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Order by disorder and an emergent Kosterlitz-Thouless phase in a triangular Rydberg array
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A programmable quantum simulator using Rydberg-atom array provides a promising route to demystifying
quantum many-body physics in strongly correlated systems. Motivated by the recent realization of various
quantum magnetic phases on the frustrated Rydberg-atom array, we perform numerically exact quantum Monte
Carlo simulations to investigate the exotic states of matter emerging in the model describing the Rydberg atom on
a triangular lattice. Our state-of-the-art simulation unveils the

√
3 × √

3 triangular antiferromagnetic order exists
at 1/3 or 2/3-Rydberg filling, consistent with the observation in experiments. Remarkably,

√
3 × √

3 long-range
order arising from order-by-disorder mechanism emerges at 1/2 filling. At finite temperature, U(1) symmetry
is emergent at 1/2 filling and a Kosterlitz-Thouless phase transition occurs with increasing temperature. These
intriguing phenomena are potentially detected in future Rydberg-atom experiments.

DOI: 10.1103/PhysRevA.108.053314

I. INTRODUCTION

Deciphering the exotic physics emerging in frustrated mag-
nets is a particularly intriguing and crucial subject in strongly
correlated physics, triggering enduring interests for many
years [1,2]. In light of recent experimental developments,
the models featuring quantum magnetism in the presence of
lattice frustration are realized in Rydberg atom arrays [3–5].
In light of the high controllability and precise measurability
in the Rydberg atom set-up [6–19], fruitful exotic phenomena
emerging in frustrated magnets, including various spin density
wave orders, and quantum spin liquid have been observed in
the platform of the Rydberg atom array [3–5,20–29]. Hence,
the Rydberg atom array provides an ideal candidate platform
for quantum simulation on quantum magnetism [26,27,30–55]
and other exotic phenomena in strongly correlated systems
[28,56–77].

The triangular Ising model with transverse field is a rep-
resentative model featuring quantum magnetism with lattice
frustration. Despite its simple form, the triangular transverse
Ising model is theoretically revealed to exhibit various in-
triguing phenomena arising from the interplay between lattice
frustration and quantum or thermal fluctuations. For exam-
ple, quantum fluctuation triggers a

√
3 × √

3 ordered phase,
emerging from the macroscopic degenerate states induced
by the lattice frustration, which is dubbed as the order-by-
disorder (OBD) mechanism [78–88]. At finite temperature,
there exists an intermediate critical phase with emergent U(1)
symmetry, namely the Kosterlitz-Thouless (KT) phase, owing
to the interplay of quantum and thermal fluctuations in the
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presence of lattice frustration [89–95]. Recently, a Rydberg
atom array with up to 196 atoms and high coherence on the
triangular lattice was realized experimentally, featuring an
Ising-like model involving long-range interactions [3]. Re-
markably, the classical pattern of

√
3 × √

3 antiferromagnetic
(AFM) order is observed. Nevertheless, the realization of
OBD phase and associated intriguing physics such as the
emergent U(1) symmetry in the Rydberg atom’s platform
remains elusive. A thorough study of the systems with nu-
merically exact theoretical approach, rigorously illustrating
the plausibility of realization of the exotic physics discussed
above in the triangular Rydberg atom array, is thus immensely
desired.

In this paper, we perform numerically exact quantum
Monte Carlo (QMC) simulation based on a stochastic series
expansion (SSE) [89,96,97] algorithm to investigate a realistic
model describing the Rydberg atom array on a triangular
lattice [3]. We implement the algorithm combining the line
update [98] and multibranch update, enabling studying the
model at low temperature and large system size with relatively
high efficiency. Our state-of-the-art QMC simulation reveals
the existence of

√
3 × √

3 triangular antiferromagnetic (TAF)
order at 1/3 and 2/3 filling, consistent with the observation
in experiments. More remarkably, our study demonstrates the
emergence of OBD driven

√
3 × √

3 ordered phase at 1/2
filling. With increasing temperature, the TAF ordered phases
at 1/3 and 2/3 filling melt into disordered phase through a
continuous transition belonging to two-dimensional Potts uni-
versality class. Intriguingly, at 1/2 filling, the U(1) isotropy
emerges in a large temperature regime and the associated
transition from the OBD phase to high-temperature disordered
phase thus belongs to the KT universality class [99]. Our study
paves an alternative avenue to theoretically investigate the
Rydberg atom array system in a numerically exact approach.
The results provide concrete theoretical support to potentially
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realizing the exotic phenomena, for instance, the OBD phase,
emergent U(1) symmetry, and KT phase transition, in the
Rydberg atom platform.

II. MODEL AND METHOD

We consider the following Hamiltonian describing the two-
dimensional (2D) interacting Rydberg array [3]:

Ĥ =
∑
i< j

Ui j n̂in̂ j + h̄�

2

∑
i

(b̂†
i + b̂i ) − h̄δ

∑
i

n̂i, (1)

where h̄ is the reduced Planck’s constant, � is the Rabi fre-
quency, δ is the detuning frequency, and n̂i denotes Rybderg
occupation on site i. The model features a long-range van der
Waals interaction between Rydberg atoms Ui j = �(Rb/ri j )6,
where Rb is the Rydberg blocking radius defined as Ui j = � if
ri j = Rb. We investigate Eq. (1) on the triangular lattice with

the lattice basis vectors �a1 = a(1, 0) and �a2 = a( 1
2 ,

√
3

2 ). Un-
less specified, we choose h̄ = 1 and � = 1 in the simulation.

Upon fixing Rb, with the increase of detuning frequency
δ, atoms in the ground state are gradually excited to the
Rydberg state, exhibiting various patterns in real space with
different average Rydberg fillings [3,34,35]. In particular, as
the blockade radius is comparable to the lattice constant on a
triangular lattice, namely, a � Rb �

√
3a, the Rydberg atoms

form an incompressible TAF pattern with
√

3 × √
3 periodic-

ity as revealed in Ref. [3]. In this study, we fix the blockade
radius Rb = 1.2a and select the system size Lx = Ly = L with
periodic boundary condition. Owing to the absence of a sign
problem [98,100–104], the accurate properties of Eq. (1) for
large system size and low temperature are accessible in QMC
simulation. The details of QMC simulation and the results
of other choices of Rb such as Rb = 1.0a are included in
Appendixes A and C.

III. PHASE DIAGRAM

We calculate the average Rydberg filling n̄ at zero temper-
ature versus δ as depicted in Fig. 1, showing that the Rydberg
filling gradually increases from 0.1 to 1 with increasing δ. The
results explicitly indicate that two plateaus appear at 1/3 and
2/3 filling associated with incompressible phases. To further
reveal the spontaneous symmetry breaking (SSB) patterns of
Rydberg atoms, we calculate the order parameter m and the
static structure factor S( �Q) corresponding to the

√
3 × √

3
TAF phase, defined as the Fourier transform of the Rydberg
occupation n̂i and the correlation function between n̂i and n̂ j ,
respectively,

m =
∑

i

〈n̂i〉ei �Q·�xi/(N/3), (2)

and

S( �Q) = 1

N

∑
i, j

ei �Q·(�xi−�x j )〈n̂in̂ j〉. (3)

Here, �Q = 1
a ( 2π

3 , 2
√

3π
3 ) and N is the total number of lattice

points. m and S( �Q) at the thermodynamic limit (L → ∞) are
extracted from the results of L = 3–18, the details of which
are included in Appendix B. As depicted in Figs. 2(a) and

FIG. 1. Average Rydberg filling. The red dots connected by the
dashed line represent the Rydberg filling versus δ in Eq. (1). Insets
(a) to (c) show the patterns of TAF order at 1/3, 1/2, and 2/3 filling,
respectively. The blue circle represents the distribution of TAF order
parameters at 1/2 filling, which indicates the appearance of U(1)
symmetry.

2(b), |m| and S( �Q) are finite at the thermodynamic limit in a
large regime of δ, indicating the existence of

√
3 × √

3 TAF
long-range order. Both of these quantities exhibit the feature
of pronounced convexity in the regime corresponding to the
1/3 or 2/3 filling platform in Fig. 1, suggesting the ground
state of Eq. (1) possesses strong

√
3 × √

3 TAF long-range
order at the commensurate 1/3 and 2/3 filling, consistent
with the observation in Rydberg atom array experiments [3].
With increasing δ, the results of |m| and S( �Q) display sharp
discontinuous transitions around δc ≈ 1.2 and 17.8, signaling
the nature of the first-order transition between disordered and
TAF phases.

To further corroborate the emergence of
√

3 × √
3 TAF

long-range order and determine the accurate transition point,

FIG. 2. Ground-state phase diagram and transition point. (a), (b)
represent the results of order parameter and static structure factor
versus δ at the thermodynamic limit, respectively. (c) Binder ratio
versus δ for L = 6, 9, 12, 15. The inset provides a zoomed-in view of
UB in the regime close to the transition point. (d) Correlation length
ratio versus δ in the regime close to the transition point.
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we perform finite-size scaling analysis by calculating the
Binder ratio [34,105–107] defined as UB(L) = 〈|m|4〉

〈|m|2〉2 . In the
long (short)-range ordered phase, the values of UB(L) should
decrease (increase) with increasing system size L and tend
to 1 (2) in the thermodynamic limit. Figure 2(c) shows the
results of UB versus δ and the nearly crossing point from
different sizes L indicates the phase transition occurring at
δ/� = 1.22 ± 0.02, in agreement with the results of |m| and
S( �Q). The nonmonotonic behavior of UB(L) close to the phase
transition point manifests the nature of first-order transition.
Additionally, we calculate the correlation length ratio [35,97]

defined as C( �Q, L) = S( �Q)
S( �Q+�δq )

, where �Q + �δq is the momentum

closest to �Q on the lattice. As depicted in Fig. 2(d), the results
of C( �Q, L) for different system sizes reveal the transition
from disordered to TAF phase occurs at δc1 ≈ 1.2. Similarly,
UB(L) and C( �Q, L) yield another phase boundary between the
TAF and disordered phases δc2 ≈ 17.8. Taken together, our
systematic numerical simulations utilizing various approaches
unambiguously establish the ground-state phase diagram of
Rydberg atoms on a triangular lattice as presented in Figs. 1
and 2. Notice that the ground-state phase diagram does not
qualitatively change with respect to slightly varying the value
of Rb, as suggested by the numerical results of Rb = 1.0a
included in Appendix C.

IV. OBD AT 1/2 FILLING

The
√

3 × √
3 TAF phases at 1/3 or 2/3 filling established

in our state-of-the-art numerical simulation are consistent
with recent experimental observations [3]. An intriguing ques-
tion is whether the

√
3 × √

3 TAF order could emerge at 1/2
filling, arising from the celebrated OBD mechanism as devel-
oped in the triangular quantum transverse-field Ising model
[78–82]. In Figs. 2(a) and 2(b), the finite order parameter and
structure factors at the thermodynamic limit demonstrate the
presence of

√
3 × √

3 TAF long-range order at 1/2 filling.
Furthermore, the results of the Binder ratio in Fig. 2(c) rig-
orously confirm the conclusion. The explicit results of order
parameters, structure factors, and Binder or correlation length
ratios at 1/2 filling for different system sizes are included in
Appendix B.

V. KT PHASE WITH U(1) SYMMETRY

From the perspective of symmetry, the TAF phase at 1/3
or 2/3 filling breaks the Z3 lattice translational (or rotational)
symmetry. At 1/2 filling, the system accommodates an extra
Z2 particle-hole symmetry, namely, the ground state of the
TAF phase is six-fold degenerate. Hence, the resulting Landau
free-energy characterizing TAF ordering is written as

F ∝ g2|m|2 + g4|m|4

+
{

g3|m|3cos3θ, for 1/3 and 2/3 filling,

g6|m|6cos6θ, for 1/2 filling,
(4)

where |m| and θ represent the modulus and phase of the order
parameter in Eq. (2), g2,3,4,6 are the coefficients of each term,
and |m|3 cos 3θ and |m|6 cos 6θ are known as the three- and
six-fold anisotropic terms breaking the U(1) symmetry of

FIG. 3. Transition of TAF phase at finite temperature. (a), (c)
represent the results for Binder ratio as a function of β at 1/3 and 2/3
filling, respectively. (b), (d) represent the results for C3 as a function
of β at 1/3 and 2/3 filling, respectively. The system sizes in the
simulation are L = 6, 9, 12, 15, 18. The insets provide a zoomed-in
view in the regime close to the transition point.

m down to Z3 and Z6 [107,108], respectively. For the TAF
ordered to disorder transition in a two-dimensional system
at finite temperature, the Z3 anisotropic term is relevant, re-
sulting in the phase transition belonging to the three-state
Potts universality class [106]. However, Z6 anisotropy is
presumably irrelevant in the presence of strong thermal fluc-
tuation, yielding an intermediate phase with the emergent
U(1) isotropy of the TAF order parameter, namely, a KT
phase [82]. The phase transition between the quasi-long-range
KT phase and the disordered phase at higher temperature
belongs to the celebrated KT universality class [109,110].
Thus, to further elaborate on the nature of TAF ordered
phases at 1/3 or 2/3 and 1/2 filling, we embark on inves-
tigating the SSB and associated phase transitions at finite
temperature.

To explicitly characterize the anisotropy in the
√

3 × √
3

TAF phases, we calculate the following quantity:

Cq = 〈|m|qcosqθ〉
〈|m|q〉 , q = 3, 6, (5)

which is finite in the phase featuring three- or six-fold
anisotropy [106,107]. If the Zq anisotropic term is irrelevant,
namely, the ground-state manifold is a U(1) group, such a
quantity is expected to vanish at the thermodynamic limit.
In addition, we also calculate the Binder ratio to identify
transition points at finite temperature, which are presented
together with C3 in Fig. 3. The crossing feature of the Binder
ratio with varying system sizes in Figs. 3(a) and 3(c) clearly
demonstrate a finite-temperature transition from TAF phase
to disordered phase, where the critical temperature at 1/3 and
2/3 filling are βc� = 1.28 ± 0.02 and 1.22 ± 0.02, respec-
tively. In the TAF phase at β > βc shown in Figs. 3(b) and
3(d), |C3| increases with system size, revealing the nature of
the anisotropy breaking U(1) symmetry at 1/3 and 2/3 filling.
The transition points identified from the crossing point of
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FIG. 4. Irrelevance of sixfold anisotropy. (a), (b) represent
Binder ratio and C6 for parameters δ = 9.5� corresponding to the
1/2 filling of Rydberg occupancy. The system sizes in the simulation
are L = 6, 9, 12, 15, 18.

C3 for different systems sizes are nearly consistent with the
value determined by the Binder ratio. Moreover, we perform
a systematic finite-size scaling analysis in Appendix B yield-
ing the accurate critical exponents of the transition, which
convincingly verifies the transition in Fig. 3 belongs to the
Potts universality class. In contrast, at 1/2 filling, six-fold
anisotropy C6 vanishes with increasing system size in a large
temperature regime indicated in Fig. 4(b), which implies the
emergence of U(1) symmetry. In the results of the Binder
ratio in Fig. 4(a), the crossing point is not explicitly detected,
consistent with the absence of a long-range-order breaking
continuous phase transition at finite temperature in two di-
mensions. The irrelevance of Z6 anisotropy persists down
to the lowest temperature accessible in our simulation β =
150/�.

To further confirm the emergence of U(1) symmetry in the
TAF phase arising from the OBD mechanism at 1/2 filling,
we plot the distribution histograms of TAF order parameters
in Figs. 5(a) and 5(b). Figure 5(a) is the histogram of m

FIG. 5. Histogram of the order parameter and data collapse of
the susceptibility. (a,b) represent the distribution histograms of TAF
order parameters at 1/3 and 1/2 filling of Rydberg occupancy, re-
spectively. (c) The scaled TAF structure factor as a function of β,
where the crossing point for different L indicates the KT transition
point. (d) shows the finite-size scaling analysis of TAF susceptibility,
where the inset in (d) shows the fitting results when ξ/L ∈ [0, 50].

at 1/3 filling exhibiting pronounced three-fold anisotropy.
It should be noted that the three-fold anisotropy shown in
Fig. 5(a) is significantly better than the results in Ref. [3],
which is possibly due to the fact that the actual temperature
in the experiment is not so exactly the same as that in the
numerical simulation. Moreover, the nonequilibrium effect is
also a possible factor for this difference. In contrast, as de-
picted in Fig. 5(b), the distribution histogram of the TAF order
parameter at 1/2 filling is isotropic in the complex plane,
providing the unequivocal evidence of the emergent U(1)
symmetry. Remarkably, even at β = 150/� corresponding to
temperature T = 70 nK in the Rydberg atom array experi-
ment [3], our calculation in Appendix B reveals that the U(1)
symmetry remains present in the histogram of m at 1/2 fill-
ing, manifesting the irrelevance of Z6 anisotropy at such low
temperature.

Furthermore, we decipher the nature of U(1) symmet-
ric TAF phase by investigating the finite-temperature phase
transition to the high-temperature disordered phase, belong-
ing to the celebrated KT-transition universality class owing
to the emergent continuous U(1) symmetry. Close to the
KT-transition point, the susceptibilities of the U(1) order pa-
rameters at various system sizes obey the scaling function
[99,106,107]

χL = L2−ηχ0(ξ/L), (6)

where χ0 is an unknown scaling function, ξ ∝ ea/
√

βc/β−1

represents the correlation length of the order parameters, dis-
playing divergence at the KT-transition inverse temperature
βc, and a is a nonuniversal constant. The anomalous dimen-
sion of order parameter η = 0.25 exactly holds in the KT
transition [82,106,109,110]. We present the results of rescaled
susceptibility 〈|m|2〉L0.25 as a function of inverse temperature
β in Fig. 5(c), which can be deduced from the order parameter
in our simulation through the relation χ = L2〈|m|2〉β, clearly
indicating the KT transition occurs at βc = 6.25/� by virtue
of the crossing point of rescaled susceptibilities for different
system sizes.

Next, we adopt the data collapse analysis of the TAF
susceptibility using the scaling function Eq. (6). As-
suming KT transition universality class, the data points
(L−1ea/

√
βc/β−1, χLL−1.75) should collapse into a single curve

with appropriate choice of parameters [106,107]. Employ-
ing the approach of the data collapse analysis [111,112], we
determine the phase transition temperature βc� = 6.2513 ±
0.9082 and a = 6.5842 ± 0.9975, and all data points of each
group collapse into a single smooth curve as shown in
Fig. 5(d). The estimated value of βc from data collapse is
consistent with the result obtained in Fig. 5(c) within error bar.
More crucially, the results of the data collapse provide con-
vincing evidence that the phase transition between the critical
KT phase and disordered phases belongs to the KT transition,
further verifying the irrelevance of six-fold anisotropy at 1/2
filling with increasing thermal fluctuation.

VI. CONCLUSION AND DISCUSSIONS

Employing numerically the exact QMC simulation, we
systematically investigate a realistic interacting model de-
scribing the triangular Rydberg atom array. Upon fixing the
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Rydberg radius Rb, the ground-state phase diagram with vary-
ing Rydberg filling is achieved. At 1/3 and 2/3 filling, the√

3 × √
3 TAF long-range order is unambiguously unveiled,

consistent with the observation in recent Rydberg atom array
experiments on a triangular lattice [3]. More appealingly, our
calculation reveals the

√
3 × √

3 ordering is present at 1/2
filling, arising from the OBD mechanism. Owing to the inter-
play between quantum and thermal fluctuations, an enlarged
U(1) isotropy of the TAF order parameter emerges in a large
temperature regime, resulting in a KT transition between the
TAF and disordered phases. Since the classical patterns of
TAF order at 1/3 and 2/3 filling have been successfully im-
aged in a recent experiment [3], our state-of-the-art numerical
simulation paves the route for subsequent observations of
quantum fluctuation triggered OBD

√
3 × √

3 TAF phase and
the intriguing physics including the emergent KT phase and
phase transition in the Rydberg atom platform.

We remark that the nonequilibrium effect is a factor that we
ignore in the present calculations. To maintain the adiabaticity
and reduce the decoherence effect of spontaneous radiation
from the intermediate state, a suitable sweep and measurement
time are required. In general, the system is considered to be in
equilibrium during this time and can be numerically simulated
using Eq. (1). The nonequilibrium effect in the Rydberg-atom
array is an issue left for our future studies. In addition, it
is fascinating to investigate Eq. (1) with further increasing
Rydberg blocking radius Rb. As discussed in previous studies,
various magnetic ordered phases [34,35], more intriguingly,
the quantum spin liquid phase featuring topological order
could possibly emerge by using a varying Rydberg blocking
radius [5,35]. Moreover, it is straightforward to generalize
our study to Rydberg systems in other lattices or modified
interactions. Hence, we believe that our study opens an av-
enue to investigating exotic physics emerging in the Rydberg
atom array on a frustrated lattice by using unbiased numerical
simulation.
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APPENDIX A: INTRODUCTION TO SSE QMC

A general introduction to the numerical simulation method
(SSE QMC) used in this work is given in this section.
In Appendix A 1, we show the basic idea of the SSE
method at finite temperature applied to the Rydberg sys-
tem. Then the updated strategy used in the sampling of the
simulation cell is shown in Appendix A 2, which includes
two schemes: the multibranch and line cluster update. Fi-
nally, we give the calculation method at zero temperature in
Appendix A 3.

1. Algorithm of at finite temperature

The SSE QMC is based on Taylor expansion of the phys-
ical statistical quantity in the partition function. We consider
the Hamiltonian describing the Rydberg atom array, and write
the associated partition function in the basis of Rydberg state
occupancy as

Z = Tr{e−βĤ } =
∑
ψ0

〈ψ0|
+∞∑
n=0

βn

n!
(−Ĥ )n|ψ0〉

=
∑
{ψp}

+∞∑
n=0

βn

n!

n∏
p=1

〈ψp−1|(−Ĥ )|ψp〉. (A1)

In the second equal sign in Eq. (A1), we insert a set of
Rydberg basis in every term of the expansion, where p =
1, . . . , n labeling the index related to the imaginary time in
path-integral representation. To formulate the SSE QMC more
explicitly, we decompose the Hamiltonian as

Ĥ = −
∑
t,a

Ĥt,a, (A2)

where the index t represents the diagonal or off-diagonal
term in the Rydberg basis, and a represents the index of the
lattice site and bond. Substituting Eq. (A2) into Eq. (A1), we
arrive at

Z =
∑
{ψp}

+∞∑
n=0

∑
Sn

βn

n!

n∏
p=1

〈ψp−1|Ĥtp,ap |ψp〉, (A3)

where Sn = (t1, a1), (t2, a2), . . . , (tn, an) denotes a sequence
of decomposed terms in the Hamiltonian at index n. Practi-
cally, we truncate the value of n to a sufficiently large number
M. The value of M is determined by the standard procedure
as introduced in Refs. [89,98]. Upon the given M, we insert
M − n unit operators so that the number of imaginary-time
points in each term is fixed to M. Consequently, the partition
function Eq. (A3) is expressed as a summation of nonzero
weights as

Z =
∑
{ψp}

∑
SM

βn(M − n)!

M!

M∏
p=1

〈
ψp−1

∣∣Ĥtp,ap

∣∣ψp
〉

=
∑
{ψp}

∑
SM

�({ψp}, SM ). (A4)

In QMC simulation, we perform the summation in Eq. (A4)
stochastically, more explicitly, we sample the configuration
space ({ψp}, SM ) randomly with the probability �({ψp}, SM )
defined in Eq. (A4). Then some physical observables can be
evaluated straightforwardly. For example, the energy could be
calculated as following:

E = 〈Ĥ〉 = 1

Z
Tr{Ĥe−βĤ } = 1

Z

+∞∑
n=1

βn

n!

n

β
Tr{−Ĥn} = −〈n〉

β
.

(A5)
So the energy in the thermal equilibrium corresponds to the
average value of n divided by inverse temperature β. In the
SSE QMC simulation, the diagonal update is adopted to insert
or delete the site or bond diagonal operator, which keeps the
configuration of states {ψp} at each imaginary time invariant.
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The off-diagonal update inserts or deletes the off-diagonal site
operator, hence updating the configuration {ψp}. The cluster
algorithm is utilized to achieve it efficiently.

To guarantee the absence of the sign problem in the proce-
dure of SSE QMC simulation, the matrix elements in Eq. (A4)
should be nonnegative. Under a unitary transformation Û =⊗N

i=1 n̂z
i , the Hamiltonian is transformed as

Ĥ =
∑
i< j

Ui j n̂in̂ j − �

2

∑
i

(b̂†
i + b̂i ) − δ

∑
i

n̂i. (A6)

Then we decompose the above Hamiltonian into the fol-
lowing components:

Ĥ0,0 = Î, Ĥ0,a = �

2
Î, Ĥ−1,a = �

2
σ̂ x

i ,

Ĥ1,b = −Ui j n̂in̂ j + δb(n̂i + n̂ j ) + Ci j,

(A7)

where δb = δ
N−1 and the constant Ci j = |min(0, δb, 2δb −

Ui j )| is added to eliminate the sign problem. The first indexes
0, 1, and −1 represent the unit, diagonal, and off-diagonal
operators, respectively, while the second indexes a and b cor-
respond to operators on the lattice site and bond. Here, we list
the nonzero matrix elements of each component in Eq. (A7)
as follows:

〈1|Ĥ−1,a|0〉 = 〈0|Ĥ−1,a|1〉 = �

2
,

〈1|Ĥ1,a|1〉 = 〈0|Ĥ1,a|0〉 = �

2
,

G(1)
i j ≡ 〈00|Ĥ1,b|00〉 = Ci j,

G(2)
i j ≡ 〈01|Ĥ1,b|01〉 = δb + Ci j,

G(3)
i j ≡ 〈10|Ĥ1,b|10〉 = δb + Ci j,

G(4)
i j ≡ 〈11|Ĥ1,b|11〉 = −Ui j + 2δb + Ci j,

(A8)

where Gi j represents the matrix element on the bond i j. The
key procedure in the QMC simulation updates the configura-
tions efficiently. Hence, we introduce the update strategy in
the SSE QMC simulation on the Rydberg atom array system
in the next section.

2. Update strategy

The update of configurations in the imaginary-time di-
rection is divided into two steps: diagonal and off-diagonal
update, discussed in Appendixes A 2 a and A 2 b, respectively.

a. Diagonal update

The first class of update scheme in SSE QMC simulation
is the diagonal update. In the diagonal update, the diagonal
terms in the Hamiltonian are inserted or replaced by the unit
operator. The configurations of states at each imaginary time,
namely, {ψp}, thus keep invariant in the procedure of the
diagonal update. The procedure of the diagonal update in our
simulation is similar to the algorithm utilized in the long-range
Ising model.

FIG. 6. (a), (b) show the simulation cells before and after the off-
diagonal update. The hollow and solid circles represent the ground-
state and Rydberg atoms on the lattice point, respectively, and the
blue and green paths represent the cluster used for multibranch and
line update, respectively.

b. Off-diagonal update

For the off-diagonal operator update, the multibranch
cluster algorithm is proposed to efficiently update the con-
figurations in the long-range Ising model. For the Rydberg
system, Melko et al. [98] proposed a line update algorithm.
The line update is a cluster update algorithm local in space and
nonlocal in imaginary time. Unlike the multibranch update
in which all the four legs in the bond operator are added in
the cluster, in the line cluster, only the neighbored leg in the
imaginary-time direction is added to the cluster when the bond
operator is encountered. The advantage of the line update in
Rydberg systems over the multibranch update is that the first
can sample more configurations than the second, which can
better meet the ergodic requirements. However, the multi-
branch update process enables updating the configurations
in a cluster containing different sites. Thus, we perform the
off-diagonal update combining two schemes of the line update
and multibranch update.

Here, to further understand this update strategy, we take the
concrete example shown in Fig. 6, where the x and y directions
represent the imaginary-time direction and the arrangement
of lattice points in real space, respectively. The clusters cor-
responding to the blue and green paths in Fig. 6(b) are the
updated configurations of the clusters with the corresponding
colors in Fig. 6(a), where the blue and green correspond to
the multibranch and line update strategies, respectively. As we
can see, in the multibranch update, all four legs of the bond
operator encountered by the blue path are added to the cluster,
while only the two adjacent legs of the green path in the line
update are taken into account.

3. Method of accessing zero-temperature information

In the two subsections above, we introduced the numerical
methods used for the simulation at finite temperature. To
access the ground-state properties of the Rydberg-atom sys-
tems, we perform the finite-temperature simulation and scale
the inverse temperature linearly with system size as β = 2L.
Then the results at zero temperature are extrapolated from the
data for different system sizes L and inverse temperatures β

through the second polynomial function

y = a

(
1

L

)2

+ b

(
1

L

)
+ c, (A9)

where y is the extrapolated result for zero temperature and
a, b, c are nonuniversal parameters in the fitting. Employing
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FIG. 7. (a), (b) represent the results of C6 for parameters δ =
4.0� and 14.0� corresponding to the Rydberg 1/3 and 2/3 filling,
respectively. Here, five different system sizes are used for finite-size
scaling analysis, marked by different colors in the legend. The insets
in (a) and (b) also show the trend near the phase transition and give
the specific position of the transition points.

this procedure, we achieve the results of different physical
quantities at the thermodynamic limit and zero-temperature
limit, namely, L → ∞ and T → 0.

APPENDIX B: ADDITIONAL NUMERICAL
RESULTS FOR Rb = 1.2a

In this section, we provide more numerical results with
Rb = 1.2a, further confirming the conclusions in the main
text. In Appendix B 1, we present the results of finite-size
scaling analysis for the TAF disordered phase transition at 1/3
and 2/3 filling. In Appendix B 2, we present the distribution
histograms of order parameters at varying temperatures. Re-
markably, the KT phase emerging at 1/2 filling exists in a
large temperature regime, persisting down to the temperature
close to zero temperature. In Appendix B 3, we present the
results for the filling of Rydberg occupancy slightly away
from 1/2, demonstrating that the KT phase only exists at 1/2

filling. Finally, in Appendix B 4, we determine the critical
temperature of the KT transition by data collapse with the
data adding L = 6a, which renders the results qualitatively
consistent with the ones in the main text. Moreover, we per-
form double logarithmic fitting of TAF susceptibility, giving
rise to the KT-transition temperature consistent with the result
obtained by data collapse.

1. Finite-temperature Potts transition at 1/3 and 2/3 filling

In this subsection, by further calculating C6, which repre-
sents the six-fold anisotropy, we give the transition points in
Fig. 3 in the main text again. Then a finite-size scaling analysis
is carried out to demonstrate that the phase transition in Fig. 3
belongs to the Potts universality class.

First, for Fig. 3 in the main text, C3 is calculated to charac-
terize the three-fold anisotropy at 1/3 and 2/3 filling and give
the transition points, which is consistent with the results from
the Binder ratio. In fact, similar results can also be obtained by
C6. Figure 7 shows the results of C6 with parameters δ = 4.0�

and 14.0�, from which we can see that the critical tempera-
tures between the 1/3- and 2/3-filling phase and disordered
phase are βc� = 1.22 ± 0.02 and 1.16 ± 0.02, respectively.
By comparing Figs. 3 and 7, it can be seen that C3 is in-
deed more accurate than C6 in characterizing the three-fold
anisotropy of TAF order at 1/3 and 2/3 filling.

Then, at 1/3 and 2/3 filling, here we also perform a
finite-size scaling analysis for the susceptibility χL at finite
temperature, where χL of different sizes follows

χL = Lcχ0(L/ξ ), (B1)

Eq. (B1) has a similar form to Eq. (6) in the main text, and
the correlation length ξ ∝ 1/(β − βc)ν , where the theoretical

FIG. 8. The first and second rows correspond to the fitting results of 1/3 and 2/3 filling, respectively. The first column shows the double
logarithm fitting in Eq. (B4) at the transition temperature βc. The second and third columns give the results of data collapse analysis for system
sizes L/a = 6, 9, 12, 15, 18 and 9,12,15,18, respectively, where different colors in the legend represent different sizes.
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FIG. 9. (a)–(c) show the distribution histograms of order parameters with 14.0� at three representative temperatures, which reflects the
phase transition from disordered phase to TAF phase at 2/3 filling.

value of the Potts universality class is

c = 26
15 , ν = 5

6 . (B2)

At the transition temperature βc, the susceptibility can be
reduced to

χL ∝ Lc. (B3)

Taking the logarithm of both sides of Eq. (B3), we can obtain

ln(〈|m|2〉β ) = lnα − (2 − c)lnL, (B4)

where α is a constant coefficient. Equatin (B4) is used to fit
anomalous dimension c at different temperatures. As shown
in Fig. 8(a), it can be seen that for 1/3 and 2/3 filling,
the anomalous dimension at βc� = 1.26 and 1.20 and c =

1.7337 ± 0.00029 and 1.7573 ± 0.0248, respectively, which
are in good agreement with the theoretical values in Eq. (B2).

Further, according to Eq. (B1), we perform a data collapse
analysis, that is, [L1/ν (β − βc), χLL−c] should collapse into
a common curve, which is similar to the result Fig. 5(d)
in the main text. From the fitting results of Figs. 8(b i) to
8(b ii) corresponding to 1/3 and 2/3 filling, respectively,
where the system size is selected as L/a = 6, 9, 12, 15, 18,
we obtain that the fitting parameters are (c, ν, βc ) =
(1.7305 ± 0.1622, 0.8706 ± 0.0124, 1.2597 ± 0.0502) and
(1.7267 ± 0.1508, 0.8672 ± 0.0244, 1.1993 ± 0.0157).
Compared with Fig. 8(b), we also give the fitting of
system size L/a = 9, 12, 15, 18 in Fig. 8(c), and the
obtained results are (c, ν, βc ) = (1.7263 ± 0.1462, 0.8632 ±
0.0102, 1.2596 ± 0.0184) and (1.7125 ± 0.1092, 0.8536 ±

FIG. 10. The six figures are the distribution histograms of TAF order parameters with δ = 9.5� at different temperatures, where the
corresponding temperatures in Rydberg-atom array experiment of (a v) and (a vi) are 350 nK and 70 nK, respectively. With the decrease of
temperature, the feature of emergent U(1) isotropy in distribution histogram is more pronounced.
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FIG. 11. Each dot represents an atom. Using the black atom
labeled 0 as a reference, this figure shows the distribution of atoms
around it from the first nearest neighbor to the seventh nearest neigh-
bor, where the corresponding color of the number i represents the ith
nearest-neighbor atom and gray represents the more distant atoms
beyond the seventh nearest-neighbor position.

FIG. 12. (a)–(d) show the order parameter m, static structure
factor S( �Q), Binder ratio UB(L), and correlation length ratio C( �Q, L)
corresponding to δ = 9.50� at 1/2 filling, respectively, in which the
red dotted line in each figure represents the quadratic fitting curve in
Eq. (A9) obtained with different data points. The inset in (d) gives
the overall trend of C( �Q, L) when δ/� ∈ [0, 20], where C( �Q, L) at
1/2 filling is also a local minimum, and five sizes are selected for
finite-size scaling analysis and marked with different colors in the
legend.

0.0107, 1.1975 ± 0.0124), respectively. These numerical
results in Fig. 8 are consistent with the theoretical values of
the Potts transitions in Eq. (B2).

Here we use the fitting method given in Ref. [111], which is
a refinement on the method previously proposed in Ref. [112].
In this method, a function S is defined to evaluate the qual-
ity of the fitting, where the minimum value is close to 1.0
if the collapse effect is good, otherwise it is a large value.
In the fitting of the four data collapses in Fig. 8, the func-
tions obtained are S = 0.0120, 0.1075, 0.0092, and 0.1340,
corresponding to Figs. 8(b i), 8(b ii), 8(c i), and 8(c ii), re-
spectively, and these data points of different sizes do collapse
onto a common smooth curve. Therefore, from the results of
Fig. 8, we can conclude that the TAF disorder transitions for
1/3 and 2/3 filling at finite temperature belong to the Potts
universality class.

In addition, the distribution histogram of order parameters
at 1/3 filling is given in Fig. 5(a) in the main text. Here we
also show the histograms with δ = 14.0� corresponding to
2/3 filling in Fig. 9, and it can be seen that the distribution of
order parameters still has a three-fold symmetry. The differ-
ence between these two filling phases is that the peaks of the
phases in Fig. 9(c) are concentrated in π/3, π, 5π/3, rather
than 0, 2π/3, 4π/3 shown in Fig. 5(a) in the main text, which
was measured in the experiment [3].

2. KT phase at low temperature

The results of Fig. 4 in the main text illustrate that at 1/2
filling, with decreasing temperature, the system undergoes a
KT transition from the disordered phase to a KT phase with
the emergent U(1) isotropy of the TAF order parameter. In the
main text, we present the distribution histogram of the TAF
order parameter at 1/2 filling for inverse temperature β =
5.0/�, corresponding to the temperature in the Rydberg atom
array experiment T = 2.1 µK [3]. In this section, we plot the
distribution histograms of the TAF order parameters with the
size L = 15a at different temperatures, as shown in Fig. 10.
With the decrease of temperature, the distribution of order pa-
rameters gradually evolves to an isotropic circle. In particular,
in Fig. 10(a vi) with the inverse temperature β = 150/� cor-
responding to 70 nK[3] in the experiment, which is extremely
close to zero temperature, the result clearly shows that the
distribution peaks in a circle with U(1) isotropy. Therefore,
U(1) isotropy of the TAF order parameter is emergent in
a large-temperature regime, corroborating the feasibility of
observing the emergent KT phase in realistic Rydberg atom
array experiments. More appealingly, our numerical results

FIG. 13. The results of finite-temperature phase transition for δ = 9.3�. (a) Binder ratio UB. (b) Six-fold anisotropy C6. (c) Three-fold
anisotropy C3. The system sizes in the simulation are L/a = 6, 9, 12, 15, 18.
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FIG. 14. (a)–(c) show the distribution histograms of order parameters with δ = 9.30� at three representative temperatures, respectively,
which reflects the phase transition from disordered phase to TAF phase.

imply the KT phase with emergent U(1) isotropy persists even
to the zero temperature, which is fundamentally different from
the transverse-field Ising model with the nearest-neighbor
interaction, where the KT phase only emerges in an interme-
diate temperature regime. The thorough investigation of the
possible emergent KT phase at zero temperature is left for
future study.

3. Results for the slight deviation from 1/2 filling

In this subsection, we explicitly show that the parame-
ter δ = 9.5� indeed corresponds to 1/2 filling, consistent
with the numerical results presented in the main text. Then
we present the numerical results for the Rydberg occupancy
slightly away from 1/2 filling, specifically, δ = 9.3�, which
demonstrates the KT phase with emergent U(1) symmetry
only exists at 1/2 filling.

To reveal the mapping from Rydberg atom model to the
long-range Ising model, we rewrite Eq. (1) in the main text in
terms of spin operators. More precisely, by substituting n̂i =
Ŝz

i + 1
2 Î into Eq. (1) in the main text we arrive at the following

Hamiltonian:

Ĥ =
∑
i< j

Ui j Ŝ
z
i Ŝz

j +
∑

i

hiŜ
z
i + �

2

∑
i

Ŝx
i +

∑
i< j

Ui j

4
+ Nδ

2
,

(B5)

FIG. 15. The data collapse of TAF susceptibility from five sets of
data L/a = 6, 9, 12, 15, 18, where the inset shows the fitting results

in the range L−1e
a√

βc/β−1 ∈ [0, 38].

where hi = ∑
j∈neighbor

Ui j

2 − δ and N is the total number of
lattice points. Here hi is isotropic and when

δ =
∑

j∈neighbor

Ui j

2
, (B6)

Eq. (B5) remains invariant under the transformation Ŝz
i →

−Ŝz
i , which is the particle-hole symmetry mentioned in the

main text, that is, the system is Rydberg 1/2 filling in this
case. As shown in Fig. 11, we consider the interaction be-
tween atoms to the seventh nearest neighbor and according to
Eq. (B6), we can have

δ = 1

2
×

[(
1.2

1

)6

× 6 +
(

1.2√
3

)6

× 6 +
(

1.2

2

)6

× 6

+
(

1.2√
7

)6

× 12 +
(

1.2

3

)6

× 6 +
(

1.2

2
√

3

)6

× 6

+
(

1.2√
13

)6

× 12

]

≈ 9.506, (B7)

which is consistent with the numerical result of Fig. 1 in the
main text.

Next, we provide more evidence for the
√

3 × √
3 TAF

phase mentioned in the main text that arises from an OBD
mechanism at 1/2 filling, as shown in Fig. 12. In Figs. 12(a)
and 12(b), order parameter m and static structure factor S( �Q)
gradually decrease from a large value to a nonzero finite
value with increasing size, which is consistent with the local
minimum point at δ = 9.50� in Figs. 2(a) and 2(b) in the main
text. Similarly, from the inset in Fig. 12(d), we can see that
the correlation length ratio C( �Q, L) is also a local minimum
at 1/2 filling, and it’s clear that C( �Q, L) increases as the size
increases. In addition, for the Binder ratio given in Fig. 12(c),
the results of different system sizes are close to 1, which also
reflects the long-range order of the system. Therefore, com-
bined with the results of Figs. 12(a) to 12(d), there is indeed
a weak

√
3 × √

3 TAF order at 1/2 filling. When δ has a
proper deviation near 9.50�, the particle-hole symmetry will
be broken so that the system will no longer have a KT phase
transition. In the remainder of this subsection, we perform a
finite-size scaling analysis to give a numerical verification for
this point.
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FIG. 16. The double logarithmic fitting of TAF susceptibility versus lnL at different temperatures, ranging from β� = 0.5 to 40.0.

We choose δ = 9.3�, corresponding to the filling slightly
deviating from 1/2 filling, and investigate the nature of the
TAF order parameter anisotropy. We calculate the Binder
ratio UB, C6, and C3 with varying temperature as shown in
Fig. 13. From the results of the Binder ratio in Fig. 13(a), as
the inverse temperature is larger than βc = 3.0/�, the Binder
ratio is close to 1, suggesting the TAF order is long range. The
results of C3 as shown in Fig. 13(c) demonstrate the TAF order
is three-fold anisotropic as β > 2.5/�. Hence, as the filling
number slightly deviates from 1/2 filling, the U(1) isotropy
of TAF order is not emergent at low temperature. We present
the distribution histogram of the TAF order parameter upon
fixing δ = 9.3� with varying temperature in Figs. 14(a) to
14(c). With increasing temperature, the histogram of the TAF
order evolves from the pattern with three-fold rotational sym-
metry to the single peak at zero associated with the disordered
phase. Close to the transition temperature β = 2.5/�, the

distribution histogram exhibits approximately U(1) symme-
try with tiny three-fold anisotropy. Because of the numerical
uncertainty and finite-size effect, we cannot exclude the
existence of an intermediate KT phase in a tiny tempera-
ture regime between low-temperature

√
3 × √

3 TAF ordered
phase and high-temperature disordered phase.

4. Additional results of KT transition

Figure 5(d) in the main text provides the results of data
collapse analysis, giving rise to the critical temperature of
the KT transition. In this subsection, we employ the same
procedure of data collapse analysis using the data for L/a =
6, 9, 12, 15, 18 as shown in Fig. 15. The result of the KT
transition is βc� = 6.2507 ± 0.4052, consistent with the re-
sults obtained in the main text. In our analysis, the function
S = 1.7334 in Fig. 5(d) of the main text and S = 2.6589
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FIG. 17. (a) describes the Rydberg filling number as a function of δ. (b), (c) show the TAF order parameters and static structure factors,
respectively. The Rydberg blockade radium is fixed at Rb = 1.0a.

in Fig. 15, indicating the excellent quality of data collapse.
Hence, our simulation unambiguously reveals the TAF sus-
ceptibility obeys the scaling behavior of KT transition and
the finite-temperature TAF transition occurring at 1/2 filling
belongs to the KT universality class.

Next, according to Eq. (B4), we perform a double log-
arithmic fitting for the TAF susceptibility and present the
fitting results at 29 temperatures with δ = 9.50�, as shown in
Fig. 16. At the KT-transition point, the accurate value of η =
0.25 is available. With increasing temperature, the fitted value
of η gradually increases as clearly indicated in Fig. 16. In
Fig. 16(xx), the critical exponent η = 0.25 when β = 6.25/�,
suggesting that the KT transition occurs at β = 6.25/� con-
sistent with results obtained by data collapse. However, as the
temperature further decreases, η = 0.1341 when β = 30/�

as shown in Fig. 16(xxviii), which is greater than the lower
critical exponent (η = 1/9) of the KT phase. To minimize the
influence of finite size, we further increase the system size
to L = 30a and yield η = 0.1456, as shown in Fig. 16(xxix),
indicating the lower-temperature bound of the KT phase is
lower than T = �/30. Therefore, compared with the previous
results [82,88,94,107], we reach the conclusion that the long-
range interaction substantially extends the temperature range
of the KT phase.

APPENDIX C: QMC RESULTS FOR Rb = 1.0a

In this section, we present the numerical results for Rb =
1.0a, demonstrating that the main conclusions unveiled in the
simulation of Rb = 1.2a still hold. This section is organized
as follows. In Appendix C 1, by calculating the order param-
eter m, the static structure factor S( �Q), Binder ratio UB, and
correlation length ratio C( �Q, L), we access the ground-state
phase diagram and confirm the existence of TAF order at 1/2
filling.

In Appendix C 2 we plot the distribution histogram of the
order parameters and the KT phase emerges at 1/2 filling.

1. TAF phase and transition points

Figures 17(b) and 17(c) show the order parameter m
and static structure factor S( �Q) with fixed Rb = 1.0a. Sim-
ilarly, m and S( �Q) display two convexities at 1/3 and 2/3
filling, demonstrating the existence of

√
3 × √

3 TAF long-
range ordering. To further determine two transition points in
Figs. 17(b) and 17(c), a finite-size scaling analysis is per-
formed as shown in Fig. 18. From Fig. 18(a), the crossing
points of the Binder ratio for different system sizes indicate
the phase transition points δ/� = 0.657 ± 0.02 and 5.712 ±

FIG. 18. (a) The overall trend of Binder ratio, where the insets are the zoomed-in view of the results in the vicinity of the transition
points. (b), (c) indicate two transition points between disordered and TAF ordered phases at 1/3 and 2/3 fillings, respectively. Here, �b1/L and
�b2/L denote two minimal lattice vectors in two directions on a two-dimensional lattice. Here, the linear system sizes in the simulation are
L/a = 6, 9, 12, 15.
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FIG. 19. The distribution histogram of TAF order parameter at
half filling. The Rydberg blockade radium Rb = 1.0a and linear
system size L = 15a. The inverse temperature is (a) β = 10/2� and
(b) β = 300/2�, corresponding to the temperature in Rydberg-atom
array experiment [3] T = 2100 nK and 70 nK, respectively.

0.02. In addition, the correlation length ratios close to the
two transition points are given in Figs. 18(b) and 18(c).
The phase transition points given by correlation length ratios

are approximately consistent with the ones from the Binder
ratios.

Moreover, Fig. 17(a) indicates the detuning frequency cor-
responding to 1/2 filling is approximate δ = 3.20 × 2�. The
order parameter and static structure factor in Figs. 17(b) and
17(c) reach a nonzero local minimum at this point. Therefore,
for Rb = 1.0a, the ground state also possesses

√
3 × √

3 TAF
long-range order at 1/2 filling, arising from the OBD mecha-
nism. Thus, the ground-state phase diagram for Rb = 1.0a is
qualitatively the same as the one for Rb = 1.2a as shown in
the main text.

2. KT phase at low temperature

To verify the existence of KT phase at 1/2 filling, the
distribution histogram of order parameters is directly given in
this subsection, as shown in Fig. 19. We can see that the order
parameters are distributed on an isotropic circle in a large
temperature regime, which is a manifestation of the emergent
U(1) symmetry. Therefore, the system with Rb = 1.0a has KT
phase, especially the distribution of 70 nK near zero tempera-
ture in Fig. 19(b), which leads us to believe that the KT phase
can also exist at zero temperature.
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X 11, 021021 (2021).
[66] L. Pan and H. Zhai, Phys. Rev. Res. 4, L032037 (2022).
[67] T.-H. Yang, B.-Z. Wang, X.-C. Zhou, and X.-J. Liu, Phys. Rev.

A 106, L021101 (2022).
[68] A. Celi, B. Vermersch, O. Viyuela, H. Pichler, M. D. Lukin,

and P. Zoller, Phys. Rev. X 10, 021057 (2020).
[69] M. Barbier, H. Lütjeharms, and W. Hofstetter, Phys. Rev. A

105, 013326 (2022).
[70] P. Fromholz, M. Tsitsishvili, M. Votto, M. Dalmonte, A.

Nersesyan, and T. Chanda, Phys. Rev. B 106, 155411 (2022).
[71] G. Giudice, F. M. Surace, H. Pichler, and G. Giudici, Phys.

Rev. B 106, 195155 (2022).
[72] M. Kalinowski, N. Maskara, and M. D. Lukin, Phys. Rev. X

13, 031008 (2023).
[73] J. Lee, P. A. Volkov, B. J. DeSalvo, and J. H. Pixley, Phys.

Rev. A 107, 053307 (2023).
[74] R. Samajdar, D. G. Joshi, Y. Teng, and S. Sachdev, Phys. Rev.

Lett. 130, 043601 (2023).
[75] K. Slagle, D. Aasen, H. Pichler, R. S. K. Mong, P. Fendley,

X. Chen, M. Endres, and J. Alicea, Phys. Rev. B 104, 235109
(2021).

[76] M. Tsitsishvili, T. Chanda, M. Votto, P. Fromholz, M.
Dalmonte, and A. Nersesyan, Phys. Rev. B 105, 155159
(2022).

[77] X.-J. Yu, S. Yang, J.-B. Xu, and L. Xu, Phys. Rev. B 106,
165124 (2022).

[78] C. L. Henley, Phys. Rev. Lett. 62, 2056 (1989).
[79] A. V. Chubukov and T. Jolicoeur, Phys. Rev. B 46, 11137

(1992).
[80] A. Chubukov, Phys. Rev. Lett. 69, 832 (1992).
[81] R. Moessner, S. L. Sondhi, and P. Chandra, Phys. Rev. Lett.

84, 4457 (2000).

053314-14

https://doi.org/10.1103/PhysRevLett.120.180502
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1126/science.aav9105
https://doi.org/10.1103/PhysRevResearch.3.013286
https://doi.org/10.1103/PhysRevX.11.031005
http://arxiv.org/abs/arXiv:2211.00653
https://doi.org/10.1103/PhysRevB.105.174417
https://doi.org/10.1103/PhysRevB.106.134506
https://doi.org/10.1103/PhysRevLett.124.103601
https://doi.org/10.1073/pnas.2015785118
https://doi.org/10.1103/PhysRevLett.122.017203
https://doi.org/10.1038/nature12483
https://doi.org/10.1103/PhysRevA.84.052332
https://doi.org/10.1126/science.abg2530
https://doi.org/10.1038/nature22362
https://doi.org/10.1116/5.0036562
https://doi.org/10.1103/PhysRevX.7.041063
https://doi.org/10.1038/nphys3835
https://doi.org/10.1038/s41586-023-05859-2
https://doi.org/10.1103/PhysRevA.106.063302
http://arxiv.org/abs/arXiv:2201.08463
https://doi.org/10.1088/2058-9565/aca996
https://doi.org/10.1103/PhysRevLett.131.083601
https://doi.org/10.1103/PhysRevA.106.023309
https://doi.org/10.21468/SciPostPhys.14.1.004
https://doi.org/10.1103/PRXQuantum.3.020303
https://doi.org/10.1103/PhysRevResearch.4.L032046
http://arxiv.org/abs/arXiv:2212.10863
https://doi.org/10.1103/PhysRevLett.130.206501
https://doi.org/10.1088/1367-2630/acc125
https://doi.org/10.1038/s41586-019-1070-1
https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1103/PhysRevLett.128.017601
https://doi.org/10.1103/PhysRevX.10.021031
https://doi.org/10.1103/PRXQuantum.3.040317
https://doi.org/10.1103/PhysRevB.107.094302
https://doi.org/10.1103/PhysRevX.11.021036
https://doi.org/10.1103/PhysRevResearch.5.013157
https://doi.org/10.21468/SciPostPhys.15.2.052
https://doi.org/10.1103/PhysRevX.11.021021
https://doi.org/10.1103/PhysRevResearch.4.L032037
https://doi.org/10.1103/PhysRevA.106.L021101
https://doi.org/10.1103/PhysRevX.10.021057
https://doi.org/10.1103/PhysRevA.105.013326
https://doi.org/10.1103/PhysRevB.106.155411
https://doi.org/10.1103/PhysRevB.106.195155
https://doi.org/10.1103/PhysRevX.13.031008
https://doi.org/10.1103/PhysRevA.107.053307
https://doi.org/10.1103/PhysRevLett.130.043601
https://doi.org/10.1103/PhysRevB.104.235109
https://doi.org/10.1103/PhysRevB.105.155159
https://doi.org/10.1103/PhysRevB.106.165124
https://doi.org/10.1103/PhysRevLett.62.2056
https://doi.org/10.1103/PhysRevB.46.11137
https://doi.org/10.1103/PhysRevLett.69.832
https://doi.org/10.1103/PhysRevLett.84.4457


ORDER BY DISORDER AND AN EMERGENT … PHYSICAL REVIEW A 108, 053314 (2023)

[82] R. Moessner and S. L. Sondhi, Phys. Rev. B 63, 224401
(2001).

[83] J.-S. Bernier, M. J. Lawler, and Y. B. Kim, Phys. Rev. Lett.
101, 047201 (2008).

[84] E. Sela, H.-C. Jiang, M. H. Gerlach, and S. Trebst, Phys. Rev.
B 90, 035113 (2014).

[85] M. Yue, Z. Wang, B. Mukherjee, and Z. Cai, Phys. Rev. B 103,
L201113 (2021).

[86] A. G. Green, G. Conduit, and F. Krüger, Annu. Rev. Condens.
Matter Phys. 9, 59 (2018).

[87] R. G. Melko, A. Paramekanti, A. A. Burkov, A. Vishwanath,
D. N. Sheng, and L. Balents, Phys. Rev. Lett. 95, 127207
(2005).

[88] C. Liu, C.-J. Huang, and G. Chen, Phys. Rev. Res. 2, 043013
(2020).

[89] A. W. Sandvik, Phys. Rev. E 68, 056701 (2003).
[90] K. Damle, Phys. Rev. Lett. 115, 127204 (2015).
[91] Z. Hu, Z. Ma, Y.-D. Liao, H. Li, C. Ma, Y. Cui, Y. Shangguan,

Z. Huang, Y. Qi, W. Li, Z. Y. Meng, J. Wen, and W. Yu, Nat.
Commun. 11, 5631 (2020).

[92] H. Li, Y. D. Liao, B.-B. Chen, X.-T. Zeng, X.-L. Sheng,
Y. Qi, Z. Y. Meng, and W. Li, Nat. Commun. 11, 1111
(2020).

[93] Y. Wang, S. Humeniuk, and Y. Wan, Phys. Rev. B 101, 134414
(2020).

[94] Y. D. Liao, H. Li, Z. Yan, H.-T. Wei, W. Li, Y. Qi, and Z. Y.
Meng, Phys. Rev. B 103, 104416 (2021).

[95] Z. Dun, M. Daum, R. Baral, H. E. Fischer, H. Cao, Y. Liu,
M. B. Stone, J. A. Rodriguez-Rivera, E. S. Choi, Q. Huang,

H. Zhou, M. Mourigal, and B. A. Frandsen, Phys. Rev. B 103,
064424 (2021).

[96] A. W. Sandvik, Phys. Rev. B 59, R14157(R) (1999).
[97] A. W. Sandvik, A. Avella, and F. Mancini, AIP Conf. Proc.

1297, 135 (2010).
[98] E. Merali, I. J. De Vlugt, and R. G. Melko, arXiv:2107.00766.
[99] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181

(1973).
[100] Z.-X. Li and H. Yao, Annu. Rev. Condens. Matter Phys. 10,

337 (2019).
[101] Z.-X. Li, Y.-F. Jiang, and H. Yao, Phys. Rev. Lett. 117, 267002

(2016).
[102] Z. C. Wei, C. Wu, Y. Li, S. Zhang, and T. Xiang, Phys. Rev.

Lett. 116, 250601 (2016).
[103] L. Wang, Y.-H. Liu, M. Iazzi, M. Troyer, and G. Harcos, Phys.

Rev. Lett. 115, 250601 (2015).
[104] Z.-X. Li, Y.-F. Jiang, and H. Yao, Phys. Rev. B 91, 241117(R)

(2015).
[105] K. Binder, Z. Phys. B 43, 119 (1981).
[106] M. S. S. Challa and D. P. Landau, Phys. Rev. B 33, 437 (1986).
[107] S. V. Isakov and R. Moessner, Phys. Rev. B 68, 104409 (2003).
[108] D. Blankschtein, M. Ma, A. N. Berker, G. S. Grest, and C. M.

Soukoulis, Phys. Rev. B 29, 5250 (1984).
[109] J. M. Kosterlitz, J. Phys. C: Solid State Phys. 7, 1046 (1974).
[110] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,

Phys. Rev. B 16, 1217 (1977).
[111] J. Houdayer and A. K. Hartmann, Phys. Rev. B 70, 014418

(2004).
[112] N. Kawashima and N. Ito, J. Phys. Soc. Jpn. 62, 435 (1993).

053314-15

https://doi.org/10.1103/PhysRevB.63.224401
https://doi.org/10.1103/PhysRevLett.101.047201
https://doi.org/10.1103/PhysRevB.90.035113
https://doi.org/10.1103/PhysRevB.103.L201113
https://doi.org/10.1146/annurev-conmatphys-033117-053925
https://doi.org/10.1103/PhysRevLett.95.127207
https://doi.org/10.1103/PhysRevResearch.2.043013
https://doi.org/10.1103/PhysRevE.68.056701
https://doi.org/10.1103/PhysRevLett.115.127204
https://doi.org/10.1038/s41467-020-19380-x
https://doi.org/10.1038/s41467-020-14907-8
https://doi.org/10.1103/PhysRevB.101.134414
https://doi.org/10.1103/PhysRevB.103.104416
https://doi.org/10.1103/PhysRevB.103.064424
https://doi.org/10.1103/PhysRevB.59.R14157
https://doi.org/10.1063/1.3518900
http://arxiv.org/abs/arXiv:2107.00766
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1146/annurev-conmatphys-033117-054307
https://doi.org/10.1103/PhysRevLett.117.267002
https://doi.org/10.1103/PhysRevLett.116.250601
https://doi.org/10.1103/PhysRevLett.115.250601
https://doi.org/10.1103/PhysRevB.91.241117
https://doi.org/10.1007/BF01293604
https://doi.org/10.1103/PhysRevB.33.437
https://doi.org/10.1103/PhysRevB.68.104409
https://doi.org/10.1103/PhysRevB.29.5250
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1103/PhysRevB.16.1217
https://doi.org/10.1103/PhysRevB.70.014418
https://doi.org/10.1143/JPSJ.62.435

