtain

u
(T ) = exp (λ
T )p
(0). (21)
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FIG. 4. Floquet stability diagrams for constant couplings (a) � =
0.1 and (b) � = 0.9 parametrized by the interactions g12 versus
g, determined by (λR


 )max [see (19) to (21)]. The stable regions
[(λR


 )max � 0] are in black, with unstable ones [(λR

 )max > 0] hav-

ing the 
 mode given in colors [violet (
 = 1), orange (
 = 2),
and yellow (
 = 3)]. The dashed lines at (a) g = 20 and (b) g =
40 refer to the results presented, respectively, in Figs. 5(a) and
5(b). Within the defined units all quantities are presented as
dimensionless.

A. Numerical approach

Our approach to performing the Floquet stability analy-
sis relies on an exact numerical calculation of the relevant
observables. An analytical approach to obtain the associated
wave functions with their small oscillating amplitudes can
only be done at some approximate level (as discussed in
Sec. II and Appendix B). Therefore, for practical purposes,
we follow a method similar to [29] by integrating the Eq. (19)
using a fourth-order Runge-Kutta method (RK4) from t = 0
to t = T (a complete period), assuming four different initial
conditions for the amplitudes, which are u
(0) = [1 0 0 0]T,
[0 1 0 0]T, [0 0 1 0]T, and [0 0 0 1]T being the four column
vectors of a matrix F such that at t = 0 is the identity matrix
F(t = 0) = [u(1)


 (0) u(2)

 (0) u(3)


 (0) u(4)

 (0)] = I. Separately,

each initial condition vector will correspond to a different
vector at t = T that will define the evolved matrix as F(t =
T ) = [u(1)


 (T ) u(2)

 (T ) u(3)


 (T ) u(4)

 (T )]. By considering the

eigenvalues of F given by Fλ

, and once identifying the ma-

trix with (21), we are able to obtain the Floquet exponent
as λ
 = ln(Fλ


)/T . If the system evolves to the time t = T
with nonzero real part in the full spectrum having (λR


 ) > 0,
it implies that solution u
 is growing exponentially with t for
that specific mode 
 being no longer stable. In other words,
the uniform oscillating system is dynamically unstable under
that 
 orbital excitation. By using this approach, we are also
able to study how far the BdG approach returns consistent
results. As is known, the BdG stability method is suitable
for stationary solutions. However, when the system is under
fast Rabi oscillations, the Floquet approach can give us more
reliable results, which can indicate the level of disagreement
with results obtained by the BdG method. In Appendix C,
we provide a more detailed comparison between both
methods.

Figure 4 displays two panels with Floquet stability dia-
grams, parametrized by the intra and interspecies interactions,
obtained from the oscillating functions f j for a complete

FIG. 5. Floquet spectra, given by (λR

 )max, from (21), are shown

as functions of the interspecies interaction g12, with the intraspecies
and Rabi coupling parameters fixed at (�, g) = (a) (0.1, 20) and
(b) (0.9, 40). The 
 = 1 and 2 unstable modes are, respectively, repre-
sented by solid-violet and dashed-orange lines. In the insets,(λR


 )max

is rescaled to improve the visibility of lower peak instability re-
gions. Within the defined units all quantities are presented as
dimensionless.

period T . In Fig. 4(a), we choose a small value for � = 0.1
that provides good agreement with the stationary results
presented in Fig. 3(a). As shown in Fig 3(b), the agreement is
no longer maintained when considering a large value � = 0.9
for the Rabi constant, as compared with Fig. 3(b). In these
diagrams, the dominant unstable angular modes 
 = 1, 2, 3
are indicated inside the panels. In addition to the similarity
between Figs. 3(a) and 4(a), for � = 0.1, the corresponding
diagrams are already useful to verify the effect of more
detailed stability analysis. As noticed, some stable regions
verified with the BdG approach are no longer confirmed when
using the Floquet method, such as the regions with g < 0,
near g12 = 0. Even for g > 0, in the dominantly stable regions
pointed out by the BdG approach, we can already verify the
instabilities detected by the Floquet method. Particularly,
the border of the regions can no longer be maintained
when we carry out a more accurate stability study. These
results, together with the following ones that we are going
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to discuss, lead to the conclusion that, as soon as the Rabi
coupling is turned on, the Floquet method is more sensible
to system instabilities as one varies the inter and intraspecies
interactions, being more accurate in studying the stability of
a system than the conventional stationary BdG approach.

In the two panels of Fig. 5, we select two sets of parame-
ters from the Floquet diagrams shown in Fig. 4 for separate
representations of the corresponding spectra given by the
maximum of the real part of the Floquet exponent (λR


 )max.
The two panels represent the respective spectrums in terms
of the interspecies interaction g12 by considering fixed values
of intraspecies interactions and Rabi frequencies, with (�,
g)= (0.1, 20) in Fig. 4(a) and (0.9, 40) in Fig 4(b). Fig-
ure 5, with the spectrum of unstable modes, also indicates the
meaning of the very faint lines appearing in the two diagrams
of Fig. 4. In these two cases, we have only unstable modes
with 
 = 1 (solid-violet lines) and 2 (dashed-orange lines), as
indicated. The respective insets in both panels are displayed
to enhance the visibility of the lower peaks observed in the
larger panels. The Floquet spectrum is also able to predict the
existence of resonant conditions that can happen according
to the chosen parameters. The conditions for that will be
discussed in Sec. IV B, where a comparison is provided with
a semi-analytic model when |�g|/(8π ) � �.

B. Resonance conditions

It is possible to figure out the excitation mechanism respon-
sible for the observed Floquet unstable spectrum by analyzing
the resonance conditions, as discussed in Ref. [29]. Our ap-
proach mainly differs from this reference when considering
the free-particle spectrum in the formalism, as in our case
the full kinetic energy term is provided by the squared an-
gular momentum operator. Therefore, the continuum εk must
be replaced by the corresponding discrete angular spectrum
ε
. So, with the assumption that |�g| � 8π�, by using a
first-order approximation in �g with slight corrections in the
solutions in (3), valid in the regime g12 = g, we are able
to obtain linearized equations (see Appendix D), with two
natural frequencies as obtained from (D6). In the limit |�g| =
|g12 − g| � 8πε
, they are

ωd,
 ≈
√

ε


(
ε
 + g

2π

)
+

√
ε
�g

16π
√

ε
 + g
2π

, (22a)

ωs,
 ≈ ε
 + �g

16π
. (22b)

Parametric resonances are achieved when an external po-
tential go with about twice the natural frequencies of the
system [32]. Once the 
-mode excitations evolve in time with
cos(4�
t ) and sin(4�
t ) [29], three critical couplings �


emerge, which can be tuned to trigger the resonances

�
(1)

 = ωd,


2
, �

(2)

 = ωs,


2
, �

(3)

 = ωd,
 + ωs,


4
, (23)

which are usually associated with density-density, spin-spin,
and density-spin resonances, respectively [29]. For the limit
g = 0, one can clearly see that the three resonant peaks are
going to merge in just one peak, (1/2)(ε
 + g12

16π
). These res-

onant positions can be observed in the Floquet spectrum in

FIG. 6. Unstable Floquet spectra [(λR

 )max], for 
 = 1 with dif-

ferent �g, are shown as functions of the coupling �. In (a), the
results are for �g = 0.1 (the three black curves with maxima near
0.001), 0.3 (the three red curves with maxima near 0.003), and 0.5
(the three blue curves with maxima higher than 0.004). In (b), we
consider higher �g values, with �g = 2.0 (the three black curves
with maxima below 0.03), 4.0 (the single red curve with a maximum
near 0.08), and 7.0 (the larger single blue curve with a maximum
near 0.17). The dashed vertical lines, obtained from (23), point out
the corresponding predictions, which are very close to the respective
maxima, in (a). However, in (b) the close agreement happens only
for �g = 2.0, as shown. Within the defined units all quantities are
presented as dimensionless.

the regime of g12 ≈ g. When g12 becomes higher, the three
peaks continuously merge into only one peak. In Fig. 6, we
compare the Floquet spectrum with the approximations given
by (23) for the resonance couplings. As seen in Fig. 6(a), for
�g = 0.1, 0.3, and 0.5, the predicted values match exactly
with the resonance peaks. In Fig. 6(b), the three-peak pre-
dictions are shown only for �g = 2.0, which are close to the
exact numerical solutions. In the other two cases, with �g =
4 and 7, as the predictions are no longer valid, we include only
the numerical exact solutions presenting the corresponding
single maxima.

V. ATOM-POPULATION DYNAMICS

The dynamics of the atom-population exchange for the
system was done by full numeric calculations of the cou-
pled GP (1), carrying out the spectral method introduced in
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FIG. 7. Time evolution of density overlaps �(t ) from (24) for
the coupling and set interactions (�, g, g12) given by �1 (0.50, 1, 8),
�2 (0.94, 40, −10), �3 (0.10, 1, 10), and �4 (0.99, 1, 25). �1 and
�2 (main panel) are identified by solid-violet and solid-orange lines.
The stability of �3,4 is shown in the inset. Within the defined units
all quantities are presented as dimensionless.

Ref. [38]. Within our numerical computation, the dynamics
is performed with time steps �t = 10−5, having spatial grids
in the θ and φ directions, with range sizes of 256 × 256
and the respective step sizes given by �θ = π/256 ≈ 0.013
and �φ = 2π/256 ≈ 0.025. The GP equations are solved by
starting with homogeneous solutions in which each species
has half of the total population, i.e., ψ1 = ψ2 = 1/

√
8π , with

a 5% random noise added to each point in the mesh grid.
In this numerical approach, we are able to verify how long
the homogeneous periodic solutions (4) are solved by using
the RK4 method to provide a good model to describe the
evolution of the populations. The stability behavior of the
homogeneous miscible initial states is observed by display-
ing their overlap evolution, population dynamics, and density
pattern when unstable modes occur.

To estimate the miscibility of the system, the overlap of
densities are verified by the parameter �, defined by

�(t ) = [
∫

dφ sin θdθ |ψ1|2|ψ2|2]
2

[
∫

dφ sin θdθ |ψ1|4][
∫

dφ sin θdθ |ψ2|4]
. (24)

When � = 1, the species are miscible, while � < 1 stands for
immiscible condensates. Once the initial overlap decreases, it
means that the initial miscible setup is no longer stable. In
Fig. 7, we show the overlap dynamics regarding four differ-
ent set of parameters, where the set of parameters including
intra and interspecies interaction and Rabi coupling con-
stant are given by (�, g, g12) = (0.50, 1, 8), (0.94, 40,−10),
(0.10, 1, 10), and (0.99, 1, 25), for which the stability pre-
dictions can be localized in Figs. 13(b), 15, 4(a), and 13(c),
respectively. A complementary analysis can be made by ob-
serving the population dynamics of the previous cases, with
the population Pj of each species given by

Pj (t ) =
∫

dφ sin θdθ |ψ j |2∫
dφ sin θdθ [|ψ1|2 + |ψ2|2]

= Nj (t )

N
. (25)

FIG. 8. The population time evolution Pj (t ), given by (25),
is shown for the Rabi and interaction parameters (�, g, g12) =
(a) (0.50, 1, 8) and (b) (0.94, 40, −10), respectively. Solid lines
stand for the full GP computation of (1), which takes into account
the spatial-time-dependent wave functions, with the dotted ones
for the homogeneous-only time-dependent solutions (4). The colors
black and red identify, respectively, species 1 and 2. The amplitudes
agree with (10), being A = 0.9657 for �g = 7 and A = 0.7737 for
�g = 50. Within the defined units all quantities are presented as
dimensionless.

Figure 8 shows how the population oscillation is affected
when the system becomes unstable. The population behavior
is closely related to the overlap since both properties are
changed when the miscible homogeneous initial ansatz (4)
are no longer the true solutions of the system. It is impor-
tant to note that the overlap dynamics for unstable cases are
driven by two different frequencies. The slow frequency is
a periodic behavior of miscibility, which was first observed
in our previous work [38], and it happens only for specific
choices for interaction parameters. Moreover, in this work, we
observe a second frequency in the overlap dynamics, which
is faster than the first one and is driven by the population
dynamics frequency. In Fig. 9, we present two different sets
of parameters where both frequencies are actually leading the
overlap behavior. In Fig. 9(a), which refers to (�, g, g12) =
(0.94, 40,−10), we clearly see that the faster kind of over-
lap oscillation has the same frequency as the population
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FIG. 9. Time evolution of populations Pj (t ) (solid lines) and
overlaps �(t ) (dashed-blue lines), as given by (25) and (24), respec-
tively. Species 1 and 2 populations are given by solid lines (black and
red, respectively), as indicated. The Rabi and interaction parameters
are (�, g, g12) = (a) (0.94, 40, −10) and (b) (0.90, −10, 20). Within
the defined units all quantities are presented as dimensionless.

dynamics. Another set of parameters is depicted in Fig. 9(b),
with (�, g, g12) = (0.90,−10, 20) for which we have the sta-
bility prediction in Fig. 4(b). Here, observing some periodic
behavior with two distinguished frequencies is not as direct as
in the previous case. This is an example where the slower kind
of modulation is not periodic, as was also observed in [38]. In
this way, the periodic oscillation caused by the Rabi coupling
can be expected for all choices of parameters, but the same
statement is not true for the slower kind of modulation.

The dynamics due to an unstable mode driving the be-
havior of the system can be more clearly seen in Fig. 10,
where we display the time evolution of the densities with
the parameters (�, g, g12) = (0.50, 1, 8) for which unstable
behavior is predicted to happen in the angular mode 
 = 1 [see
panel (b) of Fig. 13 in Appendix C]. By observing the density
dynamics, we are able to see that, at some time, a density
pattern can emerge in both species, which soon evolves into
an immiscible setup, where the condensates of each species
reduce to localized small clouds, and therefore, Faraday waves
become difficult to observe.

FIG. 10. Dynamics of densities |ψ1|2 (left column) and |ψ2|2
(right column) for the species j = 1 and 2 considering the Rabi and
interactions given by (�, g, g12) = (0.50, 1, 8). The time snapshots t
are indicated inside the respective pair of panels, with density varia-
tions according to (13) and (10) being within the interval [0.0014 �
|ψ j |2 � 0.0782. At any t ,

∑
j |ψ j |2 = 1/(4π ), with identical |ψ j |2 =

1/(8π ) at t = 0 and at each half period T/2. Within the defined units
all quantities are presented as dimensionless.

A similar calculation is performed in Fig. 11, where we
show how the densities evolve for the unstable sets of param-
eters (�, g, g12) = (0.94, 40,−10) and (0.9,−10, 20). The
first row of the figure shows how the Faraday patterns emerge,
with the two species going to an immiscible-phase config-
uration of localized small pieces. In the second row, it is
noticed that both condensates are soon breaking into two
pieces, where also emerge Faraday patterns. The stability
of both sets can be checked by the Floquet spectrum in
Figs. 4(a) and 15 in Appendix C, respectively. Which pre-
dicts that both cases are unstable and driven by the modes

 = 1 and 
 = 2, respectively. The dynamics simulations
confirm these predictions, and in each case, the conden-
sates are likely to become small localized clouds and break
into two pieces, respectively. Therefore, the Floquet spec-
trum correctly predicts the stability behavior observed in the
dynamics.

Our present analysis is extended to Appendix C in which
the BdG and Floquet stability predictions are compared with
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FIG. 11. Dynamics of densities |ψ j |2 for the parameters (�, g, g12) = (0.94, 40, −10) [upper panels, with t = (a) 0, (b) 20, (c) and 30]
and (0.9, −10, 20) [lower panels, with t = (d) 0, (e) 10, and (f) 15]. The range of densities in the upper and lower panels are, respectively,
[0.01388 � |ψ j |2 � 0.06569] and [0.00529 � |ψ j |2 � 0.07428]. For each pair, the densities |ψ j |2 are given as indicated inside panel (a).
Within the defined units all quantities are presented as dimensionless.

the full dynamical results. We figure out that, as soon as
� > 0, the Floquet method offers a more reliable stability
profile for homogeneous time-periodic states, with the BdG
spectrum returning similar results only to the low coupling
constants � � 1. Following these analyses, we can summa-
rize by illustrating the density dynamics simulations of some
unstable cases displayed in Figs. 10 and 11. These results
show us that, once an unstable angular mode 
 takes over the
dynamics of the system, the condensates will break into the
corresponding number 
 of localized immiscible pieces [38].
Here, we point out that these angular modes are also able to
provoke the emergence of Faraday waves by tuning the Rabi
coupling to the natural resonance frequencies of elementary
excitations. Nevertheless, phase separations are expected to
happen on a higher scale of densities, with possible local-
ized small condensate clouds breaking within a condition that
Faraday-wave effects are not likely to be seen.

In Fig. 12, we quantify the effect of the unstable modes on
the dynamics by the square modulus of the coupling |c
,m|2,
where the coefficients c
,m are given by

c
,m(t ) =
∫

dφ sin θdθ Y ∗

,m(θ, φ)ψ j (θ, φ, t ). (26)

We calculate the coupling for the species 1 wave function
coupled with the spherical harmonics Y
,m(θ, φ). We observe
three unstable cases for which we find out that once an angular
mode 
 is unstable, the amplitudes of the couplings regarding
each degenerate mode m = −
, . . . , 
 are arbitrary. Note that,
in the third case, depicted in Fig. 12(c), we show only the
coupling with degenerate modes associated with 
 = 2 since
they are the dominant ones and the early modes to drive the
dynamics. Modes regarding 
 = 1 also can be important for
longer times. For cases with 
 = 1, the coupling with the
modes m = −1, 0, 1 has the same behavior, but the mode
m = 0 has a different amplitude of the modes m = ±1. When

 > 1, this symmetric behavior between the modes m is no
longer observed.

VI. CONCLUSION

The dynamics and stability of homogeneous binary
BEC mixtures trapped on a spherical bubble are investi-
gated by considering atom-number oscillations achieved by
Rabi coupling. Exact analytical solutions are developed for
population dynamics, followed by stability analyses con-
sidering BdG and Floquet methods, which are compared
with the corresponding full numerical solutions. In the
stability analyses, we first examine the role of Rabi cou-
pling on stationary solutions by applying the BdG method.
This is followed by a more detailed analysis of the as-
sociated dynamics by using the time-dependent Floquet
method.

As concerns the methods applied for studying the stability
analysis, our approach is similar to [29]. However, both 2D
confining systems have quite different characteristics from
the physical and numerical point of view. Within an infinite
surface plane, the authors of [29] had a continuum kinetic
spectrum to study the production of Faraday patterns by
periodic modulations of the effective interaction, whereas in
the present case, with fixed radius leading to a discrete kinetic
energy spectrum, the parametric resonances are achieved
by modulating the Rabi frequency in a 2D spherical system
within periodic-boundary conditions. As is observed, the Rabi
oscillations are able to drive the system to different stability
profiles, once an effective time-oscillating interaction energy
is performed. In this kind of 2D spherical topology, discrete
unstable orbital angular modes can rise and lead the BEC
mixture to an immiscible phase separation in which the
condensate can break into a corresponding discrete number
of localized clouds. Since there is an effective interaction
modulation, it is relevant to note that the unstable degenerate
azimuthal angular modes can give rise to Faraday waves,
which coexist with the separate phase. As is shown for
some range of parameters, the system can enter a periodic
regime where the miscibility of the species can vary in time,
dynamically.
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FIG. 12. Time evolution of couplings |c
,m(t )|2 for the species 1
[see (26)], for three unstable different set of parameters (�, g, g12) =
(0.50, 1, 8), (0.94, 40, −10), and (0.90, −10, 20), which are de-
picted in (a), (b), and (c), respectively. The insets in (a) and (b) stand
for the lower lines shown in the main panels. Within the defined units
all quantities are presented as dimensionless.

As perspectives for further investigations, of particular
relevance is to consider a more general 3D study regard-
ing spherical topology in which the radial skin becomes a

parameter in the theory. As in this case only discrete modes
are allowed, a phase separation where the coupled condensate
breaks into a localized fixed-number of clouds presents a
density order much higher than the Faraday wave patterns.
Eventually, the Faraday wave phenomenon can be hidden
within this process in which the breakdown of the clouds turns
out to be too much faster. As other possible extensions, within
the same spherical geometry context, one could study the sta-
bility of dipolar-coupled systems or how nonlinear quantum
fluctuations could affect the outcome of this work.

Finally, besides not being reported up to now dual-
species BEC mixtures in the ultracold bubbles experimentally
achieved in microgravity conditions, to this aim a possible
way is to exploit atomic mixtures with their tunable inter-
action (as discussed in [43]). Also noticeable in this regard
is the fact that the original trap proposal for matter-wave
bubbles [39] was based on driving adiabatic potentials with
Rabi-coupled hyperfine-states, pointing out the impact of the
present and related theoretical analyses. Our work can provide
some insights on how it is possible to trigger parametric reso-
nances, or even avoid them when dealing with cold-atom state
mixtures. Also, in our approach, noticeable is the fact that the
only parameters needed to drive the occurrence of Faraday
wave resonances are the s-wave nonlinear interactions and the
Rabi coupling.
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APPENDIX A: THREE- TO SPHERICAL
TWO-DIMENSIONAL REDUCTION

AND ADIMENSIONALIZATION

The formalism reduction from three dimensions to the
spherical two dimensions for coupled condensates trapped in
a fixed-radius bubble, is performed in this Appendix, starting
from the full-dimensional space-time variables (r̃, t̃) and pa-
rameters. Once the formalism is in the 2D format, we show
how the adimensionalization leads to (1). The wave function
for the two species j, normalized to Nj , are given by � j ≡
� j (r̃, θ, φ; t̃ ), such that N = N1 + N2. With both species hav-
ing the same mass M, coupled by a Rabi oscillating frequency
�R, confined radially by a common symmetric potential V (r̃)
(=0 for R − δR/2 < r̃ < R + δR/2 and ∞ otherwise), we
obtain the following time-dependent coupled formalism:

ih̄
∂

∂ t̃
� j=1,2 =

[
− h̄2

2M
∇2 + V (r̃)

]
� j + (−1) j ih̄�R�3− j

+
∑
i=1,2

gji|�i|2� j, (A1)
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where 0 � r̃ < ∞, θ ∈ [0, π ] and φ ∈ [0, 2π ], with gi j ≡
4π h̄2ai jN/M, by assuming the total wave function is nor-
malized to 1. With the system confined at the surface of a
large bubble having fixed radius R, the radial part of the
formalism can be solved by using a common ansatz R(r̃)
for both species, which must vanish outside a skin with
thickness δR � R, for the 3D spherical shell. So, with the
full dynamics given by the angular part and the time t̃ , we
assume a δ-like Gaussian-shaped form for the radial part of
� j , in (A1), such that � j ≡ R(r̃)� j (θ, φ; t̃ ), with R(r̃) ≡

1√
σ
√

πR
exp[−(r̃−R)2

2σ 2 ] normalized as
∫∞

0 dr̃r̃2[R(r̃)]2 = 1,

where the Gaussian width σ can be directly identified
with the thickness δR. Once integrated in the radial part,

and by identifying σ = δR, such that gi j ≡
√

8πai j N
δR , we

obtain

ih̄
∂� j

∂ t̃
= h̄2

MR2

⎡
⎣ L2

2h̄2 +
∑
i=1,2

g ji|�i|2
⎤
⎦� j

+ (−1) j ih̄�R�3− j, (A2)

where L is the angular momentum operator. Next, for the
adimensionalization, we should first notice that � has only
angular dependence. So, we can simply assume R as our
length unit, such that h̄2/(MR2), MR2/h̄ and h̄/(MR2) will
be, respectively, the energy, time and frequency units. Within
these units, δR will be understood as an infinitesimal δ

times R, such that gi j will be dimensionless, and the Rabi
oscillating parameter is given by �R = �[h̄/(MR2)]. Fi-
nally, by factoring the energy unit in (A2), we end up
with (1).

APPENDIX B: BINARY DENSITY OSCILLATIONS

This Appendix is concerned with the exact time-dependent
behavior of the dimensionless coupled formalism (1) by as-
suming (4), where f j and γ j are to be found considering the in-
teractions (g, g12) and Rabi constant �. Here, f j are assumed
real with time-independent γ j , considering any possible time
dependence of the phases provided by redefinitions of the
wave-function phases in (4), with ψ j = f je−i[γ j t+β j (t )] (to sim-
plify the notation, we start using the upper-dot notation or the
suffix t for the time derivatives). So, from (4) in (1), and with
the complex phase written as �γβ ≡ (γ2 − γ1)t + [β2(t ) −
β1(t )], and also with the redefinition γ̄ j (t ) ≡ γ j + β̇ j (t ), we
obtain

i∂t f j = [Gj,3− j − γ̄ j] f j + (−1) j i� f3− je
(−) j i�γβ , (B1)

where Gj,3− j ≡ g| f j (t )|2 + g12| f3− j (t )|2. After separating the
real and imaginary parts and rearranging the terms, we obtain
the harmonic-like oscillator equation, with density-dependent
frequency given by

[∂tt + �2 − (γ̄ j − G1,2)(γ̄ j − G2,1)] f j = 0. (B2)

The initial condition | f j (0)|2 = 1/(8π ) with the frequency
reduced to �2 leads to

γ̄ j (0) = γ0 = g + g12

8π
, with β̇ j (0) = 0, (B3)

implying that γ̄ j has a constant part γ0 and a time-dependent
part β̇ j . By replacing γ̄ j in (B2), we have

∂tt f j + W 2
j (t ) f j = 0, with

W 2
j (t ) ≡

[
�2 +

(
�g

2

)2

(| f2|2 − | f1|2)2 − (
β̇ j
)2

]
.

(B4)

In the limiting cases in which g = g12, the solutions are al-
ready known being sinusoidal with the oscillation given by �.
However, when g �= g12, the frequency depends on the square
of the differences between the two condensates, with the in-
terval of oscillations for (| f2|2 − | f1|2) being reduced. It goes
from 0 to |A|, with each density oscillating from 1

4π
− |A| to

|A|, constrained by normalization and initial conditions. It is
convenient to solve (B4) for the density difference (or atom-
number difference) ν(t ) ≡ N2(t )−N1(t )

N = 4π (| f2|2 − | f1|2). So,
we follow from (1) with an explicit derivation of the equa-
tion for ν(t ), starting with its first derivative

∂tν = 8π�[ψ∗
1 ψ2 + ψ∗

2 ψ1], (B5)

followed by the second derivative

∂ttν = 8π�(ψ2∂tψ
∗
1 + ψ∗

1 ∂tψ2) + c.c. (B6)

After some straight manipulations, we obtain

∂ttν + 4�2ν = 2�i(�g)ν(ψ∗
1 ψ2 − ψ1ψ

∗
2 ), (B7)

in which the right-hand-side can be solved through the corre-
sponding derivative

∂t (ψ
∗
1 ψ2 − ψ∗

2 ψ1) = i
ν

4π
(�g)(ψ∗

1 ψ2 + ψ1ψ
∗
2 )

= i
�g

16π�
∂t (ν

2). (B8)

By integrating both sides from 0 to t and using the initial
conditions at t = 0, with ν(0) = 0 and the ψ1(0) = ψ2(0),

(ψ∗
1 ψ2 − ψ∗

2 ψ1) = i
�g

16π�
(ν2). (B9)

By substituting this expression in (B7), we obtain

∂ttν + 4

[
�2 + 1

2

(
�g

8π

)2

ν2

]
ν = 0, (B10)

which is recognized as the Duffing equation without the
dumped and driven terms having the Jacobi elliptic functions
as exact solutions [61,62]. However, even before considering
the explicit solution ν(t ), the exact period of oscillations can
be obtained for (6). Equation (6) also generalizes the previous
results given in Ref. [64] by including interspecies contribu-
tions in the interactions.
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a. Period and amplitude of oscillations

Multiplying (6) by 2∂tν, we can obtain a time-invariant
associated energy E , as

∂t

{
(∂tν)2 + 4�2ν2 +

(
�g

8π

)2

ν4

}

= 2
∂E

∂t
= 0, E = 1

2
(∂tν)2 + 2�2ν2 + 1

2

(
�g

8π

)2

ν4.

(B11)

As the energy is a constant, it can be obtained at the turning
point (when ∂tν = 0 and ν = A), such that E = 2�2A2 +
1
2 ( �g

8π
)2A4. By integrating it within a time interval �T for

which the atom-number difference goes from −A to +A,∫ �T

0
dt = �T =

∫ A

−A

dν√
4�2(A2 − ν2) − (

�g
8π

)2
(A4 − ν4)

.

This interval is one-half of the density period, �T = T/2.
With a variable transformation ν = Ay, we obtain the re-
quired relation between period T and amplitude A through
the known Jacobi complete elliptic function of the first kind
K (k) [63]. With α ≡ (A�g

8π
), we have

TK (�,α) =
∫ 1

−1

dy√
(1 − y2)[�2 + α2(1 + y2)]

= 2√
�2 + α2

K

( −α2

�2 + α2

)
. (B12)

Therefore, once given the parameters (in our case, the nonlin-
ear interactions, Rabi constant, and amplitude A), we obtain
the period. In the limit �g = 0, T = π/�, with the other
limit being for � → 0 (or α � �), where K (−1) = 1.311.
However, one should notice that the period depends on the
product (�gA)2, instead of only on A2. With the conditions
at t = 0, where ν = 0 and ∂tν = 2�, and at the turning point,
where ν = A and ∂tν = 0, we can obtain the amplitude from
the energy conservation

(2�)2

2
= 2�2A2 + 1

2

(
�g

8π

)2

A4. (B13)

With α defined for (B12), and with α0 ≡ �g
8π

,

α4 + (2�)2(α2 − α2
0 ) = 0,

α2

2�2
=
√

1 +
(α0

�

)2
− 1,

|A| =
√

2
�

α0

[√
1 +

(α0

�

)2
− 1

]1/2

,

|A|��α0 →
√

2�

α0
, |A|��α0 → 1. (B14)

By giving these conditions, the exact solution for ν(t ) is also
reachable, given by the Jacobi elliptic function, as shown in
[61]. With the already given expressions for the period and
amplitude, the exact solution for (6) can also be expressed in

the sinusoidal form

ν(t ) = A

⎡
⎣1 − 2 cos2

⎛
⎝t

√
�2 + 1

2

(
�g

8π

)2

ν2
A + π

4

⎞
⎠
⎤
⎦

= A sin

⎛
⎝2t

√
�2 + 1

2

(
�g

8π

)2

ν2
A

⎞
⎠, (B15)

in which we assume as parameters νA and the amplitude A of
the density-difference oscillations that are closely related due
to the periodic conditions. As noticed from (B15), ν(t ) also
satisfies the harmonic oscillator equation with time-dependent
frequency, as the corresponding wave functions, but with one-
half of the oscillating period. In our specific case, by solving it
we obtain a relation between the amplitude A and the period
T for the oscillations of the atom-number ratio difference ν(t ).
The agreement of (B12) with the period T obtained from
(B15) is shown in the lower panel of Fig. 1.

b. Oscillating time-dependent phases

The phase evolutions can be obtained by starting from (B5)
and (B9), considering ψ j = |ψ j |e−i[γ j t+β j (t )], as

1

8π�

(
(�g)ν2

8π i
+ ∂tν

)
= ψ∗

1 ψ2 (B16)

and using the GP equation to obtain

∂tβ1 = �g

16π
ν

(2 − ν)

1 − ν
, ∂tβ2 = − �g

16π
ν

(2 + ν)

1 + ν
, (B17)

such that, with the explicit density-dependent part of the
phases written as ∂tβ j = �g

(8π )2
1

2|ψ j |2 [1 − (8π )2|ψ j |4], γ̄ j (t ) =
γ j + ∂tβ j can be written as

γ̄ j (t ) = γ0 +
(

�g

16π

)[
1

8π |ψ j |2 − (8π |ψ j |2)

]
. (B18)

APPENDIX C: STABILITY METHODS COMPARISON

In Sec. II, it was already anticipated how the true solutions
can differ from stationary ones when the Rabi coupling �

leads the dynamics when the condensate wave functions are
periodic functions in time. In this Appendix, we compare the
BdG and Floquet spectra, which are actually suitable for sta-
tionary and periodic time-dependent functions, respectively.
As � increases, with the reduction of the population dynamics
oscillating period, the discrepancy between the approaches is
more likely to increase. In Fig. 13, we set together all stability
approximations previously discussed to observe more closely
how the approaches are related to each other. In Figs. 13(a),
13(b), and 13(c) we display three different regimes of Rabi
coupling. In the weak regime � = 0.01, we see both BdG and
Floquet approaches return about the same spectrum as already
expected. Conversely, when the Rabi coupling constant is
increased, the spectrum of the analytical approaches becomes
quite different from each other.

A deeper analysis is provided in Fig. 14, which displays
simultaneously the different roles of the Rabi coupling de-
pending on the interspecies interaction. It is very clear that
the coupling is able to open a large region of stability, which
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FIG. 13. Maximum unstable spectra for angular modes 
 [(=
1, 2), as indicated] are shown as functions of g12, with fixed g =
1 and frequencies � = 0.01, 0.50, and 0.99 [respectively, in pan-
els (a), (b), and (c)]. With Max[Im(ω
,±)] obtained from (17), the
BdG unstable spectra are shown with black-dashed lines. Floquet
unstable spectra, from (19), provided by Max[Re(λ
)], are with red-
solid lines. Within the defined units all quantities are presented as
dimensionless.

makes the unstable behavior be postponed. However, in some
situations it can make the system unstable, even when the BdG
spectrum provides no trace of instability. This phenomenon is
also depicted for fixed parameters in Fig. 15. We display the
two different sets of interaction parameters (g, g12) = (1, 15)

FIG. 14. Stability diagrams of Rabi parameter � versus g12 for
fixed g = 1, given by Max[Im(ω
,±)], representing stable regions
(�0, black regions), and unstable ones [violet for 
 = 1 and orange
for 
 = 2]. BdG approach is in (a) [see (17)], with Floquet approach
in (b) [see (21)]. Within the defined units all quantities are presented
as dimensionless.

and (40,−10), the first one is driven from an unstable to a
stable solution by the increasing of the Rabi coupling and the
second one is lead from a stable regime to an unstable one
when the coupling becomes higher. In Table I, we compare
the predictions of BdG and Floquet methods with the full dy-
namics calculations for the five sets of parameters (�, g, g12)
mostly discussed in the text. We can check that the Floquet
spectrum agrees with the dynamics simulations for all cases,
then it is more suitable for our system than the BdG method.

APPENDIX D: RESONANCE CONDITIONS

In the regime g12 � g (or, equivalently, �g � g), let
us consider ψ j (θ, φ, t ) = φ j (t )e−i(μ+δμ)t , where μ = (2g +
�g)/(8π ) is the chemical potential, with a �g-first-
order phase correction δμ = −�g/(16π ). The functions
φ j (t ) given by φ1 = (1/

√
4π cos(�t + π

4 )[1 + i�(t )], φ2 =
(1/

√
4π sin(�t + π

4 )[1 − i�(t )] where we take into account

FIG. 15. Floquet maximum spectra (Max[Re(λ
)]) of unstable
angular modes 
 = 1, 2 (indicated by the numbers) as functions of
the coupling � [see (19)]. Cases (g, g12) = (1, 15) and (40,−10) are
displayed with red-dashed and black-solid lines, respectively. Within
the defined units all quantities are presented as dimensionless.
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TABLE I. Dynamics stability status of the BEC mixture by the
three methods, given the parameter of intra and interspecies interac-
tion and Rabi coupling constant �, g, and g12, respectively. Unstable
cases are displayed with the dominant unstable mode 
. The refer-
ence figures where the results can be checked are set in parentheses.

� g g12 BdG Floquet Dynamics

0.50 1 8 stable 
 = 1 
 = 1
(13 b) (13 b) (7), (8 a), (10)

0.94 40 −10 stable 
 = 1 
 = 1
(3 b) (15) (7), (8 b), (9 a), (11 a)–(11c)

0.10 1 10 stable stable stable
(3 a) (4 a) (7)

0.99 1 25 
 = 1 stable stable
(13 c) (13 c) (7)

0.90 −10 20 
 = 1 
 = 2 
 = 2
(3 b) (4 b) (9 b), (11 e)–(11f)

a time-dependent �g- first-order correction function of inter-
action difference �g, given by �(t ) = �g

32π�
cos(2�t ). Small

amplitude fluctuations around ψ j (θ, φ, t ) are assumed as

ψ j (θ, φ, t ) = [φ j (t ) + δφ j (θ, φ, t )]. (D1)

Now we apply the following useful transformation from
(δφ1, δφ2) to (δφd , δφs) [33] in which terms higher than first
order �(t ) are neglected

(
δφd

δφs

)
=
(

φ∗
1 φ∗

2−φ2 φ1

)(
δφ1

δφ2

)
, (D2a)

(
δφ1

δφ2

)
= 4π

(
φ1 −φ∗

2
φ2 φ∗

1

)(
δφd

δφs

)
. (D2b)

With (D1) and the above inserted in (1) (neglecting second-
and higher-order terms in �g, δφd , and δφs), the following
coupled equation for the excitations is obtained

i
∂δφd

∂t
=
{
−1

2
∇2 + g

4π
+ �g

16π
[1 + 2 cos(4�t )]

}
δφd

+
{

g

4π
+ �g

16π
[1 + cos(4�t )]

}
δφ∗

d

+
{

�g − 2g

8π
δφs − �g + 3g

16π
δφ∗

s

}
sin(4�t ),

(D3)

i
∂δφs

∂t
=
{
−1

2
∇2 + �g

16π
[1 − 2 cos(4�t )]

}
δφs

−
{

�g

16π
[1 + cos(4�t )]

}
δφ∗

s

−
{

�g

8π
δφd + �g

16π
δφ∗

d

}
sin(4�t ), (D4)

leading to a BdG matrix determinant for the spectrum |Z −
ω
| = 0, where, in first order of �g and dropping the sinu-
soidal terms [29] (nullified in the respective periods)

Z =

⎛
⎜⎜⎜⎜⎜⎝

ε
 + 4g+�g
16π

4g+�g
16π

0 0

− 4g+�g
16π

−ε
 − 4g+�g
16π

0 0

0 0 ε
 + �g
16π

− �g
16π

0 0 �g
16π

−ε
− �g
16π

⎞
⎟⎟⎟⎟⎟⎠.

(D5)

The solution leads to the natural elementary excitations

ω2
d = ε


(
ε
 + g

2π
+ �g

8π

)
and ω2

s = ε


(
ε
 + �g

8π

)
. (D6)

[1] M. C. Cross and P. C. Hohenberg, Pattern formation outside of
equilibrium, Rev. Mod. Phys. 65, 851 (1993).

[2] M. Faraday, XVII. On a peculiar class of acoustical figures;
and on certain forms assumed by groups of particles upon vi-
brating elastic surfaces, Philos. Trans. R. Soc. London 121, 299
(1831).

[3] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman,
and E. A. Cornell, Observation of Bose-Einstein condensation
in a dilute atomic vapor, Science 269, 198 (1995).

[4] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten,
D. S. Durfee, D. M. Kurn, and W. Ketterle, Bose-Einstein con-
densation in a gas of sodium atoms, Phys. Rev. Lett. 75, 3969
(1995).

[5] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet,
Evidence of Bose-Einstein condensation in an atomic gas with
attractive interactions, Phys. Rev. Lett. 75, 1687 (1995).

[6] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, The-
ory of Bose-Einstein condensation in trapped gases, Rev. Mod.
Phys. 71, 463 (1999).

[7] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation and
Superfluidity (Oxford University Press, New York, 2016).

[8] K. Staliunas, S. Longhi, and G. J. de Valcárcel, Faraday pat-
terns in Bose-Einstein condensates, Phys. Rev. Lett. 89, 210406
(2002).

[9] P. Engels, C. Atherton, and M. A. Hoefer, Observation of Fara-
day waves in a Bose-Einstein condensate, Phys. Rev. Lett. 98,
095301 (2007).

[10] R. Nath and L. Santos, Faraday patterns in two-dimensional
dipolar Bose-Einstein condensates, Phys. Rev. A 81, 033626
(2010).

[11] J. B. Sudharsan, R. Radha, M. C. Raportaru, A. I. Nicolin, and
A. Balaž, Faraday and resonant waves in binary collisionally-
inhomogeneous Bose-Einstein condensates, J. Phys. B: At.
Mol. Opt. Phys. 49, 165303 (2016).

[12] F. Kh. Abdullaev, A. Gammal, and L. Tomio, Faraday waves
in Bose-Einstein condensates with engineering three-body
interactions, J. Phys. B: At. Mol. Opt. Phys. 49, 025302
(2016).

[13] F. Kh. Abdullaev, A. Gammal, R. K. Kumar, and L. Tomio,
Faraday waves and droplets in quasi-one- dimensional Bose
gas mixtures, J. Phys. B: At. Mol. Opt. Phys. 52, 195301
(2019).

053315-15

https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1098/rstl.1831.0018
https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1103/PhysRevLett.75.1687
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/PhysRevLett.89.210406
https://doi.org/10.1103/PhysRevLett.98.095301
https://doi.org/10.1103/PhysRevA.81.033626
https://doi.org/10.1088/0953-4075/49/16/165303
https://doi.org/10.1088/0953-4075/49/2/025302
https://doi.org/10.1088/1361-6455/ab3ade


BRITO, TOMIO, AND GAMMAL PHYSICAL REVIEW A 108, 053315 (2023)

[14] J. Smits, L. Liao, H. T. C. Stoof, and P. van der Straten, Ob-
servation of a space-time crystal in a superfluid quantum gas,
Phys. Rev. Lett. 121, 185301 (2018).

[15] J. H. V. Nguyen, M. C. Tsatsos, D. Luo, A. U. J. Lode, G. D.
Telles, V. S. Bagnato, and R. G. Hulet, Parametric excitation of a
Bose-Einstein condensate: From Faraday waves to granulation,
Phys. Rev. X 9, 011052 (2019).

[16] Z. Zhang, K.-X. Yao, L. Feng, J. Hu, and C. Chin, Pattern
formation in a driven Bose-Einstein condensate, Nat. Phys. 16,
652 (2020).

[17] D. K. Maity, K. Mukherjee, S. I. Mistakidis, S. Das,
P. G. Kevrekidis, S. Majumder, and P. Schmelcher, Para-
metrically excited star-shaped patterns at the interface of
binary Bose-Einstein condensates, Phys. Rev. A 102, 033320
(2020).

[18] K. Kwon, K. Mukherjee, S. J. Huh, K. Kim, S. I. Mistakidis,
D. K. Maity, P. G. Kevrekidis, S. Majumder, P. Schmelcher,
and J.-Y. Choi, Spontaneous Formation of Star-Shaped Surface
Patterns in a Driven Bose-Einstein Condensate, Phys. Rev. Lett.
127, 113001 (2021).

[19] K. Fujii, S. L. Görlitz, N. Liebster, M. Sparn, E. Kath,
H. Strobel, M. K. Oberthaler, and T. Enss, Square pattern
formation as stable fixed point in driven two-dimensional Bose-
Einstein condensates, arXiv2309.03829v2.

[20] R. Cominotti, A. Berti, A. Farolfi, A. Zenesini, G. Lamporesi,
I. Carusotto, A. Recati, and G. Ferrari, Observation of mass-
less and massive collective excitations with Faraday patterns
in a two-component superfluid, Phys. Rev. Lett. 128, 210401
(2022).

[21] E. Timmermans, P. Tommasini, M. Hussein, and A. Kerman,
Feshbach resonances in atomic Bose–Einstein condensates,
Phys. Rep. 315, 199 (1999).

[22] L. B. da Silva and E. F. de Lima, Coherent control of nonlinear
mode transitions in Bose-Einstein condensates, J. Phys. B: At.
Mol. Opt. Phys. 53, 125302 (2020).

[23] C.-X. Zhu, W. Yi, G.-C. Guo, and Z.-W. Zhou, Parametric
resonance of a Bose-Einstein condensate in a ring trap with pe-
riodically driven interactions, Phys. Rev. A 99, 023619 (2019).

[24] M. Grifoni and P. Hänggi, Driven quantum tunneling, Phys.
Rep. 304, 229 (1998).

[25] J. Williams, R. Walser, J. Cooper, E. A. Cornell, and M.
Holland, Excitation of a dipole topological state in a strongly
coupled two-component Bose-Einstein condensate, Phys. Rev.
A 61, 033612 (2000).

[26] Y. He, H. Guo, and C.-C. Chien, BCS-BEC crossover of atomic
Fermi superfluid in a spherical bubble trap, Phys. Rev. A 105,
033324 (2022).

[27] L. Amico, D. Anderson, M. Boshier, J.-P. Brantut, L.-C. Kwek,
A. Minguzzi, and W. von Klitzing, Colloquium: Atomtronic
circuits: From many-body physics to quantum technologies,
Rev. Mod. Phys. 94, 041001 (2022).

[28] B. Kh. Turmanov, B. B. Baizakov, and F. Kh. Abdullaev,
Generation of density waves in dipolar quantum gases by time-
periodic modulation of atomic interactions, Phys. Rev. A 101,
053616 (2020).

[29] T. Chen, K. Shibata, Y. Eto, T. Hirano, and H. Saito, Faraday
patterns generated by Rabi oscillation in a binary Bose-Einstein
condensate, Phys. Rev. A 100, 063610 (2019).

[30] S. D. Jenkins and T. A. B. Kennedy, Dynamic stability of
dressed condensate mixtures, Phys. Rev. A 68, 053607 (2003).

[31] K. Shibata, A. Torii, H. Shibayama, Y. Eto, H. Saito, and T.
Hirano, Interaction modulation in a long-lived Bose-Einstein
condensate by rf coupling, Phys. Rev. A 99, 013622 (2019).

[32] L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon,
Oxford, 1960).

[33] H. Zhang, S. Liu, and Y. Zhang, Faraday patterns in spin-orbit-
coupled Bose-Einstein condensates, Phys. Rev. A 105, 063319
(2022).

[34] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E.
Wieman, Production of two overlapping Bose-Einstein conden-
sates by sympathetic cooling, Phys. Rev. Lett. 78, 586 (1997).

[35] G. Modugno, M. Modugno, F. Riboli, G. Roati, and M.
Inguscio, Two atomic species superfluid, Phys. Rev. Lett. 89,
190404 (2002).

[36] O. E. Alon, Fragmentation of identical and distinguishable
bosons’ pairs and natural geminals of a trapped bosonic Mix-
ture, Atoms 9, 92 (2021).

[37] M. Brtka, A. Gammal, and B. A. Malomed, Hidden vorticity
in binary Bose-Einstein condensates, Phys. Rev. A 82, 053610
(2010).

[38] A. Andriati, L. Brito, L. Tomio, and A. Gammal, Stability of
a Bose-condensed mixture on a bubble trap, Phys. Rev. A 104,
033318 (2021).

[39] O. Zobay and B. M. Garraway, Two-dimensional atom trapping
in field-induced adiabatic potentials, Phys. Rev. Lett. 86, 1195
(2001).

[40] O. Zobay and B. M. Garraway, Atom trapping and two-
dimensional Bose-Einstein condensates in field-induced adia-
batic potentials, Phys. Rev. A 69, 023605 (2004).

[41] D. C. Aveline, J. R. Williams, E. R. Elliott, C. Dutenhoffer, J. R.
Kellogg, J. M. Kohel, N. E. Lay, K. Oudrhiri, R. F. Shotwell,
N. Yu, and R. J. Thompson, Observation of Bose–Einstein
condensates in an Earth-orbiting research lab, Nature (London)
582, 193 (2020).

[42] R. A. Carollo, D. C. Aveline, B. Rhyno, S. Vishveshwara, C.
Lannert, J. D. Murphree, E. R. Elliott, J. R. Williams, R. J.
Thompson, and N. Lundblad, Observation of ultracold atomic
bubbles in orbital microgravity, Nature (London) 606, 281
(2022).

[43] N. Lundblad, D. C. Aveline, A. Balaž, E. Bentine, N. P.
Bigelow, P. Boegel, M. A. Efremov, N. Gaaloul, M. Meister,
M. Olshanii, C. A. R. Sá de Melo, A. Tononi, S. Vishveshwara,
A. C. White, A. Wolf, and B. M. Garraway, Perspective on
quantum bubbles in microgravity, Quantum Sci. Technol. 8,
024003 (2023).

[44] F. Jia, Z. Huang, L. Qiu, R. Zhou, Y. Yan, and D. Wang, Ex-
pansion dynamics of a shell-shaped Bose-Einstein condensate,
Phys. Rev. Lett. 129, 243402 (2022).

[45] Y. Guo, E. M. Gutierrez, D. Rey, T. Badr, A. Perrin, L.
Longchambon, V. S. Bagnato, H. Perrin, and R. Dubessy, Ex-
pansion of a quantum gas in a shell trap, New J. Phys. 24,
093040 (2022).

[46] A. Tononi and L. Salasnich, Low-dimensional quantum gases
in curved geometries, Nat. Rev. Phys. 5, 398 (2023).
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