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We show how the chiral properties of Bose-Einstein condensates subject to current-density interactions and
loaded in optical lattices can be observed in the realization of nonlinear Bloch states, whose spectrum lacks
the usual periodic structure. Chirality is also manifested by spatially localized states, or gap solitons, which
are found for positive rotation rates of the lattice at the energy gaps between the linear energy bands, whereas
for negative rotations they appear in the semi-infinite gap of the linear spectrum. The stability of extended and
localized states is checked through the spectrum of linear excitations and nonlinear time evolution of perturbed
states, and the phenomenon of Bloch oscillations is explored. Our results are obtained in quasi-one-dimensional
ring geometries with feasible experimental parameters.
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I. INTRODUCTION

Synthetic gauge fields that depend locally on the density
of matter have been recently realized in ultracold-atom set-
tings [1–4]. The unusual properties of these systems were
theoretically predicted by means of a nonlocal unitary trans-
formation that maps the density-dependent gauge into a
current-dependent interaction [5,6]. Bose-Einstein conden-
sates (BECs) endowed with such interparticle interactions
were shown to exhibit chiral properties in a free expansion, the
onset of persistent currents, or the center-of-mass oscillations
[7,8]; additionally, in the absence of external potential, it was
demonstrated that chiral bright solitons can exist only if they
move along one (but not the opposite) direction [4,5,9,10], and
that collisions between them differ significantly from those
between regular solitons [11,12].

Many aspects of this chiral theory remain unexplored, and
very recent experimental realizations [4] open new prospects
for testing the theoretical predictions. A significant subject
that was previously restricted to solid-state systems, the matter
dynamics in periodic potentials, became also accessible to the
field of ultracold gases with the realization of optical lattices
[13,14]. As far as we know, this subject has still not been
addressed within the chiral theory.

In this paper, we focus on BECs that are loaded in optical
lattices and subject to interactions that depend locally on the
current density. The lattice is assumed to be imprinted on
a quasi-one-dimensional (1D) ring, as generated by a tight
transverse confinement of the atoms, and to be able to ro-
tate. In particular, within the framework of a generalized
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Gross-Pitaevskii equation, we study the properties of non-
linear Bloch waves and gap solitons, and demonstrate their
unusual properties. While the energy dispersion of the former
states loses the usual periodic structure, and new nonregular
Bloch states emerge, the situation of gap solitons within the
energy gaps changes drastically with the direction of the ro-
tation rate. We analyze the spectrum of linear excitations and
show that the stability of both extended and localized states is
also conditioned by the chiral properties. Finally, we perform
numerical simulations of the equation of motion to explore
the stability of stationary states against small perturbations,
and also the existence of Bloch oscillations in the presence of
current-density interactions.

II. MODEL

We assume that the condensate wave function ψ (x, t ) fol-
lows a generalized Gross-Pitaevskii equation in a ring of
radius R:

ih̄
∂ψ

∂t
=

[
(−ih̄∂x − m�R)2

2m
+ Ulatt + h̄κJ

]
ψ, (1)

where Ulatt (x) = U0 sin2(πx/d ) is the lattice potential, with
amplitude U0 and lattice spacing d , which can rotate with
angular velocity �. The strength of the current-dependent
mean field is measured by the dimensionless parameter κ ,
and J (x, t ) = h̄(ψ∗∂xψ − ψ∂xψ

∗)/(i2m) is the current den-
sity in the laboratory frame. The total number of particles
N = ∫

dx|ψ |2, and the total energy (which does not include
an explicit dependency on the current density)

E =
∫

dx ψ∗
[

(−ih̄∂x − m�R)2

2m
+ Ulatt

]
ψ, (2)
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are conserved quantities [5]. We particularize our analysis on
an M-site lattice over the ring, so that 2πR = M d . As energy
reference, we will make use of the lattice recoil energy EL =
h̄2(π/d )2/(2m) [13].

The stationary states take the form ψ (x, t ) =
ψ (x) exp(−iμt/h̄), with μ as the energy eigenvalue. In
the search for stationary states, it is worth noticing that,
from the continuity equation ∂t |ψ |2 + ∂x(J − |ψ |2 � R) = 0,
the current density fulfills J − |ψ |2 � R = J0, where J0 is a
constant, thus it transforms the equation of motion (1) into
the regular time-independent Gross-Pitaevskii equation

(μ − h̄κ J0)ψ =
[

(−ih̄∂x − m�R)2

2m
+ Ulatt + g� |ψ |2

]
ψ,

(3)

where the effective constant-interaction strength is g� =
h̄κ�R. Furthermore, if the lattice does not rotate, the
initial nonlinear equation (1) is transformed into the time-
independent Schrödinger equation

(μ − h̄κ J0)ψ =
[
− h̄2

2m
∂2

x + Ulatt

]
ψ, (4)

with the current constraint J0 = |ψ (x)|2 h̄∂xθ (x)/m, where
θ = arg ψ (x) is the phase.

The linear excitations δψ j = [u j, v j]T of stationary states
ψ (x, t ) → exp(−iμt/h̄) {ψ (x) + ∑

j[u j (x) exp(−iω jt ) +
v j (x)∗ exp(iω∗

j t )]}, with j being a mode index, can be
obtained through the Bogoliubov equation Bδψ j = h̄ω j δψ j .
The Bogoliubov matrix is given by

B =
(

HGP + iκBuu − μ iκBuv

iκB∗
uv −H∗

GP + iκB∗
uu + μ

)
, (5)

where HGP = (−ih̄∂x − m�R)2/2m + Ulatt + h̄κJ is the
Hamiltonian operator in Eq. (1), Buu = h̄2(ψ∂xψ

∗ −
|ψ |2∂x )/2m, and Buv = −h̄2(ψ∂xψ − ψ2∂x )/2m. Linear
excitations with complex frequencies, Im(ω j ) �= 0, lead
to the exponential growth (in the linear regime) of small
perturbations on the stationary state that can produce its
decay during time evolution.

III. EXTENDED AND LOCALIZED EIGENSTATES

In a nonrotating linear system (� = 0 and κ = 0), the
dispersion relations of quantum states in a ring lattice consist
of energy bands separated by energy gaps [15]. The corre-
sponding spectrum of eigenstates can be described in terms
of Bloch waves ψn,k (x, t ) = exp[i(kx − εn,kt/h̄)] un,k (x), with
eigenenergies εn,k , where n = 1, 2, . . . identifies the band
number, and k = q k0, with q = 0, ±1, ±2, . . . and k0 =
1/R, is the wave number associated with the quasimomen-
tum h̄k. The functions un,k (x) share spatial period with the
lattice un,k (x + d ) = un,k (x), so that the probability density
profile is homogeneous over the lattice sites. If the lattice
is finite, and contains M sites, there are just M values of
quasimomentum [15].

In a system with varying contact interactions, the lin-
ear Bloch waves have been shown to find continuation as
nonlinear Bloch waves when the interactions are switched
on [13,16]. We will show that this continuation also exists

in the presence of current-density interactions. In addition,
differently to the case of contact interactions, there exist new
extended states with a nonhomogeneous density profile over
the lattice sites.

A. Nonlinear Bloch waves

First, we focus on the dispersion of the system at � = 0
for varying quasimomentum. Insight can be obtained from
the comparison with a system subject to contact interactions
(hence following the usual GP equation); in this case, the
linear energy bands are shifted to higher energies when the
interaction is repulsive, whereas the opposite happens for
attractive interaction. Therefore, in the presence of current-
density interaction, where the effective interaction changes
from repulsive to attractive according to the sign of the particle
current, the resulting dispersion curves are expected to be
asymmetric with respect to the value of quasimomentum, with
energies higher than the linear bands for states with positive
currents, and lower than the linear bands for states with nega-
tive currents.

As can be seen in Fig. 1(a), this is indeed the sce-
nario shown by our numerical results for a ring lattice
with M = 10 sites and shallow depth s = 2. The num-
ber of particles has been fixed for the nonlinear states
considered to give κN/(2πR) = 0.47/d; correspondingly,
the order of magnitude of the nonlinearity in Eq. (3) is
g�N/(2πR) = 4.7(R/d )h̄�. For comparison, contact inter-
action cases are represented, and have been parametrized
by the nondimensional quantity g = m d g1D/h̄2, where g1D

is the one-dimensional contact interaction strength, so that
|g| = κ . The lowest-energy band of the linear system (dotted
line) lays in between the lowest chemical potential bands
of nonlinear systems with positive (open symbols joined by
dashed lines to guide the eye) and negative (open symbols
joined by dot-dashed lines) contact interactions, whereas the
energy eigenvalues of the system with current-density in-
teraction (filled symbols) vary as predicted. The states with
minimum (zero) and maximum (k = 5 k0) values of quasimo-
mentum have no particle currents, thus they follow a linear
(Schrödinger) equation of motion, and match the energy of
the linear bands. Four instances of Bloch states, with quasi-
momentum wave number k/k0 = 0, 1, −1, 5, represented by
their density and phase profiles, are shown in Fig. 1(b).

B. Nonregular Bloch states

An interesting novelty of the systems with current-density
interactions, contrary to the case of contact interactions, is the
existence of extended stationary states that do not conform
to the usual picture of Bloch states, since they present a
nonhomogeneous density profile over the lattice sites. They
do not conform either to the features of alternative states
hosting dark solitons in the lattice [17]. We will refer to
them as nonregular Bloch states, since the quasimomentum,
associated with the phase winding number q = k/k0, is still a
well-defined quantity. As a general aspect, the higher the vari-
ation between density peaks of lattice sites that they present,
the lower the constant current density becomes. Our numerical
results for characteristic quantities suggest a continuum of
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(a)

(b)

(c)

FIG. 1. (a) Linear (dotted line) and nonlinear (symbols) lowest-
energy bands for a ring lattice at rest, � = 0, with ten sites,
M = 10, lattice depth s = 2, and average number density fixed by
κ N/(2πR) = 0.47/d . Two types of interparticle interactions with
equal strength are represented: contact interaction parametrized by
|g| (see text), both repulsive g > 0 and attractive g < 0, and current-
dependent interaction κ , with |g| = κ = 4.7/N (denoted by I in the
legend). (b) Density (top) and phase (bottom) profiles of nonlinear
Bloch states ψn,k in the presence of current-density interactions,
κ �= 0 and g = 0. (c) Three instances of nonregular Bloch states
with quasimomentum k = k0, from almost homogenous, ψ1a, to large
variations, ψ1c, in the density peaks.

nonregular Bloch states, for we were able to find close states
with very small differences, of the order of 1‰ in energies.
The linear Eq. (4) sheds light on this phenomenon, since it
admits solutions as linear superpositions of states with the
same eigenvalue μ − h̄κ J0.

Figure 1(c) shows the density (top) and phase (bottom)
profiles of three nonregular Bloch states with winding number

q = k/k0 = 1. They range from almost homogeneous ψ1a, to
intermediate ψ1b, and up to large variation ψ1c, in the density
peaks. The density modulation over the whole lattice has the
form nk [1 + β sin(k0 x)], where nk is the density of the ho-
mogenous Bloch state, and β varies from almost zero for ψ1a,
to β = 0.6 for ψ1c. Despite the large differences in the density
profile, their energy eigenvalues differ by less than 1%, and
their energies differ by less than 1‰. The phase profiles show
also small differences and follow a monotonic increase in the
range [0, 2π ].

C. Lattice rotation and gap solitons

Gap solitons are localized states in systems loaded in op-
tical lattices; they usually occupy a few sites, a small region
of the whole lattice. Although their existence can be easily
understood in systems with attractive interactions, similarly
as in translation-invariant settings, their emergence in the
presence of repulsive interactions is a priori not that evident
[18], and can be explained through the sign change induced
by the lattice in the effective mass of the particles (see for in-
stance Ref. [19]). In this paper, the current-density interaction
provides both possibilities for the emergence of gap solitons,
which become distinct for positive and negative current den-
sities. Since the interaction (or nonlinearity) is necessary for
the solitons to exist, the ring lattice has to rotate in order for
the gap solitons to emerge.

Although the finite lattice considered here, having M
sites, allows for only M Bloch waves, the introduction of
rotation gives access to the continuous spectrum of the in-
finite lattice [16]. In systems with Galilean symmetry (as
happens for contact interactions), for varying rotation rate
� ∈ (−M/2, M/2] × �0, where �0 = h̄/(mR2), the energy
of each Bloch wave εn,k (�) in the finite lattice [as obtained
from Eq. (2)] reproduces the energy band profile against
quasimomentum in the first Brillouin zone k ∈ (−π/d, π/d]
of the infinite lattice with � = 0. The dispersion graph, εn,k

versus �, is also useful in understanding the emergence of
gap solitons; the energy degeneracies found in this graph for
the linear system, which correspond to crossings of Bloch-
wave trajectories, provide the origin of gap solitons when the
interparticle interactions are switched on. Thus, gap solitons
are the nonlinear continuation of linear states made of Bloch-
wave superpositions [16].

Figure 2 shows our numerical results for stationary states
in a moving ring lattice with current density interactions and
the same parameters as in Fig. 1. The eigenenergy (left)
and current density (right) of both nonlinear Bloch states
and gap solitons are represented for fixed number of parti-
cles. Gap solitons spread when approaching the energy bands
(light-gray shaded regions in the graph), and then become dy-
namically unstable [18]. Eventually, as happens in the present
case at the bottom of the second energy band, they extend
to the whole system (or stop existing in an infinite lattice)
when entering a band [16]. Overall, the chirality of the system
manifests as asymmetric trajectories for positive and negative
rotation rates of the lattice. In addition, as we demonstrate
next, apparent differences arise in the states belonging to these
families, which show distinct density profiles and stability
properties.
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FIG. 2. Trajectories of nonlinear Bloch waves (solid and dashed
lines) and gap solitons (thin lines with symbols) in a ring lattice
moving with angular rotation �. All states contain the same number
of particles, so that the varying rotation translates into a varying
interaction. Nonlinear Bloch waves are characterized by the wave
number k that indexes their quasimomentum, whereas gap soliton
trajectories differ for positive (open circles) and negative (open tri-
angles) currents. Left: Energy eigenstates measured in units of the
lattice recoil energy EL; the underlying energy bands of the linear
problem (shaded regions) are represented for comparison. Right:
Average current density in units of J0 = N�0.

Figure 3(a) shows the density and phase profiles of two
typical gap solitons with the same number of particles and
opposite lattice rotation. For positive rotation rate (top panel)
the soliton is situated between the first and second energy
bands, corresponding to the family represented by lines with
open circles in Fig. 2. For negative rotation (bottom panel) the
soliton belongs to the family lying in the semi-infinite gap,
indicated by lines with open triangles in Fig. 2. The latter
soliton, having negative current and then effective attractive
interparticle interaction, is comparatively more compact than
the former, and occupies just one lattice site. In contrast, as
can be seen in Fig. 3(b), the density profiles of two non-
linear Bloch waves with equal quasimomentum k = 5 k0 but
opposite lattice rotations, hence opposite current densities,
are almost indistinguishable (notwithstanding, the differences
become clearer for increasing number of particles).

D. Linear stability analysis

We have studied the linear stability of the stationary states
reported in Fig. 2 by numerically solving the corresponding
Bogoliubov equations (5). Before analyzing our results, it is
insightful to recall the scenario of equivalent states with con-
tact interparticle interactions; we particularize it for otherwise
equal parameters as in Fig. 2. In such a case, while there
is no difference regarding the sign of the quasimomentum,
the dynamical stability depends strongly on the character of
the contact interactions, either repulsive or attractive. For the
former case, it is known that Bloch states close to the edge
of the Brillouin zone become unstable; how close depends in
turn on the strength of the interactions and the lattice depth
[20]. The opposite happens for attractive contact interactions,
where Bloch states close to zero quasimomentum become un-
stable; in this latter situation, one can understand the source of
instability as associated with smoother, slowly varying density
profiles, on which modulation instability can operate due to
the existence of lower-energy states with localized density

(a)

(b)

FIG. 3. Gap solitons (a) and nonlinear Bloch waves with quasi-
momentum k = 5 k0 (b), for positive � = �0 and negative � = −�0

lattice rotations, and otherwise equal parameters to those used in
Fig. 2.

profiles. Regarding fundamental (one main peak) gap solitons,
although instabilities can be found when their chemical poten-
tial approaches a linear energy band, they are usually stable
states.

Our results in current-interacting systems show, in general,
a trend similar to the scenario of contact interactions. The
main difference resides in the asymmetry between positive
and negative quasimomenta, which can be mapped into sys-
tems with effective positive and negative contact interactions,
respectively. Another particular difference is observed in the
stability of gap solitons with positive rotation rates for the
lattice depth considered in Fig. 2, s = 2, for which we have not
found stable cases, despite the fact that the energy of the un-
stable modes (having complex frequencies) can be very small
in comparison with the corresponding energy eigenvalue μ.
Still, we did find stability for these solitons at higher values of
the lattice depth.
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(a)

(b)

FIG. 4. Linear excitation modes of stationary states for fixed
number of particles. (a) Nonlinear Bloch states with k = 4 k0 in a
lattice at rest. (b) Gap solitons with opposite rotation rates shown in
Fig. 3.

Several examples of these general features on linear stabil-
ity are presented in Fig. 4; both the real and imaginary parts
of the excitation modes are shown for each state considered.
Figure 4(a) shows the excitation energies of two nonlinear
Bloch waves with the same absolute value of quasimomentum
|k| = 4k0 (close to the edge of the Brillouin zone) in a lattice at

rest � = 0. While the state with negative quasimomentum is
dynamically stable, the positive-quasimomentum state is not.
The scenario is analogous to systems with contact interparticle
interactions, hence our results are the opposite (stable for
positive rotation and unstable for negative rotation) for states
with quasimomentum |k| = k0 (not shown).

Figure 4(b) represents the energy excitations of the two
gap solitons shown in Fig. 3. As anticipated, the soliton with
negative rotation is dynamically stable, while the soliton with
positive rotation, � = �0, presents complex frequencies that
can cause the dynamical decay of this stationary state in a
real time evolution (see next section). However, for the same
parameters but in a deeper lattice, s = 3, we have found that
the corresponding soliton becomes stable.

IV. DYNAMICS

Despite the linear analysis performed in the previous sec-
tion, the stability of stationary states can only be ensured
through the nonlinear time evolution of the system. To this
end, we have solved the time-dependent Eq. (1) for initial
stationary states on which perturbative noise has been added.
Although our results for the subsequent time evolution are
consistent with the predictions of the linear stability analysis,
we have also found some interesting cases whose dynamics
show features of structural stability (small variations of the
stationary state profile that do not break qualitatively its struc-
ture) despite the presence of unstable linear modes.

Figure 5(a) depicts three snapshots for selected times
(t = 0, T/2, T ) of a time evolution, with total time T =
25 md2/h̄, of the linearly unstable soliton of Fig. 3(a) with
positive rotation rate. As can be seen, it confirms the linear
prediction of instability shown in Fig. 4(b), since it displays
the tunneling of particles into nearby lattice sites as time
passes. The linear analysis predicts also the instability of the
nonlinear Bloch states with k = 5k0 and opposite rotation
rates shown in Fig. 3(b), with unstable linear modes of higher
energy in the case of positive rotation. However, the time
evolution, Fig. 5(b), shows a distinct nonlinear dynamics for
them. While the positive rotation Bloch state evolves into a
nonsymmetric structure that is highly variable in time, the
negative rotation one exhibits a small breathing dynamics that
does not alter the geometric shape of the initial state. We
have checked that different types of small perturbations lead
to the same conclusions, and a similar dynamics is shown for
evolution times much longer (up to ten times) than the case
shown in Fig. 4(b).

One of the most interesting features of the dynamics in
optical lattices is the emergence of Bloch oscillations. This
phenomenon has been shown to appear in BECs with contact
interparticle interactions when the lattice velocity is slowly
ramped up [21,22]. It manifests the periodic nature of the sys-
tem through the ground-state transit from positive to negative
quasimomentum states over the first energy band. As a conse-
quence, the system’s average velocity oscillates with respect
to the lattice velocity. But differently to linear systems, the
nonlinearity introduced by the interactions in BECs can lead
to the breakdown of Bloch oscillations, which is associated
with the instability of Bloch states close to the edge of the
Brillouin zone [20]. In addition, the energy band structure
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(a)

(b)

FIG. 5. Selected snapshots of the real time evolution of station-
ary states shown in Fig. 3 after perturbative noise has been added on
the initial states ψ0. In all the cases, the duration of the total time
evolution is T = 25 md2/h̄. (a) Gap soliton. (b) Nonlinear Bloch
states.

changes with increasing interactions, so that, precisely at the
edge of the Brillouin zone, it develops a cusp, first, and a
swallow tail configuration, later, that prevents the adiabatic
transit between different quasimomentum states [20].

In what follows, we make an exploration of Bloch oscil-
lations in systems with current-dependent interactions. On
examination of the dispersion of nonlinear Bloch states for
varying rotation, Fig. 2, and despite the lack of symmetry with
respect to the rotation direction, one can expect the transit
from positive to negative velocities to take place if the states
passed across for varying rotation are dynamically stable, or
if, these states being unstable, their instability modes grow at
slower rate than the transit speed.

The expected period of Bloch oscillations is

TB = 2π h̄

mαRd
, (6)

where αR is a constant acceleration in the ring, since this is
the time taken to cross the first Brillouin zone from quasimo-
mentum k = −π/d to π/d . The influence of the nonlinearity
on the oscillations in systems with contact interactions

(a)

(b)

FIG. 6. Bloch oscillations with current-density interactions.
(a) Relative angular rotation (top) and linear velocity (bottom) vs
time in a lattice with varying rotation rate � = αt for both positive
and negative values of the angular acceleration. (b) For α > 0, snap-
shots of the system state at selected times: t1 at the minimum relative
velocity, t2 at the maximum relative velocity, and t3 at the first local
minimum after the maximum of the relative velocity.

can be captured, at least for smooth density profiles,
by effectively modifying the lattice depth as U (eff)

0 = U0/

(1 + 4g1Dn̄/EL ) [21], where n̄ is the average number density.
This effective potential provides us with a way to account
for the current-density interactions on Bloch oscillations by
means of an equivalent effective lattice depth

U (eff)
0 = U0

(
1 + 4

h̄κ J̄

EL

)−1

, (7)

where J̄ is the average current density.
Guided by Eqs. (6) and (7), we have chosen the initial

ground state in Fig. 1, with k = 0, and have imparted a con-
stant angular acceleration α to the ring lattice. The results
are shown in Fig. 6 for the absolute value of the angular
acceleration |α|/�2

0 = 2. Figure 6(a) represents the relative
rotation of the evolved state with respect to the lattice for
negative and positive signs of the acceleration. The observed
period of the Bloch oscillations is consistent with Eq. (6), with
the zero crossings (or points of zero relative velocity) reached
at times t j that are integer multiples of TB/2, i.e., t j = jTB/2,
and j = 0, 1, 2, . . . . For j odd, the system transits through
the edge of the Brillouin zone and the wave function presents
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M nodes (associated with the formation of standing waves
by Bragg reflections [15]). The latter fact can be interpreted
as the presence of M dark solitons caused by the M cores
of corresponding vortices in their transition from the outer
part to the inner part of the ring [16]. This view is better
understood by monitoring the expectation value of the linear
velocity measured in ring units h̄/mR, as depicted in the
bottom panel of Fig. 6(a). As can be seen, the linear velocity is
approximately constant around integer values of t/TB, that is,
around t j = l TB, for j = 2l even, and l = 0, 1, 2, . . . , when
the system transits through the center of the Brillouin zone and
the velocity takes the value ∼lMh̄/mR, due to l × M vortices
that have entered the inner part of the ring.

Apparent differences can be observed in the smoothness
(and also in the duration, see below) of the Bloch oscillations
that depend on the sign of the acceleration. Qualitatively, they
can be explained by the effective lattice depth of Eq. (7).
Since positive (respectively negative) rotations translate into
positive (resp. negative) current densities, they decrease (resp.
increase) the effective lattice depth and make the lattice pro-
gressively less (resp. more) relevant. Contrary to the case of
contact interactions, this causes the monotonic variation of the
amplitude of Bloch oscillations (the maximum relative speed)
after each zero crossing; it keeps increasing (resp. decreasing)
for positive (resp. negative) acceleration. For high negative
values of the current density the superfluid features of the
system tend to disappear, the system state becomes strongly
localized, and the current density approaches the lattice rota-
tion, which is reflected in the bottom panel of Fig. 6(a) by a
progressively straightened curve, without the marked plateaus
of the curve with positive acceleration. On the other hand,
the latter adiabatic curve becomes accompanied at higher
currents by higher-frequency oscillations, related to Landau-
Zener tunneling [21], between configurations with different
density modulation [see Fig. 6(b)].

We finish by commenting briefly on the effect of different
accelerations. As shown in Fig. 6, for |α|/�2

0 = 2 the decay
of Bloch oscillations does not appear before 2TB. However, at
the lower acceleration of α = −0.5�2

0 (not shown) the oscil-
lations hardly complete one whole period TB before breaking

down, producing the decay of the homogeneous profile over
the lattice sites into more localized density peaks. This decay
resembles the action of modulation instabilities [23]. There-
fore, our results point to the fact that Bloch oscillations that
proceed with (still adiabatic, but) higher acceleration last
longer, which we attribute to the fact that in this case the
unstable modes have a shorter time to grow.

V. CONCLUSIONS

We have reported on gap solitons and nonlinear Bloch
states in a rotating ring lattice within a theory with current-
density interactions. Our results show that the presence of
chirality is manifest in all the states considered, including
their spectrum of linear excitations and the display of Bloch
oscillations for constant angular acceleration. A novelty is
the existence of stationary and dynamically stable nonregular
Bloch states characterized by a modulated density profile.

The recent experimental achievement of this theory in
Bose-Einstein condensates of ultracold atoms [4] opens the
way for the experimental realization of the states and phenom-
ena that we have described. Although currently optical lattice
potentials in a ring are experimentally available [24,25], our
results are not restricted to this geometry, and can also be
realized in one-dimensional linear lattices, as has been rou-
tinely done in the presence of contact interatomic interactions
[13,14].

Future prospects of our work include the study of fun-
damental and higher-order soliton states in different energy
gaps, and the extension to realistic two- or three-dimensional
systems that reach the quasi-1D regime.
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